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Gaussian Elimination

Given a linear system Ax = b
a11 a12 . . . a1k

a21 a22 . . . a2k
...

...
. . .

...
ak1 ak2 . . . akk




x1

x2
...

xk

 =


b1

b2
...
bk



Manipulate A|b to obtain an upper-triangular form
a′11 a′12 . . . a′1k

0 a′22 . . . a′2k
...

...
. . .

...
0 0 . . . a′kk

∣∣∣∣∣∣∣∣∣
b′1
b′2
...
b′k


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Gaussian Elimination

Then, solve backwards from k’s row according to:

xi =
1
a′ii

(b′i −
k∑

j=i+1

a′ijxj)
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Example

 1 2 1
−2 3 4

4 −1 −8

  x1

x2

x3

 =

 6
3
9

 ⇒
 1 2 1

−2 3 4
4 −1 −8

∣∣∣∣∣∣
6
3
9



R3 = ( 4, −1, −8 | 9 )
−4R1 = ( −4, −8, −4 | −24 )

R3 + = −4R1

 1 2 1
−2 3 4

0 −9 −12

∣∣∣∣∣∣
6
3

−15



R2 = ( −2, 3, 4 | 3 )
2R1 = ( 2, 4, 2 | 12 )
R2 + = 2R1

 1 2 1
0 7 6
0 −9 −12

∣∣∣∣∣∣
6

15
−15



R3 = ( 0, −9, −12 | −15 )
9
7R2 = ( 0, 9, 6·9

7 | 15·9
7 )

R3 + = 9
7R2

 1 2 1
0 7 6
0 0 − 30

7

∣∣∣∣∣∣
6

15
30
7


Now: x3 = −1, x2 = 3, x1 = 1. Problem solved!
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Satisfiability with Simplex

Simplex was originally designed for
solving the optimization problem:

max~c ~x
s.t.
A~x ≤ ~b, ~x ≥ ~0

We are only interested in the
feasibility problem = satisfiability
problem.

Decision Procedures – The Simplex Algorithm 6



General Simplex

We will learn a variant called general simplex.

Very suitable for solving the satisfiability problem fast.

The input: A~x ≤ ~b

A is a m× n coefficient matrix
The problem variables are ~x = x1, . . . , xn

First step: convert the input to general form
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General Form

Definition (General Form)

A~x = 0 and
m∧

i=1

li ≤ si ≤ ui

A combination of

Linear equalities of the form
∑

i aixi = 0
Lower and upper bounds on variables
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Transformation to General Form

Replace
∑

i aixi ./ bj (where ./∈ {=,≤,≥})

with
∑

i aixi − sj = 0

and sj ./ bj .

s1, . . . , sm are called the additional variables
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Example 1

Convert x + y ≥ 2!

Result:
x + y − s1 = 0
s1 ≥ 2

It is common to keep the
conjunctions implicit
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Example 2

Convert

x +y ≥ 2
2x −y ≥ 0
−x +2y ≥ 1

Result:

x +y −s1 = 0
2x −y −s2 = 0
−x +2y −s3 = 0

s1 ≥ 2
s2 ≥ 0
s3 ≥ 1

Decision Procedures – The Simplex Algorithm 11
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Geometrical Interpretation

Linear inequality constraints,
geometrically, define a
convex polyhedron.

c© Wikipedia

Decision Procedures – The Simplex Algorithm 12



Geometrical Interpretation

Our example from before:

x +y ≥ 2
2x −y ≥ 0
−x +2y ≥ 1

1 2 3 4

1

2

(A) (B)

2x− y ≥ 0

−x + 2y ≥ 0

x + y ≥ 2

x

y

3

(C)
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Matrix Form

Recall the general form: A~x = 0 and
∧m

i=1 li ≤ si ≤ ui

A is now an m× (n + m) matrix
due to the additional variables.

x +y −s1 = 0
2x −y −s2 = 0
−x +2y −s3 = 0

s1 ≥ 2
s2 ≥ 0
s3 ≥ 1

x y s1 s2 s3 1 1 −1 0 0
2 −1 0 −1 0

−1 2 0 0 −1


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The Tableau

The diagonal part is inherent to the general form:

x y s1 s2 s3 1 1 −1 0 0
2 −1 0 −1 0

−1 2 0 0 −1



Instead, we can write:

x y

s1

s2

s3

 1 1
2 −1

−1 2


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The Tableau

The tableaux changes throughout the algorithm, but
maintains its m× n structure

Distinguish basic and nonbasic variables

x y

s1

s2

s3

 1 1
2 −1

−1 2

Basic variables -

Nonbasic variables¾

Initially, basic variables = the additional variables
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The Tableau

Notation:
B the basic variables
N the nonbasic variables

The tableaux is simply a different notation for the system∧
xi∈B

(
xi =

∑
xj∈N

aijxj

)

The basic variables are also called the dependent variables.
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Data Structures

Simplex maintains:

The tableau,
an assignment α to all variables,
an assignment to the bounds.

Initially,

B = additional variables,
N = problem variables,
α(xi) = 0 for i ∈ {1, ..., n + m}

Decision Procedures – The Simplex Algorithm 18



Invariants

Two invariants are maintained throughout:

1 A~x = 0
2 All nonbasic variables satisfy their bounds

The basic variables need not satisy their bounds

Can you see why these invariants are maintained initially?

We should check that they are indeed maintained
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Invariants

The initial assignment satisfies A~x = 0

If the bounds of all basic variables are satisfied by α, return
‘Satisfiable’

Otherwise... pivot.
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Pivoting

1 Find a basic variable xi that violates its bounds.
Suppose that α(xi) < li.

2 Find a nonbasic variable xj such that

aij > 0 and α(xj) < uj , or
aij < 0 and α(xj) > lj .

Why?

Such a variable is called suitable.

3 If there is no suitable variable, return ‘Unsatisfiable’

Why?
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Pivoting xi and xj (1)

1 Solve equation i for xj :

From: xi = aijxj +
∑
k 6=j

aikxk

To: xj =
xi

aij
−

∑
k 6=j

aik

aij
xk

2 Swap xi and xj , and update the i-th row accordingly

From: ai1 . . . aij . . . ain

To:
−ai1

aij
. . .

1
aij

. . .
−ain

aij
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Pivoting xi and xj (2)

3 Update all other rows:
Replace xj with its equivalent obtained from row i:

xj =
xi

aij
−

∑
k 6=j

aik

aij
xk

4 Update α as follows:

Increase α(xj) by θ =
li − α(xi)

aij

Now xj is a basic variable: it may violate its bounds
Update α(xi) accordingly
Q: What is α(xi) now?

Update α for all other basic (dependent) variables
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Pivoting: Example (1)

Recall the tableau and constraints in our example:

x y

s1 1 1
s2 2 −1
s3 −1 2

2 ≤ s1

0 ≤ s2

1 ≤ s3

Initially, α assigns 0 to all variables

=⇒ The bounds of s1 and s3 are violated

We will fix s1.

x is a suitable nonbasic variable for pivoting.
It has no upper bound!

So now we pivot s1 with x
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Pivoting: Example (2)

x y

s1 1 1
s2 2 −1
s3 −1 2

2 ≤ s1

0 ≤ s2

1 ≤ s3

Solve 1st row for x:

s1 = x + y ⇐⇒ x = s1 − y

Replace x in other rows:

s2 = 2(s1 − y)− y ⇐⇒ s2 = 2s1 − 3y

s3 = −(s1 − y) + 2y ⇐⇒ s3 = −s1 + 3y
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Pivoting: Example (3)

x = s1 − y
s2 = 2s1 − 3y
s3 = −s1 + 3y

This results in the following new
tableau:

s1 y

x 1 −1
s2 2 −3
s3 −1 3

2 ≤ s1

0 ≤ s2

1 ≤ s3

What about the assignment?

We should increase x by θ =
2− 0

1
= 2

Hence, α(x) = 0 + 2 = 2
Now s1 is equal to its lower bound: α(s1) = 2
Update all the others
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Pivoting: Example (4)

The new state:

s1 y

x 1 −1
s2 2 −3
s3 −1 3

α(x) = 2
α(y) = 0
α(s1) = 2
α(s2) = 4
α(s3) = −2

2 ≤ s1

0 ≤ s2

1 ≤ s3

Now s3 violates its lower bound

Which nonbasic variable is suitable for pivoting?
That’s right. . . y

We should increase y by θ = 1−(−2)
3 = 1
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Pivoting: Example (5)

The final state:

s1 s3

x 2/3 −1/3
s2 1 −1
y 1/3 1/3

α(x) = 1
α(y) = 1
α(s1) = 2
α(s2) = 1
α(s3) = 1

2 ≤ s1

0 ≤ s2

1 ≤ s3

All constraints are satisfied.
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Observations I

The additional variables:

Only additional variables have bounds.

These bounds are permanent.

Additional variables enter the base only on extreme points
(their lower or upper bounds).

When entering the base, they shift towards the other bound
and possibly cross it (violate it).
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Observations II

Q: Can it be that we pivot xi, xj and then pivot xj , xi

and thus enter a (local) cycle?

A: No.

For example, suppose that aij > 0.

We increased α(xj) so now α(xi) = li.

After pivoting, possibly α(xj) > uj , but a′ij = 1/aij > 0,
hence the coefficient of xi is not suitable
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Termination

Is termination guaranteed?

Not obvious. Perhaps there are bigger cycles.

In order to avoid circles, we use Bland’s rule:

1 Determine a total order on the variables
2 Choose the first basic variable that violates its bounds,

and the first nonbasic suitable variable for pivoting.
3 It can be shown that this guarantees that no base is repeated,

which implies termination.
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General simplex With Bland’s Rule

1 Transform the system into the general form

A~x = 0 and
m∧

i=1

li ≤ si ≤ ui .

2 Set B to be the set of additional variables s1, . . . , sm.
3 Construct the tableau for A.
4 Determine a fixed order on the variables.
5 If there is no basic variable that violates its bounds, return

‘Satisfiable”. Otherwise, let xi be the first basic variable in
the order that violates its bounds.

6 Search for the first suitable nonbasic variable xj in the order
for pivoting with xi. If there is no such variable, return
‘Unsatisfiable”.

7 Perform the pivot operation on xi and xj .
8 Go to step 5.
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