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Gaussian Elimination

o Given a linear system Ax =

ail a2 ... Ak x1 b1
a1 g2 ... a2 T2 bo
apl QR ... Gk T, b

e Manipulate A|b to obtain an upper-triangular form

/ !/ / /
ap @y ..oy | b
/ !/ /

0 ay ... ay, | by
/ /

0 0 ... ay | b
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Gaussian Elimination

Then, solve backwards from k's row according to:

k
1 / /
Ti =~ (bz o E aijxj)
a- - =
2 ]:Z+1
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Example

1 2 1 £ 6 1 2 1|6
2 3 4 | = 3 = 2 3 3
4 -1 -8 4 9 4 -1 -8 9
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Example

R3 = ( 4, -1, -8 9 ) 12 1 6
—4R1 = ( -4, -8, —4 | —24 ) -2 3 4 3
R3 += —4Rl 0 —9 —12| —15
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Example

R3 = ( 4, -1, =8 | 9 ) 1 2 1 6
—4R1 = ( —4, -8, —4 | -24 ) -2 3 4 3
R3 += —4Rl 0 —9 —12| —15
R2 = ( -2 3,4 3) 1 2 1 6
2R1 = (2,4, 2 | 12 ) 0o 7 6| 15
R2 += 2RIl 0 —9 —12 | —15
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Example

R3 = ( 4, -1, =8 | 9 ) 12 1 6
—4R1 = ( —4, -8, —4 | -24 ) -2 3 4 3
R3 += —4R1 0 -9 —12| —15
R2 = (-2 3 4| 3) 12 1 6
2Rl = (2, 4, 2 | 12 ) 0 7 6 15
R2 += 2RIl 0 -9 —12| —15
R3 = (0, -9 -12 | -15 ) 12 1] 6
SR2 = (0, 9 &2 | B2 07 6] 15
R3 += 32R2 00 —32| 2
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Example

R3 = (4, -1, -8 | 9 ) 12 1 6

—4R1 = ( —4, -8, —4 | -24 ) -2 3 4 3

R3 + = -—4R1 0 -9 —-12 —15
R2 = ( -2 3 4] 3) 12 1 6
2Rl = (2, 4, 2 | 12 ) 0 7 6 15
R2 += 2RI1 0 -9 -—-12 —15
R3 = (0, =9, —12 | —15 ) 1 2 1] 6
JR2 = (0, 9 & | 139 07 6| 15
7R3 _ QRQ 7 0 0 30 30
T= 7 -7

Now: 23 = —1, 29 = 3, 1 = 1. Problem solved!
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Satisfiability with Simplex

@ Simplex was originally designed for
solving the optimization problem:

maxcad
s.t.
Ax <

l

S

>0

)

@ We are only interested in the
feasibility problem = satisfiability
problem.
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General Simplex

o We will learn a variant called general simplex.

@ Very suitable for solving the satisfiability problem fast.
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General Simplex

We will learn a variant called general simplex.

Very suitable for solving the satisfiability problem fast.

The input: AZ < b

e Ais a m x n coefficient matrix
o The problem variables are ¥ = x¢,..., 2,

First step: convert the input to general form
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General Form

Definition (General Form)

A combination of

e Linear equalities of the form > . a;z; =0

@ Lower and upper bounds on variables
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Transformation to General Form

@ Replace ), a;x; > b; (where e {=, <, >})
with Zz ;T — S5 = 0

and Sj ] bj.

@ Si,...,5Sy, are called the additional variables
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Example 1

Convert x +y > 2!
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Example 1

Convert x +y > 2!

Result:
r+y—s=0 It is common to keep the
$1>2 conjunctions implicit
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Example 2

Convert
r +y =2
2 —y >0
—x 2y >1
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Example 2

Convert
r +y =2
2 —y >0
—x 2y >1
Result:

r 4y —s1 =0

20 —y —S9 =

—x +2y —s3 =0
s1 >2
59 ZO
s3 >1
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Geometrical Interpretation

Linear inequality constraints,
geometrically, define a
convex polyhedron.

Wikipedia
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Geometrical Interpretation

Our example from before:

Y 20 —y >0

3L
r 4y =2 \2
20 —y >0 2 +2y>0
—r +2y >1 1+

(©)
rT+y>2
OO M
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Matrix Form

@ Recall the general form: A7 =0 and /\Z’;l Ui < s; <y

e Ais now an m x (n + m) matrix
due to the additional variables.

x +y —s1 =0
200 —y —sy = x Yy s1 0 S22 83

—x 42y —s3 =0 1 1 -1 0 0
51 > 2 2 -1 0 -1 0
sgs >0 -1 2 0 0 -1

53 21

Decision Procedures — The Simplex Algorithm 14



The Tableau

@ The diagonal part is inherent to the general form:

i y S1
1 1 -1
2 -1 0
—1 2 0

@ Instead, we can write:

€T
S1 1
S9 2
S3 —1
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S9 S3
0 0
—1 0
0 -1
Y
1
-1
2
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The Tableau

@ The tableaux changes throughout the algorithm, but
maintains its m X n structure

@ Distinguish basic and nonbasic variables

x Y <——Nonbasic variables
S1 1
Basic variables——— 52 2 -1
S3 -1

@ Initially, basic variables = the additional variables
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The Tableau

o Notation:
B the basic variables

N the nonbasic variables

@ The tableaux is simply a different notation for the system
/\ (:Ll = Z aijxj)

z, €8 IjEN

@ The basic variables are also called the dependent variables.
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Data Structures

@ Simplex maintains:
o The tableau,
e an assignment « to all variables,
e an assignment to the bounds.

o Initially,
e 3 = additional variables,
o N = problem variables,
o a(xi)=0foriec {1,...n+m}
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Invariants

@ Two invariants are maintained throughout:

Q AX=0
@ All nonbasic variables satisfy their bounds

@ The basic variables need not satisy their bounds
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Invariants

@ Two invariants are maintained throughout:

Q AX=0
@ All nonbasic variables satisfy their bounds

@ The basic variables need not satisy their bounds

o Can you see why these invariants are maintained initially?

@ We should check that they are indeed maintained
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Invariants

@ The initial assignment satisfies AZ = 0

o If the bounds of all basic variables are satisfied by «, return
‘Satisfiable’

o Otherwise... pivot.
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Pivoting

@ Find a basic variable x; that violates its bounds.
Suppose that a(z;) < ;.

@ Find a nonbasic variable ; such that
o a;; > 0and a(z;) < uj, or
° a;; < 0 and Ot(l’j) > ZJ

Why?
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Pivoting

@ Find a basic variable x; that violates its bounds.
Suppose that a(z;) < ;.

@ Find a nonbasic variable ; such that
o a;; > 0and a(z;) < uj, or
° a;; < 0 and Ot(l’j) > ZJ

Why? Such a variable is called suitable.
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Pivoting

@ Find a basic variable x; that violates its bounds.
Suppose that a(z;) < ;.

@ Find a nonbasic variable ; such that
o a;; > 0and a(z;) < uj, or
° a;; < 0 and Ot(l’j) > ZJ

Why? Such a variable is called suitable.

@ If there is no suitable variable, return ‘Unsatisfiable’

Why?
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(1)

Pivoting  and

@ Solve equation i for x;:

From:

To:

Decision Procedures — The Simplex Algorithm

Tj = Q5T + E Qi Tl
k#j
T ik
.I'j = — — — Xk
a” Py a,-j
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Pivoting and (1)

@ Solve equation i for x;:

From: x; = Qi x5 + E ik Tk

i] k éj Z.]

@ Swap z; and z;, and update the i-th row accordingly

From:’ a;1 ‘ ‘ aij “ Ain ‘
a,-j aij aij
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Pivoting and  (2)

© Update all other rows:
Replace z; with its equivalent obtained from row i:
T ik
1] k’#] 1]
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Pivoting and  (2)

© Update all other rows:
Replace z; with its equivalent obtained from row i:
T ik
1] k’#] 1]

@ Update « as follows:

li — oz
o Increase a(x;) by 6 = L — o)
J
Now x; is a basic variable: it may violate its bounds
Update a(x;) accordingly

Q: What is a(z;) now?

o Update « for all other basic (dependent) variables
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Pivoting: Example (1)

@ Recall the tableau and constraints in our example:

Ty ¥y

2 < S1
o1 ; 1 0 < s2
52 — < s3
S3 -1 2

o Initially, v assigns O to all variables

— The bounds of s; and s3 are violated
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Pivoting: Example (1)

@ Recall the tableau and constraints in our example:

Ty ¥y

s1 1 1
59 —1
53 -1 2

o Initially, v assigns O to all variables

\)

= o
IAIN A

— The bounds of s; and s3 are violated

o We will fix s7.

@ x is a suitable nonbasic variable for pivoting.

It has no upper bound!

@ So now we pivot s with x
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S1
52
53
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Pivoting: Example (2)

S1 1 1
59 2|1 -1
83 -1 2
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2 S S1
0 S S9
1 < S3
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Pivoting: Example (2)

VAVANYAN

51
52
53

S1=T+Y < T=S81—1Y
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Pivoting: Example (2)

< s
51 ; 1 0 < s
52 - 1 < s
83 -1 2
@ Solve 15t row for x:

s1=r+y << r=5—Y

@ Replace = in other rows:

So=2(s1—Y)—y <= s9=25 —3y

sg=—(s1—Yy)+2y < s3=—s1+3y

Decision Procedures — The Simplex Algorithm 25



Pivoting: Example (3)

r = s1-Y
So = 281 —3y
s3 = —s1+3y

Decision Procedures — The Simplex Algorithm
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Pivoting:

82
53

Decision Procedures — The Simplex Algorithm

Example (3)

This results in the following new

tableau:
- 1Y si| Y
- _ 2 <
= 251 —3y - 111 5 - 21
7S]+3y So 2 _3 1 2 Sz
s3 || —1 3 o
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Pivoting: Example (3)

This results in the following new
tableau:

r = S1—-Yy S1 Yy
so = 281 — 3y = 111 g i 51
- S
53 s1+ 3y 59 513 L= Sz
s3 || —1 3 o

What about the assignment?
2-0
@ We should increase x by 0 = 4 = 2

e Hence, a(z) =0+2 =2
e Now s; is equal to its lower bound: a(sl) = 2

o Update all the others
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Pivoting: Example (4)

The new state:

sil v alz) = 2
aly) = 0 2 < s
:1: 1 -1 a(s)) = 2 0 < s9
s2 2|3 a(sy) = 4 1 < s3
S3 -1 3 Oé(S3) - _9
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Pivoting: Example (4)

The new state:

sil v alz) = 2
aly) = 0 2 < s
r 1]-1 a(s)) = 2 0 < s9
s2 2|3 a(sy) = 4 1 < s3
S3 -1 3 05(83) - _9

@ Now s3 violates its lower bound

@ Which nonbasic variable is suitable for pivoting?
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Pivoting: Example (4)

The new state:

sil v alz) = 2
aly) = 0 2 < s
r 1]-1 a(s)) = 2 0 < s9
s2 2|3 a(sy) = 4 1 < s3
S3 -1 3 05(83) - _9

@ Now s3 violates its lower bound

@ Which nonbasic variable is suitable for pivoting?
That's right. ..y

Decision Procedures — The Simplex Algorithm 27



Pivoting: Example (4)

The new state:

sil v alz) = 2
aly) = 0 2 < s
r 1]-1 a(s)) = 2 0 < s9
s2 2|3 a(sy) = 4 1 < s3
S3 -1 3 05(83) - _9

@ Now s3 violates its lower bound

@ Which nonbasic variable is suitable for pivoting?

That's right. ..y

@ We should increase y by 6 = 1_(3_2) =1
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Pivoting: Example (5)

The final state:

| sl s o T,
« = S S
x 2/? —1/? als;) = 2 0 < s
59 - _
y 11/3] 1/3 3223 _ i L= s

All constraints are satisfied.
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Observations I

The additional variables:

o Only additional variables have bounds.
@ These bounds are permanent.

o Additional variables enter the base only on extreme points
(their lower or upper bounds).

@ When entering the base, they shift towards the other bound
and possibly cross it (violate it).
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Observations II

Q: Can it be that we pivot z;, z; and then pivot z;, x;
and thus enter a (local) cycle?
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Observations II

Q: Can it be that we pivot z;, z; and then pivot z;, x;
and thus enter a (local) cycle?

A: No.

@ For example, suppose that a;; > 0.

e We increased «(z;) so now a(z;) = I;.

o After pivoting, possibly a(x;) > u;, but a;j =1/a;; >0,
hence the coefficient of x; is not suitable
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Termination

Is termination guaranteed?
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Termination

Is termination guaranteed?

@ Not obvious. Perhaps there are bigger cycles.

@ In order to avoid circles, we use Bland's rule:

@ Determine a total order on the variables

@ Choose the first basic variable that violates its bounds,
and the first nonbasic suitable variable for pivoting.

© It can be shown that this guarantees that no base is repeated,
which implies termination.
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General simplex With Bland’s Rule

@ Transform the system into the general form

AZ =0 and /\ligsigui.
i=1

@ Set B to be the set of additional variables s1, ..., s,,.

© Construct the tableau for A.

@ Determine a fixed order on the variables.

@ If there is no basic variable that violates its bounds, return
‘Satisfiable”. Otherwise, let z; be the first basic variable in
the order that violates its bounds.

@ Search for the first suitable nonbasic variable z; in the order

for pivoting with ;. If there is no such variable, return
‘Unsatisfiable”.

@ Perform the pivot operation on x; and x;.

@ Go to step 5.
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