Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics
Part C: Processes and Concurrency

Thomas Noll

Software Modeling and Verification Group (MOVES)

noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/10us/10us-bridgingcourse/
http://www-i2.informatik.rwth-aachen.de/i2/b-it10/

b-it, Bonn, Winter semester 2010/11
Outline of Part C

1. Motivation

2. Communicating Automata
Motivation

- So far: only **sequential** models of computation
- Now: Consider systems of **processes** with **concurrent** behaviour
Motivation

- So far: only **sequential** models of computation
- Now: Consider systems of **processes** with **concurrent** behaviour
- Applications:
 - Programming languages with concurrency (e.g., Java’s threads)
 - Operating systems
 - Embedded systems with interacting hardware and software components
 - Web services
Motivation

- So far: only **sequential** models of computation
- Now: Consider systems of **processes** with **concurrent** behaviour
- **Applications:**
 - Programming languages with concurrency (e.g., Java’s threads)
 - Operating systems
 - Embedded systems with interacting hardware and software components
 - Web services
- **Goals:**
 - Better understanding of behaviour
 - Formal verification of desirable properties (e.g., absence of deadlocks)
 - Systematic construction of implementations from (abstract) specifications
Outline of Part C

1 Motivation

2 Communicating Automata
Product construction for DFA $\mathcal{A}_1, \mathcal{A}_2$:

$$\mathcal{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q^1_0, q^2_0), F \rangle$$

is defined by

$$\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_1, a))$$

for every $a \in \Sigma$

and

$$F := F_1 \times F_2$$

recognizes $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ (similar construction for $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$)
Product construction for DFA $\mathcal{A}_1, \mathcal{A}_2$:

\[
\mathcal{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F \rangle
\]

is defined by

\[
\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_1, a)) \text{ for every } a \in \Sigma
\]

and

\[
F := F_1 \times F_2
\]

recognizes $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ (similar construction for $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$)

Interpretation: fully synchronized parallel execution of two automata
Reminder

Product construction for DFA $\mathcal{A}_1, \mathcal{A}_2$:

$$\mathcal{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F \rangle$$

is defined by

$$\delta(((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_1, a)) \text{ for every } a \in \Sigma$$

and

$$F := F_1 \times F_2$$

recognizes $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ (similar construction for $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$)

Interpretation: fully synchronized parallel execution of two automata

Generalization:

- arbitrary number of automata
- NFA rather than DFA
- no full synchronization, i.e., not every action relevant for every automaton
Definition C.1

Let $\mathcal{A}_i = \langle Q_i, \Sigma_i, \Delta_i, q_i^0, F_i \rangle$ be NFA for $1 \leq i \leq n$. The synchronized product of $\mathcal{A}_1, \ldots, \mathcal{A}_n$ is the NFA

$$\mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n := \langle Q, \Sigma, \Delta, q_0, F \rangle$$

where

- $Q := Q_1 \times \ldots \times Q_n$
- $\Sigma := \Sigma_1 \cup \ldots \cup \Sigma_n$
- $((q_1, \ldots, q_n), a, (q'_1, \ldots, q'_n)) \in \Delta \iff \begin{cases} (q_i, a, q'_i) \in \Delta_i & \text{if } a \in \Sigma_i \\ q'_i = q_i & \text{otherwise} \end{cases}$
- $q_0 := (q^1_0, \ldots, q^n_0)$
- $F := F_1 \times \ldots \times F_n$
Example C.2

Dining Philosophers Problem:

- n philosophers sitting around a table
- a fork between every two of them
- philosophers are thinking, hungry or eating
- need both neighbouring forks to eat
- component automata + product: on the board