Abstraction

Reduce (a huge) TS to (a small) \hat{TS} prior or during model checking

Relevant issues:

- What is the formal relationship between TS and \hat{TS}?
- Can \hat{TS} be obtained algorithmically and efficiently?
- Which logical fragment (of LTL, CTL, CTL*) is preserved?
- And in what sense?
 - “strong” preservation: positive and negative results carry over
 - “weak” preservation: only positive results carry over
 - “match”: logic equivalence coincides with formal relation
Summary of lecture #1

<table>
<thead>
<tr>
<th>formal relation</th>
<th>trace equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
</tr>
</tbody>
</table>
Outlook of today’s lecture

<table>
<thead>
<tr>
<th>formal relation</th>
<th>trace equivalence</th>
<th>bisimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL</td>
<td>CTL*</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
<td>match</td>
</tr>
</tbody>
</table>
Bisimulation

\(\mathcal{R} \subseteq S \times S \) is a *bisimulation* on \(TS \) if for any \((s_1, s_2) \in \mathcal{R} \):

- \(L(s_1) = L(s_2) \)
- if \(s_1' \in Post(s_1) \) then there exists an \(s_2' \in Post(s_2) \) with \((s_1', s_2') \in \mathcal{R} \)
- if \(s_2' \in Post(s_2) \) then there exists an \(s_1' \in Post(s_1) \) with \((s_1', s_2') \in \mathcal{R} \)

\(s_1 \) and \(s_2 \) are *bisimilar*, \(s_1 \sim_{TS} s_2 \), if \((s_1, s_2) \in \mathcal{R} \) for some bisimulation \(\mathcal{R} \) for \(TS \)
Bisimulation

\[
\begin{align*}
\text{s}_1 & \rightarrow \text{s}'_1 & \text{s}_1 & \rightarrow \text{s}'_1 \\
\mathcal{R} & \quad \text{can be completed to} & \mathcal{R} & \\
\text{s}_2 & \rightarrow \text{s}'_2 & \text{s}_2 & \rightarrow \text{s}'_2
\end{align*}
\]

and

\[
\begin{align*}
\text{s}_1 & \rightarrow \text{s}'_1 & \text{s}_1 & \rightarrow \text{s}'_1 \\
\mathcal{R} & \quad \text{can be completed to} & \mathcal{R} & \\
\text{s}_2 & \rightarrow \text{s}'_2 & \text{s}_2 & \rightarrow \text{s}'_2
\end{align*}
\]
Bisimulation on paths

Whenever we have:

\[s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \ldots \]
\[\mathcal{R} \]
\[t_0 \]

this can be completed to

\[s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \ldots \]
\[\mathcal{R} \quad \mathcal{R} \quad \mathcal{R} \quad \mathcal{R} \quad \mathcal{R} \]
\[t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \ldots \]

proof: by induction on the length of a path
Bisimulation of transition systems

\[
\begin{align*}
TS_1 \sim TS_2 \text{ iff } & \forall s_1 \in I_1. \exists s_2 \in I_2. s_1 \sim_{TS} s_2 \\
& \land \forall s_2 \in I_2. \exists s_1 \in I_1. s_1 \sim_{TS} s_2
\end{align*}
\]
Advanced model checking

∼ vs. trace equivalence

\[TS_1 \sim TS_2 \text{ implies } \text{Traces}(TS_1) = \text{Traces}(TS_2) \]

bisimilar transition systems thus satisfy the same LT properties!
Quotient transition system

Let $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\mathcal{R} \subseteq S \times S$ be an *equivalence*. The *quotient* of TS under \mathcal{R} is defined by:

$$TS/\mathcal{R} = (S', \{\tau\}, \rightarrow', I', AP, L')$$

where

- $S' = S/\mathcal{R} = \{[s]_{\mathcal{R}} \mid s \in S\}$ with $[s]_{\mathcal{R}} = \{s' \in S \mid (s, s') \in \mathcal{R}\}$
- $I' = \{[s]_{\mathcal{R}} \mid s \in I\}$
- $L'([s]_{\mathcal{R}}) = L(s)$
- \rightarrow' is defined by:

 $$\frac{s \xrightarrow{\alpha} s'}{[s]_{\mathcal{R}} \xrightarrow{\tau'} [s']_{\mathcal{R}}}$$

note that $TS \sim TS/\mathcal{R}$ Why?
Coarsest bisimulation

\(\sim_{TS} \) is a bisimulation, an equivalence, and the coarsest bisimulation for \(TS \)

The quotient under \(\sim_{TS} \) is the smallest under any bisimulation relation
The simplified bakery algorithm

Process 1:

\[
\text{\ldots \ldots} \quad \text{while true} \quad \{
\text{\ldots \ldots}
\]
\[
\begin{align*}
n_1 &: x_1 := x_2 + 1; \\
w_1 &: \text{wait until} \,(x_2 = 0 \lor x_1 < x_2) \quad \{
\text{\ldots \ldots \ldots critical section ...} \\
x_1 &: \quad 0; \\
\} \\
\end{align*}
\]

Process 2:

\[
\text{\ldots \ldots} \quad \text{while true} \quad \{
\text{\ldots \ldots}
\]
\[
\begin{align*}
n_2 &: x_2 := x_1 + 1; \\
w_2 &: \text{wait until} \,(x_1 = 0 \lor x_2 < x_1) \quad \{
\text{\ldots \ldots \ldots critical section ...} \\
x_2 &: \quad 0; \\
\} \\
\end{align*}
\]

this algorithm can be applied to arbitrarily many processes
Example path fragment

<table>
<thead>
<tr>
<th>process P_1</th>
<th>process P_2</th>
<th>x_1</th>
<th>x_2</th>
<th>effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>n_2</td>
<td>0</td>
<td>0</td>
<td>P_1 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>n_2</td>
<td>1</td>
<td>0</td>
<td>P_2 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>1</td>
<td>2</td>
<td>P_1 enters the critical section</td>
</tr>
<tr>
<td>c_1</td>
<td>w_2</td>
<td>1</td>
<td>2</td>
<td>P_1 leaves the critical section</td>
</tr>
<tr>
<td>n_1</td>
<td>w_2</td>
<td>0</td>
<td>2</td>
<td>P_1 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>3</td>
<td>2</td>
<td>P_2 enters the critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>c_2</td>
<td>3</td>
<td>2</td>
<td>P_2 leaves the critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>n_2</td>
<td>3</td>
<td>0</td>
<td>P_2 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>3</td>
<td>4</td>
<td>P_2 enters the critical section</td>
</tr>
</tbody>
</table>

...
Bakery algorithm as transition system

infinite state space due to possible unbounded increase of counters
Bisimulation
Bisimulation quotient

\[TS_{Bak}^{abs} = TS_{Bak} / \mathcal{R} \quad \text{for} \quad AP = \{ \text{crit}_1, \text{crit}_2, \text{wait}_1, \text{wait}_2 \} \]
Preservation of properties

- \(TS_{Bak}^{abs} \models \varphi \) with, e.g.,:
 - \(\Box(\neg \text{crit}_1 \lor \neg \text{crit}_2) \) and \((\Box \Diamond \text{wait}_1 \Rightarrow \Box \Diamond \text{crit}_1) \land (\Box \Diamond \text{wait}_2 \Rightarrow \Box \Diamond \text{crit}_2) \)

- Since \(TS_{Bak}^{abs} \sim TS_{Bak} \), it follows \(\text{Traces}(TS_{Bak}^{abs}) = \text{Traces}(TS_{Bak}) \)

- Since \(\text{Traces}(TS_{Bak}^{abs}) = \text{Traces}(TS_{Bak}) \), it follows \(TS_{Bak} \models \varphi \)

- We thus have \(\text{Traces}(TS_{Bak}^{abs}) = \text{Traces}(TS_{Bak}) \)
Syntax of CTL*

CTL* state-formulas are formed according to:

$$
\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi
$$

where $a \in AP$ and φ is a path-formula

CTL* path-formulas are formed according to the grammar:

$$
\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \Box \varphi \mid \varphi_1 \lor \varphi_2
$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!
Relationship between LTL, CTL and CTL*
CTL* equivalence

States \(s_1 \) and \(s_2 \) in \(TS \) (over \(AP \)) are CTL*-equivalent:

\[
s_1 \equiv_{\text{CTL}^*} s_2 \text{ if and only if } (s_1 \models \Phi \iff s_2 \models \Phi)
\]

for all CTL* state formulas over \(AP \)

\[
TS_1 \equiv_{\text{CTL}^*} TS_2 \text{ if and only if } (TS_1 \models \Phi \iff TS_2 \models \Phi)
\]

for any sublogic of CTL*, logical equivalence is defined analogously
Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system (without terminal states) and s, s' states in TS.

The following statements are equivalent:

1. $s \sim_{TS} s'$
2. s and s' are CTL-equivalent, i.e., $s \equiv_{\text{CTL}} s'$
3. s and s' are CTL*-equivalent, i.e., $s \equiv_{\text{CTL}^*} s'$

this is proven in three steps: $\equiv_{\text{CTL}} \subseteq \sim \subseteq \equiv_{\text{CTL}^*} \subseteq \equiv_{\text{CTL}}$

important: equivalence is also obtained for any sub-logic containing \neg, \land and \bigcirc
Example
Bisimulation vs. CTL*-equivalence

For any transition systems TS and TS' (over AP) without terminal states:

$TS \sim TS'$ if and only if $TS \equiv_{CTL} TS'$ if and only if $TS \equiv_{CTL^*} TS'$

\Rightarrow prior to model-check Φ, it is safe to first minimize TS wrt. \sim

how to obtain such bisimulation quotients?
Basic fixpoint characterization

Consider the function $\mathcal{F} : 2^{S \times S} \rightarrow 2^{S \times S}$:

$$\mathcal{F}(\mathcal{R}) = \{ (s, t) \mid L(s) = L(t) \land \forall s' \in S. \ (s \rightarrow s' \Rightarrow \exists t' \in S. t \rightarrow t' \land (s', t') \in \mathcal{R}) \land \ (t \rightarrow s' \Rightarrow \exists u' \in S. s \rightarrow u' \land (s', u') \in \mathcal{R}) \}$$

$$\sim_{TS} = \mathcal{F}(\sim_{TS})$$ and for any \mathcal{R} such that $\mathcal{F}(\mathcal{R}) = \mathcal{R}$ it holds $\mathcal{R} \subseteq \sim_{TS}$
How to compute the fixpoint of \mathcal{F}?

For finite transition system $TS = (S, Act, \to, I, AP, L)$:

$$\sim_{TS} = \bigcap_{i=0}^{\infty} \sim_i$$

that is: $s \sim_{TS} s'$ iff $s \sim_i s'$ for all $i \geq 0$

where \sim_i is defined by:

$$\sim_0 = \{(s, t) \in S \times S \mid L(s) = L(t)\}$$

$$\sim_{i+1} = \mathcal{F}(\sim_i)$$

$this constitutes the basis for the algorithms to follow$
Partitions

- A partition $\Pi = \{B_1, \ldots, B_k\}$ of S satisfies:
 - B_i is non-empty; B_i is called a block
 - $B_i \cap B_j = \emptyset$ for all i, j with $i \neq j$
 - $B_1 \cup \ldots \cup B_k = S$

- $C \subseteq S$ is a super-block of partition Π of S if
 $$C = B_{i_1} \cup \ldots \cup B_{i_l} \quad \text{for } B_{i_j} \in \Pi \text{ for } 0 < j \leq l$$

- Partition Π is finer than partition Π' if:
 $$\forall B \in \Pi. \ (\exists B' \in \Pi'. \ B \subseteq B')$$

 \Rightarrow each block of Π' equals the disjoint union of a set of blocks in Π
 - Π is strictly finer than Π' if it is finer than Π' and $\Pi \neq \Pi'$
Partitions and equivalences

- \mathcal{R} is an equivalence on S \Rightarrow S/\mathcal{R} is a partition of S

- Partition $\Pi = \{B_1, \ldots, B_k\}$ of S induces the equivalence relation

 $$\mathcal{R}_\Pi = \{(s, t) \mid \exists B_i \in \Pi. s \in B_i \land t \in B_i\}$$

- $S/\mathcal{R}_\Pi = \Pi$

\Rightarrow there is a one-to-one relationship between partitions and equivalences
Skeleton for bisimulation checking

from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π_0 equals $\Pi_{AP} = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$

• Repeat until no change: $\Pi_{i+1} := \text{Refine}(\Pi_i)$

 – loop invariant: Π_i is coarser than S/\sim and finer than $\{ S \}$

• Return Π_i

 – termination: $S \times S \supseteq R_{\Pi_0} \supsetneq R_{\Pi_1} \supsetneq R_{\Pi_2} \supsetneq \ldots \supsetneq R_{\Pi_i} = \sim_{TS}$

 – time complexity: maximally $|S|$ iterations needed (why?)

 this is a partition-refinement algorithm
Computing the initial partition Π_{AP}

- Main idea: construct a *decision tree* of height k for $AP = \{a_1, \ldots, a_k\}$

- Node at depth $i < k$ of the tree: $a_i \in L(s)$ or $a_i \notin L(s)$?

- Leaf v represents equally labeled states:
 - $s \in states(v)$ if and only if decision path for $L(s)$ leads from root to v

- Decision tree is created step-by-step
 - new nodes are created when a state is encountered with a new labeling

- Time complexity $\Theta(|S| \cdot |AP|)$
 - a single tree traversal is needed for each state
Example
1. S/\sim is the coarsest partition Π of S such that
 (i) Π is finer than the initial partition Π_{AP}, and
 (ii) $B \cap \text{Pre}(C) = \emptyset$ or $B \subseteq \text{Pre}(C)$ for all $B, C \in \Pi$
 i.e., either no or all states in B have a direct successor in C

2. If (ii) holds for Π, then it holds for all $B \in \Pi$ and all superblocks C' of Π
Proof
How to compute the fixpoint of \mathcal{F}?

For finite transition system $TS = (S, Act, \rightarrow, I, AP, L)$:

$$\sim = \bigcap_{i=0}^{\infty} \sim_i$$

where \sim_i is defined by:

$$\sim_0 = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$$
$$\sim_{i+1} = \sim_i \cap \{ (s, t) \mid \forall C \in S/\sim_i . s \in \text{Pre}(C) \text{ iff } t \in \text{Pre}(C) \}$$

the block C' is called a splitter

each relation \sim_i is an equivalence relation
The refinement operator

- Let: \(\text{Refine}(\Pi, C) = \bigcup_{B \in \Pi} \text{Refine}(B, C) \) for \(C \) a superblock of \(\Pi \)
 - where \(\text{Refine}(B, C) = \left\{ B \cap \text{Pre}(C), B \setminus \text{Pre}(C) \right\} \setminus \{\emptyset\} \)

- Basic properties:
 - for \(\Pi \) finer than \(\Pi_{AP} \) and coarser than \(S/\sim \):
 \(\text{Refine}(\Pi, C) \) is finer than \(\Pi \) and \(\text{Refine}(\Pi, C) \) is coarser than \(S/\sim \)
 - \(\Pi \) is strictly coarser than \(S/\sim \) if and only if there exists a splitter for \(\Pi \)
Splitters

• Let Π be a partition of S and C a superblock of Π

• C is a splitter of Π if for some $B \in \Pi$:

$$B \cap {\text{Pre}}(C) \neq \emptyset \land B \setminus {\text{Pre}}(C) \neq \emptyset$$

• Block B is stable wrt. C if

$$B \cap {\text{Pre}}(C) = \emptyset \land B \setminus {\text{Pre}}(C) = \emptyset$$

• Π is stable wrt. C if any $B \in \Pi$ is stable wrt. C
Algorithm skeleton

Input: finite transition system TS over AP with state space S
Output: bisimulation quotient space S/\sim

\[
\Pi := \Pi_{AP}; \\
\text{while there exists a splitter for } \Pi \text{ do} \\
\quad \text{choose a splitter } C \text{ for } \Pi; \\
\quad \Pi := \text{Refine}(\Pi, C); \\
\text{od} \\
\text{return } \Pi
\]

(* \text{Refine}(\Pi, C) is strictly finer than } \Pi *\)
Example
Which splitter to take?

How to determine a splitter for partition Π_{i+1}?

1. Simple strategy: $\mathcal{O}(|S| \cdot M)$
 use any block of Π_i as splitter candidate

2. Advanced strategy: $\mathcal{O}(\log |S| \cdot M)$
 use only “smaller” blocks of Π_i as splitter candidates
 and apply “simultaneous” refinement
A partition-refinement algorithm

[Kanellakis & Smolka, 1983]

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/\sim

\[
\begin{align*}
\Pi & := \Pi_{AP}; \\
\Pi_{old} & := \{ S \};
\end{align*}
\]

(* Π_{old} is the “previous” partition *)

(* loop invariant: Π is coarser than S/\sim and finer than Π_{AP} and Π_{old} *)

repeat

$\Pi_{old} := \Pi$;

for all $C \in \Pi_{old}$ do

$\Pi := \text{Refine}(\Pi, C)$;

od

until $\Pi = \Pi_{old}$

return Π
Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the number of edges in TS: the partition-refinement algorithm to compute TS/\sim has a worst-case time complexity in $O(|S| \cdot |AP| + |S| \cdot M)$.
Proof
Advanced model checking

An efficiency improvement

• Not necessary to refine with respect to all blocks $C \in \Pi_{old}$

⇒ Consider only the “smaller” subblocks of a previous refinement

• Step i: refine C' into $C_1 = C' \cap Pre(D)$ and $C_2 = C' \setminus Pre(D)$

• Step $i+1$: use the smallest $C \in \{ C_1, C_2 \}$ as splitter candidate
 – let C be such that $|C| \leq |C'|/2$, thus $|C| \leq |C' \setminus C|$
 – combine the refinement steps with respect to C and $C' \setminus C$

• $\text{Refine}(\Pi, C, C' \setminus C) = \text{Refine}\left(\text{Refine}(\Pi, C), C' \setminus C \right)$ where $|C| \leq |C' \setminus C|$
 – the decomposed blocks are stable with respect to C and $C' \setminus C$
The new refinement operator

- Let: $\text{Refine}(\Pi, C, C' \setminus C) = \bigcup_{B \in \Pi} \text{Refine}(B, C, C' \setminus C)$

 where $\text{Refine}(B, C, C' \setminus C) = \{ B_1, B_2, B_3 \} \setminus \{ \emptyset \}$ with:

 $B_1 = B \cap \text{Pre}(C') \cap \text{Pre}(C' \setminus C)$ to both C and $C \setminus C'$
 $B_2 = (B \cap \text{Pre}(C')) \setminus \text{Pre}(C' \setminus C)$ only to C
 $B_3 = (B \cap \text{Pre}(C' \setminus C)) \setminus \text{Pre}(C)$ only to $C' \setminus C$

\Rightarrow blocks B_1, B_2, B_3 are stable with respect to C and $C' \setminus C$
Advanced model checking

Improved partition-refinement algorithm

[Paige & Tarjan, 1987]

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/\sim

\[
\Pi_{old} := \{ S \}; \\
\Pi := \text{Refine}(\Pi_{AP}, S);
\]

(* loop invariant: Π is coarser than S/\sim and finer than Π_{AP} and Π_{old}, *)

(* and Π is stable with respect to any block in Π_{old} *)

repeat

choose block $C' \in \Pi_{old} \setminus \Pi$ and block $C \in \Pi$ with $C \subseteq C'$ and $|C| \leq \frac{|C'|}{2}$;

$\Pi_{old} := \Pi$;

$\Pi := \text{Refine}(\Pi, C, C' \setminus C)$;

until $\Pi = \Pi_{old}$

return Π
Example
Advanced model checking

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the \# edges in TS:

\[\text{Time complexity of computing } TS/\sim \text{ is } O(|S| \cdot |AP| + \log |S| \cdot M) \]
Proof
Summary of today’s lecture

<table>
<thead>
<tr>
<th>formal relation</th>
<th>trace equivalence</th>
<th>bisimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
<td>$O(\log</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL</td>
<td>CTL*</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
<td>match</td>
</tr>
</tbody>
</table>