
Counterexamples in

Probabilistic Model Checking

Tingting Han1,2 and Joost-Pieter Katoen1,2

1 Software Modelling and Verification, RWTH Aachen, Germany
2 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. This paper considers algorithms and complexity results for
the generation of counterexamples in model checking of probabilistic
until-formulae in discrete-time Markov chains (DTMCs). It is shown that
finding the strongest evidence (i.e, the most probable path) that violates
a (bounded) until-formula can be found in polynomial time using single-
source (hop-constrained) shortest path algorithms. We also show that
computing the smallest counterexample that is mostly deviating from
the required probability bound can be found in a pseudo-polynomial
time complexity by adopting a certain class of algorithms for the (hop-
constrained) k shortest paths problem.

1 Introduction

A major strength of model checking is the possibility to generate counterexam-
ples in case a property is violated. The shape of a counterexample depends on
the temporal logic used. For LTL and the universal fragment of CTL, a single
path through the system model suffices to indicate the refutation of the prop-
erty. For existentially quantified path-formulae in logics such as CTL, either
witnesses are provided (to indicate why the property holds), or more advanced
structures such as trees of paths [10] or annotated paths [28] are provided as
counterexample. Counterexamples are of utmost importance in model checking:
they provide diagnostic feedback (also in cases where only a fragment of the
entire model can be searched), they constitute the key to successful abstraction-
refinement techniques [9], and are at the core of obtaining (optimal) schedules in
e.g. timed model checking [7]. As a result, advanced counterexample generation
and analysis techniques have intensively been investigated, see e.g., [23, 6, 12].

In probabilistic model checking, however, counterexample generation is al-
most not developed [2, 3]. Probabilistic model checking is a technique to ver-
ify system models in which transitions are equipped with randomness. Popular
models are discrete- and continuous-time Markov chains (DTMCs and CTMCs),
and variants thereof which exhibit nondeterminism. Efficient model-checking al-
gorithms have been developed for these models, and have been applied to case
studies from various application areas. The crux of probabilistic model checking
is to combine techniques from numerical mathematics with standard reachability
analysis. In this way, properties such as “the probability to reach a set of goal
states is at most 0.6” can be automatically checked (up to a certain precision).



In the probabilistic setting, typically there is no single trace (but rather a set
of them) that indicates why a given property is refuted. In case of a property
refutation, current probabilistic model checkers produce a log file that shows the
computed probability for all states. This information is too detailed to aid as a
useful support in finding the cause(s). This paper considers algorithms and com-
plexity results for the generation of counterexamples in model checking of (a safe
fragment of) probabilistic CTL [20] on DTMCs. We concentrate on properties of
the form P6p(ΦU6hΨ). In case s refutes this formula, the probability of all paths
in s satisfying ΦU6hΨ exceeds p. We first consider the generation of strongest
evidences for violation, i.e., paths satisfying ΦU6hΨ that have the largest proba-
bility mass. Strongest evidences “contribute” mostly to the property refutation.
For unbounded until (i.e., h=∞), determining strongest evidences is equivalent
to a standard shortest path (SP) problem; in case h is bounded, we obtain a
special case of the (resource) constrained shortest path (CSP) problem [1] that
can be solved in O(hm) where m is the number of transitions in the DTMC.

As most probable paths may have a very small probability mass, their infor-
mation may be limited. As a next step, therefore, we consider the problem of
determining most probable subtrees. Whereas in traditional model checking one
is interested in the shortest counterexample, we consider trees of smallest size
that exceed the probability bound maximally. The problem of generating such
smallest, most indicative counterexamples can be casted as a k shortest paths
problem. For unbounded-until formulae (i.e., h=∞), it is shown that the gener-
ation of such smallest counterexamples can be found in pseudo-polynomial time
by adopting k shortest path algorithms [14, 17, 26] that can compute k on the
fly. For bounded until-formulae, we propose a variant of the recursive enumera-
tion algorithm of Jiménez and Marzal [22]. The time complexity of this adapted
algorithm is O(hm+hk log(m

n
)), where n is the number of states in the DTMC.

2 Preliminaries

This section introduces DTMCs and the logic PCTL-safety.

2.1 DTMCs

Definition 1 (DTMCs). A (labelled) discrete-time Markov chain (DTMC) is
a tuple D = (S,P, L) where:

– S is a finite set of states;
– P : S × S → [0, 1] is a probability matrix satisfying

∑

s′∈S P(s, s′) = 1 for
all s ∈ S;

– L : S → 2AP is a labelling function which assigns to each state s ∈ S the set
L(s) of atomic propositions that are valid in s.

A state s in D is called absorbing if P(s, s) = 1. W.l.o.g. we assume a DTMC
to have a unique initial state.

2



Definition 2 (Paths). Let D = (S,P, L) be a DTMC.

– An infinite path σ in D is an infinite sequence s0·s1·s2·... of states such that
P(si, si+1) > 0 for all i > 0.

– A finite path in D is a finite prefix of an infinite path.

For state s and path σ, σ·s denotes the path obtained by extending σ by s. Let
|σ| denote the length of the path σ, i.e., |s0·s1·...·sn| = n, |s0| = 0 and |σ| = ∞ for
infinite σ. For 0 6 i 6 |σ|, σ[i] = si denotes the i-th state in σ. Path(s) denotes
the set of infinite paths that start in state s, formally, Path(s) = {σ | σ[0] = s}.
Let Pathfin(s) denotes the set of finite paths that start in state s.

A DTMC D enriched with an initial state s0 induces a probability space.
The underlying σ-algebra from the basic cylinders is induced by the finite paths
starting in s0. The probability measure PrDs0

(briefly Pr) induced by (D, s0) is
the unique measure on this σ-algebra where:

Pr{σ ∈ Path(s0) | s0·s1·...·sn is a prefix of σ
︸ ︷︷ ︸

basic cylinder of the finite path s0·s1·...·sn

} =
∏

06i<n

P(si, si+1).

Example 3. Fig. 1 illustrates a simple DTMC consisting of 10 states. s is the
initial state, AP = {a, b} and L is given through the subsets of AP labelling the
states as L(s) = L(si) = {a}, for 1 6 i 6 4; L(t1) = L(t2) = L(t3) = {b} and
L(u1) = L(u2) = ∅. The DTMC contains no absorbing states. σ1 = s ·u1 ·u2 ·s1 ·
t1 ·s3 is a finite path in this DTMC with Pr{σ1} = 0.1×0.4×0.8×0.1×1 = 0.0032
and |σ1| = 5, σ1[3] = s1. σ2 = s·s3·(s4·t3)ω is an infinite path, |σ2| = ∞.

s

u1

s1

s3

u2

s2 t2

t3

0.1

0.5

0.3

0.6

0.4

0.8

0.3 0.8

0.5

0.2

0.2

0.6 0.4

0.3

0.1

t1

s4

0.2

0.4

0.1

1

0.1

1

0.6

0.1

0.4
a

a

a a

a

b

b

b

∅∅

Fig. 1. An example DTMC

3



2.2 PCTL-safety

In this paper, counterexamples are explored when properties specified in the
safety fragment of PCTL [5] are violated. The syntax and semantics of PCTL-
safety are given and its expressiveness is illustrated by some examples.

Syntax. Let p ∈ [0, 1] and let AP denote a fixed, finite set of atomic propositions
ranged over by a, b, c, . . . . The syntax of PCTL-safety state formulae (in positive
normal form, i.e., negations can only occur adjacent to atomic propositions. ) is
defined as follows:

Φ ::= tt | ff | a | ¬a | Φ ∧ Φ | Φ ∨ Φ | P6p(φ)

where φ is path-formula defined by

φ ::= ΦU6hΦ,

where h ∈ N ∪ {∞}. We call the operator U6h unbounded until if h = ∞ and
abbreviate it as U ; and call it bounded until otherwise. For the sake of simplicity,
we do not consider the next-operator. Note that the main distinction with PCTL
[20] is that the probability bounds are upper bounds, and formulae are required
to be in positive normal form.

As for CTL, the temporal operator ♦6h (eventually) can be derived as

P6p(♦
6hΦ) = P6p(tt U6h Φ)

The dual form is defined as P>p(�
6hΦ) = P61−p(♦6h¬Φ). Note that the nega-

tion can be “pushed” inside Φ until finally it is adjacent to an atomic proposition
(see [5])1. For the more general case, P>p(ΦW6hΨ) = P61−p(¬ΨU6h¬(Φ∨Ψ)).
Thus in the PCTL-safety fragment, four forms P6p(ΦU6hΨ), P>p(ΦW6hΨ),
P6p(♦6hΦ) and P>p(�

6hΦ) are allowed.

Semantics. Let DTMC D = (S,P, L). The semantics of PCTL-safety is defined
by a satisfaction relation, denoted |=, which is characterized as the least relation
over the states in S (infinite paths in D, respectively) and the state formulae
(path formulae). The semantics of the propositional fragment is identical to that
for CTL. The meaning of the probabilistic operator is formalized as follows [20].
The semantics of PCTL-safety state formulae is defined for path formula φ as:

s |= tt iff true s |= Φ ∨ Ψ iff s |= Φ or s |= Ψ
s |= ff iff false s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ
s |= a iff a ∈ L(s) s |= P6p(φ) iff Prob(s, φ) 6 p
s |= ¬a iff a /∈ L(s)

1 During the transformation, arbitrary PCTL-formulae can occur, but the result is
again a PCTL-safety formula.

4



Let Path(s, φ) denote the set of infinite paths that start in state s and satisfy
φ. Formally, Path(s, φ) = {σ ∈ Path(s) | σ |= φ}. Here, Prob(s, φ) = Pr{σ ∈
Path(s, φ)} denotes the probability of Path(s, φ). Let σ be an infinite path in D.
The semantics of PCTL-safety path formulae is defined as:

σ |= ΦU6hΨ iff ∃i 6 h such that σ[i] |= Ψ and ∀j : 0 6 j < i.(σ[j] |= Φ).

For finite path σ, |= is defined in a similar way by changing the range of i to
i 6 max{h, |σ|}. Let Pathfin(s, φ) denote the set of finite paths starting in s that
fulfill φ.

Example 4. We give some examples to illustrate how the PCTL-safety formulae
are utilized to specify system properties.

– In Fig. 1, P60.27(aUb) asserts that the probability of reaching a b-state via
an a-path is at most 0.27.

– Let error be an atomic proposition that characterizes any state in which a
system error has occurred. Then P60.001(♦650error) asserts that the prob-
ability for a system error to occur within 50 steps is at most 0.001. Dually,
P>0.999(�

650¬error) states that the probability for not having a system er-
ror (running successfully) within 50 steps exceeds 0.999.

– Let red and green be two atomic propositions. P>0.8(green W red) asserts
that the probability of either being green forever, or reaching a red state
via a green path, is greater than 0.8. Stated differently, with probability at
most 0.2, a state is reached that is neither red nor green via a path that
does not contain a red state, which can be specified by the dual formula
P60.2((¬red)U(¬green ∧ ¬red)).

3 Counterexamples in a probabilistic setting

Let us first consider what a counterexample actually is. To that end, consider
the formula P6p(φ), where φ is a path-formula. If state s refutes P6p(φ):

s 2 P6p(φ)
iff not (Prob(s, φ) 6 p)
iff Prob(s, φ) > p
iff Pr{σ | σ ∈ Path(s, φ)} > p

So, P6p(φ) is refuted by state s whenever the total probability mass of all φ-
paths that start in s exceeds p. This indicates that a counterexample for P6p(φ)
is in general a set of paths satisfying φ. As φ is an until-formula and can be
witnessed by finite state sequences, finite paths do suffice in counterexamples.
As a counterexample should exceed p, a maximally probable φ-path is a strong
evidence for the violation of P6p(φ). For counterexamples that are as small
as possible, i.e., that contain the smallest possible set of paths indicating the
refutation, such maximally probable paths are essential.

5



Definition 5 (Strongest evidence). A strongest evidence for violating P6p(φ)
in state s is a finite path σ ∈ Pathfin(s, φ) such that Pr{σ} > Pr{σ′} for any
σ′ ∈ Pathfin(s, φ).

Dually, a strongest evidence for violating P6p(φ) is a strongest witness for
P>p(φ) 2. Note that a strongest evidence does not need to be a counterexample
as its probability mass may be (far) below p. A counterexample is defined as
follows:

Definition 6 (Counterexample). A counterexample for P6p(φ) in state s is
a set C of paths such that C ⊆ Pathfin(s, φ) and Pr(C) > p.

Note that counterexamples are always finite as we consider non-strict upper-
bounds in the probability operator3. Let CXp(s, φ) be the set of counterexam-
ples for P6p(φ) in state s. For C ∈ CXp(s, φ) and C’s superset C′: C ⊆ C′ ⊆
Pathfin(s, φ), it follows that C′ ∈ CXp(s, φ), since Pr(C′) > Pr(C) > p. A
counterexample is called minimal if it is minimal w.r.t. ⊆. Note that a coun-
terexample for state s is a set of finite paths that all start in s, and thus can be
considered as a finite tree rooted at s.

As in conventional model checking, we are not interested in generating arbi-
trary counterexamples, but those that are easy to comprehend, and provide a
clear evidence of the refutation of the formula. So, akin to shortest counterex-
amples we define the notion of a smallest, most indicative counterexample. Such
smallest counterexamples should contain as few paths as possible—allowing eas-
ier analysis of the cause of refutation—but whose probability is clearly exceeding
p.

Definition 7 (Smallest counterexample). C ∈ CXp(s, φ) is a smallest (most
indicative) counterexample if:

1. |C| 6 |C′|, for any C′ ∈ CXp(s, φ) and
2. Pr(C) > Pr(C′′), for any C′′ ∈ CXp(s, φ) and |C| = |C′′|.

Intuitively, a smallest counterexample is mostly deviating from the required
probability bound given that it has the smallest number of paths. Any small-
est counterexample is minimal, but not necessarily the reverse. Note that the
strongest evidence, minimal counterexample or smallest counterexample may not
be unique, as paths may have equal probability. As a result, not every strongest
evidence is contained in a minimal (or smallest) counterexample. However, any
smallest counterexample contains at least one strongest evidence.

Example 8. In the DTMC in Fig. 1, we have s 6|= P60.27(aUb). Let σ1 =
s·s1·s2·t2, σ2 = s·s1·s3·s4·t1, σ3 = s·s1·s3·s4·t2, σ4 = s·s3·s4·t1, σ5 = s·s3·s4·t2,

2 P>p(φ) is a PCTL-formula, not necessarily a safe one.
3 For strict upper bounds in the probability operator, i.e., P<p(φ), a counterexample

C may contain infinite paths, since Pr(C) = p is a counterexample. The limit of
the sum of path probabilities obeying a geometric distribution may equal p, but the
limit requires infinite paths.

6



σ6 = s·s3·s4·t3, where:

Pr{σ1} = 0.12, Pr{σ2} = Pr{σ3} = Pr{σ4} = Pr{σ5} = 0.072, Pr{σ6} = 0.018.

Path σ1 is a strongest evidence, as it is the maximally probable path from
s to {t1, t2, t3}, i.e., b-states. The set C1 = {σ2, σ3, σ4, σ5, σ6} with Pr(C1) =
0.306 is a counterexample, but neither a minimal counterexample, nor a smallest
counterexample, as C2 = {σ2, σ3, σ4, σ5} ⊂ C1 with Pr(C2) = 0.288 is also a
counterexample. C2 is a minimal counterexample, since the probability of any
proper subset of C2 is less than 0.27. But C2 is not a smallest counterexample,
as C3 = {σ1, σ2, σ3, σ4} with Pr(C3) = 0.336 is a counterexample too and |C2| =
|C3| but Pr(C3) > Pr(C2). In fact, any set containing the strongest evidence and
any three paths in C2 is a smallest counterexample.

In the remainder of the paper, we first consider the computation of strongest
evidences. Formally, we consider the strongest evidence problem (SE), that for
a given state s with s 6|= P6p(φ), determines the strongest evidence for this
violation. Subsequently, we consider the corresponding smallest counterexample
problem (SC). For both cases, we distinguish between until-formulae for which
h=∞ (unbounded until) and h ∈ N (bounded until) as distinctive algorithms
are used for these cases.

4 From DTMC to a weighted digraph

Prior to finding strongest evidences or shortest counterexamples, we first modify
the DTMC and turn it into a weighted directed graph. Let φ = ΦU6hΨ , h =
∞orh ∈ N and Sat(Φ) = {s ∈ S | s |= Φ} for any state-formula Φ. Due to the
bottom-up traversal of the model-checking algorithm over the formula φ, we may
assume that Sat(Φ) and Sat(Ψ) are known.

Step 1: Adapting the DTMC. First, we make all states in the DTMC D =
(S,P, L) that neither satisfy Φ nor Ψ absorbing. Then we add an extra state t
so that all the Ψ -states are equipped with a transition to t with probability 1
(all other outgoing transitions of Ψ -states are omitted). State t can thus only
be reached via a Ψ -state. The thus obtained DTMC D′ = (S′,P′, L′) has state
space S ∪ {t} for t 6∈ S. The transition probabilities in D′ are defined as follows:






P′(s′, s′) = 1 and P′(s′, s′′) = 0 for s′′ 6= s′ if s′ /∈ Sat(Φ) ∪ Sat(Ψ) or s′ = t
P′(s′, t) = 1 and P′(s′, s′′) = 0 for s′′ 6= t if s′ ∈ Sat(Ψ)
P′(s′, s′′) = P(s′, s′′) for s′′ ∈ S and P′(s′, t) = 0 otherwise

L′(s′) = L(s′) for s′ ∈ S and L′(t) = {att}, where at t /∈ L(s′) for any s′ ∈ S,
i.e., at t uniquely identifies being at state t. Remark that all the (¬Φ∧¬Ψ)-states
could be collapsed into a single state, but this is not further explored here. The
time complexity of this transformation is O(n) where n = |S|.

It is evident that the validity of ΦU6hΨ is not affected by this amendment
of the DTMC. All paths in D′ of length at most h + 1 that end in t satisfy

7



ΦU6hΨ in D. More precisely, any finite path satisfying (Φ ∨ Ψ)U6h+1at t in D′

has a finite path in D satisfying ΦU6hΨ . The following lemma guarantees that
the later results in D′ also hold in D.

Lemma 9. Let σ′ = σ·t be a path in Pathfin(s) in D′. Then:

1. σ′ |= (Φ ∨ Ψ)U6h+1at t in DTMC D′;
2. σ |= ΦU6hΨ in DTMC D;
3. Pr{σ} = Pr{σ′}.

For the rest of the technical report, we suppose that all the DTMCs are the
results of Step 1, and the logic formula considered is (Φ ∨ Ψ)U6h+1at t.

Step 2: Conversion into a weighted digraph. As a second preprocessing step,
the DTMC obtained in the first phase is transformed into a weighted digraph.
Recall that a weighted digraph is a tuple G = (V, E, w) where V is a finite set
of vertices, E : V × V is a set of edges, and w : E → R>0 ∪ {∞} is a function
assigning non-negative weights to edges.

Definition 10 (Weighted digraph of a DTMC). For DTMC D = (S,P, L),
the weighted digraph GD = (V, E, w) where:

– V = S and (v, v′) ∈ E iff P(v, v′) > 0, and

– w(v, v′) =

{
log(P(v, v′)−1) if P(v, v′) > 0,
∞ otherwise.

Note that in any DTMC, P(s, s′) ∈ [0, 1], thus P(s, s′)−1 ∈ [1, +∞), and con-
sequently, log(P(s, s′)−1) ∈ [0, +∞). Thus, we indeed obtain a non-negatively
weighted digraph. Note that this transformation can be done in O(m), where
m = |P|.

Example 11. The transformation from DTMC in Fig. 1 to a weighted digraph is
illustrated in Fig. 2. For the path formula φ = aUb, in Fig. 2(a) all the b-states
(i.e., t1, t2, t3) are made absorbing and take a transition with probability 1 into
the new state t (indicated by a double circle). All the (¬a ∧ ¬b)-states (i.e.,
u1, u2) are made absorbing and then (to simplify the figure) collapsed into one
state u. In Fig. 2(b), the resulting weighted digraph is depicted where all the
states remain the same, however the edge weights are obtained by taking the
logarithm of the reciprocal of the corresponding transition probabilities.

A path σ from s to t in G is a sequence σ = v0·v1·...·vj ∈ V +, where v0 =
s, vj = t and (vi, vi+1) ∈ E, for 0 6 i < |σ|. As for paths in DTMCs, |σ|
denotes the length of σ. The distance of finite path σ = v0·v1·...·vj in graph G is

d(σ) =
∑j−1

i=0 w(vi, vi+1). Due to the fact that multiplication of probabilities in
D corresponds to addition of weights in GD, and that weights are based on taking
the logarithm of the reciprocal of the transition probabilities in D, distances in
G and path-probabilities in DTMC D are related as follows.

8



s

u

s1

s3

s2 t2

t30.1

0.5

0.3

0.3 0.8

0.6 0.4

0.1

t1

s4

0.2

0.4

0.1

0.1

0.6

0.1

0.4
a

a

a a

a

b

b

b

∅

t

1

1

1
1

at t1

(a) result of Step 1

s

u

s1

s3

s2 t2

t3log 10

log 2

log 10

3

log 10

3
log 5

4

log 5

3
log 5

2

log 10

t1

s4

log 5

log 5

3

log 10

log 10

log 5

3

log 10

log 5

2

t

0

0

0
0

0

(b) result of Step 2

Fig. 2. Transformation from DTMC to weighted digraph

Lemma 12. Let σ and σ′ be finite paths in DTMC D and its graph GD. Then:

Pr{σ′} > Pr{σ} iff d(σ′) 6 d(σ).

Proof. Consider the following finite path σ in D:

σ = s0
P(s0,s1)
−−−−−→ s1

P(s1,s2)
−−−−−→ s2 · · · sn−1

P(sn−1,sn)
−−−−−−−→ sn

By definition, its probability is:

Pr{σ} = P(s0, s1) ·P(s1, s2) · · ·P(sn−1, sn) =

n−1∏

i=0

P(si, si+1)

9



Consider an alternative path σ′:

σ′ = s′0
P(s0,s′

1
)

−−−−−→ s′1
P(s′

1
,s′

2
)

−−−−−→ s′2 · · · s
′
m−1

P(s′

m−1
,s′

m)
−−−−−−−−→ s′m

Pr{σ′} = P(s′0, s
′
1) ·P(s′1, s

′
2) · · ·P(s′m−1, s

′
m) =

m−1∏

i=0

P(s′i, s
′
i+1)

If Pr{σ′} > Pr{σ}, we have:

∏m−1
i=0 P(s′i, s

′
i+1) >

∏n−1
i=0 P(si, si+1)

⇐⇒
1

∏m−1
i=0 P(s′i, s

′
i+1)

6
1

∏n−1
i=0 P(si, si+1)

⇐⇒ log(
1

∏m−1
i=0 P(s′i, s

′
i+1)

) 6 log(
1

∏n−1
i=0 P(si, si+1)

)

⇐⇒
∑m−1

i=0 log(
1

P(s′i, s
′
i+1)

) 6
∑n−1

i=0 log(
1

P(si, si+1)
)

⇐⇒
∑m−1

i=0 w(s′i, s
′
i+1) 6

∑n−1
i=0 w(si, si+1)

⇐⇒ d(σ∗) 6 d(σ)

⊓⊔

Note that Lemma 12 also holds for infinite paths. The following lemma specifies
the correspondence between paths in DTMC D and its weighted digraph.

Lemma 13. For any path σ from s to t in DTMC D and k > 0:

1. σ is a k-th most probable path in D iff σ is a k-th shortest path in GD;
2. σ is a k-th most probable path of at most h hops in D iff σ is a k-th shortest

path of at most h hops in GD;

The correspondence between path probabilities in the DTMC and distances
in its weighted digraph constitutes the basis for the remaining algorithms.

5 Finding strongest evidences

This section considers algorithms for determining strongest evidences, i.e., max-
imally probable paths.

5.1 Unbounded until

Based on the results of Lemma 13.1 where k = 1, we consider the shortest path
problem.

Definition 14 (SP problem). Given a weighted digraph G = (V, E, w) and
s, t ∈ V , the shortest path (SP) problem is to determine a path σ from s to t
such that d(σ) 6 d(σ′) for any path σ′ from s to t in G.

10



From Lemma 13.1 together with the transformation of a DTMC into a weighted
digraph, it follows that there is a polynomial reduction from the SE problem
for unbounded until to the SP problem. As the SP problem is known to be in
PTIME, it follows:

Theorem 15. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [13, 8, 15, 11] exist for the SP problem, e.g., when
using Dijkstra’s algorithm, the SE problem for unbounded until can be solved in
time O(m + n log n) when using appropriate data structures such as Fibonacci
heaps.

5.2 Bounded until

Lemma 13.2 when k = 1 applies when considering maximally probable paths
of a certain maximal hop count. This suggests to consider the hop-constrained
shortest path problem.

Definition 16 (HSP problem). Given a weighted digraph G = (V, E, w), s, t ∈
V and h ∈ N, the hop-constrained SP (HSP) problem is to determine a path σ
in G from s to t with |σ| 6 h such that d(σ) 6 d(σ′) for any path σ′ from s to t
with |σ′| 6 h.

The HSP problem is a special case of the constrained shortest path (CSP) prob-
lem [27, 1], where the only constraint is the hop count.

Definition 17 (CSP problem). Given a weighted digraph G = (V, E, w), s, t ∈
V and resource constraints λi, for 1 6 i 6 c. Edge e ∈ E uses ri(e) > 0 units of
resource i. The (resource) constrained shortest path problem (CSP) is to deter-
mine a shortest path σ in G from s to t such that

∑

e∈σ ri(e) 6 λi for 1 6 i 6 c.

The CSP problem is NP-complete, even for a single resource constraint [1]. How-
ever, if each edge uses a constant unit of that resource (such as the hop count),
the CSP problem can be solved in polynomial time, cf. [18], problem ND30.
Thus:

Theorem 18. The SE problem for bounded until is in PTIME.

For h > n−1, it is possible to use Dijkstra’s SP algorithm (as for unbounded
until), as a shortest path does not contain cycles. If h < n−1, however, Dijkstra’s
algorithm does not guarantee to obtain a shortest path of at most h hops. We,
therefore, adopt the Bellman-Ford (BF) algorithm [8, 15, 11] which fits well to
our problem as it proceeds by increasing hop count. It can be readily modified
to generate a shortest path within a given hop count. In the sequel of the paper,
this algorithm is generalised for computing shortest counterexamples. The BF-
algorithm is based on a set of recursive equations; we extend these with the hop

11



count h. For v ∈ V , let π(v, h) denote the shortest path from s to v of at most
h hops (if it exists). Then:

π(v, h) =







s if v = s and h > 0; (1a)
⊥ if v 6= s and h = 0; (1b)
arg minu{d(π(u, h−1) · v) | (u, v) ∈ E} if v 6= s and h > 0. (1c)

where ⊥ denotes undefined. The last clause states that π(v, h) consists of the
shortest path to v’s predecessor u, i.e., π(u, h−1), extended with edge (u, v).
Note that minu{d(π(u, h−1) · v) | (u, v) ∈ E} is the distance of the shortest
path; by means of arg, the path is obtained. It follows (cf. [24]) that equation
(1) characterizes the shortest path from s to v in at most h hops, and can be
solved in time O(hm). As h < n−1, this is indeed in PTIME. Recall that for
h > n−1, Dijkstra’s algorithm has a favorable time complexity.

Remark 19. Note that the self-loop of vertex t is neglected when computing
the hop-constrained shortest path using BF algorithm. This is because the logic
operator is the bounded until U6h instead of point interval until U=h, so that
once it reaches t within the hop bound, the path formula holds and the self-loop
does not change the path probability.

Example 20. To illustrate the BF algorithm, we compute the shortest path in
at most 4 hops from s to t in our example in Fig.2(b), i.e., π(t, 4). In or-
der to compute π(t, 4), three predecessors of t are considered so that π(t1, 3),
π(t2, 3), π(t3, 3) are invoked. Again, to compute π(t1, 3), two predecessors of
t1 are considered so that π(s1, 2), π(s4, 2) are invoked. In sequel, π(s, 1) and
π(s3, 1) are invoked for π(s1, 2), where π(s, 1) is s, defined by equation (1a).
π(s3, 1) is derived by invoking its two predecessors π(s, 0), which is s (by (1a))
and π(s1, 0) which is ⊥ (by (1b)). The computation is given in Fig. 3. Note that
π(s4, 2), π(s3, 1), π(s, 0), π(s1, 0), π(s3, 0) are indicated more than once (with more
than one incoming edge), but are (like in dynamic programming) computed only
once.

Remark 21. Alternatively, the Viterbi algorithm [16, 29] for probabilistic au-
tomata can be applied to our problem. The Viterbi algorithm determines the
most probable path that generates a given trace. Let D′ be a DTMC that is
obtained after the first step described in Section 4, and suppose that L′(s)
contains the set of atomic propositions that are valid in s and all subformu-
lae of the formula under consideration. (Note that these labels are known due
to the recursive descent nature of the PCTL model checking algorithm.) Let
tr(σ) denote the projection of a path σ = s0·s1·...·sh on its trace γ, i.e., γ =
tr(σ) = L′(s0)L

′(s1) · · ·L′(sh). σ↓i denotes the prefix of path σ truncated at
length i (thus ending in si), formally, σ↓i = σ[0]·σ[1]·...·σ[i]. Thus, tr(σ↓i)
= L′(s0)L

′(s1) · · ·L′(si). γ↓i denotes the prefix of trace γ with length i. Let
ρ(γ, i, v) denote the probability of the most probable path σ↓i whose trace equals

12



π(t1, 3) π(s1, 2)

π(s2, 2)

π(s4, 2)

π(s, 0) = s

π(s1, 0) = ⊥

π(s3, 1)

π(s1, 1) π(s3, 0) = ⊥

π(s2, 1) π(s2, 0) = ⊥

π(s4, 1) π(s4, 0) = ⊥

π(t2, 3)

π(t3, 3)

π(t, 4)

π(s, 1) = s

Fig. 3. An example run of the Bellman-Ford algorithm

γ↓i and reaches state v. ρ(γ, i, v) can be formally defined as follows:

ρ(γ, i, v) = max
tr(σ↓i)=γi

i−1∏

j=0

P(sj , sj+1) · 1v(si),

where 1v(si) is the characteristic function of v, i.e., 1v(si) returns 1, if si = v;
0, else.

The Viterbi algorithm provides an algorithmic solution to compute ρ(γ, i, v):

ρ(γ, i, v) =







1 if s = v and i = 0;
0 if s 6= v and i = 0;
maxu∈S ρ(γ, i − 1, u) · P(u, v) otherwise.

By computing ρ(ΦhΨ, h, sh), the Viterbi algorithm determines the most prob-
able h-hop path σ = s0·s1·...·sh that generates the trace γ = L′(s0)L

′(s1)...L
′(sh)

= ΦhΨ with length (h+1). For our SE problem for bounded until, the trace of the
most probable hop-constrained path from s to t is among {Ψat t, ΦΨat t, ..., Φ

hΨatt}.
The self-loop at vertex t with probability 1 can make sure that all these paths
have length h+1 but not change their probabilities, e.g., the path with trace
Ψat t can be extended so that the trace becomes Ψat t

h+1. We obtain the most
probable path for ΦU6hΨ by computing ρ((Φ∨Ψ∨att)

h+1at t, h+1, t) using the
Viterbi algorithm. The time complexity of the Viterbi algorithm is O(hm), as
for the BF algorithm.

13



6 Finding smallest counterexamples

Recall that a smallest (most indicative) counterexample is a counterexample
of minimal cardinality, whose probability deviates maximally from the required
probability bound. In this section, we investigate algorithms for computing such
smallest counterexamples. First observe that any smallest counterexample that
contains, say k paths, contains the k most probable paths. This follows from the
fact that any non-k most probable path can be exchanged with a more probable
path, without changing the size of the counterexample, but by increasing its
probability.

6.1 Unbounded until

Lemma 13.1 is applicable here. This suggests to consider the k shortest paths
problem.

Definition 22 (KSP problem). Given a weighted digraph G = (V, E, w), s, t ∈
V , and k ∈ N, the k shortest paths (KSP) problem is to find k distinct shortest
paths between s and t in G, if such paths exist.

Theorem 23. The SC problem for unbounded until is a KSP problem.

Proof. We prove that a smallest counterexample of size k, contains k most prob-
able paths. It is proven by contradiction. Let C be a smallest counterexample
for φ with |C| = k, and assume C does not contain the k most probable paths
satisfying φ. Then there is a path σ /∈ C satisfying φ such that Pr{σ} > Pr{σ′}
for some σ′ ∈ C. Let C′ = C \ {σ′} ∪ {σ}. Then C′ is a counterexample for φ,
|C| = |C′| and Pr(C) > Pr(C′). This contradicts C being a smallest counterex-
ample. ⊓⊔

The question remains how to obtain k. Various algorithms for the KSP prob-
lem require k to be known a priori. This is inapplicable in our setting, as the
number of paths in a shortest counterexample is implicitly provided by the prob-
ability bound in the PCTL-formula. We therefore consider algorithms that allow
to determine k on the fly, i.e., that can halt at any k and resume if necessary.
A good candidate is Eppstein’s algorithm [14]. Although this algorithm has the
best known asymptotic time complexity, viz. O(m+n logn+k), in practice the
recursive enumeration algorithm (REA) by Jiménez and Marzal [22] prevails.
This algorithm has a time complexity in O(m+kn log m

n
) and is based on a

generalisation of the recursive equations for the BF-algorithm, and is readily
adaptable to the case for bounded h, as we demonstrate below. Note that the
time complexity of KSP algorithms depends on k, and as k may be exponential,
their complexity is pseudo-polynomial.

14



6.2 Bounded until

Similar to the bounded until case for strongest evidences, we now consider the
KSP problem where the length of paths is constrained, as Lemma 13.2 is appli-
cable here.

Definition 24 (HKSP problem). Given a weighted digraph G = (V, E, w),
s, t ∈ V and h, k ∈ N, the hop-constrained KSP (HKSP) problem is to determine
k shortest paths each of length at most h between s and t.

Similar to Theorem 23 we obtain:

Theorem 25. The SC problem for bounded until is a HKSP problem.

To our knowledge, algorithms for the HKSP problem do not exist. In order
to solve the HKSP problem, we propose a new algorithm that is strongly based
on Jiménez and Marzal’s REA algorithm [22]. The advantage of adapting this
algorithm is that k can be determined on the fly, an essential characteristic for
our setting. The algorithm is a conservative extension of the REA algorithm.

For v ∈ V , let πk(v, h) denote the k-th shortest path from s to v of length at
most h (if it exists). As before, we use ⊥ to denote the non-existence of a path.
We establish the following equations:

πk(v, h) =







s if k = 1, v = s and h > 0 (2a)
⊥ if (k > 1, v = s, h = 0) or (v 6= s, h = 0) (2b)
argminσ{d(σ) | σ ∈ Qk(v, h)} otherwise (2c)

where Qk(v, h) is a set of candidate paths among which πk(v, h) is chosen. The
candidate sets are defined by:

Qk(v, h) =







{π1(u, h−1)·v | (u, v) ∈ E}
if k = 1, v 6= s or k = 2, v = s

(Qk−1(v, h) − {πk′

(u, h−1)·v}) ∪ {πk′+1(u, h−1)·v}
if k > 1 and u, k′ are the node and index,

such that πk−1(v, h) = πk′

(u, h−1)·v

(3)

Assume that the path πk′+1(u, h−1)·v=⊥ if it does not exist, which happens
when Qk′+1(u, h−1)=∅. Note that ⊥·v=⊥ for any v ∈ V . Qk(v, h)=∅ if it only
contains ⊥.

If k=1, the shortest path to v′s predecessor u is extended with the edge to
v. In the latter clause, πk′

(u, h−1) denotes the selected (k−1)-st shortest path
from s to u, where u is the direct predecessor of v. Paths in Qk(v, h) for k > 1
are thus either candidate paths for k−1 where the selected path is eliminated
(first summand) or the (k′+1)-st shortest path from s to u extended with edge
(u, v) (second summand). Note that for the source state s, there is no need to
define Qk(s, h) as πk(s, h) is defined by equations (2a) and (2b), which act as
termination conditions.

15



Proposition 26. The equations (2a)-(2c) and (3) characterize the hop-constrained
k shortest paths from s to v in at most h hops.

Proof. Let Rk(v, h) denote the set of the k shortest paths from s to v in at most
h hops. Each path in Rk(v, h) reaches v from some vertex u ∈ Pred(v)={w ∈
V | (w, v) ∈ E}. In order to compute πk(v, h), we should consider for every u ∈
Pred(v), all paths from s to u that do not yield a path in Rk−1(v, h). However,
since k1<k2 implies that d(πk1(u, h−1))+w(u, v) 6 d(πk2(u, h−1))+w(u, v),
only the shortest of these paths needs to be taken into account when comput-
ing πk(v, h). Thus we can associate to (v, h) a set of candidate paths Qk(v, h)
among which πk(v, h) can be chosen, that contains at most one path for each
predecessor u ∈ Pred(v). This set Qk is recursively defined by equation (3). ⊓⊔

The adapted REA. The adapted REA for computing the k shortest paths from
s to t which each consist of at most h hops is sketched as follows. The algorithm
is based on the recursive equations given just above.

i Compute π1(t, h) by the BF algorithm and set k := 1.

ii Repeat until πk(t, h) does not exist or

kX
i=1

Pr{πi(t, h)} > p:

(a) Set k := k+1 and compute πk(t, h) by invoking NextPath(v, h, k).

For k>1, and once π1(v, h), . . . , πk−1(v, h) are available, NextPath(t, h, k) computes
πk(v, h) as follows:

1. If h60, goto step 4.
2. If k=2, then set Q[v, h] := {π1(u, h−1)·v | (u, v) ∈ E and π1(v, h) 6= π1(u, h−1)·v}.

3. Let u and k′ be the node and index such that πk−1(v, h) = πk′

(u, h−1)·v.

(a) If πk′
+1(u, h−1) has not yet been computed, invoke NextPath(u, h−1, k′+1).

(b) If πk′
+1(u, h−1) exists, then insert πk′

+1(u, h−1)·v in Q[v, h].
4. If Q[v, h] 6= ∅, then select and delete a path with minimum weight from Q[v, h]

and assign it to πk(v, h), else πk(v, h) does not exist.

In the main program, first the shortest path from s to t is determined using,
e.g., the BF-algorithm. The intermediate results are recorded, e.g., all the paths
in Fig. 3. Then, the k shortest paths are determined iteratively using the subrou-
tine NextPath. The computation terminates when the k-th shortest path does
not exist, or the total probability mass of the k shortest paths so far exceeds the
bound p. Recall that p is the lower bound of the PCTL formula to be checked.
Note that Q[v, h] in the algorithm corresponds to Qk(v, h), where k is the pa-
rameter of the program. In steps 2 through 3, the set Qk(v, h) is determined
from Qk−1(v, h) according to equation (3). In the final step, πk(v, h) is selected
from Qk(v, h) according to equation (2c).

Example 27. We illustrate how the algorithm progresses by computing 3 shortest
paths in Fig. 2 (b) with hop count h = 4, i.e., π1(t, 4), π2(t, 4) and π3(t, 4).

By BF algorithm, we compute π1(t, 4) = s·s1·s2·t2·t, several shortest paths to
different destinations with different hop constraints are derived as a by-product
as we showed in Example 20, where π(v, h) in the previous example is π1(v, h)
here. We summarize the paths below:

16



h = 3 h = 2 h = 1 h = 0

π1(s, 1) = s·s π1(s, 0) = s

π1(t1, 3) = s·s1·t1 π1(s1, 2) = s·s1 π1(s1, 1) = s·s1 π1(s1, 0) = ⊥
π1(t2, 3) = s·s1·s2·t2 π1(s2, 2) = s·s1·s2 π1(s2, 1) = ⊥ π1(s2, 0) = ⊥
π1(t3, 3) = s·s3·s4·t3 π1(s4, 2) = s·s3·s4 π1(s3, 1) = s·s3 π1(s3, 0) = ⊥

π1(s4, 1) = ⊥ π1(s4, 0) = ⊥

The algorithm for π2(t, 4) is running in Fig. 4.

k = 2, invoke NextPath(t, 4, 2):
2. set Q[t, 4] = {π1(t1, 3)·t, π1(t3, 3)·t}. /*t1, t2, t3 are predecessors of t*/
3. u = t2, k′ = 1, h = 3. /* π1(t, 4) = π1(t2, 3)·t = s·s1·s2·t2·t*/
3(a). compute π2(t2, 3) by invoking NextPath(t2, 3, 2):

2. (k = 2) set Q[t2, 3] = {π1(s4, 2)·t2}.
3. u = s2, k′ = 1, h = 2. /* π1(t2, 3) = π1(s2, 2)·t2 = s·s1·s2·t2 */
3(a). compute π2(s2, 2) by invoking NextPath(s2, 2, 2):

2. (k = 2) set Q[s2, 2] = ∅.
3. u = s1, k′ = 1, h = 1. /* π1(s2, 2) = π1(s1, 1)·s2 = s·s1·s2 */
3(a). compute π2(s1, 1) by invoking NextPath(s1, 1, 2):

2 (k = 2) set Q[s1, 1] = ∅.
3. u = s, k′ = 1, h = 0. /* π1(s1, 1) = π1(s, 0)·s1 = s·s1 */
3(a). compute π2(s, 0) by invoking NextPath(s, 0, 2):

1. Goto 4.
4. π2(s, 0) = ⊥.

3(b). Q[s1, 1] = ∅.
4. π2(s1, 1) = ⊥.

3(b). Q[s2, 2] = ∅.
4. π2(s2, 2) = ⊥.

3(b). Q[t3, 3] = {π1(s4, 2)·t2}.
4. π2(t2, 3) = s·s3·s4·t2.

3(b)∗. Q[t, 4] = {π1(t1, 3)·t, π1(t3, 3)·t, π2(t3, 3)·t}. /*d(π1(t1, 3)·t) = d(π2(t3, 3)·t)*/
4. π2(t, 4) = π1(t1, 3)·t = s·s3·s4·t1·t. /* π1(t1, 3)·t is the shortest in Q[t, 4] */

Fig. 4. An example of the adapted REA

Note that in order to compute π2(t, 4), the vertices along π1(t, 4) = s·s1·s2·t2·t
are computed successively, i.e., π2(t2, 3), π2(s2, 2), π2(s1, 1) and π2(s, 0), by re-
cursively invoking NextPath. The hop count of each invocation is decreased by
1, so that NextPath is invoked 5 times when h = 4 and k = 2. Similarly, to
compute π3(t, 4), the vertices along π2(t, 4) = s·s3·s4·t1·t (π2(t1, 3), π2(s4, 2),
π2(s3, 1) and π2(s, 0)) are needed. Actually, in this particular example, π3(t, 4)
can be easily derived, since in Step 3(b)∗, d(π1(t1, 3)·t) = d(π2(t3, 3)·t), then
π3(t, 4) definitely equals π2(t3, 3)·t.

17



Time complexity. Before we analyze the algorithm time complexity, we first
prove that the recursive calls to NextPath to compute πk(t, h) visit, in the worst
case, all the vertices in πk−1(t, h), which is at most h.

Lemma 28. For k>1 and for all v ∈ V , the computation of πk(v, h) by means
of NextPath(v, h, k) may recursively generate calls to NextPath(u, h−1, j) only
for vertices u in πk−1(v, h).

Proof. Suppose πk−1(v, h) = u1·u2·...·up, where u1=s and up=t. For every i =
1, ..., p, let ki be the index such that πki(ui) = u1·u2·...·ui. Since πk−1(v, h) =
πkp−1(up−1, h−1)·v, NextPath(v, h, k) may require a recursive call to NextPath(up−1,
h−1, kp−1+1) in case πkp−1+1(up−1, h−1) has not been already computed; since
πkp−1(up−1, h−1) = πkp−2(up−2, h−2)·up−1, NextPath(up−1, h−1, kp−1 + 1) may
require a recursive call to NextPath(up−2, h−2, kp−2 +1); and so on. In the worst
case, the recursive calls extend through the nodes up, up−1, ..., u1. If the recur-

sion reaches π1(s, h′)(06h′6h) or πk′

(v, 0)(k′>0, v 6=s) or πk′′

(s, 0)(k′′ > 1) so
that the termination conditions in equation (2a) and (2b) or Algorithm Step 1
hold, then no more recursive calls are performed. ⊓⊔

To determine the computational complexity of the algorithm, we assume the
candidate sets to be implemented by heaps (as in [22]). The k shortest paths to
a vertex v can be stored in a linked list, where each path πk(v, h) = πk′

(u)·v is
compactly represented by its length and a back pointer to πk′

(u). Using these
data structures, we obtain:

Proposition 29. The time complexity of the adapted REA is O(hm+hk log(m
n

)).

Proof. The computation of the first step takes O(hm) using the BF-algorithm.
Due to Lemma 28, the number of recursive invocations to NextPath is bounded
by h, the maximum length of πk−1(t, h). At any given time, the set Qk(v, h)
contains at most |Pred(v)| paths where Pred(v) = {u | (u, v) ∈ E}, i.e., one path
for each predecessor vertex of v. By using heaps to store the candidate sets, a
minimal element can be determined and deleted (cf. Step4) in O(log |Pred(v)|)
time. Insertion of a path (as in Steps 2 and 3(b)) takes the same time complex-
ity. Since

∑

v∈V |Pred(v)| = m,
∑

v∈V log |Pred(v)| is maximized when all ver-
tices have an equal number of predecessors, i.e., |Pred(v)| = m

n
. Hence, it takes

O(h log(m
n

)) to compute πk(v, h). We have k such paths to compute, yielding
O(hm + hk log(m

n
)).

Note that the time complexity is pseudo-polynomial due to the dependence
on k which may be exponential in n. As in our setting, k is not known in advance,
this can not be reduced to a polynomial time complexity.

7 Conclusion

Summary of results. We have investigated the computation of strongest ev-
idences (maximally probable paths) and smallest counterexamples for PCTL

18



model checking of DTMCs. Relationships to various kinds of shortest path prob-
lems have been established. Summarizing we have obtained:

shortest
counterexample path time complexity

problem problem

SE (until) SP O(m + n log n)
SE (bounded until) HSP O(hm)

SC (until) KSP O(m + n log n + k)
SC (bounded until) HKSP O(hm + hk log(m

n
))

where n and m are the number of states and transitions, h is the hop bound,
and k is the number of shortest paths.

For DTMCs with rewards, we can establish along the same lines as in this pa-
per that determining strongest evidences for violating reward- and hop-bounded
until-formulae boils down to solving a non-trivial instance of the CSP problem.
As this problem is NP complete, efficient algorithms for finding counterexamples
for PRCTL [4] will be hard to obtain.

Further research. Topics for further research are: experimental research of the
proposed algorithms in probabilistic model checking, considering loopless paths
(see e.g., [21, 25, 19]), and extension towards continuous-time models.

Related work. With the notable exception of [2, 3], counterexample generation
for probabilistic model checking has not been addressed before. Aljazzar et al.
[2] consider the generation of a most probable path for timed reachability in
CTMCs. They map this onto a bounded-until problem on DTMCs, and use
heuristics (Z∗) for determining the most probable path. Unbounded until is not
considered, and neither a correctness proof nor complexity results are provided.
Recently, [3] generalises this heuristic-based approach for CTMCs to obtain fail-
ure subgraphs, i.e., counterexamples. To our knowledge, smallest counterexam-
ples have not been considered yet.

Acknowledgement. This research has been performed as part of the QUPES project

that is financed by the Netherlands Organization for Scientific Research (NWO). David
N. Jansen is kindly acknowledged for remarks on an earlier version of this paper.

References

1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows: Theory, Algorithms
and Applications, Prentice Hall, Inc., 1993.

2. H. Aljazzar, H. Hermanns and S. Leue. Counterexamples for timed probabilistic
reachability. FORMATS 2005, LNCS 3829: 177-195, 2005.

3. H. Aljazzar and S. Leue. Extended directed search for probabilistic timed reacha-
bility. FORMATS 2006. (to appear)

4. S. Andova, H. Hermanns and J.-P. Katoen. Discrete-time rewards model-checked.
FORMATS 2003, LNCS 2791: 88-104, 2003.

19



5. C. Baier, J.-P. Katoen, H. Hermanns and V. Wolf. Comparative branching-time
semantics for Markov chains. Inf. Comput. 200(2): 149-214 (2005).

6. T. Ball, M. Naik and S. K. Rajamani. From symptom to cause: localizing errors
in counterexample traces. POPL: 97-105, 2003.

7. G. Behrmann, K. G. Larsen and J. I. Rasmussen. Optimal scheduling using priced
timed automata. ACM SIGMETRICS Perf. Ev. Review 32(4): 34-40 (2005).

8. R. Bellman. On a routing problem. Quarterly of Appl. Math., 16(1): 87-90 (1958).
9. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith: Counterexample-guided

abstraction refinement. CAV, LNCS 1855: 154-169, 2000.
10. E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like counterexamples in model

checking. LICS: 19-29 (2002).
11. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms,

2001. Section 24.1: The Bellman-Ford algorithm, pp.588-592.
12. L. de Alfaro, T.A. Henzinger and F. Mang. Detecting errors before reaching them.

CAV, LNCS 2725: 186-201, 2000.
13. E.W. Dijkstra. A note on two problems in connection with graphs. Num. Math.,

1:395-412 (1959).
14. D. Eppstein. Finding the k shortest paths. SIAM J. Comput. 28(2): 652-673 (1998).
15. L.R. Ford jr. and D.R. Fulkerson. Flows in Networks, Princeton Univ. Press, 1962.
16. G.D. Forney. The Viterbi algorithm. Proc. of the IEEE 61(3): 268-278 (1973).
17. B. L. Fox. k-th shortest paths and applications to the probabilistic networks. In

ORSA/TIMS National Mtg, volume 23, page B263. Bull. Operations Research Soc.
of America, 1975.

18. M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, 1979.

19. E. Hadjiconstantinou and N. Christofides. An efficient implementation of an algo-
rithm for finding K shortest simple paths. Networks 34(2): 88-101 (1999).

20. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5): 512-535 (1994).

21. J. Hershberger, M. Maxel and S. Suri. Finding the k shortest simple paths: A new
algorithm and its implementation. ALENEX 2003, in Proc. of the Fifth Workshop
on Algorithm Engineering and Experiments, Baltimore, USA, pp. 26-36, 2003.

22. V.M. Jiménez and A. Marzal. Computing the K shortest paths: A new algorithm
and an experimental comparison. WAE 1999, LNCS 1668: 15-29, 1999.

23. H. Jin, K. Ravi and F. Somenzi. Fate and free will in error traces. STTT 6(2):
102-116 (2004).

24. E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart,
and Winston, 1976.

25. E.Q.V. Martins and M.M.B. Pascoal. A new implementation of Yen’s ranking
loopless paths algorithm. 4OR 1(2): 121-133 (2003).

26. E.Q.V. Martins, M.M.B. Pascoal and J.L.E. Dos Santos. Deviation algorithms for
ranking shortest paths. Int. J. Found. Comput. Sci. 10(3): 247-262 (1999).

27. K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. ESA 2000,
LNCS 1879: 326-337, 2000.

28. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. CAV, LNCS 2725: 275-287, 2003.

29. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta and R.C. Carrasco. Proba-
bilistic finite-state machines-Part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7):
1013-1025 (2005).

20


