Using non-convex approximations for efficient analysis of timed automata

B. Srivathsan

Joint work with F. Herbreteau, D. Kini and I. Walukiewicz

LaBRI, Université Bordeaux 1
Indian Institute of Technology Bombay, India

Verification Seminar

Université Libre de Bruxelles
Timed Automata [AD94]

Run: finite sequence of transitions,

\[(s_0, 0, 0) \xrightarrow{0.4, a} (s_1, 0.4, 0) \xrightarrow{0.5, c} (s_3, 0.9, 0.5)\]

- A run is **accepting** if it ends in a **green** state.
The problem we are interested in ...

Given a TA, does there exist an accepting run?
The problem we are interested in ...

Given a TA, does there exist an accepting run?

Theorem [AD94, CY92]
This problem is PSPACE-complete
First solution to this problem

Key idea: Partition the space of valuations into a finite number of regions

- Region: set of valuations satisfying the same guards w.r.t. time

- Finiteness: Parametrized by maximal constant

Sound and complete [AD94]
Region graph preserves state reachability
First solution to this problem

Key idea: Partition the space of valuations into a finite number of regions

- **Region**: set of valuations satisfying the same guards w.r.t. time

- **Finiteness**: Parametrized by maximal constant

\(\mathcal{O}(|X| \cdot M^{|X|}) \) many regions!

Sound and complete [AD94]

Region graph preserves state reachability
A more efficient solution...

Key idea: Maintain all *valuations* reachable along a path
A more efficient solution...

Key idea: Maintain all *valuations* reachable along a path
A more efficient solution...

Key idea: Maintain all valuations reachable along a path
A more efficient solution...

Key idea: Maintain all valuations reachable along a path
A more efficient solution...

Key idea: Maintain all valuations reachable along a path

\[x \leq 5 \]

\[(y \geq 7) \]

\[x := 0 \]
A more efficient solution...

Key idea: Maintain **all valuations** reachable along a path
A more efficient solution...

Key idea: Maintain all valuations reachable along a path
A more efficient solution…

Key idea: Maintain all valuations reachable along a path

\(x = y \geq 0 \)

\(y - x \geq 7 \)

\(x \leq 5 \)

\(y \geq 7 \)

\(x := 0 \)
A more efficient solution...

Key idea: Maintain all valuations reachable along a path.
A more efficient solution...

Key idea: Maintain **all valuations** reachable along a path

\[x = y \geq 0 \]

\[y - x \geq 7 \]

\[(x \leq 5) \]

\[(y \geq 7) \]

\[x := 0 \]
A more efficient solution...

Key idea: Maintain all valuations reachable along a path

\[x \leq 5 \]
\[y \geq 7 \]
\[x := 0 \]
A more efficient solution…

Key idea: Maintain **all valuations** reachable along a path

\[
x = y \geq 0
\]

\[
x = y \geq 0
\]

\[
y - x \geq 7
\]

\[
y - x \geq 7
\]

\[
(x \leq 5)
\]

\[
(y \geq 7)
\]

\[
x := 0
\]
A more efficient solution...

Key idea: Maintain all valuations reachable along a path
A more efficient solution...

Key idea: Maintain all valuations reachable along a path

\[
\begin{align*}
 x &= y \geq 0 \\
 x &= y \geq 0 \\
 y - x &\geq 7 \\
 y - x &\geq 7
\end{align*}
\]
Zones and zone graph

- **Zone:** set of valuations defined by conjunctions of constraints:
 - $x \sim c$
 - $x - y \sim c$
 - e.g. $(x - y \geq 1) \land y < 2$

- **Representation:** by DBM
Zones and zone graph

Zone: set of valuations defined by conjunctions of constraints:
- \(x \sim c \)
- \(x - y \sim c \)
- e.g. \((x - y \geq 1) \land y < 2 \)

Representation: by DBM

Sound and complete [DT98]

Zone graph preserves state reachability
But the zone graph could be infinite ...

\[
\begin{align*}
q_0 & \quad x := 0 \\
y & := 0
\end{align*}
\]

\[
\begin{align*}
(y = 1) & \\
y & := 0
\end{align*}
\]

\[
\begin{align*}
q_1 & \quad y := 0
\end{align*}
\]
But the zone graph could be infinite ...

\[
\begin{align*}
q_0 & \xrightarrow{x=0} q_1 \\
y := 0 & \quad y := 0
\end{align*}
\]

\[(y = 1)\]
Use finite abstractions

Key idea: **Abstract** each zone in a **sound** manner

\[(q_0, Z_0) \rightarrow (q_1, Z_1) \rightarrow (q_2, Z_2)\]
Key idea: **Abstract** each zone in a **sound** manner

\[
(q_0, Z_0) \quad \quad \quad (q_0, a(Z_0))
\]

\[
(q_1, Z_1) \quad \quad \quad (q_2, Z_2)
\]
Use finite abstractions

Key idea: **Abstract** each zone in a **sound** manner

\[(q_0, Z_0)\] \[\rightarrow\] \[(q_1, Z_1)\] \[\rightarrow\] \[(q_2, Z_2)\]

\[(q_0, a(Z_0))\] \[\rightarrow\] \[\text{Number of abstracted zones is finite}\]

\[\text{Coarser abstraction} \rightarrow \text{fewer abstracted zones}\]
Use finite abstractions

Key idea: Abstract each zone in a sound manner

\[(q_0, Z_0) \]
\[\rightarrow \]
\[(q_1, Z_1) \]
\[\rightarrow \]
\[(q_2, Z_2) \]

\[(q_0, a(Z_0)) \]
\[\rightarrow \]
\[(q_1, Z') \]
Use finite abstractions

Key idea: **Abstract** each zone in a **sound** manner

\[(q_0, Z_0) \rightarrow (q_1, Z_1) \rightarrow (q_2, Z_2)\]

\[(q_0, a(Z_0)) \rightarrow (q_1, a(Z'))\]

- Number of abstracted zones is finite
- Coarser abstraction → fewer abstracted zones
Use finite abstractions

Key idea: **Abstract** each zone in a **sound** manner

\[
(q_0, Z_0) \rightarrow (q_1, Z_1) \rightarrow (q_2, Z_2)
\]

\[
(q_0, a(Z_0)) \rightarrow (q_1, a(Z')) \rightarrow (q_2, Z'')
\]
Use finite abstractions

Key idea: **Abstract** each zone in a **sound** manner

\[(q_0, Z_0) \rightarrow (q_1, Z_1) \rightarrow (q_2, Z_2)\]

\[(q_0, a(Z_0)) \rightarrow (q_1, a(Z')) \rightarrow (q_2, a(Z''))\]
Use finite abstractions

Key idea: Abstract each zone in a sound manner

\[(q_0, Z_0) \quad (q_1, Z_1) \quad (q_2, Z_2) \]

\[(q_0, a(Z_0)) \quad (q_1, a(Z')) \quad (q_2, a(Z'')) \]

- Number of abstracted zones is finite
- Coarser abstraction → fewer abstracted zones
Abstractions in literature [Bou04, BBLP06]
Abstractions in literature [Bou04, BBLP06]

Sound and complete

All the above abstractions preserve state reachability
Abstractions in literature [Bou04, BBLP06]

\[
\begin{align*}
\alpha & \preceq_{LU} \alpha \\
\text{Closure}_\alpha & \quad \text{Extra}^+_{LU} \\
\text{Extra}^+_{\alpha} & \quad \text{Extra}^+_{\alpha} \\
\end{align*}
\]

Sound and complete

All the above abstractions preserve state reachability

But for implementation abstracted zone should be a zone
Abstractions in literature [Bou04, BBLP06]

Only convex abstractions in implementations!
Efficient use of the non-convex Closure abstraction!
What is Closure$_\alpha$?
What is Closure$_\alpha$?
What is Closure_α?

$\text{Closure}_\alpha(Z)$: set of regions that Z intersects
Using Closure \(\alpha \) for reachability

\[q_3 = q_1 \land a(Z_3) \subseteq a(Z_1)? \]

Standard algorithm: covering tree
Using Closure\(\alpha\) for reachability

\[(q_0, a(Z_0)) \]

\[(q_1, a(Z_1)) \]

\[(q_2, a(Z_2)) \]

\[(q_3, a(Z_3)) \]

\[(q_4, a(Z_4)) \]

\[(q_5, a(Z_5)) \]

Closure\(\alpha(Z)\) cannot be efficiently stored
Using Closure$_\alpha$ for reachability

\[q_3 = q_1 \land a(Z_3) \subseteq a(Z_1)? Z_3 \subseteq \text{Closure}_\alpha(Z_1)? \]

Do not store abstracted zones!
Using Closure_\alpha for reachability

(q_0, Z_0)

(q_1, Z_1)

(q_2, Z_2)

(q_3, Z_3)

(q_4, Z_4)

(q_5, Z_5)

Use Closure for termination!
$Z \subseteq \text{Closure}_{\alpha}(Z')$?
$Z \subseteq \text{Closure}_\alpha(Z')$?
\(Z \subseteq \text{Closure}_\alpha(Z')? \)

Diagram:
- \(Z \)
- \(Z' \)
- \(\text{Closure}_\alpha(Z') \)

Equation:
\[
\alpha(x) \quad \alpha(y) \\
Z \quad Z' \\
\text{Closure}_\alpha(Z')
\]

Text:
\[
\begin{align*}
Z & \subseteq \text{Closure}_\alpha(Z')? \\
& \iff \exists R. R \text{ intersects } Z, R \text{ does not intersect } Z'
\end{align*}
\]

Coming next: An efficient algorithm for \(Z \not\subseteq \text{Closure}_\alpha(Z') \)

Using non-convex approximations for efficient analysis of timed automata - 13/30
$Z \subseteq \text{Closure}_{\alpha}(Z')$?

$Z \not\subseteq \text{Closure}_{\alpha}(Z') \iff \exists R. \text{ R intersects } Z, \text{ R does not intersect } Z'$
$Z \subseteq \text{Closure}_{\alpha}(Z')$?

$Z \not\subseteq \text{Closure}_{\alpha}(Z') \iff \exists R. \text{ R intersects } Z, \text{ R does not intersect } Z'$

Coming next: An efficient algorithm for $Z \not\subseteq \text{Closure}_{\alpha}(Z')$
Step 1: Representing regions and zones

\[\begin{align*}
0 &< x < 3 \\
0 &< y < \infty
\end{align*}\]
Step 1: Representing regions and zones

\[x < 3 \quad y < \infty \]
\[x > 2 \quad y > 2 \]
Step 1: Representing regions and zones

\[x < 3 \quad y < \infty \]
\[x > 2 \quad y > 2 \]
Step 1: Representing regions and zones

$$x < 3 \quad y < \infty$$

$$x > 2 \quad y > 2$$
Step 1: Representing regions and zones

\[x - 0 < 3 \quad y < \infty \]
\[x > 2 \quad y > 2 \]
Step 1: Representing regions and zones

\[x - 0 < 3 \quad y < \infty \]
\[x > 2 \quad y > 2 \]
Step 1: Representing regions and zones

\[x - 0 < 3 \quad y < \infty \]
\[0 - x < -2 \quad y > 2 \]
Step 1: Representing regions and zones

\[x - 0 < 3 \]
\[0 - x < -2 \]
\[y < \infty \]
\[y > 2 \]
Step 1: Representing regions and zones

\[
\begin{align*}
 x - 0 &< 3 & y &< \infty \\
 0 - x &< -2 & y &> 2
\end{align*}
\]
Step 1: Representing regions and zones

\[x - 0 < 3 \quad y - 0 < \infty \]
\[0 - x < -2 \quad 0 - y < -2 \]
Step 1: Representing regions and zones

\[x - 0 < 3 \quad y - 0 < \infty \]
\[0 - x < -2 \quad 0 - y < -2 \]
Step 1: Representing regions and zones

\[
\begin{align*}
x - 0 &< 3 \\
y - 0 &< \infty \\
0 - x &< -2 \\
0 - y &< -2
\end{align*}
\]
Step 1: Representing regions and zones

\[x - 0 < 3 \quad y - 0 < \infty \]
\[0 - x < -2 \quad 0 - y < -2 \]
Step 1: Representing regions and zones

Need a **canonical** representation
Step 1: Representing regions and zones

Shortest path should be given by the direct edge
Step 1: Representing regions and zones

![Diagram showing regions and zones with inequalities]

- \[x - 0 < 3 \]
- \[y - 0 < \infty \]
- \[0 - x < -2 \]
- \[0 - y < -2 \]

Shortest path should be given by the **direct edge**
Step 1: Representing regions and zones

For every zone Z, **canonical distance graph** G_Z

$\begin{align*}
 x &- 0 < 3 \\
 0 - x &< -2 \\
 y &- 0 < \infty \\
 0 - y &< -2
\end{align*}$
Step 2: When is $R \cap Z'$ empty?
Step 2: When is $R \cap Z'$ empty?
Step 2: When is $R \cap Z'$ empty?

G_R

$G_{Z'}$

$\min(G_R, G_{Z'})$
Step 2: When is $R \cap Z'$ empty?

\[\text{Lemma} \]

$R \cap Z'$ is empty \iff min($G_R, G_{Z'}$) has a negative cycle

Using non-convex approximations for efficient analysis of timed automata - 15/30
Step 2: When is $R \cap Z'$ empty?

Lemma [Bou04]

$R \cap Z'$ is empty \iff min$(G_R, G_{Z'})$ has a negative cycle involving 2 clocks!
Step 2: When is $R \cap Z'$ empty?

Lemma

$R \cap Z'$ is empty \iff min$(G_R, G_{Z'})$ has a negative cycle involving 2 clocks!
Step 2: When is $R \cap Z'$ empty?

Lemma

$R \cap Z'$ is empty \iff $\min(G_R, G_{Z'})$ has a negative cycle involving 2 clocks!
Step 2: When is $R \cap Z'$ empty?

$G_{\text{Proj}_{x_2x_3}}(R)$

$G_{\text{Proj}_{x_2x_3}}(Z')$

$\min(G_{\text{Proj}_{x_2x_3}}(R), G_{\text{Proj}_{x_2x_3}}(Z'))$

Lemma

$R \cap Z'$ is empty \iff $\min(G_R, G_{Z'})$ has a negative cycle involving 2 clocks!
Step 2: When is $R \cap Z'$ empty?

\[G_{\text{Proj}_{x_2x_3}}(R) \]

\[G_{\text{Proj}_{x_2x_3}}(Z') \]

\[\min(G_{\text{Proj}_{x_2x_3}}(R), G_{\text{Proj}_{x_2x_3}}(Z')) \]

Lemma

$R \cap Z'$ is empty $\iff \exists x, y. \text{Proj}_{xy}(R) \cap \text{Proj}_{xy}(Z')$ is empty
Step 3: Reduction to two clocks

Recall: $\exists R \text{. } R \text{ intersects } Z\text{, } R \text{ does not intersect } Z'$
Step 3: Reduction to two clocks

Recall: \(Z \not\subseteq \text{Closure}_\alpha(Z') \iff \exists R. R \text{ intersects } Z, R \text{ does not intersect } Z' \)
Step 3: Reduction to two clocks

Recall: $Z \not\subseteq \text{Closure}_\alpha(Z') \iff \exists R. R \text{ intersects } Z, R \text{ does not intersect } Z'$
Step 3: Reduction to two clocks

Recall: \(Z \not\subseteq \text{Closure}_\alpha(Z') \iff \exists R. \ R \text{ intersects } Z, \ R \text{ does not intersect } Z' \)
Step 3: Reduction to two clocks

Recall: \(Z \not\subset \text{Closure}_{\alpha}(Z') \iff \exists R. R \text{ intersects } Z, \ R \text{ does not intersect } Z' \)
Step 3: Reduction to two clocks

Recall: \(Z \not\subseteq \text{Closure}_\alpha(Z') \iff \exists R. R \text{ intersects } Z, \text{ } R \text{ does not intersect } Z' \)

Using non-convex approximations for efficient analysis of timed automata - 16/30
Step 3: Reduction to two clocks

Recall: $Z \not\subseteq \text{Closure}_{\alpha}(Z') \iff \exists R. R \text{ intersects } Z, R \text{ does not intersect } Z'$
Step 3: Reduction to two clocks

Recall: \(Z \not\subseteq \text{Closure}_{\alpha}(Z') \iff \exists R. R \text{ intersects } Z, R \text{ does not intersect } Z' \)
Step 3: Reduction to two clocks

Recall: $Z \not\subseteq \text{Closure}_{\alpha}(Z') \iff \exists R. R \text{ intersects } Z, \ R \text{ does not intersect } Z'$

Using non-convex approximations for efficient analysis of timed automata - 16/30
Step 3: Reduction to two clocks

Recall: \(Z \not\subset \text{Closure}_\alpha(Z') \iff \exists R. \ R \text{ intersects } Z, \ R \text{ does not intersect } Z' \)

Theorem

\[Z \not\subset \text{Closure}_\alpha(Z') \text{ if and only if there exist 2 clocks } x, y \text{ s.t.} \]

\[\text{Proj}_{xy}(Z) \not\subset \text{Closure}_\alpha(\text{Proj}_{xy}(Z')) \]
Step 3: Reduction to two clocks

Theorem

\[Z \notin \text{Closure}_\alpha(Z') \text{ if and only if there exist 2 clocks } x, y \text{ s.t.} \]

\[\text{Proj}_{xy}(Z) \notin \text{Closure}_\alpha(\text{Proj}_{xy}(Z')) \]

Slightly modified edge-edge comparison is enough
Step 3: Reduction to two clocks

Theorem

\[Z \not\subseteq \text{Closure}_\alpha(Z') \text{ if and only if there exist 2 clocks } x, y \text{ s.t. } \]

\[\text{Proj}_{xy}(Z) \not\subseteq \text{Closure}_\alpha(\text{Proj}_{xy}(Z')) \]

Complexity: \(\mathcal{O}(|X|^2) \), where \(X \) is the set of clocks
Step 3: Reduction to two clocks

Theorem

\[Z \not\subseteq \text{Closure}_\alpha(Z') \text{ if and only if there exist 2 clocks } x, y \text{ s.t. } \]
\[\text{Proj}_{xy}(Z) \not\subseteq \text{Closure}_\alpha(\text{Proj}_{xy}(Z')) \]

Same complexity as \(Z \subseteq Z' \)!
So what do we have now...

$q_3 = q_1 \land Z_3 \subseteq \text{Closure}_\alpha(Z_1)$?

Efficient algorithm for $Z \subseteq \text{Closure}_\alpha(Z')$
So what do we have now...

$q_3 = q_1 \land Z_3 \subseteq \text{Closure}_\alpha(Z_1)$?

Coming next: **prune the bound function α!**
Bound function α

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$

Size of graph $\sim 10^5$
Static analysis: bound function for every q

[BBFL03]

Naive: $\alpha(x) = 14, \alpha(y) = 10^6$
Static analysis: bound function for every q

[BBFL03]

Naive: $\alpha(x) = 14$, $\alpha(y) = 10^6$

But this is not enough!
Need to look at semantics...

Static analysis: $\alpha(y) = 10^6$

More than 10^6 zones at q_0 not necessary!
Bound function for every \((q, Z)\) in \(ZG(A)\)

Constants at depend on subtree
Constant propagation

\[\alpha(x) = -\infty \]

\[(q, Z, \alpha) \]

\[
\begin{align*}
&\text{All tentative nodes consistent} \\
&\text{No more exploration} \\
&\to \text{Terminate!}
\end{align*}
\]
Constant propagation

\[\alpha(x) = -\infty \]

\((q, Z, \alpha)\)

\[x \leq 3 \]
Constant propagation

\[\alpha(x) = 3 \]

\((q, Z, \alpha) \)

\(x \leq 3 \)
Constant propagation

\[\alpha(x) = 3 \]

\[(q, Z, \alpha) \]

\[x \leq 3 \]
Constant propagation

\[\alpha(x) = 5 \]

\[(q, Z, \alpha) \]

\[x \leq 3 \]
Constant propagation

\[\alpha(x) = 5 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]

\[x \leq 3 \]
Constant propagation

\[\alpha(x) = 5 \]

\((q, Z, \alpha)\)

\[x \leq 3 \]

\[x > 6 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]
Constant propagation

\[\alpha(x) = 6 \]

\[(q, Z, \alpha) \]

\[x \leq 3 \]

\[x > 6 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]

\[(q', Z', \alpha') \]
Constant propagation

\[\alpha(x) = 6 \]

\[x \leq 3 \]

\[x > 6 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]
Constant propagation

\[\alpha(x) = 6 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]
Constant propagation

\[\alpha(x) = 6 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]

\[(q, Z, \alpha) \]

\[x \leq 3 \quad x \geq 11 \]

\[x > 6 \]

\[(q', Z', \alpha') \]
Constant propagation

\[\alpha(x) = 11 \]

\[(q, Z, \alpha) \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]

\[x \leq 3 \]

\[x > 6 \]

\[x \geq 11 \]
Constant propagation

\[\alpha(x) = 11 \]

\[(q, Z, \alpha) \]

\[x \leq 3 \]

\[x > 6 \]

\[x \geq 11 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]
Constant propagation

\[\alpha(x) = 11 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]

\[(q, Z, \alpha) \]

\[x \leq 3 \]

\[x > 6 \]

\[x \geq 11 \]
Constant propagation

\[\alpha(x) = 11 \]

\[x \leq 3 \]

\[x > 6 \]

\[Z' \subseteq \text{Closure}_\alpha(Z) \]

\[(q, Z, \alpha) \]

\[x := 0 \]

\[x \geq 11 \]

\[(q', Z', \alpha') \]
Constant propagation

\[\alpha(x) = 11 \]

\[(q, Z, \alpha) \]

\[x \leq 3 \]
\[x > 6 \]
\[x \geq 11 \]

\[Z' \subseteq \text{Closure}_{\alpha}(Z) \]

All tentative nodes consistent + No more exploration → Terminate!
Invariants on the bounds

- Non tentative nodes: $\alpha = \max\{\alpha_{\text{succ}}\}$ (modulo resets)
- Tentative nodes: $\alpha = \alpha_{\text{covering}}$
Invariants on the bounds

- Non tentative nodes: $\alpha = \max\{\alpha_{\text{succ}}\}$ (modulo resets)
- Tentative nodes: $\alpha = \alpha_{\text{covering}}$

Theorem (Correctness)
An accepting state is reachable in $ZG(\mathcal{A})$ iff the algorithm reaches a node with an accepting state and a non-empty zone.
Overall algorithm

- Compute $ZG(A)$: $Z \subseteq \text{Closure}_{\alpha'}(Z')$ for termination
- **Bounds** α calculated on-the-fly
- Abstraction Extra_{LU}^+ can also be handled:

An efficient $O(|X|^2)$ procedure for $Z \subseteq \text{Closure}_{\alpha}(\text{Extra}_{LU}^+(Z'))$!
Benchmarks

<table>
<thead>
<tr>
<th>Model</th>
<th>Our algorithm</th>
<th>UPPAAL’s algorithm</th>
<th>UPPAAL 4.1.3 (-n4 -C -o1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nodes</td>
<td>s.</td>
<td>nodes</td>
</tr>
<tr>
<td>CSMA/CD7</td>
<td>5031</td>
<td>0.32</td>
<td>5923</td>
</tr>
<tr>
<td>CSMA/CD8</td>
<td>16588</td>
<td>1.36</td>
<td>19017</td>
</tr>
<tr>
<td>CSMA/CD9</td>
<td>54439</td>
<td>6.01</td>
<td>60783</td>
</tr>
<tr>
<td>FDDI10</td>
<td>459</td>
<td>0.02</td>
<td>525</td>
</tr>
<tr>
<td>FDDI20</td>
<td>1719</td>
<td>0.29</td>
<td>2045</td>
</tr>
<tr>
<td>FDDI30</td>
<td>3779</td>
<td>1.29</td>
<td>4565</td>
</tr>
<tr>
<td>Fischer7</td>
<td>7737</td>
<td>0.42</td>
<td>18374</td>
</tr>
<tr>
<td>Fischer8</td>
<td>25080</td>
<td>1.55</td>
<td>85438</td>
</tr>
<tr>
<td>Fischer9</td>
<td>81035</td>
<td>5.90</td>
<td>398685</td>
</tr>
<tr>
<td>Fischer10</td>
<td>—</td>
<td>T.O.</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Extra**$_{LU}^+$ and **static** analysis bounds in UPPAAL

- **Closure**$_{\alpha}(\text{Extra}^{+}_{LU})$ and **otf** bounds in our algorithm
Experiments I

\[A_1 \]

- \(q_0 \)
 - \(x = 0 \)
 - \(y \geq 20 \) \&\& \(x = 2 \)

- \(q_1 \)
 - \(x = 1 \)
 - \(y = 10000 \)

- \(q_3 \)
 - \(x = 5 \)

- \(q_2 \)
 - \(x = 0 \)
 - \(y = 10000 \)

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our algorithm</td>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td>UPPAAL’s algorithm</td>
<td>2003</td>
<td>0.60</td>
</tr>
<tr>
<td>UPPAAL 4.1.3</td>
<td>2003</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Experiments II

\[A_2 \]

\[
\begin{align*}
x &= 1 \\
 x &= 0 \\
 q_0 &\xrightarrow{x \leq 1} q_1 \\
 q_0 &\xrightarrow{a!} q_1 \\
 q_1 &\xrightarrow{y \geq 10000} q_2 \\
 q_0 &\xrightarrow{y \leq 10} q_2
\end{align*}
\]

<table>
<thead>
<tr>
<th>(A_2)</th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our algorithm</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>UPPAAL's algorithm</td>
<td>10003</td>
<td>0.07</td>
</tr>
<tr>
<td>UPPAAL 4.1.3</td>
<td>10003</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Experiments II

\[A_2 \]

\begin{align*}
&x = 1 \\
&x := 0 \\
&x <= 1 \\
&y >= 10000 \\
&a! \quad q_1 \\
&y <= 10 \quad q_2
\end{align*}

<table>
<thead>
<tr>
<th>(A_2)</th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our algorithm</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>UPPAAL’s algorithm</td>
<td>10003</td>
<td>0.07</td>
</tr>
<tr>
<td>UPPAAL 4.1.3</td>
<td>10003</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Occurs in **CSMA/CD**!
Experiments III

\[\mathcal{A}_3 \]

\[
\begin{align*}
&x = 1 \quad q_0 \\
x = 0 \\
x = 1 \\
n = 10 \land y \geq 10000 \\
n = 10 \land y \leq 200 \\
x = 1 \\
q_1 \quad y \leq 10 \\
q_2 \\
n = 10 \land y \leq 200
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\mathcal{A}_3)</th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our algorithm</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>UPPAAL’s algorithm</td>
<td>10004</td>
<td>0.37</td>
</tr>
<tr>
<td>UPPAAL 4.1.3</td>
<td>10004</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Experiments III

Our algorithm | 3 | 0.0
UPPAAL’s algorithm | 10004 | 0.37
UPPAAL 4.1.3 | 10004 | 0.32

Occurs in Fischer!
Experiments IV

\[Z : x - y \geq 1 \]
\[Z' : x > \alpha(x) \]
Experiments IV

\[Z' : x - y \geq 1 \]
\[Z : x > \alpha(x) \]

Occurs in FDDI!
Conclusions & Perspectives

- **Efficient implementation** of a non-convex approximation that **subsumes** current ones in use
- **On-the-fly learning** of bounds that is **better** than the current static analysis
- More **sophisticated** non-convex approximations
- Propagating **more** than constants
- Automata with **diagonal** constraints
References

R. Alur and D.L. Dill.
A theory of timed automata.

Static guard analysis in timed automata verification.

Lower and upper bounds in zone-based abstractions of timed automata.

P. Bouyer.
Forward analysis of updatable timed automata.

C. Courcoubetis and M. Yannakakis.
Minimum and maximum delay problems in real-time systems.

C. Daws and S. Tripakis.
Model checking of real-time reachability properties using abstractions.