Topics in Timed Automata

B. Srivathsan

RWTH-Aachen
Software modeling and Verification group
If A is \textbf{deterministic}, inclusion can be solved.
Q: Given general A and B, can we decide if $\mathcal{L}(B) \subseteq \mathcal{L}(A)$?

If A is deterministic, inclusion can be solved.

System

\[\mathcal{L}(B) \subseteq \mathcal{L}(A) \]

Specification

Is $\mathcal{L}(B) \cap \overline{\mathcal{L}(A)}$ empty?
Lecture 3:

Language inclusion is undecidable
P : an arbitrary boolean program (string)

w : an arbitrary string

Can program P_1 exist?

- **Yes** if P returns Yes on w
- **No** if P does not return Yes on w
P: an arbitrary **boolean program** (string)

w: an arbitrary **string**

Can program P_1 exist?

P \quad P_1 \quad Yes \quad P returns Yes on w

w \quad P_1 \quad No \quad if P does not return Yes on w
If P_1 exists, then P_2 exists.

P_2 returns Yes if P_2 does not return Yes on P_2.

P_2 returns No if P_2 returns Yes on P_2.

P_1 returns Yes if P returns Yes on w.

P_1 returns No if P does not return Yes on w.

P
If P_1 exists, then P_2 exists

If P returns Yes on w

If P returns No on w

If P does not return Yes on w
If P_1 exists, then P_2 exists

P_2 returns Yes on P_2

P returns Yes on P if P does not return Yes on P

P returns No on P if P returns Yes on P

P_1 returns Yes if P returns Yes on w

P_1 returns No if P does not return Yes on w
If P_1 exists, then P_2 exists

P_2 returns Yes on P_2 if P_2 does not return Yes on P_2
If P_1 exists, then P_2 exists

P_1 returns\n
- **Yes** if P returns **Yes** on w
- **No** if P does not return **Yes** on w

P_2 returns\n
- **Yes** if P does not return **Yes** on P
- **No** if P returns **Yes** on P

P_2 returns **Yes** on P_2 if P_2 does not return **Yes** on P_2

P_2 returns **No** on P_2
If P_1 exists, then P_2 exists

P_2 returns Yes on P_2 if P_2 does not return Yes on P_2

P_2 returns No on P_2 if P_2 returns Yes on P_2
If P_1 exists, then P_2 exists

- If P returns Yes on w, then P_1 returns Yes.
- If P does not return Yes on w, then P_1 returns No.

- If P returns Yes on P, then P_2 returns Yes.
- If P returns No on P, then P_2 returns No.

- P_2 returns Yes on P, if P_2 does not return Yes on P_2.
- P_2 returns No on P, if P_2 returns Yes on P_2.

P_2 cannot exist \Rightarrow P_1 cannot exist
Membership problem for 2-counter machines (MP)

Given a 2-counter machine M and an arbitrary string w, checking if M accepts w is undecidable.
Membership problem for 2-counter machines (MP)

Given a 2-counter machine M and an arbitrary string w, checking if M accepts w is undecidable.

Turing machine
2-counter machine

...
Goal of this lecture

Timed regular languages are powerful enough to encode computations of 2-counter machine

We will see:
If there is an algorithm for TA language inclusion, then there is an algorithm for MP
2-counter machine

P_1

M

Yes

If M accepts w

w

No

Otherwise

Σ^*
2-counter machine

\[M \]
\[w \] Yes if \(M \) accepts \(w \)
No otherwise

\[P_1 \]

Timed automaton

\[A \]
\[P_{unv} \]

Yes if \(L(A) = T\Sigma^* \)
No otherwise
2-counter machine

M

P_1

w

Yes if M accepts w

No otherwise

Timed automaton

A

P_{unv}

Yes if $\mathcal{L}(A) = T\Sigma^*$

No otherwise

Timed automaton

A

P_{inc}

Yes if $\mathcal{L}(B) \subseteq \mathcal{L}(A)$

No otherwise
2-counter machine \(M \)

\(w \)

Yes if \(M \) accepts \(w \)

No otherwise

reduce

Timed automaton \(A \)

\(P_{unv} \)

Yes if \(L(A) = \top \)

No otherwise
2-counter machines

Read-only input tape

$$w \quad \$ \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad \$\$$

Counter C

$$c$$

Counter D

$$d$$

Finite control

Computation:

$$\langle q_0, w_0, 0, 0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_i, w_i, c_i, d_i \rangle \cdots$$

Accept:

if **some** computation **ends** in $$\langle q_F, *, *, * \rangle$$
Goal 1

Given M and w

define timed language L_{undec} s.t

M accepts w iff $L_{undec} \neq \emptyset$

Words in L_{undec} encode accepting computations of M on w
Configuration of a 2-counter machine:
\[\langle q, w_k, c, d \rangle \]

Encoding as a word over alphabet: \[\{ a_1, a_2, b_i \} \]

where \[i \in Q \times \{ 0, \ldots, |w| + 1 \} \]

\[b(q,k) a_1^c a_2^d \]
Encode the j^{th} configuration in $[j, j+1)$
Encode the \(j^{th} \) configuration in \([j, j+1)\)

- if \(c_{j+1} = c_j \), \(\forall a_1 \) at time \(t \) in \((j, j+1)\), \(\exists a_1 \) at time \(t+1 \)
- if \(c_{j+1} = c_j + 1 \),
 \(\forall a_1 \) at time \(t \) in \((j+1, j+2)\) except the last one,
 \(\exists a_1 \) at time \(t-1 \)
- if \(c_{j+1} = c_j - 1 \),
 \(\forall a_1 \) at time \(t \) in \((j, j+1)\) except the last one,
 \(\exists a_1 \) at time \(t+1 \)

(same for counter \(d \))
L_{undec}: encodes the **accepting computations**

Timed word $(\sigma, \tau) \in L_{undec}$ iff
\(L_{\text{undec}} \) encodes the \textbf{accepting computations}

Timed word \((\sigma, \tau) \in L_{\text{undec}}\) iff

\[
\sigma = b_{i_0}a_{\sigma_0}^d a_{\tau_0}^d b_{i_1}a_{\sigma_1}^d a_{\tau_1}^d \cdots b_{i_m}a_{\sigma_m}^d a_{\tau_m}^d \quad \text{s.t.} \\
\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}
\]
L_{undec}: encodes the **accepting computations**

Timed word $(\sigma, \tau) \in L_{\text{undec}}$ iff

- \[\sigma = b_{i_0}a_1^{c_0}a_2^{d_0} b_{i_1}a_1^{c_1}a_2^{c_2} \cdots b_{i_m}a_1^{c_m}a_2^{c_m} \text{ s.t.} \]
 \[\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting} \]

- each b_{i_j} occurs at time j
L_{undec}: encodes the accepting computations

Timed word $(\sigma, \tau) \in L_{undec}$ iff

- $\sigma = b_0a_1^0a_2^0 b_1a_1^1a_2^2 \cdots b_ma_1^m a_2^m$ s.t.

 $\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle$ is accepting

- each b_i occurs at time j

- if $c_{j+1} = c_j$, $\forall a_1$ at time t in $(j, j+1)$, $\exists a_1$ at time $t + 1$

- if $c_{j+1} = c_j + 1$,

 $\forall a_1$ at time t in $(j + 1, j + 2)$ except the last one, $\exists a_1$ at time $t - 1$

- if $c_{j+1} = c_j - 1$,

 $\forall a_1$ at time t in $(j, j + 1)$ except the last one, $\exists a_1$ at time $t + 1$

(same for counter d)
Goal 1

Given M and w

define **timed language** L_{undec} s.t

M accepts w iff $L_{undec} \neq \emptyset$

Words in L_{undec} encode accepting computations of M on w

Done!
Goal 2

Given M and w

construct a timed automaton A_{undec}

for the complement language L_{undec}
Goal 2

Given M and w

construct a timed automaton A_{undec}

for the **complement** language L_{undec}

M accepts w iff $L(A_{\text{undec}}) \neq T\Sigma^*$
Goal 2

Given M and w

construct a timed automaton A_{undec}

for the **complement** language L_{undec}

M accepts w iff $L(A_{\text{undec}}) \neq T\Sigma^*$

\rightarrow reduction to universality of TA
\(L_{\text{undec}} \): words that do not encode accepting computations

Timed word \((\sigma, \tau) \in L_{\text{undec}}\) iff
L_{undec}: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in L_{\text{undec}}$ iff

- either, there is no b-symbol at some integer point j

Required L_{undec}: union of A_0, A_1, A_{init}, A_{t_1},..., A_{t_p}, A_{acc}
L_{undec}: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in L_{\text{undec}}$ iff

- either, there is no b-symbol at some integer point j
- or, there is a $(j, j + 1)$ with a subsequence not of the form $a_1^*a_2^*$
$\overline{L_{\text{undec}}}$: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in \overline{L_{\text{undec}}}$ iff

- either, there is no b-symbol at some integer point j
- or, there is a $(j, j + 1)$ with a subsequence not of the form $a_1^*a_2^*$
- or, initial subsequence in $[0, 1)$ is wrong
L_{undec}: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in L_{\text{undec}}$ iff

- either, there is no \textit{b-symbol} at some \textit{integer} point j
- or, there is a $(j, j + 1)$ with a subsequence \textit{not} of the form $a_1^*a_2^*$
- or, initial subsequence in $[0, 1)$ is \textit{wrong}
- or, some transition of M has been \textit{violated} in the word
\(\overline{L_{\text{undec}}}: \text{words that do not encode accepting computations} \)

Timed word \((\sigma, \tau) \in \overline{L_{\text{undec}}} \) iff

- either, there is no \textit{b}-symbol at some integer point \(j \)
- or, there is a \((j, j + 1)\) with a subsequence not of the form \(a_1^*a_2^* \)
- or, initial subsequence in \([0, 1)\) is wrong
- or, some transition of \(M \) has been \textit{violated} in the word
- or, final \textit{b}-symbol denotes \textit{non-accepting} state
\(L_{\text{undec}} \): words that do not encode accepting computations

Timed word \((\sigma, \tau) \in L_{\text{undec}}\) iff

- either, there is no \(b\)-symbol at some integer point \(j\) \(A_0\)
- or, there is a \((j, j + 1)\) with a subsequence not of the form \(a_1^*a_2^*\) \(A_1\)
- or, initial subsequence in \([0, 1)\) is wrong \(A_{\text{init}}\)
- or, some transition of \(M\) has been violated in the word \(A_t\) for each transition \(t\) of \(M\)
- or, final \(b\)-symbol denotes non-accepting state \(A_{\text{acc}}\)
\(\overline{L_{\text{undec}}} \): words that do not encode accepting computations

Timed word \((\sigma, \tau) \in \overline{L_{\text{undec}}} \) iff

- either, there is no \(b \)-symbol at some integer point \(j \) \(A_0 \)
- or, there is a \((j, j + 1)\) with a subsequence not of the form \(a_1^*a_2^* \) \(A_1 \)
- or, initial subsequence in \([0, 1)\) is wrong \(A_{\text{init}} \)
- or, some transition of \(M \) has been violated in the word \(A_t \) for each transition \(t \) of \(M \)
- or, final \(b \)-symbol denotes non-accepting state \(A_{\text{acc}} \)

Required \(\mathcal{A}_{\text{undec}} \): union of \(A_0, A_1, A_{\text{init}}, A_t, \ldots, A_t, A_{\text{acc}} \)
With our encoding, can timed automata express that \(n \neq m \)?

1. \(\exists a_1 \) at time \(t \in (j, j + 1) \) s.t there is no \(a_1 \) at \(t + 1 \), or
2. \(\exists a_1 \) at time \(t \in (j + 1, j + 2) \) s.t. there is no \(a_1 \) at \(t - 1 \)
\(\exists a_1 \text{ at time } t \in (j, j+1) \text{ s.t there is no } a_1 \text{ at } t+1 \)
\[\exists a_1 \text{ at time } t \in (j + 1, j + 2) \text{ s.t. there is no } a_1 \text{ at } t - 1 \]
\[\exists a_1 \text{ at time } t \in (j + 1, j + 2) \text{ s.t. there is no } a_1 \text{ at } t - 1 \]

Need only **two clocks**!
$\overline{L_{unde}}$: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in \overline{L_{unde}}$ iff

- either, there is no b-symbol at some integer point $j \ A_0$
- or, there is a $(j, j + 1)$ with a subsequence not of the form $a_1^*a_2^* \ A_1$
- or, initial subsequence in $[0, 1)$ is wrong A_{init}
- or, some transition of M has been violated in the word A_t for each transition t of M
- or, final b-symbol denotes non-accepting state A_{acc}

Required A_{unde} can be constructed using two clocks
The universality problem is undecidable for TA with two clocks or more.
Timed automaton A

P_{unv}

Yes

if $L(A) = TΣ^*$

No

otherwise

Timed automaton A

P_{inc}

Yes

if $L(B) \subseteq L(A)$

No

otherwise

Timed automaton B

reduce

Put B as the trivial single state automaton accepting $TΣ^*$

$L(A) = TΣ^*$ iff $L(B) \subseteq L(A)$
Language inclusion

The problem $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ is undecidable when A has two clocks or more

A theory of timed automata

Alur and Dill. TCS’94
$L(B) \subseteq L(A)$ is decidable when A has at most 1 clock

Further understanding as to why no algorithm when A has more than two clocks