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Abstract. This paper discusses a generalised incremental hashing scheme
for explicit state model checkers. The hashing scheme has been imple-
mented into the model checker Spin. The incremental hashing scheme
works for Spin’s exhaustive and both approximate verification modes:
bitstate hashing and hash compaction. An implementation has been pro-
vided for 32-bit and 64-bit architectures.

We performed extensive experiments on the BEEM benchmarks to com-
pare the incremental hash functions against Spin’s traditional hash func-
tions. In almost all cases, incremental hashing is faster than traditional
hashing. The amount of performance gain depends on several factors,
though.

We conclude that incremental hashing performs best for the (64-bits)
Spin’s bitstate hashing mode, on models with large state vectors, and
using a verifier, that has been optimised by the C compiler.

1 Introduction

An explicit state model checker is a model checker where all states are explic-
itly represented in the state space. Explicit model checking is sometimes called
stateful state space exploration, especially when checking reachability or safety
properties (e.g. deadlocks, assertion violations).

Central to stateful state space exploration is the process of state matching:
for every encountered state, it should be checked whether the state has already
been visited or not. As the run-time of exploration is linear in the number of
transitions (i.e. the amount of newly encountered states and re-visited ones),
it is obvious that state matching should be as fast as possible. Typically, hash
tables are used to store states. Upon exploration of each state, the hash table is
consulted to check whether that state has already been explored or not.

The access to a hash table is through a hash function. Given a key k, a hash
function h computes the hash code h(k) for this key. This hash code h(k) corre-
sponds to the address in the hash table, where this key k should be stored. For
model checking, this k is typically the (binary) representation of a state, called
the state vector. Most traditional hash functions compute h(k) by considering
all elements of k. For example, if k is a string, a typical hash function h would
compute h(k) on the basis of all individual characters of k.
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With respect to state space exploration, two observations can be made.
Firstly, the size of a state vector is usually substantial. State vectors of several
hundreds of bytes are not exceptions. This means that computing a traditional
hash code for such states can become quite expensive. Secondly, when exploring
the state space in a structured manner (e.g. depth first search), the transitions
between two consecutive states is local: only a small part of the state changes
with respect to the previous state.

This last observation is the idea behind so called incremental hash functions,
which use the hash code of a previous key to compute the hash code for the new
key. The application of incremental hashing within a model checker is not new.
Mehler and Edelkamp [11] have implemented an incremental hashing scheme in
the model checker StEAM, a model checker for C++. However, their incremental
hashing scheme is only practicable for hashing (large) stacks and queues incre-
mentally. We have improved their hashing scheme by generalising it for hashing
vector-based data structures (like state vectors) incrementally by using cyclic
polynomials from [2].

Our generalised hashing scheme was originally developed for MoonWalker [14]3

a software model checker for CIL bytecode programs, i.e. .Net applications.
Unfortunately, after implementing our incremental hash function into Moon-
Walker, initial tests showed no measurable performance gain. We studied this
observation using a profiler and found out that the stake of hashing in Moon-
Walker is extremely small [12]. Other tasks that have to be performed for each
state (e.g. garbage collection, state compression, etc.) take much more time. Any
performance gain in hashing would therefore not be visible in the total running
time.

The model checker Spin [6] is arguably one of the fastest explicit state model
checkers available. The current version of Spin uses two traditional hash func-
tions: one composed by Bob Jenkins [20] and one composed by Paul Hsieh [19].
For Spin verifiers – unlike for bytecode model checkers – hashing accounts for a
substantial amount of the running time.

We have implemented our generalised incremental hashing scheme into Spin
5.1.4. The incremental hashing scheme works for checking safety properties
(-DSAFETY) for both 32-bit and 64-bit architectures. Furthermore, it works in
exhaustive mode and both approximate modes: bitstate hashing and hash com-
paction. We have performed numerous experiments on the BEEM benchmarks [16]
to compare the incremental hash functions against Spin’s traditional hash func-
tions. From these experiments we learnt that incremental hashing is faster than
Spin’s traditional hash implementations without sacrificing too much accuracy.
The amount of performance gain depends on several factors:

– the verification mode: exhaustive or approximate,
– the architecture on which the verification is run: 32-bit or 64-bit,
– the size of the state vector, and

3 MoonWalker was previously known as mmc: the Mono Model Checker. Due to
several name clashes, mmc has recently been renamed to MoonWalker.
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– the optimisation parameters used for the gcc compiler: the default setting
(-O0) or the most aggressive optimisation setting (-O3), and

– the verifier arguments, e.g., hashtable sizes, maximal search depth.

Incremental hashing performs best for (64-bit) bitstate hashing mode, with larger
state vectors and using an optimised verifier.

The rest of the paper is organised as follows. In section 2, we first discuss
some related work in the context of (incremental) hashing. Section 3 presents
the general incremental hashing scheme: both the intuition of the method and
an implementation in C are discussed in detail. Section 4 explains how we have
implemented the method in Spin and discusses the experimental settings of the
benchmark runs that we have conducted. In section 5 we present the results of
the benchmark runs and we discuss the outcome of the experiments. Finally, in
section 6 we summarise the results and give pointers for future work.

2 Related Work

The hash table is the cornerstone of stateful state space exploration. Accesses
to a hash table are in amortised O(1) time. Although this is a good worst-case
time-complexity, the constant costs are high if a bad hash function is chosen.
A good hash function should fulfill the following requirements [10]:

– Fast. The computation of the hash function should be efficient and fast.
– Accurate. To avoid a large number of address collisions, the hash values

should distribute evenly over the range of the hash function.

With respect to accuracy, the following rule of thumb is often used: “one bit
change in the key should result in half of the bits flipped in its hash code”.

A well known hash function for hashing arrays is the rolling hash function
[1]. Given a ring R, a radix r ∈ R and a mapping function T that maps array
elements to R, the rolling hash code for an array a = a0 . . . an is computed as
follows:

H(a) = T (a0) + rT (a1) + . . .+ rnT (an) =
n∑
i=0

riT (ai) (1)

A possible suitable ring R is Z/B, where B is a prime number and is also the
amount of buckets in the hash table. This specialisation of the rolling hash
function is called hashing by prime integer division [2].

It is not difficult to see that the rolling hash function is prone to overflow,
especially due to the power operations with the radix. Remedying overflow is
costly. A recursive formulation of the rolling hash code is less prone to overflow:

H(a0) = T (a0) (2)
H(ai) = rH(ai−1) + T (ai) 1 ≤ i ≤ n (3)

Note that the radixes are reversely mapped to the array elements when compared
to equation 1, and therefore hash codes derived from the recursive formulation
should not be matched against hash codes derived from the non-recursive for-
mulation.
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2.1 Incremental Hashing

Karp and Rabin [8] describe an incremental recursive hash function for fast
string pattern matching by using recursive hashing by prime integer division.
Their idea is to reuse the hash code of the previous unmatched substring for
the calculation of the shifted substring. In [2], this is generalised for matching
of n-grams.

The rolling hash function is not only amenable for incremental recursive
hashing, but also incremental linear hashing. The idea behind incremental lin-
ear hashing, is that the contribution of an array element is independent of the
contributions of other array elements. In case of an array change, the influence
of the old array element is known and thus can be removed, followed by adding
the influence of the new array element [2]. In [11], this is expressed as follows.
Consider an array k = v0 . . . vi . . . vn and its successor k′ = v0 . . . v

′
i . . . vn, then

the hash code of k′ can be computed as follows:

H(k′) = H(k)− riT (ki) + riT (k′i) (4)

Depending on the ring chosen, the power operation with a large index i can
easily lead to overflow. Thus using this hashing scheme for arbitrary modification
of large arrays is impractical. For stacks and queues however, [11] describes a
rewritten version of that formula for push and pop operations with the power
operation removed. They tested it in their StEAM model checker, and got at
least a speedup factor by 10 compared to non-incremental hashing. Note that
this speedup was achieved with fixed-sized stacks of eight megabyte. It is logical
to assume that the speedup factor will be much lower with with arbitrary sized
stacks.

2.2 SPIN

Spin [21, 6] is a state-of-the-art explicit state model checker, which is used as
a reference for other model checkers. With respect to memory efficiency and
verification time, Spin is hard to beat. Spin provides many ways to tune and
optimize its verification runs. Most of these optimisation features can be enabled
via compilation flags for the C compiler (e.g. gcc). See for details chapter 18 of
[6].4

Spin supports three verification modes. The most commonly used verification
mode is the exhaustive mode, where all states are stored until the memory to
store the states is exhausted. Spin provides state compression techniques to fit
more states in the same amount of memory.

For the cases where there is not enough memory to store all (compressed)
states, Spin supports two lossy, approximate verification modes, which are both
heavily based on hashing functions: bitstate hashing and hash compaction. A
good survey and extensive discussion on various approximate methods can be
found in [10].
4 As this paper is concerned with tuning and optimizing Spin verification runs, we use

several of these compilation parameters, usually prefixed with -D.
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Bitstate hashing. Holzmann’s bitstate (sometimes called supertrace) hashing [4,
5] algorithm works as follows. Under the assumption that the number of slots
in the hash table is high in comparison to the number of reachable states, then
it is possible to identify a state by its address in the hash table. In this case, a
single bit suffices to indicate whether a state has already been visited or not.

The coverage of bitstate hashing can be improved (on the expense of time) by
using k different, independent hash functions for the same hash table. A state is
considered visited before if the bits for all k hash functions are set. This variant
of bitstate hashing is called k-fold bitstate hashing. Triple hashing [3] improves
upon this scheme by using three hash values to generate k hashes. For bitstate
hashing to be effective, the accuracy of the hash function(s) involved should be
high.

Initially, Spin used k = 2 by default, but since October 2004, Spin’s default
is set to k = 3. Of course, the variable k can be set to larger values using a
run-time option.
Bitstate hashing in Spin is enabled using the -DBITSTATE parameter.

Hash compaction. Wolper and Leroy [15] introduced hash compaction, a indi-
rection variant of bitstate hashing. The idea of hash compaction is to store the
addresses of the occupied bit positions in the bitstate table, rather than storing
the whole array itself.

For hash compaction, the hash table is taken to be very large (e.g. 264 bits),
much too large to fit in memory. Now the address computed by the hash function
(e.g. 64 bit-wide) is stored as being a normal state. Hash compaction is thus also
viewed as a lossy form of state compression. Hash compaction is more accurate
than k-fold bitstate hashing (for small k).
Hash compaction in Spin is enabled using the -DHC parameter.

The current versions Spin uses two traditional, linear hash functions:

– Jenkins. Since long, Spin uses Jenkins hash function [20, 7] for both its ex-
haustive and approximate verification runs. Jenkins’ hash function is con-
sidered a fast but still quite accurate hash function.
For bitstate hashing, Spin uses 96-bit and 192-bit versions of Jenkins’ hash
function. For exhaustive verification, a part of the 96-bit or 192-bit hash
value is used.

– Hsieh. Since version 5.1.1 (Nov 2007), Spin has adopted an alternative hash
function by Hsieh [19]. Although perhaps not as accurate as Jenkins, Hsieh’s
hash function can in some cases be much faster.
Hsieh’s hash function can be enabled with the parameter -DSFH, which stands
for ‘Super Fast Hash’. But Hsieh’s hash function is also automatically se-
lected for 32-bit safety runs (-DSAFETY). To speed up such verification runs
even further, Spin’s default mask-compression of states is disabled for -DSAFETY
runs as well. Hsieh’s hash function is not only fast, but its implementation
is also suitable for aggressive optimisation by the gcc compiler (i.e. using
-O2 or -O3).
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Currently, there only exist a 32-bit version of Hsieh’s hash function. Fur-
thermore, in the current version of Spin, Hsieh’s hash function can only be
enabled for checking safety properties.

3 Generalised Incremental Hashing Scheme

This section presents the intuition behind the incremental property, the time-
complexity of the incremental hashing scheme and implementation variants. A
few concepts, like polynomial rings, from field theory are used to express this.
Readers unfamiliar with this may consult [2, Appendix A].

3.1 Incremental Property

Consider a Galois field (also known as a finite field) R = GF (2)[x]/(xw + 1), the
ring consisting of polynomials in x whose coefficients are 0 or 1, reduced modulo
the polynomial xw+1. Make sure that w matches the computer’s word size, thus
32 for 32-bits words. The polynomials are represented by w-sized bitmasks by
placing the coefficients of xi at the ith bit, creating an one-on-one correspondence
between polynomials in R and the bitmasks.

As a radix, the polynomial xδ ∈ R is chosen. By setting radix r = xδ, the
following incremental hash function is derived from equation 4:

H(k′) = H(k) + xδiT (ki) + xδiT (k′i) (5)

The minus operation from equation 4 is replaced by an +, because addition and
subtraction are the same in ring R. Now, consider an arbitrary member q ∈ R
with q(x) = qw−1x

w−1 + qw−2x
w−2 + . . . + q0. The multiplication of the x and

q(x) is the following:

xq(x) = qw−1x
w + qw−2x

w−1 + . . .+ q0x (6)

= qw−2x
w−1 + qw−3x

w−2 + . . .+ q0x+ qw−1 (7)

Equation 7 is equation 6 reduced to modulo xw + 1. The multiplication by
polynomial x results to a left rotate of the coefficients in q(x), hence the name
cyclic polynomials. For most platforms, this is an efficient operation. At least all
x86-architectures include native bit rotate instructions. Additions in equation
5 can be implemented using a exclusive-or operation, which is available on all
processor platforms.

In order to reduce the amount of operations, equation 5 can be rewritten by
applying the associativeness of the + operation, as shown in the next equation:

H(k′) = H(k) + xδi(T (ki) + T (k′i)) (8)

So far, only one variable is left unmentioned, namely δ. The choice of a δ for the
radix xδ was experimentally evaluated by [2]. No δ clearly stood out. For δ = 1,
the incremental hashing function worked well and they used is subsequently for
their experiments. For this reason, we also take 1 for δ.
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Furthermore, as described in [2], cyclic polynomials have one weakness. They
have a cycle length of size w for which it computes the hashcode of zero. For
example, if a key of size 2w starts with w elements followed by another identical
sequence of w elements, then the hashcode for that key is zero. In practise, such
keys are extremely rare in model checking, as their size must be exactly nw-sized,
where n ∈ N, and that its contents should be also w-cyclic as well.

3.2 Time-complexity
The time-complexity of the incremental hashing scheme is differently defined
compared to traditional hash functions. A fast traditional hash function has a
time-complexity in O(N), where N is the array length. The incremental hash
function hash function has a time-complexity of O(1) for one change to the array.
Theoretically, the incremental hash function is faster if the amount of changes
between successive states is smaller than N . This is usually the case in model
checking, where the amount of changes is usually 1 or 2 and almost never near
N .

3.3 Variants
From the perspective of implementation, there are several variants of the incre-
mental hashing scheme at one’s disposal, namely by reordering the coefficients
with respect to the bitmask and by using different mappings of function T in
equation 4.

Reordering the Bitmask. The coefficients of polynomials in R were initially
mapped to a bitmask whose position coincide with those in the bitmask. This
mapping was chosen to allow efficient left-rotate operations on bitmasks as the
equivalent to multiplication by x. Another ordering of coefficients that works
equally well is by ordering the coefficients reversely: the coefficient of xj is placed
at the 64− j bit position. Such a mapping results to right-rotate operations as
the equivalent to multiplication by x.

Different Mappings. Our initial experiments with the incremental hashing scheme
led to high collision rates. This was caused by the initial mapping of function T
in equation 5, for which we originally chose the identity function. The source of
the collisions lied in the entropy of changes between state vectors of successive
states. Transitions are often of low entropy, like changing changing a variable
from 0 to 1 or add 1 upon variable i. The incremental hash function recalculates
the hash function upon such changes, but since the entropy is low, the resulting
hash would not differ much as one desires for a good hash function. In order to
increase entropy, we experimented with different functions of T .

Our approach is by using integer hash functions as a T . We initially used
Wang’s integer hash [22], but its constant time-complexity is relatively big com-
pared to that of the incremental hashing scheme, and we observed in experiments
that the slowdown made incremental hashing slower than traditional hashing
functions.
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The function T has therefore be very fast. An integer hash function for which
we observed that it works out well is Knuth’s multiplicative constant [9]. This
hash function simply multiplies the input by a word-size dependent constant. For
32-bit words, the constant is 2654435769, and for 64-bits words, the constant is
11400714819323198485. The constant is calculated by multiplying one-bitmask
(i.e., the largest number in the sized word) by the golden ratio (

√
5 − 1)/2) ≈

0.618034 . In [9], Knuth shows this integer hash function has a high likelyhood
of spreading the bits through the word, thereby increasing entropy.

Other constants are also applicable. We also experimented with the magic
constants of the FNV hash funnction [18], which is 2166136261 for 32-bits words
and 14695981039346656037 for 64-bits words. These FNV constants are ‘magic’,
because their effectiveness was only evaluated by emperic evidence.

3.4 Implementation Examples
Here we present several C implementations of the incremental hashing scheme.
The implementation below is one for SPIN:

c_hash(int i, unsigned int old, unsigned int new) {

const unsigned long knuth = 11400714819323198485UL;

const unsigned long fnv = 14695981039346656037UL;

unsigned long diff = ((new)*knuth) ^ ((old)*knuth);

chash ^= ((diff << i) | (diff >> (64 - i)));

#if defined(BITSTATE) || defined(HC)

unsigned long diff2 = ((new)*fnv) ^ ((old)*fnv);

chash2 ^= ((diff2 >> i) | (diff2 << (64 - i)));

chash3 ^= ((diff >> i) | (diff << (64 - i)));

#endif

}

For exhaustive search, only Knuth’s multiplicative constant with left-rotatable
bitmask are used. For hash compaction, a second hash value is maintained using
FNV’s constant. For bitstate hashing, triple hashing is used by maintaining a
third hash value using a right-rotable bitmask in combination with Knuth’s
multiplicative constant. We will refer to this implementation as CHASH (where
the ‘C’ stands for cyclic).

Another triple incremental hashing approach is by viewing three words as one
word, upon which a bit rotate is performed. This approach is less optimisable
because no processor supports a native bit rotate operation for triple-word sized
values. We experimented shortly with this approach but found out it always
outperformed by the above variant.

4 Experimental Method

We originally implemented CHASH in Spin 4.3.0, and the results with it are
described [12]. Since that thesis and this paper, version Spin 5.1.4 came out and
we ported CHASH to it. We subsequently used this newer implementation and
benchmarked it extensively against Spin’s default hash functions.
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4.1 Implementation

The difficulty of implementing CHASH varies from language to language. In Moon-
Walker, which is written in C#, the implementation was extremely easy due
to object encapsulation of the state vector, and therefore also all writes calls to
it.

Spin however is implemented in C and therefore lacks the expressive means
for encapsulated state vector access. The state vector in Spin is accessible via
the global point now and is updated by writing to an offset from this pointer.
In order to detect all these writes, which can happen throughout the generated
verifier, we had to add a call to the incremental hashing function just before the
state vector is updated at that point.

Besides this, we had to overcome several other issues due to specifics in the C
language. For one, our implementation uses the memory address of the written
variable as the index argument to function c_hash. This however did not work
for the Promela datatypes unsigned int and bit. Spin uses bitfields as the
underlying C datatype, and bitfields have by definition no addresses. To solve
this, we created a virtual memory mapping for unsigned ints and bits. When the
verifier is generated, the address of the variable in the symboltable is used as
the index instead. We could not use a virtual mapping for all variables because
of arrays. Accesses to arrays in Spin may have an expression as indexer and its
value is only known at runtime, not when the verifier is generated.

Also, we could not just use the memory addresses, but we had to use mem-
ory offsets. Using offsets is important for approximative methods, because the
approximation of the explored state space can slightly differ due to changed
memory addresses. These are suspectible to operating system semantics. Offsets
are relative and remain the same between runs.

Additionally, we optimised the time-complexity at a small cost of memory.
When the DFS search backtracks, CHASH has to be called for a reverse operation
in order to calculate the correct corresponding hash code. However instead, we
store the hash values on the DFS stack, and write this value as the corresponding
hashcode.

4.2 BEEM Benchmarks

We used the BEEM benchmark suite for evaluating the effectiveness of the incre-
mental hashing scheme. This suite consists of 57 models, ranging from communi-
cation protocols, mutual exclusion algorithms, election algorithms, planning and
scheduling solvers and puzzles [13, 16]. The model are parameterised to yield dif-
ferent problem instances. The total amount of models is 298 and 231 of them are
in Promela. We initially evaluated all the Promela models for our experiments.
From this evaluation, we made a selection of the 40 largest models that did not
run out of memory. These were subsequently used for comparing the different
hashing configurations.

Due to space constraints, we are only able to present a selection of the results
from these 40 models. We chose to present the ten best problem instances, the
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ten worst problem instances and averages of the forty selected BEEM benchmark
suite, thereby giving a nuanced perspective of the results.

4.3 Setup

We ran the benchmarks on nine identical nodes, each equipped with Intel Xeon
2.33 GHz processors and 16 GB memory. When compiling the models, we always
enabled the -DSAFETY and -DMEMLIM=15000. As arguments to pan, we fixed the
maximal search depth to 20 ∗ 106 and disabled stopping on errors and printing
unreachable states. Furthermore, we conducted runs with the following compiler
flags and pan arguments:

Compiler flags Pan arguments
-m32 -DHASH32 -DSFH -w26
-m32 -DHASH32 -DSPACE -DNOCOMP -w26
-m32 -DHASH32 -DCHASH -DNOCOMP -w26
-m32 -DHASH32 -DSPACE -w26
-m32 -DHASH32 -DCHASH -w26
-m32 -DHASH32 -DBITSTATE -w32 -k3
-m32 -DHASH32 -DBITSTATE -DCHASH -w32 -k3
-m32 -DHASH32 -DHC -w27
-m32 -DHASH32 -DHC -DCHASH -w27

These are 32-bits runs. Additionally, we also ran a series of 64-bits runs using
the following compiler flags and pan arguments:

Compiler flags Pan arguments
-m64 -DHASH64 -DSPACE -w28
-m64 -DHASH64 -DCHASH -w28
-m64 -DHASH64 -DBITSTATE -w36 -k3
-m64 -DHASH64 -DBITSTATE -DCHASH -w36 -k3
-m64 -DHASH64 -DHC -w29
-m64 -DHASH64 -DHC -DCHASH -w29

All configurations were run twice, namely without compiler optimisations (-O0)
and with (-O3). We furthermore used the GNU profiler on all configurations. All
these configurations come down to the total amount 2400 of verifications runs
of which we captured their output, processed it and analysed it to present it in
the next section.

5 Results and Discussion

Our benchmark runs generated extensive results which we cannot put all here.
We therefore highlight the interesting observations and in case of interest, the
full result set is downloadable from the incremental hashing webpage [17].

5.1 Exhaustive Verification

In 32-bits exhaustive verification we compared CHASH and Jenkins’s against
Hsieh’s. The result is shown in table 1. The first column is the state vector
size, followed by the state space size in 106 and transitions in 106. Collision rates
are indexed against the state space. They can be higher than 100 because Spin
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model collrate time -O3 time -O0
elevator planning.2 48 11 93 939 51 434 47 81 79 54 87 66
firewire link.5 404 6 12 3 3 3 24 104 86 34 105 61
adding.6 28 8 12 41 2 2 6 92 87 7 95 78
telephony.4 52 12 64 26 20 28 28 99 89 37 106 71
train-gate.3 136 20 57 16 16 15 49 101 90 73 102 67
schedule world.3 44 4 44 105 21 20 18 101 90 26 102 75
phils.6 84 14 143 93 92 96 86 108 91 109 103 68
peterson.6 44 9 33 13 12 15 16 99 92 21 101 77
lann.3 128 5 24 8 8 11 24 98 94 33 104 77
fischer.6 56 8 33 17 11 11 17 102 94 24 101 76
...
protocols.5 100 3 8 2 2 16 6 106 100 9 101 74
elevator2.3 40 8 55 166 22 185 20 105 101 28 99 73
driving phils.4 84 11 30 6 6 106 15 103 102 22 104 72
elevator.3 140 19 70 25 24 37 74 108 103 112 103 79
lamport nonatomic.4 180 16 60 19 19 82 69 98 105 96 101 73
msmie.4 100 7 11 2 2 2 10 103 106 16 104 79
bridge.2 60 9 27 12 12 12 21 103 107 36 102 89
sorter.4 60 13 27 11 8 23 19 102 112 28 103 87
reader writer.3 160 1 4 1 1 1 16 99 126 29 101 94
Average 98 12 47 52 17 47 30 102 97 43 102 75

Table 1. 32-bits exhaustive search BEEM benchmark results of Hsieh versus Jenkins (Jen.) and
CHASH.

counts each chain hit in the collision chain as a collision. The verification times
of Jenkins’s and CHASH are indexed against Hsieh’s.

The table shows that the average gain of CHASH over Hsieh’s is three percent
when the models are compiled with -O3 and 25 percent when the models are
compiled with -O0. Later on, we shall discuss the differences between -O0 and
-O3. Most of the ten worst performing models have higher collision rates when
used with CHASH in comparison to Jenkins’s. It is also noteworthy that Jenkins’s
has the lowest collision rates (as reflected in the average collision rate), followed
by CHASH and Hsieh’s.

In 64-bits mode (see table 2) we see that CHASH is on average six percent
faster than Jenkins’s for -O3 and nine percent faster for -O0. This gain is visible
on all models for both -O0 and -O3, even though the collision rates of CHASH are
either on par or worse.

5.2 Bitstate Hashing

For bitstate hashing, we denote the accuracy of the search by the coverage
indexed against the full state space size, which we know from the exhaustive
verifications. Furthermore, we indexed the verification times of CHASH against
Jenkins’s here.

With 32-bits bitstate hashing (see table 3), we observed with -O3 an average
performance decrease of two percent using CHASH. With -O0 there is a perfor-
mance gain by 23 percent. With 64-bits bitstate hashing (see table 4, we see a
performance gain of CHASH by 26 percent (with -O3) and 61 percent (with -O0).

The coverage rates of Jenkins’s shows that it is a good hash function in terms
of accuracy. CHASH performs less in that respect, as few models like hanoi.3,
protocols.5, sorter.4 and reader writer.3 have relatively low coverage rates. We
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brp.5 148 11 20 1 3 29 61 50 90
brp.4 148 7 13 1 4 21 64 35 90
driving phils.4 88 11 30 2 9 22 88 46 83
hanoi.3 116 14 43 5 7 39 91 91 86
phils.6 140 14 143 23 23 108 92 243 86
elevator2.3 prop4 52 8 55 5 9 26 92 57 88
elevator2.3 52 8 55 5 9 26 92 58 86
mcs.5 68 29 116 10 11 63 93 142 87
train-gate.3 164 20 57 4 29 49 93 123 97
telephony.7 64 22 114 9 15 55 93 130 87
...
schedule world.3 52 4 44 5 12 23 96 52 87
bakery.5 48 7 25 2 31 13 97 30 82
lann.3 140 5 24 2 2 24 97 54 99
msmie.4 180 7 11 0 1 14 97 31 92
production cell.4 304 10 42 5 6 50 97 138 97
elevator.3 152 19 70 6 9 74 97 177 93
protocols.5 112 3 8 1 7 8 98 17 96
frogs.4 68 17 36 2 2 27 98 60 92
train-gate.2 164 18 50 3 30 42 99 108 97
reader writer.3 276 1 4 0 1 19 99 39 100
Average 120 12 47 4 20 34 94 79 91

Table 2. 64-bits exhaustive search BEEM benchmark results of Jenkins (Jen.) versus CHASH
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model coverage -O3 rate -O3 -O0 rate -O0
firewire link.5 6 100 100 18 322 116 36 167 161
production cell.4 10 100 100 42 237 109 92 109 153
phils.6 14 100 100 86 166 109 134 107 144
train-gate.3 20 100 100 43 465 109 78 253 139
train-gate.2 18 100 100 38 474 108 69 259 137
elevator2.3 8 100 47 25 302 107 36 211 122
fischer.6 8 100 100 20 426 107 30 280 128
elevator planning.2 11 100 100 37 311 106 56 204 132
telephony.7 22 100 97 52 419 106 84 262 133
brp.5 11 100 100 18 603 105 32 337 135
...
driving phils.4 11 100 41 17 653 95 27 413 121
elevator.3 19 100 100 68 274 95 121 154 125
lann.4 13 100 99 55 231 92 105 120 123
bridge.2 9 100 100 24 392 92 40 230 106
msmie.4 7 100 100 12 605 92 20 359 123
frogs.4 17 100 100 26 662 90 42 412 111
protocols.5 3 100 63 8 413 89 12 265 111
sorter.4 13 100 89 21 625 89 34 383 117
reader writer.3 1 100 91 16 47 76 30 25 102
hanoi.3 14 100 0 33 429 4 55 260 6
Average 12 100 91 31 421 98 51 265 123

Table 3. 32-bits bitstate search BEEM benchmark results of Jenkins (Jen.) versus CHASH.
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found out this is due to the low entropy input as discussed earlier. Though this
is combated using integer hash multiplication, in rare cases as these it is yet
insufficient. We found out that additional effective measures are reordering the
declaration of variables and/or making the state vector more sparse by adding
dummy variables can be quite effective. Depending on the model, we gained
nearly on par coverage. A patch against Spin that generates such models can
be downloaded from the incremental hashing webpage. Note that these more
unconventional measures are not universally effective and we measured that in
general they decrease coverage. For this reason, they are not enabled with CHASH
by default.

st
at

es
(·1

0
6 )

=
10

0%

Je
n.

(%
)

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(·1
0
3 st

at
es

/s
ec

)

=
10

0%

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(·1
0
3 st

at
es

/s
ec

)

=
10

0%

CHA
SH

(%
)

model coverage -O3 rate -O3 -O0 rate -O0
train-gate.2 18 100 100 76 234 163 138 129 207
production cell.4 10 100 100 77 130 160 158 63 214
train-gate.3 20 100 100 79 250 149 155 128 208
production cell.3 6 100 100 67 87 145 131 44 186
firewire link.5 6 100 92 42 141 144 77 77 234
phils.6 14 100 100 208 69 137 305 47 196
bakery.7 28 100 100 83 332 136 130 211 161
fischer.6 8 100 100 40 206 135 67 125 170
brp.5 11 100 100 38 285 134 65 168 176
lamport nonatomic.4 16 100 100 111 146 132 179 91 176
...
schedule world.3 4 100 100 38 113 120 60 71 149
bridge.2 9 100 100 41 229 120 70 134 133
peterson.6 9 100 100 42 206 120 59 146 141
lamport.7 5 100 100 25 186 119 35 134 140
adding.6 8 100 100 19 399 115 25 309 129
elevator planning.2 11 100 100 78 147 114 117 98 156
at.4 7 100 100 32 203 113 49 136 150
sorter.4 13 100 88 39 335 112 64 207 151
reader writer.3 1 100 91 26 29 98 46 16 114
protocols.5 3 100 37 19 165 58 26 119 78
Average 12 100 97 61 205 126 100 130 161

Table 4. 64-bits bitstate search BEEM benchmark results of Jenkins (Jen.) versus CHASH.

5.3 Hash-Compaction

The results from hash-compaction are similar to those from bitstate hashing.
Here too we measured a small decline in performance when CHASH is used in
32-bits mode and -O3 and a significant performance improvement of 26 percent
when -O0 is used. See table 5.

With 64-bits hash-compaction (see table 6), we see that CHASH improves by
ten percent over Jenkins’s with -O3 and 29 percent with -O0. For the same reasons
as for bitstate hashing, we see that here too a lower coverage goes accompanied
by lower performance.

5.4 Optimisation Flags

While we ran our benchmarks with and without compiler optimisations enabled,
Spin users usually do without them. XSpin does not enable them by default and
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model coverage -O3 rate -O3 -O0 rate -O0
firewire link.5 6 100 100 16 372 122 33 181 180
phils.6 14 100 100 63 229 116 109 132 149
train-gate.2 18 100 100 32 565 110 63 283 140
train-gate.3 20 100 100 36 554 110 71 278 139
production cell.4 10 100 100 36 275 109 84 119 158
telephony.7 22 100 97 37 587 109 70 312 137
telephony.4 12 100 100 22 566 106 40 304 140
lamport nonatomic.4 16 100 72 45 357 105 91 177 141
mcs.5 29 100 93 42 692 105 72 405 126
peterson.6 9 100 100 14 621 105 22 393 123
...
lamport.7 5 100 100 7 661 97 11 423 113
driving phils.4 11 100 41 12 923 95 23 489 127
protocols.5 3 100 63 6 561 94 10 327 119
lann.4 13 100 99 47 267 93 98 128 126
elevator planning.2 11 100 100 29 398 91 48 237 121
bridge.2 9 100 100 19 497 90 35 264 110
msmie.4 7 100 100 9 826 89 16 433 123
sorter.4 13 100 89 16 840 83 29 455 111
reader writer.3 1 100 91 15 50 75 29 26 99
hanoi.3 14 100 0 25 583 4 47 306 8
Average 12 100 91 23 582 98 44 322 126

Table 5. 32-bits hash-compaction search BEEM benchmark results of Jenkins (Jen.) versus CHASH.
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model coverage -O3 rate -O3 -O0 rate -O0
phils.6 14 100 100 83 174 131 150 95 179
production cell.4 10 100 100 39 256 128 91 110 150
train-gate.2 18 100 100 36 500 123 73 246 142
train-gate.3 20 100 100 39 507 122 84 237 149
firewire link.5 6 100 92 19 312 120 38 157 156
mcs.5 29 100 100 54 535 118 94 308 146
lamport nonatomic.4 16 100 100 49 328 117 98 165 136
elevator2.3 8 100 100 23 332 116 39 199 131
telephony.7 22 100 100 45 493 116 78 281 135
production cell.3 6 100 100 34 168 116 78 74 137
...
lamport.7 5 100 100 12 391 106 17 273 118
msmie.4 7 100 100 13 541 104 23 313 128
bridge.2 9 100 100 23 400 104 43 216 107
driving phils.4 11 100 83 16 690 104 27 416 126
schedule world.3 4 100 100 19 220 102 34 126 114
adding.6 8 100 100 9 836 101 12 634 111
sorter.4 13 100 88 21 628 99 34 388 111
elevator planning.2 11 100 100 36 317 97 62 185 129
reader writer.3 1 100 91 19 40 94 35 21 101
protocols.5 3 100 37 9 343 51 14 226 68
Average 12 100 97 29 429 110 53 250 129

Table 6. 64-bits hash-compaction search BEEM benchmark results of Jenkins (Jen.) versus CHASH.
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users usually forget to enable them manually. Based our results, we see that
enabling optimisations (i.e. -O3) makes a significant difference, as it reduces the
verification time nearly by an half. This substantial improvement costs only a
few seconds additional compilation time.

5.5 Memory Consumption

We also extracted memory utilisation statistics for runs5 with and without
CHASH. For both -O0 and -O3, we measured an average memory overhead by
CHASH of six percent compared to runs with Jenkins’s. This is caused by our im-
plementation, which maintains hash values on the DFS stack such that a reverse
CHASH operation does not have to be computed.

5.6 Profiler Runs

We also wanted to find out how much CHASH improves and whether there is
more room for improvement. We ran a profiled version on our selection of the
BEEM benchmark suite. For pointing out the interesting points, it sufficies to
only present the combined profiler data from 32-bits and 64-bits exhaustive
verification. See figures 1 and 2. In this figure, d_hash is Jenkins’s hash func-
tion, c_hash is the CHASH implementation, hstore is the hashtable storage func-
tion, new_state is the DFS routine, compress is the mask-compression function,
do_transit performs one transition from the current state and misc are all other
functions.

(a) Jenkins. (b) CHASH

Fig. 1. Percentual stakes of five most time-consuming functions for BEEM benchmarks
compiled with -O0.

The stake of hashing with Jenkins’s is for both -O0 and -O3 clearly visible
in the total running time. When CHASH is enabled, it eliminates hashing as a
visible stake in the total running time. For -O3, the stake of CHASH is near zero
and therefore not depicted in the figure.

Also noteworthy is that compress and hstore have a significant stake for
both -O0 and -O3. The former is in Spin 5.1.4 disabled by default in case of 32-bit

5 We were not able to include runs with compress disabled for measuring memory
overhead, as Spin does not output memory statistics when compress is disabled.
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(a) Jenkins. (b) CHASH

Fig. 2. Percentual stakes of five most time-consuming functions for BEEM benchmarks
compiled with -O3.

exhaustive verification of safety properties. We measured the impact of this in
our benchmarks, and detected that disabling mask-compression improves per-
formance by ten percent in -O3 and 36 percent in -O0. This however comes at the
cost of increased memory consumption. Unfortunately, this was not measurable
because runs with compress disabled do not output memory statistics.

5.7 Extremely Long Runs
We also experimented with models that either run out of memory or have a
high verification times. We specifically reran the BEEM benchmark with 64-bits
bitstate enabled, profiler enabled, compiler optimisations enabled, hashtable size
of 236, maximal depth of 20 million and k = 3. The table below is a selection of
five models with the longest verification times:
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firewire link.6 420 Jenkins 19 64 1887952 54.9 94598 134
CHASH 19 67 1281175 42.1 126380

peg solitaire.6 60 Jenkins 2 25 36 12.4 53540 103
CHASH 2 25 36 12.0 55238

driving phils.5 96 Jenkins 6 15 304 4.6 339291 133
CHASH 5 14 304 3.3 450963

lamport nonatomic.5 224 Jenkins 2 8 max. 4.0 105885 121
CHASH 1 7 max. 3.1 128062

telephony.6 64 Jenkins 1 8 max. 2.1 186624 125
CHASH 1 8 max. 1.7 233323

The gain represents the verification rate index of CHASH when compared against
Jenkins’s. Runs for which the maximal depth was reached are indicated by max.
in the depth column.

As can be seen, CHASH improves greatly over Jenkins with an improvement of
up to 34 percent. As can be seen from the times, this improvement can save hours
of verification. Also particularly interesting is that this selection of models have
quite large state vectors. This suggests a correlation between the state vector
size and the performance gain by CHASH. The BEEM benchmark suite includes
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too little models with large state vectors and significant large state spaces in
order to measure such a correlation.

6 Conclusions

There are still several ways to improve our incremental hashing scheme as imple-
mented in Spin. First, we used integer hash functions to improve its uniformity,
and though this works out well, there is room for improvement. We saw that for
some models, the collision rates were relatively high and/or the coverage rates
relatively low. By devising other methods for function T , the mapping of integers
to the ring R, this may be improved. Our experiments with sparse state vectors
and variable reordering for bitstate hashing also help, but more investigation is
required to define an approach that is on average substantially better.

Also, currently untested is the use of incremental hashing with multi-core
model checking (available since Spin 5) and the verification of liveness properties.
This is likely to require additions to the CHASH implementation.

CHASH can be also used orthogonally upon traditional hash function, as a good
second opinion second hash. This hash code can be stored along the state in the
hash table, and used as an additional check before byte-for-byte comparison is
done. This can improve the performance of hstore function, of which profiler
results have shown that improvements in this function is likely to be reflected in
the total running time.

The concept of incremental computation can also be extended to mask-
compression and the state collapser. Having an incremental collapse also en-
ables a nicer implementation of incremental hashing, as it will not be necessary
anymore to add a c hash at every update of the state vector.

Lastly, the BEEM benchmark suite served their purpose for the greater part
of our experiments. It was only lacking on one point, and that is where we wanted
to unfold a correlation between the state vector size and the performance gain.
The problem lies in the lack of models that have both large state spaces and
large state vectors. Adaptations of models in the current suite, or a series of
new models that do have those properties would be welcoming for increasing the
usefulness of the BEEM benchmark suite even further.

Conclusive, we described an incremental hashing that is applicable to any
state vector datastructure, implemented it in Spin and evaluated it using the
BEEM benchmarks. From this evaluation, we observed that Spin’s default set-
tings, namely with compiler optimisations disabled, that incremental hashing is
superior to Hsieh’s SFH and Jenkins’s in all cases. With the most aggressive safe
compiler optimisations enabled, namely -O3, SFH is generally better for 32-bits
exhaustive search, Jenkins’s for all other 32-bits verification modes and incre-
mental hashing is better in all approximate modes and 64-bits in particular.
The average reduction of applying compiler optimisation is nearly a half. We
recommend it to always enable it, and in case when 64-bits machines are used,
combine this with incremental hashing.

The full result set from the BEEM benchmarks and CHASH patch against
Spin 5.1.4 can be downloaded from the incremental hashing webpage [17].
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