
A fully abstract trace semantics for UML components

F.S. de Boer1,2, M.M. Bonsangue2 ?, M. Steffen3, and E.Ábrah́am3

1CWI, Amsterdam, The Netherlands
frb@cwi.nl

2LIACS, Leiden University, The Netherlands
marcello@liacs.nl

3 Christian-Albrechts-University, Kiel, Germany
{ms,eab}@informatik.uni-kiel.de

Abstract. We present a fully abstract semantics for UML components. This se-
mantics is formalized in terms of a notion of trace for components, providing a
description of the component externally observable behavior inspired by UML
sequence diagrams. Such a description abstracts from the actual implementation
given by UML state-machines. Our full abstraction result is based on a may test-
ing semantics which involves a composition of components in terms of cross-
border dynamic class instantiation through component interfaces.

1 Introduction

The Unified Modelling Language (UML)[17] is widely adopted as the de facto
industry standard for modelling object-oriented software systems. It consists of
several graphical notations providing different views of the system being mod-
elled. There are two basic types of diagrams: behavior diagrams and structure
diagrams. These diagrams include sequence diagrams, state machines, class di-
agrams and component diagrams.

We use UML for investigating features such as state encapsulation, and
name-passing in synchronous communication in combination with dynamic class
instantiation. Basically, in UML a component is a set of classes with explicit
contextual dependencies. Some instances of classes of a component are called
ports. Components can communicate only through their ports. Most importantly,
a port of a component can also instantiate new ports of another component. The
explicit context dependencies of a component guarantee that ports have enough
structural information about the environment. However the behavior of such
an external environment is not under control of the component itself. In other
words, a component is an open program, with implementation code contain-
ing calls to operations and constructors of interfaces that are not bound to any
particular behavior specification.

? The research of Dr. Bonsangue has been made possible by a fellowship of the Royal Nether-
lands Academy of Arts and Sciences



From the point of view of a component, the ports of other components be-
long to the environment, and are internally known only as typed identifiers.
Although the behavior of the environment is not fixed at priori, it has to obey to
certain laws. For example, because the state of a port is encapsulated, external
portscannotalways communicate with each other. To illustrate this, consider a
port of a componenti that creates two new portse1 ande2 of some component
in the environment. The portse1 ande2 are both external, but unable to com-
municate with each other unless the internal objecti let one of them know the
identity of the other. The above situation is characteristic of a framework with
dynamic scope: new clusters of objects that know each other can be created as
new external instances appear, and old clusters may merge as a consequence of
a communication.

1.1 Contribution of this paper

In this paper we select a subset of UML notations suitable as basis for mod-
elling component-based systems. Inspired by UML sequence diagrams, we give
a denotational semantics to UML components in terms of traces of their exter-
nally observable events. A trace describes a sequence of interactions between
the ports of a set of components. Here a port is an instance of a class of a com-
ponent realizing one of its interface, and an interaction is a synchronization on
an operation declared on one of the interface of a component.

We define an observational equivalence for components based on may test-
ing, and show that ordinary traces are, in general, not fully abstract: two com-
ponents can be observationally equivalent but their associated set of traces be
different. Our main result is the characterization of trace abstractions that takes
into account the clustering structure of objects dictated by their dynamic scope.
These traces are full abstract with respect to may testing observational equiva-
lence.

1.2 Related work

There is an increasing interest to give a rigorous foundation to UML for ad-
dressing, e.g., the needs for modelling safety critical applications. Some ap-
proaches are based on translating UML subsets into existing formalisms, like
theπ-calculus [18], other have proposed new meta-modelling language calculi
as foundation for the semantics of UML, e.g. [10]. In this paper we present a
variant of the UML subset considered by Damm et al. and formalized as a tran-
sition system [11]. The most significant departures from this work are that we do
not consider asynchronous inter-object communications and do not distinguish
among active, reactive and passive objects.



There are several full abstraction results for may testing semantics for cal-
culi of processes interacting in dynamically changing communication topol-
ogy [6, 13]. The UML description of classes by state-machines combines mech-
anisms for dynamic process creation similarly to object calculi [1, 9, 19, 15] with
synchronization mechanisms as in process calculi [8, 6, 13].

The closest work to our is Jeffrey and Rathke [15] fully abstract semantics
of concurrent objects. While our components are open, programs in [15] are
closed, in the sense we explained above, since their creation of a new object
involves the specification of the behavior of the newly created object. Conse-
quently, in their setting, the environment can be basically viewed as a static and
a priori given group of objects. This contrasts with our setting, where the pro-
gram itself creates dynamically its own environment and imposes constraints on
the communication topology of its environment.

Different from previous full abstraction results, the construction of a dis-
tinguishing context in the full abstraction proof requires a novel technique for
the definition of a generic behavior capturing all instances of an external class.
This we consider as one of the main technical contribution of our paper, that
helps in a better understanding of the role of static class variables in class-based
object-oriented languages like Java.

2 UML classes, state-machines and components

Next we describe the subset of UML we use in this paper. We use UML as an
inspiration source, and have no pretence of fully formalizing the numerous con-
cepts used in UML diagrams. UML is an object-oriented modelling technique
based on the concept of class. Aclassis a named description of a set of objects.
Its signature consists of a finite set of attributes and a finite set of operations
(one of them declared as constructor). Attributes and operations are typed either
by basic types (like integers and Boolean) or by the identifier of a class or of an
interface. Aninterfaceis a named description of a set of operations. Differently
from a class signature, an interface does not declare any attribute. We say that
an interface isrealizedby a class (that for simplicity we assume carrying the
same name) if the set of operations of the interface is included in that of the
class realizing it.

An objectis an instance of a class. There are different kinds of inter-object
communications in UML. We consider only communication viasynchronous
operations, restricting to operations with two parameter only: one for passing
the identity of the caller of the operation, and another for passing a value (that
we will often assume to be the identity of another object). The execution of a
synchronous operation involves a synchronization on the execution of an op-



eration call by the sender and a corresponding trigger by the receiver. Such a
synchronization results in anassignmentof the value of the actual parameters
of the operation call to the attribute of the receiver that appear as formal param-
eters of the operation.

In contrast to a synchronous operation, aprimitive operationis an opera-
tion acting directly on the attributes of the objects, without any synchronization.
Therefore the meaning of a primitive operation is defined in terms of a state
transformation.

2.1 Abstract state-machines

In UML the behavior of an object is describe generically by means of an abstract
state-machine associated to the class of which the object is an instance. Astate-
machineis a kind of structured transition system that records the dependencies
between the states of an object and its reaction to messages. More formally, a
state machine associated to a classc consists of transitions of the form

l1
[g]t/a−−−→−−−→c l2

wherel1 is the entry location andl2 is the exit location of the transition. Tran-
sitions may beguardedby a boolean guardg and labelled by atrigger t and
anactiona. The evaluation of the boolean guardg is assumed to be side-effect
free.

A trigger t is of the form
op(x , y)

whereop is the name of an operation (possibly the constructor) declared in the
classc, while x , y are attribute ofc that will store the identity of the caller and
the value it pass by calling the operation. In case the trigger is the constructor of
the classc, the second parameter is the attributeself , that will store the identity
of the newly created object.

An action a is either a primitive operation, a constructor call or a syn-
chronous operation call. A constructor call is of the formc.new(self , x ), where
new is the constructor of the class (or interface)c. The attributex is typed byc
and it will store the identity of the newly created object. A synchronous opera-
tion call is of the form

x .op(self , y)

whereop is an operation declared in the class (or interface) typing the attribute
x , that stores the identity of the callee of the operation. The attributey is also de-
clared inc and stores the value to be passed to the callee. We have not considered
the more usual synchronous operations that return by means of a rendez-vous



mechanism because we can encode this mechanism by means of an appropriate
operation call and a respective trigger.

2.2 Components

For the purpose of this paper we consider aUML componentC as a part of a
system consisting of a set of classesB and a set of interfacesI = P ∪ R. Each
class inB is associated with state-machine. The operations of the interfaces inI
are typed only by other interfaces in the same setI . Interfaces inI can be either
provided or required. Eachprovided interfacep ∈ P is realized by a class inB ,
and hence with the same name ofp. A required interfacer ∈ R is an interface
with a name different from that of any other class inB . It can be used by classes
in B for typing their attributes. This way a component declares its dependencies
on another components with interfaces inR as provided interfaces.

A class realizing a provided interface or depending on one or more required
interfaces is called arole, and its instances are calledports [5]. An internal
classis a class of a component that is not a role. Attributes of an internal class
are typed only by primitive types or by classes within the same component,
whereas attributes of a role may be typed also by the required interfaces. This
means that a component is an open system, with its ports as the only points
of interactions with environment: ports may be triggered by other ports in the
environment, and call operations declared in the required interfaces, including
the declared constructors. However, a class realizing a required interface is ex-
ternal, i.e., it belong to a different component. Encapsulation of the component
internal implementation is ensured because instances of internal classes may
synchronize only on operations of other objects within the same component,
thus preventing a tight coupling between the component internal structure and
the component environment.

Components can be composed by connecting the required interfaces of a
constituent component with the provided interfaces (that for simplicity we as-
sume to have the same name) that belongs to other constituent components. For
the purpose of this paper we define interface connection as simple set inclusion
of operations. More formally, letC1 = 〈B1,P1 ∪ R1〉 andC2 = 〈B2,P2 ∪ R2〉
be two components. TheircompositionC1 ⊕ C2 is defined as the component
C = 〈B , I 〉 with B = B1 ∪ B2 (that are assumed to be disjoint) and with
I = P ∪ R obtained by takingP = P1 ∪ P2 andR = (R1 \ P2) ∪ (R2 \ P1).
For example, if one component provides all interfaces required by another one,
then the component resulting from their composition has no required interfaces,
and remains open to the environment only via its provided interfaces.



2.3 Operational semantics

Next we define the operational semantics of a component in terms of the abstract
state machines associated with each of its constituent classes.

Let Class be a set of class (and interface) identifiers, with typical element
c, and assume given, for each class namec, an infinite setObj (c) of names
for the instances of the classc. We denote byObj the union ofObj (c) for all
c ∈ Class. Further, letAtt be a set of attributes (includingloc andself ) and
Val be a set of values (including the undefined valuenil ).

A object diagramσ of a componentC = 〈B , I 〉 is a partial function in
Obj ⇀ (Att → Val) assigning values to attributes of the existing instances of
classes inB . The domain of an object diagramσ is denoted bydom(σ), and
the valueσ(o)(x ) of the attributex of the objecto is denoted byσ(o.x ). For all
o ∈ dom(σ) we require thatσ(o.self ) = o and thato ∈ Obj (c) for some class
c in B .

Control information of each objecto in an object-diagram is given byσ(o.loc),
assuming for each class that the attributeloc is used only to refer to the current
location of the state machine of the class of whicho is an instance. An object
diagram is calledinitial if the only attributes different fromnil areself andloc.

The operational semantics of a componentC = 〈B ,P ∪ R〉 is defined in
terms of atransition relation−→ between object diagrams labelled by exter-
nally observable events of the form

e.op(i , v) and i .op(e, v) , (1)

wheree ∈ Obj (r), for some required interfacer ∈ R, is the identity of an
external port, andi ∈ Obj (p), for some provided interfacep ∈ P , is the identity
of an internal portof C. The idea is thati is an object instance of the class ofC
realizing the interfacep, wherease is an object instance of the classr realizing
the interfacer in another component. We will use this convention throughout
this paper. The evente.op(i , v) denotes the synchronization of the porte with
the porti on the operationop provided bye. Similarly, i .op(e, v) denotes the
synchronization of the porti with the porte on an operationop provided byi .
In both cases the synchronization involves the transmission of the valuev .

We label thetransition relation−→ also with events

new(o, u)

indicating the synchronization on the constructornew of the classc between
the object creatoro and the new instanceu of c. As usual, a transition labelled
by τ denotes an internal activity, such as the execution of a primitive operation
or an intra-component synchronization.



The flow of control of each object is described according to the transitions
of the state machine associated to the class of which the object is an instance.
For each transition

l1
[g]t/a−−−→−−−→ l2

of an abstract state machine we assume a unique intermediate locationl1,2 to
model the interleaving point between the guard and trigger on the one hand, and
the action on the other hand. Further, we assume for each booleanguardg an
evaluation functiong such thatg(σ, o) denotes the boolean result of the evalu-
ation ofg by the objecto in the object diagramσ; note that guard evaluation is
free of side effects, i.e., it does not affect the object diagram itself. Similarly, we
assume for each primitive operationa, a state transformer functiona such that
a(σ, o) denotes the object diagram that results from the application ofa in the
initial diagramσ by the objecto. We consider only state transformations that do
not change the domain ofσ and have no effect on the location of the objects in
σ. We allow, for example, that an object can assign values to attributes of other
objects within the same component.

The transition relation−→ associated to a componentC = 〈B ,P ∪ R〉 is
defined by distinguishing the following cases:

Internal synchronization:Let o andu be instances of the classesc, d ∈ B ,
respectively, both inside the componentC. Assume the objecto is in a location
σ(o.loc) = l1 while the objectu is in the intermediate locationσ(u.loc) =
l3,4, whereσ(u.x ) = o andσ(u.y) = v . If the guardg(σ[o.x/u, o.y/v ], o)
evaluates to true then the synchronization of the objectso andu on the operation
op is described by the following rule

l1
[g]op(x ,y)/−−−−−−−−→−−−−−−−→c l2 l3

−/x .op(self ,y)−−−−−−−−→−−−−−−−−→d l4
σ

τ−→ σ′ ,

whereσ′ is the resulting object diagram withσ′(o.x ) = u andσ(o.y) = v .
The flow of control of the objectso andu is described by their associated state
machines and their new locations areσ′(o.loc) = l1,2, σ′(u.loc) = l4, respec-
tively. Note that the evaluation of the guard is in parallel with the execution of
the trigger, meaning that the guardg is evaluated in a state that take into account
the new values of the actual parameters of the trigger.

Class instantiation: Let o be an instance of a classc ∈ B . Assumeo is in
the intermediate locationσ(o.loc) = l2,3 ready to execute a call to the con-
structornew of the classd ∈ B , with d in the same component ofc. If the
guardg(σ[u.x/o], u) evaluates to true then class instantiation is specified by



the following rule

l0
[g]new(x ,self )/−−−−−−−−−−−→−−−−−−−−−−→d l1 l2

−/d .new(self ,x)−−−−−−−−−→−−−−−−−−−→c l3

σ
new(o,u)−−−−−→σ′

,

wherel0 is the initial location of the state machine associated with the classd ,
and the domain ofσ′ extends that ofσ with the nameu ∈ Obj (d) \ dom(σ) of
the newly created object. The resulting object diagramσ′ maps the new name
u to the instance variableso.x andu.self , while the callero is assigned to the
variableu.x . The locations of the two objectso andu are updated tol1,2 andl4,
respectively. Finally, all other attributes ofu are set to the undefined valuenil .

Primitive operation: Let o be an object of a classc ∈ B of the componentC
with σ(o.loc) = l1,2, and letop be a primitive operation. Then

l1
−/op−−−→−−−→c l2

σ
τ−→ σ′ ,

whereσ′ = op(σ, o)[l2/o.loc]. The execution of a primitive operationop gen-
erates a ’silent’ transition transforming the object diagramσ according to the
associated functionop(σ, o) and updating the locationloc of the objecto to l2.

Synchronous operation call:Let i be a port instance of a rolec ∈ B of the com-
ponentC, and letr ∈ R be a required interface ofC declaring the synchronous
operationop. Assume that in the object diagramσ the porti is in an intermedi-
ate locationσ(i .loc) = l1,2 where it can call a synchronous operationop of the
external portσ(i .x ) = e. Then

l1
−/x .op(self ,y)−−−−−−−−→−−−−−−−−→c l2

σ
e.op(i ,v)−−−−−→σ′

,

whereσ(i .y) = v andσ′ is asσ, but for the locationloc of i that is assigned to
l2. Note that becausex typed by a required interfacer ∈ R, there is no class in
B with that name. Thereforee is an object not indom(σ).

Constructor call: A port i instance of a rolec ∈ B of the componentC can
create a new porte ∈ Obj (r) of another component via a call of the constructor
new declared in a required interfacer ∈ R of C. This is described by the rule

l1
−/r .new(self ,x)−−−−−−−−−→−−−−−−−−−→c l2

σ
new(i ,e)−−−−−→σ′

,

whereσ(i .loc) = l1,2, σ′(i .loc) = l2 andσ′(i .x ) = e, for somee ∈ Obj (r).
Note thate 6∈ dom(σ), becauser ∈ R is a required interface ofC.



Evaluation of a guard and a trigger:Let i be a port instance of a rolec ∈ B
of the componentC, and assume thatop is a synchronous operation declared by
the provided interfacec ∈ P . If in the object diagramσ the porti is in a location
σ(i .loc) = l1, and the guardg(σ[i .x/e], i) evaluates to true, then its triggerop
can be executed as consequence of the reception of the messageop(e, v) sent
by an external porte. This inter-component synchronization is described by the
rule

l1
[g]op(x ,y)/−−−−−−−−→−−−−−−−→c l2

σ
i .op(e,v)−−−−−→σ′

,

whereσ′(i .loc) = l1,2, andσ′(i .x ) = e andσ′(i .y) = v for some valuev and
objecte ∈ Obj (d) with d 6∈ B .

Port instantiation: A new instancei of a rolec ∈ B of a componentC can be
created by an external porte via a call to the constructornew declared in the
provided interfacec ∈ P . If the guardg(σ[i .x/e], i) evaluates to true, this is
described by the rule

l0
[g]new(x ,self )/−−−−−−−−−−−→−−−−−−−−−−→c l1

σ
new(e,i)−−−−−→σ′

,

wheree ∈ Obj (d) with d 6∈ B andi ∈ Obj (c) \ dom(σ) is the identity of the
newly created port. Herel0 is the initial location of the state machine associated
to c, andσ′ extendsσ by assigningi .loc to l1,2, i .self to i , andi .x to e (all
other instance variables ofi are mapped to the undefined valuenil ).

Definition 1. An executionξ of a componentC is a finite sequence

σ0
`1−→σ1 · · ·σn−1

`n−→σn

of labelled transitions starting from an initial object diagramσ0.

From an execution sequence we can extract information about the order of
creation among the objects of the component. In fact, given an executionξ of
a componentC = 〈B , I 〉, we define the creation relation<ξ as the least binary
transitive relation onObj such that

o <ξ u if new(o, u) appears as a label inξ,

with new the constructor of the class of whichu is an instance. Note that in
general, the above creation relation will form a forest rather than a tree, because
an execution does not record the creation of external ports by other external
ports.



3 Trace Semantics

UML message sequence charts provide a visual representation of the interac-
tions among of a set of objects in terms of the messages they exchange. Since
component interfaces are intended to shield the details of a component imple-
mentation from the environment, a sensible semantics for components should
abstract from synchronization among objects within the component.

For a given componentC, finite sequences of externally observable events
thus specify the interactions between instances of internal classes realizing the
provided interfaces and instances of external classes realizing the required in-
terfaces. Such sequences abstract both from the interactions between instances
of classes internal to the components and the interactions between instances of
classes external to the component. However, such sequences can be ambiguous
or describe information that cannot be implemented by any component. Con-
sider for example the following sequence

e.op1(i , e) · e ′.op2(i , e ′) · i .op3(e ′′, e ′′) ,

wheree, e ′, ande ′′ are assumed to be three distinct external ports. The first two
events indicate that bothe ande ′ are known to the internal porti , for example
because they have been both created byi . In order to justify the last event which
involves a call of the operationop3 of i by e ′′, there are three possible scenarios:

1. e ′′ has createdi ;
2. e ′′ has received its knowledge ofi from e; and
3. e ′′ has received this knowledge frome ′.

These different scenarios are due to three valid assumptions on object creation
outside the component, namelye ′′ can be an ancestor ofi ,e can be an ancestor
of e ′′, or e ′ can be an ancestor ofe ′′.

This implicit non-determinism in a sequence of observable events thus al-
lows different incompatible behaviors of the external objects. To resolve this
non-determinism we associate to each sequencet of observable events a cre-
ation tree.

Definition 2. A tracet is a finite sequence of communication events of the form
o.op(u, v) together with binary relation≺t onObj (called thetree of creation)
such that for each nameu (but one, the root of the tree) occurring in the se-
quence there is a unique different nameo in the same sequence witho ≺t u.

In the sequel, we denote byt �o the sub-trace oft with events involving
the objecto as either the caller or the callee of a synchronous operation. The
associated tree of creation is restricted to the names appearing in the restricted



sequence (but the root). Moreover, given a componentC = 〈B , I 〉, we denote by
∂C(t) the result of removing from the tracet all its events that are not externally
observable, that is, those communication events involving instances of classes
in B as caller or callee of a synchronous operation.

Definition 3. We define atrace of a componentC to be tracet consisting of
a finite sequence of observable events induced by an executionξ of C together
with a creation tree≺t such that for each portso, u appearing int , if o <ξ u
theno ≺t u.

It should be observed that the creation tree of a trace of a componentC is in
fact an abstraction from the actual information on object creation since the latter
may involve instances of classes that are strictly internal (or external) toC, i.e.,
instances of classes that do not realize any provided (or required, respectively)
interface. Consequently, the relation≺t is more adequately described as the
ancestor relation between ports appearing int that areindirectly related because
of a creation chain passing through internal objects that do not appear int .

In general, a trace of a component may still contain impossible events. For
example, consider the following execution of a componentC

σ0
new(i ,e)−−−−−→σ1

new(i ,e′)−−−−−→σ2
e.op1(i ,i)−−−−−→σ3

i .op2(e,e′)−−−−−−→σ4

inducing the tracet
e.op1(i , i) · i .op2(e, e ′)

with i ≺t e andi ≺t e ′. The root of the creation tree oft is the internal porti
with both the external portse ande ′ as children. However, the last communica-
tion appearing int is not possible because the porte cannot possibly know the
porte ′. To exclude this case, we introduce the following notion of knowledge.

Definition 4. Given a tracet , we define the setκ(t , o) of objects that an object
o may knowsby induction ont :

κ(ε, o) ={o} ∪ {o ′|o ≺t o ′}

κ(t · o ′.op(o ′′, v), o)=


κ(t , o) ∪ {o ′′, v} o = o ′ andv ∈ Obj
κ(t , o) ∪ {o ′′} o = o ′ andv 6∈ Obj
κ(t , o) otherwise

Intuitively, an objecto knows itself, all objects it created, and those objects it
received via some triggered operation. The above definition does not depend on
a trace to be generated by an execution of a component. Note however, that given
a tracet of a componentC if an external porte ′ ∈ κ(t , e) then the external port



e ′ mayalso have knowledge of the external porte because an implementation
of e and e ′ may involve the communication of the identity ofe to e ′. More
generally, we can argue in a similar manner that ife ′ ∈ κ(t , e) then the external
objectse ande ′ may have the same knowledge.

Definition 5. Given a tracet and a componentC, we define aclusterof exter-
nal ports possibly having the same knowledge as an equivalence class of the
equivalence relation't , where't is the least equivalence relation such that

e 't e ′ if e ′ ∈ κ(t , e) .

Because objects in a cluster may share their knowledge, we define their
shared knowledgeκ∗(t , e), also calledcluster knowledge, as

κ∗(t , e) =
⋃
{κ(t , e ′) | e 't e ′} .

We defined clusters only for external ports, because the flow of information of
the internal ports is controlled by their respective implementation. For example
if i knowse and another external porte ′ then this in itself does not imply thate
may have knowledge ofe ′. This knowledge can only be obtained by a chain of
communications originating fromi .

A trace is called executable if external ports communicate only names known
by some ports in the same cluster. Formally, we have the following definition.

Definition 6. Given a componentC, a tracet is executableif for every prefix
t ′ · i .op(e, v) of t we have that bothi andv (if it is an object) are inκ∗(t ′, e).
We defineT (C) to be the set of all executable traces of the componentC.

Observe that executable traces are insensitive to the order in which ports
are instantiated. Also, because the creation tree of a trace refers only to names
that appears in the sequence of observable events (but possibly one, the root),
executable traces concerns only with objects that do play a role in an inter-
components communication (and not those objects that are created but never
used in a communication).

The trace semantics defined above is compositional with respect to compo-
nent composition.

Theorem 1. For any two componentsC = C1 ⊕ C2 we have

T (C) = ∂C(T (C1) ∩ T (C2)) .

The proof of this compositionality result involves a fairly straightforward
generalization of the compositional trace semantics for CSP (see [8]) to our
setting.



3.1 Trace definability

In order to show that executable traces can be implemented we introduce the
notion of extended traces, that is, traces augmented with events for synchro-
nization between external ports, so that they can be justified in terms of what
external ports may know.

Definition 7. Anextended tracet of an executable tracet ′ of a componentC is a
trace with the same creation tree oft ′ and that extends the sequence of events of
t ′ with additional external communication events of the forme.op(e ′, v) (where
op may denote a possible operation of an implementation ofe i.e., an operation
that is not specified by the required interface to whiche belongs).

In an extended trace the events themselves can be justified directly in terms
of the exact knowledge of the ports (i.e. the objects created or received via a
triggered operation).

Definition 8. Anabstract implementationof an executable trace is an extended
trace t of an executable trace of a componentC such that for every prefixt ′ ·
o.op(e, v) of t both objectso andv are inκ(t ′, e).

The following lemma can be proved in a straightforward manner by imple-
menting a protocol for broadcasting new knowledge to all external ports within
a cluster.

Lemma 1. Every executable trace of a componentC has an abstract implemen-
tation.

We arrived at the following definability result.

Theorem 2. For every executable tracet ∈ T (C) of a componentC there exists
another componentC′ with as provided interfaces those required byC and such
t is also an executable trace ofC′.

The sketch of the proof of the above theorem is as follows. Becauset is an
executable trace it has an abstract implementation by Theorem 1. Further, we
can reduce the latter trace to a sequences by prefixing it with creation events of
the formnew(o, u) for each pair of nameso andu with o ≺t u, andnew the
constructor associated to the class of whichu is an instance. This way, view-
ing the creation events above as a binding operator in the second argument, all
names occurring in the sequences are bound but for the root of the tree of
creation.

Next, for every external porte in the new sequences we define an im-
plementationS (e, s) corresponding with the subsequences of creation and



communication events ofs involving e. This implementation uses the object
names occurring ins asinstance variablesof the objecte. Basically, it is con-
structed by transforming every evento.op(e, v) into a corresponding operation
call o.op(self , v), every evente.op(o, v) into a corresponding triggerop(o, v),
every creation eventnew(e, o) into a corresponding constructor callc.new(self , o),
with new the constructor of the classc, for o ∈ Obj (c), and, finally, the every
creationnew(o, e) into the triggernew(o, self ).

As last step, for every required interfacer of the componentC, we define
the UML state-machine specifying the generic behavior of the class realizing
the provided interfacer of C′ as thenon-deterministicchoice of the imple-
mentationsS (e, t), wheree ranges over all instances ofr appearing int . By
construction we have thatt is an executable trace ofC′.

4 Testing semantics

In this section we define a may testing semantics for components. To define the
notion of testing semantics, letISuccess be a distinguished interface consisting
of one constructornew and one distinguished operation,success, with a param-
eter of typeISucess. We say that a componentC succeeds, denoted byC↓↓, if
and only if we may observe only a single call to thesuccess operation by one
of its port, that is

C↓↓ if and only if 〈e.success(i , e)〉 ∈ T (C) ,

wheree is an external port andi an internal one. This implies that a component
may succeed only ifISuccess is one of its required interface.

Definition 9. Two componentsC1 andC2 are may-equivalent, denoted byC1 '
C2, if

(C ⊕ C1)↓↓ if and only if(C ⊕ C2)↓↓

for any other componentC.

This is a natural adaptation to components of the original definition of may
testing semantics for concurrent processes [14].

The next theorem shows the correctness of the above compositional trace
semantics with respect to the above may equivalence.

Theorem 3. For any componentsC1 andC2, if T (C1) = T (C2) thenC1 ' C2.

The proof of this theorem follows from the compositionality result in Theo-
rem 1 in a fairly standard manner. The rest of this paper investigate the converse
of the above Theorem: are executable traces fully abstract with respect to may
equivalence?



5 Trace abstractions

In this section we show that the reverse implication of Theorem 3 does not hold.
Therefore executable traces are not fully abstract: there exist may-equivalent
components with different sets of executable traces. Moreover, we define trace
abstractions for obtaining a fully abstract semantics. We proceed by presenting
three typical examples for which full abstraction fails and illustrate the need for
respective abstractions on traces.

As a first example, consider a componentC with two required interfaces,r1

andr2, both declaring a constructornew . Further,r1 declares an operationop1

with a parameter of typer1, while r2 declares an operationop2 with a param-
eter of typer1. Let c be a role of the component depending onr1 andr2. The
transitions of its associated state machine are as follows:

l0
/r1.new(self ,x)−−−−−−−−−→−−−−−−−−−→ l1

/r2.new(self ,y)−−−−−−−−−→−−−−−−−−−→ l2
/x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l3

/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l4

Herex is an attribute of typer1 andy is an attribute of typer2. Observe that
the transition of the above state machine are not guarded and there is no trigger.
This state machine generates traces of the form

e1.op1(i , e1) · e2.op2(i , e2)

with i ≺ e1 andi ≺ e2, i ∈ Obj (c), e1 ∈ Obj (r1) ande2 ∈ Obj (r2). Consider
now a similar componentC′ different fromC in the state machine associated to
the classc:

l0
/r1.new(self ,x)−−−−−−−−−→−−−−−−−−−→ l1

/r2.new(self ,y)−−−−−−−−−→−−−−−−−−−→ l2

〈 /x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l3a
/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l4a

/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l3b
/x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l4b

This state machine generates the same traces as the previous one and addi-
tionally also traces of the form

e2.op2(i , e2) · e1.op1(i , e1)

with i ≺ e1 and i ≺ e2, that differ with the previous ones only with respect
to the order of the synchronization on the operationsop1 and op2. However
there is no component that can distinguish these two kinds of traces because the
external instancese1 ande2 cannot know each other and therefore cannot com-
municate or synchronize. In other words, the order between these observable
events cannot be imposed by the environment because they belong to different
clusters.



In general, the order between observable events involving external ports be-
longing to different clusters cannot be observed in the may-testing semantics.
We can abstract from this information by the following closure condition on the
traces of a given component.

Definition 10. Given a componentC, a setT of executable traces is closed
with respect to the order between events which actively involve external objects
belonging to different clusters, if

t · r .op(s, v) · r ′.op ′(s ′, v ′) · t ′ ∈ T

such that
e ′ 6∈ κ∗(t · r .op(s, v), e),

for e ∈ {r , s} ande ′ ∈ {r ′, s ′}, implies

t · r ′.op ′(s ′, v ′) · r .op(s, v) · t ′ ∈ T .

This means that we can only swap events which belong to different clusters
of the corresponding prefix of the trace. This captures the dynamic evolution of
clusters, which grow monotonically.

As a second example we consider the following two different state machines
associated to a rolec (with constructornewc) of a component depending on a
required interfacer . This interface declares the constructornewr and an oper-
ationop with a parameter typed byr itself. The first state machine creates an
unbounded number of external instances of the required interfacer by itera-
tively calling the constructor methodnewr and synchronizes with each of them
on the operationop:

l0
newc(x ,self )/−−−−−−−−→−−−−−−−−→ l1

/r .newr (self ,y)−−−−−−−−−→−−−−−−−−−→ l2
/y.op(self ,x)−−−−−−−→−−−−−−−→ l1 .

Observe that the iteration is expressed by the fact that, after the call of the oper-
ationop, the state machine return in the locationl1. The second state machine
implements the above iteration via recursion: it recursively generates an un-
bounded number of port ofc. Each of these ports creates an external instance of
the required interfacer and synchronize with it via the operationop:

l0
newc(x ,self )/r .newr (self ,y)−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→ l1

/y.op(self ,y)−−−−−−−→−−−−−−−→ l2
/c.newc(self ,z )−−−−−−−−−−−→−−−−−−−−−−−→ l3 .

In term of traces, the component with the first state machine associated toc
produces traces of the form

e1.op(i0, e1) · e2.op(i0, e2) · · · ek .op(i0, ek ) ,



with e ≺ i0 andi0 ≺ en for n = 1, · · · , k . On the other hand, the component
with the second state machine associated toc produces traces of the form

e1.op(i0, e1) · e2.op(i1, e2) · · · ek .op(ik−1, ek ) ,

with e ≺ i0, in−1 ≺ in andin−1 ≺ en for n = 1, · · · , k . Basically the two kinds
of traces differ on the identities of the internal ports that create new instances of
the required interfacer . This difference cannot be observed by another compo-
nent because each of the external portsen ’s form a different cluster, and objects
in different clusters cannot share (and compare) their knowledge.

We can abstract from this difference by, roughly, a cluster-wise renaming of
internal instances. Formally, given a componentC we define a relationt 'α t ′

between the executable tracest andt ′ if t ′ results fromt by substituting (also
in the creation tree) an internal instancei for every occurrence of an other inter-
nal instancej , with the same provided interface, in every event which actively
involves an external object of a cluster oft . To preserve the dynamic cluster
structure of the internal instances, we additionally require thati does not appear
in those events which actively involve an object of the cluster. For example, the
first trace above can be obtained by the second one by substitutingi0 for in−1,
with n = 2, · · · , k .

Definition 11. Given a componentC, a setT of executable traces is closed with
respect to cluster-wise renaming of internal instances,if

t ∈ T andt 'α t ′ impliest ′ ∈ T

Finally, we abstract from some information about object creation in a trace
t that is too specific, because, after all, the only relevant information concerns
the dynamic cluster structure of the trace. Consider the following two traces
of a component with a provided interface containing the operationopp and a
required interface containing the operationopr :

e.opp(i , i) · i .opr (e ′, e ′) · i .opr (e ′′, e ′′)

one time with creation treei ≺ e ≺ e ′ ≺ e ′′, and another time with creation
tree i ≺ e, e ≺ e ′ ande ≺ e ′′. They are two different traces that, however,
generate the same cluster structure. In general, the object creator of an instance
can be replaced by any other object already existing within the same cluster.

Given a component, we therefore introduce an equivalence relationt ∼= t ′

on executable traces that holds if the tracest andt ′ specify the same sequence of
events with the same dynamic cluster structure, i.e.,t andt ′ have for every prefix
the same cluster structure. Formally, a prefixt ′′ of a tracet consists of a prefix



of its sequence of events together with a creation tree obtained by restricting
that of t to the objects appearing int ′′. So, we definet1 ∼= t2 if for every two
prefixest ′1 of t1 andt ′2 of t2 with the same sequence of observable eventsσ, we
haveo 't ′1

u if and only if o 't ′2
u, for every two objectso, u appearing inσ.

Definition 12. Given a componentC, a setT of executable traces is closed with
respect to to object creation if

t ∈ B andt ∼= t ′ impliest ′ ∈ B

We have arrived at the following definition of the fully abstract trace seman-
ticsTa for components.

Definition 13. Given a componentC we define the setTa(C) of its abstract
traces as the smallest set of executable traces containingT (C) and being closed
with respect the order between events that actively involve external objects
belonging to different clusters, and, the cluster-wise renaming of internal in-
stances.

Correctness is straightforward because the above closure conditions do not
affect may-equivalence.

Theorem 4. For any componentsC1 andC2, Ta(C1) = Ta(C2) impliesC1 ' C2.

6 Full abstraction

In this section we sketch a proof of full abstraction for the above semantics of
components. Full abstraction is expressed by the following theorem.

Theorem 5. May equivalent components have the same set of abstract traces.

In the following we give a sketch of the proof that proceeds by contraposi-
tion. SupposeC1 andC2 are two may-equivalent components with different sets
of abstract traces. Without loss of generality, lett ∈ Ta(C1) \ Ta(C2). Since
abstract traces are executable, by Theorem 1 there exists an abstract implemen-
tationt ′ of t .

This means thatt ′ contains some protocol for broadcasting new knowledge
so that the actual knowledge of external objects coincides with their possible
knowledge (details are straightforward and omitted here).

Next we reduce the tracet ′ to a sequenceσ by prefixing it with creation
events of the formnew(o, u) for each pair of nameso andu with o ≺t ′ u, and
new the constructor associated to the class of whichu is an instance.



We can enrich the sequenceσ with additional communication events mod-
elling a protocol for fixing the order of execution among those events of the
sequence involving external instances that belong to the same cluster. This pro-
tocol can be described using the mechanism of passing a baton between the
external instances of the same cluster as in a relay team. Basically we insert
between two synchronization eventss1.op1(r1, v2) ands2.op2(r2, v2) involving
two external portse1 and e2 in the same cluster as sender or receiver of the
operations, an external evente2.baton(e1, e1). Consequently, the execution of
events of instances that belong to the same cluster is sequentialized.

Finally, in order to obtain an observable difference in the may testing seman-
tics, we assume that each cluster of external objects inσ will create an instance
o of the provided interfaceICluster and call after its last event the operation
cluster of o indicating the successful termination of the cluster. As a conse-
quence, there will be as many instances of the classICluster as actual clusters
in the sequenceσ. When the last instance is created, an instance of the required
interfaceISuccess is created and its operationsucc is called.

On the basis of the above sequenceσ, we can construct a distinguishing
componentsC with as provided interface those required byC2 plus the inter-
faceICluster and as required interfaces those provided byC2 plus the interface
ISuccess. The two interfacesISuccess and ICluster will be used to indicate
the successful termination of all the clusters of external objects ofσ. In the state
machines associated to the classes realizing the provided interfaces ofC we will
use a pseudo-code to describe guards and primitive operations, in particular we
will use test for equalities, assignments composed by standard operators like
sequential composition; and if-then-else.

Implementing abstract behaviors:First we discuss how to express in pseudo
code the abstract behavior of an external instancee in σ. Let σ �e denote the
projection ofσ onto all the events actively involving the external instancee (as
sender, receiver, or creator). LetR(σ) = {o1, . . . , ok} be the name space of all
the (internal and external) object identities appearing inσ. For notational con-
venience, we use these object references also as instance variables in the pseudo
code. In order to check for thelocal consistency of the object references stored
in the variables of an external instance we introduce for each object reference
o a unique fresh variableo ′ which will be used to store the actual reference
received when the object referenceo is expected. Leto .= o ′ abbreviate the
following pseudo code for for a guard checking the local consistency.

if o ′ = nil
then fail
else if o 6= nil



then if o 6= o ′ then fail fi
else for l = 1, . . . , k do

if o ′ = ol then fail fi
od

fi
fi

Herefail is to denote the failure of the evaluation of the guard. This guard
first checks whethero ′ is defined (ifo ′ is undefined the statement aborts because
the object referenceo is expected). If so, we have two possibilities: either the
variableo is already initialized, in which case we simply check whethero equals
o ′, or o is not yet initialized, e.g., not yet received, in which case we check
whethero ′ is different from all the other stored object references.

We can now define a concrete state machineSM (σ �e) describing the ab-
stract behavior ofe in σ. For technical convenience we use prefixes ofσ�e as
locations (withε as initial location andσ�e as final one) and specify the transi-
tions of the state machine by induction on the length ofσ�e :

σ′�e
/o.op(self ,v)−−−−−−−→−−−−−−−→ (σ′ · o.op(e, v))�e

σ′�e
/c.new(self ,o)−−−−−−−−→−−−−−−−−→ (σ′ · new(e, o))�e

σ′�e
[o

.
=o′ andv

.
=v ′]op(o,v)/−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−→ (σ′ · e.op(o, v))�e

The state machineSM (σ�e) is thus obtained by a straightforward transfor-
mation of the events ofσ �e into corresponding actions. The third clause de-
scribes the call of a constructor methodnew which involves the storage of the
newly cerated instance in the variableo, with o ∈ Obj (c). In case of reception
of an operation the guards additionally involves a check that the received object
references do agree with the corresponding stored ones. Note that thusSM (σ�e)
checks only the local consistency of the name space ofe. However the encoded
protocol for broadcasting new knowledge to all the (external) objects belonging
to one cluster will ensure also the global consistency of the name space of the
cluster, i.e., any two external objectse ande ′ belonging to the same cluster as-
sign the same value to any (private) instance variableo ∈ R(σ). Note however
that we cannot ensure that this value is actually the expected object referenceo
itself!

Implementing the required interfaces:For every required interfacer of the
given componentC1 we can define its implementation as a non-deterministic



choice between the state machinesSM (σ�e), wheree is an instance ofr ap-
pearing inσ. However, for full abstraction we also need a mechanism which
allows such an instance to select its own ’predestined’ behavior. The only way
we know to implement such a selection is by means of a restricted use ofstatic
class variables: for each instancee of a required interfacer , we introduce a
static class variabler .e.

Static class variables are variables associated with a class and shared by all
its instances only. In languages like Java, static class variables introduce an-
other form of communication besides message passing. Here we consider static
class variable as an attribute of an internal class that can be read and modi-
fied by primitive operations (and hence not observable) of objects belonging
to the same class. More restrictively, we can consider static class variable as
an augmentation of the language, not observable and with no influence on the
knowledge of an object (so that two instances of the same class need not neces-
sarily to know each other). This can be syntactically enforced by allowing, for
example, static class variables to appear only in test actions, at the left-side of an
assignment, and never in triggers or operation calls. This way, the information
stored in static variable cannot be used in communications between objects, but
can only be written and read for private purposes by any instance of a class.

Let e1, . . . el be the instantiations ofr appearing inσ in that order. The
following state machine withl0 as initial location allows each instanceei to
select the right locationσ�ei where to continue the behavior of thee instance of
r by means of a guard preceding the constructor triggernewr :

l0

〈 [o1
.
=o′1 andr .e1=nil ]newr (o1,self )/r .e1:=self

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ�e1

[o2
.
=o′2 andr .e1 6=nil andr .e2=nil ]newr (o2,self )/r .e2:=self

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ�e1

...
[ol

.
=o′l andr .e1 6=nil and··· andr .el=nil ]newr (ol ,self )/r .el :=self

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ�el

Because of the shared variable concurrency introduced by the static class
variables we have to assume that the above transitions (guard, trigger, and static
variable assignment) is executed atomically. This can be implemented by allow-
ing side effects in the evaluation of guards.

May testing It still remain to implement the class realizing the provided inter-
facesICluster The following state machine is associated to the class realizing
the interfaceICluster so to ensures that only the last instance ofICluster will
create an instance of the interfaceISuccess, thus indicating that all clusters of
external objects have terminated successfully. Again, we use static class vari-



ables for the instances ofICluster to ’count’ how many instances have already
been created (i.e. how many clusters have successfully terminated).

Assuming that the initial tracet containsm clusters of external objects, let
succi , i = 1, . . . ,m − 1 be m − 1 static class variables ofICluster in the
following state machine associated to it:

l0

〈 [o1
.
=o′1 andsucc1=nil ]new(o1,self )/succ1:=self

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ l1
[o2

.
=o′2 andsucc2 6=nil andsucc2=nil ]new(o2,self )/succ2:=self

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ l2
...
[om

.
=o′m andsucc1 6=nil and··· andsuccm−1 6=nil ]/new(self ,x)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lm

lm
/x .success(self ,x)−−−−−−−−−−→−−−−−−−−−−→ lend

As before, we assume that the transition from the locationsl0 are executed
atomically. By construction, an instance ofISuccess will be created only after
all events of each cluster in the tracet have occurred. Its identity is stored inx
and the creator moves in a location from where it calls the operationsuccess of
x . SinceISuccess is the only required interface ofC ⊕ C2, the latter call will
generate the only observable evente.sucess(i , e), wheree ∈ Obj (ISuccess)
andi ∈ Obj (ICluster).

Full abstraction: By construction it follows that(C ⊕ C1)↓↓. Furthermore, by
construction(C ⊕C2)↓↓ impliest ∈ Ta(C2). The latter follows basically because
the contextC forcesC2 to behave ast up-to the closure conditions.

7 Conclusion

We have presented a semantics specification of the behavior of UML compo-
nents that is fully abstract with respect to may equivalence. To focus on the
semantic issues involved we have chosen for simplified version of UML class
diagrams, object diagrams, state machines and components. However the con-
cepts used are first step towards a semantic approach integrating the several di-
agrams present in UML. We have applied similar techniques to an extension of
the concurrent object calculus with classes [3] and to a sequential object calcu-
lus with classes [4]. Both calculi do not consider class inheritance. In fact, and
contrary to [15], we do not believe that our result can be applied to an object
calculus with inheritance because of the fragile base class problem [20].

Our full abstraction result relies on the static class variables for the construc-
tion of the behavior to be associated with a class. The are the key mechanism
that allows an object to select its own predestined behavior among those of all



instances of a class. Without them we do not know how to construct the behav-
ioral specification of a class from the set of behavior of all its instances. One
possibility that we have explored [4] in the context of the object calculus with
classes [2], is to restrict it to sequential objects.

The results introduced in this paper are robust enough to support an exten-
sion of the state-machine with class name passing, allowing processes to create
instances of classes known only at run-time, a form of very late binding typi-
cal of component-based systems [21]. Further work is needed for extensions of
our result to support more advanced features like inheritance hierarchies, and
dynamic class allocation. The first will introduce another way to cross the com-
ponent borderline, whereas dynamic allocation of behavior to classes (e.g., as
studied in [12]) will make this borderline dynamic.

References

1. M. Abadi and L. Cardelli.A Theory of Objects. Springer-Verlag, 1996.
2. E. Ábrah́am, M.M. Bonsangue, F.S. de Boer, and M. Steffen. A Structural Operational

Semantics for a Concurrent Class Calculus. Tech. rep. 0307 of the Univ. of Kiel, 2003.
3. M. Steffen, E.Ábrah́am, M.M. Bonsangue, F.S. de Boer. Object Connectivity and Full

Abstraction for a Concurrent Calculus of Classes InProc. ICTAC 2004, vol 3704 of LNCS,
pp. 38-52. Springer, 2005.

4. E. Ábrah́am, M.M. Bonsangue, F.S. de Boer, A. Grüner, and M.Steffen. Observability,
connectivity, and replay in a sequential calculus of classes. Submitted for publication.

5. F.S. de Boer, M.M. Bonsangue, and J. Guillen-Scholten. Components: From object to
mobile channels. In H. Jifeng and Z. Liu (eds.),Mathematical Frameworks for Component
Software – Models for Analysis and Synthesis, The World Scientific, 2005.

6. M. Boreale, R. De Nicola, and R. Pugliese. Trace and Testing Equivalence on Asyn-
chronous Processes.Information and Computation, 172(2):139-164, 2002.

7. M. Boreale and R. de Nicola. Testing equivalence for mobile processes.Information and
Computation, 120:279–303, 1995.

8. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes.Journal of the ACM, 31(3):560–599, 1984.

9. K. Bruce. Foundations of Object-Oriented Languages: Types and Semantics. The MIT
Press, 2002.

10. T. Clark, A. Evans, and E. Kent. The metamodelling language calculus: foundation seman-
tics for UML. In Proc. FASE 2001, vol.2029 of LNCS pp. 17–31, Springer 2001.

11. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal seman-
tics of concurrency and communication in Real-Time UML InProc. FMCO 2002, vol.
2582 of LNCS, Springer 2003.

12. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dynamic
object re-classification: Fickle II.ACM ToPLaS24(2):153–191, 2002.

13. M. Hennessy. A fully abstract denotational semantics for theπ-calculus. Theoretical
Computer Science, 278(2):53-89, 2002.

14. M. Hennessy and R. de Nicola. Testing equivalence for processes.Theoretical Computer
Science, 34:83-133, 1984.

15. A. Jeffrey and J. Rathke. A Fully Abstract May Testing Semantics for Concurrent Objects.
In Proc. of the 17th LICS, pp. 101-112. IEEE Computer Society Press, 2002.



16. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.Information and
Computation, 100(1):1–77, 1992.

17. Object Management Group,UML 2.0 Superstructure (Final Adopted specification). Doc-
ument – ptc/03-08-02, August 2004.

18. G.Övergaard Formal Specification of Object-Oriented Meta-Modelling. InProc. FASE
2000, vol. 1783 of LNCS, Springer 2000.

19. B. Pierce.Types and Programming Languages. The MIT Press, 2002.
20. A. Snyder. Encapsulation and inheritance in object-oriented programming. InProc. OOP-

SLA, pp. 38–45, SIGPLAN Notices 21:11, 1986.
21. C. Szyperski, D. Gruntz and S. MurerComponent Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, second edition, 2002.


