
INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK

LEHRSTUHL FÜR SOFTWARETECHNOLOGIE

A Hoare Logic for Monitors in Java

Erika Ábrahám
Frank S. de Boer

Willem-Paul de Roever
Martin Steffen

Bericht Nr. TR-ST-03-1

April 2003

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

A Hoare Logic for Monitors in Java?

April 4, 2003

Erika Ábrahám1, Frank S. de Boer2,
Willem-Paul de Roever1, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 CWI Amsterdam, The Netherlands

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model includes shared-
variable concurrency via instance variables, coordination via reentrant
synchronization monitors, synchronous message passing, and dynamic
thread creation.
To reason about safety-properties of multithreaded programs, we intro-
duce in this paper a tool-supported assertional proof method for JavaMT

(“Multi-Threaded Java”), a small concurrent sublanguage of Java, cover-
ing the mentioned concurrency issues as well as the object-based core of
Java, i.e., object creation, side effects, and aliasing, but leaving aside in-
heritance and subtyping. We show soundness and relative completeness
of the proof method.

? Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).

Table of Contents

1 Introduction . 2
2 The programming language JavaMT . 4

2.1 Introduction . 4
2.2 Abstract syntax . 4
2.3 Semantics . 8

2.3.1 States and configurations . 8
2.3.2 Operational semantics . 11
2.3.3 Representation of states in PVS . 13

3 The assertion language . 15
3.1 Syntax . 16
3.2 Semantics . 17
3.3 Substitution operations . 19

4 The proof system . 20
4.1 Proof outlines . 21

4.1.1 Augmentation . 21
4.1.2 Annotation . 26

4.2 Verification conditions . 27
4.2.1 Initial correctness . 28
4.2.2 Local correctness . 30
4.2.3 The interference freedom test . 32
4.2.4 The cooperation test . 39

5 Soundness and completeness . 45
5.1 Soundness . 46
5.2 Completeness . 48

6 Conclusion . 51
References . 53

A Examples . 56
B Proofs . 56

B.1 Properties of substitutions and projection . 56
B.2 Soundness . 59

B.2.1 Invariant properties . 59
B.2.2 Proof of the soundness theorem . 62

B.3 Completeness . 67

1 Introduction

The semantical foundations of Java [18] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [6, 38, 14]). The research
concerning Java’s proof theory mainly concentrated on various aspects of se-
quential sub-languages (see e.g. [24, 42, 35]). In [4] a sound and complete proof
system is presented for Java’s reentrant multithreading concept. In this paper we

Introduction 3

illustrate how information about other mechanisms can be incorporated in the
proof system by means of auxiliary variables which describe the corresponding
flow of control: We describe an extension of the proof system to monitor syn-
chronization. We introduce an abstract programming language JavaMT, a subset
of Java, featuring dynamic object creation, method invocation, object references
with aliasing, and, specifically, concurrency and Java’s monitor discipline.

The behavior of a JavaMT program results from the concurrent execution
of methods. To support a clean interface between internal and external object
behavior, JavaMT does not allow qualified references to instance variables. As a
consequence, shared-variable concurrency is caused by simultaneous execution
within a single object, only, but not across object boundaries. In order to capture
program behavior in a modular way, the assertional logic and the proof system
are formulated in two levels, a local and a global one. The local assertion lan-
guage describes the internal object behavior. The global behavior, including the
communication topology of the objects, is expressed in the global language. As
in the Object Constraint Language (OCL) [43], properties of object-structures
are described in terms of a navigation or dereferencing operator.

The assertional proof system for verifying safety properties of JavaMT is for-
mulated in terms of proof outlines [30], i.e., of programs augmented by auxiliary
variables and annotated with Hoare-style assertions [17, 21]. The satisfaction of
the program properties specified by the assertions is guaranteed by the verifica-
tion conditions of the proof system. The execution of a single method body in
isolation is captured by standard local correctness conditions, using the local as-
sertion language. Interference between concurrent method executions is covered
by the interference freedom test [30, 28], formulated also in the local language.
It has especially to accommodate for reentrant code and the specific synchro-
nization mechanism. Possibly affecting more than one instance, communication
and object creation is treated in the cooperation test, using the global language.
The communication can take place within a single object or between different
objects. As these cases cannot be distinguished syntactically, our cooperation
test combines elements from similar rules in [11] and in [28] for CSP.

Computer-support is given by the Verger (“VERification condition GEner-
atoR”) tool, taking a proof outline as input, and generating the corresponding
verification conditions as output. We use the theorem prover PVS [31] to verify
the conditions.

Overview This paper is organized as follows. Section 2 defines the syntax and
semantics of JavaMT. After introducing the assertion language in Section 3, the
main Section 4 presents the proof system, whose soundness and completeness is
shown in Section 5. The proofs of the results are included in the appendix. The
last Section 6 discusses related and future work.

4 The programming language JavaMT

2 The programming language JavaMT

In this section we introduce the language JavaMT (“Multi-Threaded Java”). We
start with highlighting the features of JavaMT and its relationship to full Java,
before formally defining its abstract syntax and semantics.

2.1 Introduction

JavaMT is a multithreaded sublanguage of Java. Programs, as in Java, are given
by a collection of classes containing instance variable and method declarations.
Instances of the classes, i.e., objects, are dynamically created, and communicate
via method invocation, i.e., synchronous message passing. As we focus on a proof
system for the concurrency aspects of Java, all classes in JavaMT are thread
classes in the sense of Java: Each class contains a start-method that can be
invoked only once for each object, resulting in a new thread of execution. The
new thread starts to execute the user-defined run-method of the given object
while the initiating thread continues its own execution.

As a mechanism of concurrency control, methods can be declared as syn-
chronized. Each object has a lock which can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread which owns
the lock of that object. If the thread does not own the lock, it has to wait until
the lock gets free. If a thread owns the lock of an object, it can recursively invoke
several synchronized methods of that object. This corresponds to the notion of
reentrant monitors and eliminates the possibility that a single thread deadlocks
itself on an object’s synchronization barrier.

Besides mutual exclusion, using the lock-mechanism for synchronized meth-
ods, objects offer the methods wait, notify, and notifyAll as means to facilitate
efficient thread coordination at the object boundary. A thread owning the lock
of an object can block itself and free the lock by invoking wait on the given ob-
ject. The blocked thread can be reactivated by another thread via the object’s
notify method; the reactivated thread must re-apply for the lock before it may
continue its execution. The method notifyAll, finally, generalizes notify in that it
notifies all threads blocked on the object.

As the static relationships between classes are orthogonal to multithread-
ing aspects, we ignore in JavaMT the issues of inheritance, and consequently
subtyping, overriding, and late-binding. For simplicity, we neither allow method
overloading, i.e., we require that each method name is assigned a unique list of
formal parameter types and a return type. In short, being concerned with the
verification of the run-time behavior, we assume a simple monomorphic type
discipline for JavaMT.

2.2 Abstract syntax

Similar to Java, the language JavaMT is strongly typed and supports class types
and primitive, i.e., non-reference types. As built-in primitive types we restrict
to integers and booleans, denoted by Int and Bool. Besides the built-in types,

The programming language JavaMT 5

the set of user-definable types is given by a set of class names C, with typical
element c. Furthermore, the language allows pairs of type t1×t2 and sequences of
type list t. Side-effect expressions without a value, i.e., methods without a return
value, will get the type Void. Thus the set of all types with typical element t is
given by the following abstract grammar:

t ::= Void | Int | Bool | c | t × t | list t

For each type, the corresponding value domain is equipped with a standard
set F of operators with typical element f. Each operator f has a unique type
t1×· · ·×tn → t and a fixed interpretation f , where constants are operators of zero
arity. Apart from the standard repertoire of arithmetical and boolean operations,
the set F of operators also contains operations on tuples and sequences like
projection, concatenation, etc.

Since JavaMT is strongly typed, all program constructs of the abstract syntax
—variables, expressions, statements, methods, classes— are silently assumed to
be well-typed, i.e., each method invoked on an object must be supported by
the object, the types of the formal and actual parameters of the invocation must
match, etc. In other words, we work with a type-annotated abstract syntax where
we omit the explicit mentioning of types when no confusion can arise.

For variables, we notationally distinguish between instance and local vari-
ables. Instance variables are always assumed to be private in JavaMT. They hold
the state of an object and exist throughout the object’s lifetime. Local variables
are stack-allocated; they play the role of formal parameters and variables of
method definitions and only exist during the execution of the method to which
they belong. The set of variables Var = IVar ∪̇ TVar with typical element y is
given as the disjoint union of the instance and the local (temporary) variables.
Var t denotes the set of all variables of type t, and correspondingly for IVar t

and TVar t. As we assume a monomorphic type discipline, Var t ∩ Var t′ = ∅ for
distinct types t and t′. We use x, x′, x1, . . . as typical elements from IVar , and
u, v, u′, v1, . . . as typical elements from TVar .

The abstract syntax is summarized in the Table 1. It slightly differs from
the Java syntax: For example, we use := to build assignments instead of Java’s
=, while we use = for equality instead of ==, and write conditional expressions
in the form if e1 then e2 else e3 fi instead of (e1?e2 : e3). Though we use the
abstract syntax for the theoretical part of this work, the Verger tool supports
Java syntax.

Basic constructs Besides using instance and local variables, expressions exp ∈
Exp are built from this, null, and from subexpressions using the given operators.
We will use e as typical element for expressions, and Expt

m,c to denote the set of
well-typed expressions of type t in method m ∈ M of class c ∈ C, where M is an
infinite set of method names containing start, run, wait, notify, and notifyAll. The
sets Expt and Expm,c are defined correspondingly. The expression this is used
for self-reference within an object, and null is a constant representing an empty
reference.

6 The programming language JavaMT

To support a clean interface between internal and external object behavior,
JavaMT does not allow qualified references to instance variables. As a conse-
quence, shared-variable concurrency is caused by simultaneous execution within
a single object, only, but not across object boundaries.

As statements stm ∈ Stm , we allow assignments, object creation, method
invocation, and standard control constructs like sequential composition, condi-
tional statements, and iteration. We refer by Stmm,c to the set of statements in
method m of class c, and write ε for the empty statement.

A method definition consists of a method name m, a list of formal parameters
u1, . . . , un, and a method body bodym,c of the form stm; return eret . The set
Methc contains the methods of class c. To simplify the proof system we require
that method bodies are terminated by a single return statement return eret , giving
back the control and possibly a return value. Additionally, methods are decorated
by a modifier modif distinguishing between non-synchronized and synchronized
methods.3 We use sync(c, m) to state that method m in class c is synchronized.
In the sequel we also refer to statements in the body of a synchronized method
as being synchronized.

A class is defined by its name c and its methods, whose names are assumed
to be distinct. As mentioned earlier, each class contains the methods start and
run. These methods serve to launch a thread, where run contains the actual body
of the thread, and start is a “wrapper” around run which allows the initiator of
the thread to asynchronously continue after setting off the execution of the new
thread. The run-method cannot be invoked directly.

A program, finally, is a collection of class definitions having different class
names, where classmain defines by its run-method the entry point of the pro-
gram execution. We call the body of the run-method of the main class the main
statement of the program. In Java, the entry point of a program is given by the
main-method of the main class. Relating the abstract syntax to that of Java,
we assume that the main-method of JavaMT programs creates an instance of the
main class, starts its thread, and terminates. The reason to make this restriction
is, that Java’s main-method is static, but our proof system does not support
static methods and variables.

The set of instance variables IVarc of a class c is implicitly given by the set
of all instance variables occurring in that class. Correspondingly for methods,
the set of local variables TVarm,c of a method m in class c is given by the set
of all local variables occurring in that method.

Thread coordination Besides the user-definable methods, we consider the pre-
defined ones start, wait, notify, and notifyAll. The start-method is not implemeted
syntactically; see the next section for its semantics. The definition of the monitor
methods wait, notify, and notifyAll uses the auxiliary statements !signal, !signal all,
?signal, and returngetlock . All three methods are non-synchronized, parameterless,
and without a return value. They can be used to block and reactivate threads at

3
Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.

The programming language JavaMT 7

exp ::= x | u | this | null | f(exp, . . ., exp)
expret ::= ε | exp

stm ::= x := exp | u := exp | u := newc

| u := exp.m(exp, . . ., exp) | exp.m(exp, . . ., exp)
| ε | stm ; stm | if exp then stm else stm fi | while exp do stm od . . .

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm; return expret}
meth run ::= nsync run(){ stm ; return }

class ::= c{meth . . .meth meth run methpredef }
classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 1. JavaMT abstract syntax

the object boundary, as informally described in Section 2.1. Java’s Thread class
additionally support methods for suspending, resuming, and stopping a thread,
but they are deprecated and thus not considered here.

methpredef ::= meth start methwait methnotify methnotifyAll

methwait ::= nsync wait(){ ?signal; returngetlock }
methnotify ::= nsync notify(){ !signal ; return }

methnotifyAll ::= nsync notifyAll(){ !signal all; return }

Table 2. JavaMT predefined methods

Restrictions Besides the mentioned simplifications on the type system, we
impose for technical reasons the following restrictions on the language: We re-
quire that method invocation and object creation statements contain only local
variables, i.e., that none of the expressions e0, . . . , en in a method invocation
e0.m(e1, . . . , en) contains instance variables. Furthermore, formal parameters
must not occur on the left-hand side of assignments. These restrictions imply
that during the execution of a method the values of the actual and formal pa-
rameters are not changed. Finally, the result of an object creation or method
invocation statement may not be assigned to instance variables. This restriction
allows for a proof system with separated verification conditions for interference
freedom and cooperation. It should be clear that it is possible to transform a
program to adhere to this restrictions at the expense of additional local variables
and thus new interleaving points.

Example 1. The following class implements a simple account, offering interfaces
for deposit and withdraw. To assure that the balance x remains non-negative, the

8 The programming language JavaMT

withdraw method is synchronized; implicitly, the balance does not get decreased
between the evaluation of x >= i and the withdrawing. We will use this program
to demonstrate the proof system: We show that for each class instance, under
the assumption, that the methods deposit and withdraw are called with positive
parameters only, the balance x has always a non-negative value.

public class Account {
private int x;

private void change_balance (int i){
x = x+i;

}

public void deposit(int i){
change_balance (i);

}

public synchronized void withdraw (int i){
if (x>=i) { change_balance (-i); }

}
}

2.3 Semantics

In this section, we define the operational semantics of JavaMT, especially, the
mechanisms of multithreading, dynamic object creation, method invocation, and
coordination via synchronization. After introducing the semantic domains, we
describe states and configurations in the following section. The operational se-
mantics is presented in Section 2.3.2 by transitions between program configura-
tions. Section 2.3.3 shows how states are represented in PVS.

2.3.1 States and configurations To give semantics to the expressions, we
first fix the domains Val t of the various types t. Let Val Int and ValBool denote the
set of integers and booleans, Val list t be finite sequences over values from Val t,
and let Val t1×t2 stand for the product Val t1×Val t2 . For class names c ∈ C, the set
Valc with typical elements α, β, . . . denotes an infinite set of object identifiers,
where the domains for different class names are assumed to be disjoint. For
each class name c, nullc /∈ Valc represents the value of null in the corresponding
type. In general we will just write null , when c is clear from the context. We
define Valcnull as Valc ∪̇ {nullc}, and correspondingly for compound types. The
set of all possible non-nil values

⋃

t Val t is written as Val , and Valnull denotes
⋃

t Val tnull .
Let Init : Var → Valnull be a function assigning the initial value of type t

to each variable y ∈ Var t, i.e., null , false , and 0 for class, boolean, and integer
types, respectively, and analogously for compound types, where sequences are
initially empty. We define this /∈ Var , such that the self-reference is not in the
domain of Init .

The configuration of a program consists of all currently executing threads to-
gether with the set of existing objects and the values of their instance variables

The programming language JavaMT 9

(cf. Figure 1). Before formalizing the global configurations of a program, we de-
fine local states and local configurations. In the sequel we identify the occurrence
of a statement in a program with the statement itself.

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Global configuration

execution
Method

Object

Thread

Fig. 1. Global configuration

A local state τ ∈ Σloc of a thread holds the values of its local variables and
is modeled as a partial function of type TVar ⇀ Valnull . We use the notation
τm,c to refer to a local state of a thread executing method m of an instance of
class c. The initial local state τinit or τm,c

init assigns to each local variable u from
its domain the value Init(u).

A local configuration (α, τ, stm) of a thread executing within an object α 6=
null specifies, in addition to its local state τ , its point of execution represented
by the statement stm. A thread configuration ξ is a stack of local configurations
(α0, τ0, stm0)(α1, τ1, stm1) . . . (αn, τn, stmn), representing the chain of method
invocations of the given thread. We write ξ ◦ (α, τ, stm) for pushing a new local
configuration onto the stack.

The state of an object is characterized by its instance state σinst ∈ Σinst of
type IVar ∪̇ {this} ⇀ Valnull which assigns values to the self-reference this and
to instance variables.4 We write σc

inst to denote instance states assigning values
to the instance variables of class c, i.e., σc

inst is of type IVar c ∪̇ {this} → Valnull .

4 In Java, this is a “final” instance variable, which for instance implies, it cannot be
assigned to.

10 The programming language JavaMT

The initial instance state σinit
inst or σc,init

inst assigns a value from Valc to this, and to
each of its remaining instance variables x the value Init(x). The semantics will
maintain σc

inst (this) ∈ Valc as invariant.
A global state σ ∈ Σ stores for each currently existing object its instance state

and is modeled as a partial function of type (
⋃

c∈C Valc) ⇀ Σinst . The set of
existing objects of type c in a state σ is given by Valc(σ), and Valcnull (σ) is defined
by Valc(σ) ∪̇ {nullc}. For the built-in types Int and Bool we define Val t(σ)
and Val tnull (σ), independently of σ, as the set of pre-existing values Val Int and
ValBool, respectively. For compound types, Val t(σ) and Val tnull (σ) are defined
correspondingly. We refer to the set

⋃

t Val t(σ) by Val (σ); Valnull (σ) denotes
⋃

t Val tnull (σ). The instance state of an object α ∈ Val (σ) is given by σ(α) with
the invariant property σ(α)(this) = α. We say that objects α ∈ Val (σ) exists
in σ, and we throughout require that, given a global state, no instance variable
in any of the existing objects refers to a non-existing object, i.e., σ(α)(x) ∈
Valnull (σ) for all α ∈ Valc(σ). This will be an invariant of the operational
semantics of the next section.

A global configuration 〈T, σ〉 consists of a set T of thread configurations of
the currently executing threads, together with a global state σ describing the
currently existing objects. Analogously to the restriction on global states, we
require that local configurations (α, τ, stm) in 〈T, σ〉 refer only to existing object
identities, i.e., α ∈ Val (σ) and τ(u) ∈ Valnull (σ) for all variables u from the
domain of τ ; again this will be an invariant of the operational semantics. In the
following, we write (α, τ, stm) ∈ T if there exists a local configuration (α, τ, stm)
within one of the execution stacks of T .

Expressions e ∈ Expm,c are evaluated with respect to an instance local state
(σc

inst , τ
m,c) ∈ Σinst × Σloc. The semantic function [[]]E : (Σinst × Σloc) →

(Exp ⇀ Valnull), shown in Table 3, evaluates in the context of an instance
local state (σinst , τ) expressions containing variables from dom(σinst)∪ dom(τ):
Instance variables x and local variables u are evaluated to σinst (x) and τ(u),
respectively; this evaluates to σinst (this), and null has the null -reference as value,
where compound expressions are evaluated by homomorphic lifting.

[[x]]
σinst ,τ

E
= σinst (x)

[[u]]
σinst ,τ

E
= τ (u)

[[this]]
σinst ,τ

E
= σinst (this)

[[null]]
σinst ,τ

E
= null

[[f(e1, . . . , en)]]
σinst ,τ

E
= f([[e1]]

σinst ,τ

E
, . . . , [[en]]

σinst ,τ

E
)

Table 3. Expression evaluation

We denote by τ [u 7→ v] the local state which assigns the value v to u and agrees
with τ on the values of all other variables. The semantic update σinst [x 7→ v] of in-

The programming language JavaMT 11

stance states is defined analogously. Correspondingly for global states, σ[α.x 7→ v]
denotes the global state which results from σ by assigning v to the instance
variable x of object α. We use these operators analogously for simultaneously
setting the values of vectors of variables. We use τ [~y 7→~v] also for arbitrary vari-
able sequences, where instance variables are untouched, i.e., τ [~y 7→~v] is defined
by τ [~u 7→~vu], where ~u is the sequence of the local variables in ~y and ~vu the cor-
responding value sequence. Similarly, for instance states, σinst [~y 7→~v] is defined
by σinst [~x 7→~vx] where ~x is the sequence of the instance variables in ~y and ~vx the
corresponding value sequence. The semantics of σ[α.~y 7→~v] is analogous. Finally
for global states, σ[α 7→σinst] equals σ except on α; note that in case α /∈ Val (σ),
the operation extends the set of existing objects by α, which has its instance
state initialized to σinst .

2.3.2 Operational semantics The operational semantics of JavaMT is given
inductively by the rules of Tables 4 and 5 as transitions between global con-
figurations. Before having a closer look at the semantical rules for the transi-
tion relation −→, let us start by defining the starting point of a program. The
initial configuration 〈T0, σ0〉 of a program satisfies dom(σ0) = {α}, σ0(α) =
σc,init
inst [this 7→α], and T0 = {(α, τ run,c

init , body run,c)}, where c is the main class, and
α ∈ Valc.

We call a configuration 〈T, σ〉 of a program reachable iff there exists a com-
putation 〈T0, σ0〉−→∗〈T, σ〉 such that 〈T0, σ0〉 is the initial configuration of the
program and −→∗ the reflexive transitive closure of −→. A local configuration
(α, τ, stm) ∈ T is enabled in 〈T, σ〉, if the statement stm can be executed at the
current point, i.e., if there is a computation step 〈T, σ〉 → 〈T ′, σ′〉 executing stm
in the local state τ and object α.

Assignments to instance or local variables update the corresponding state
component, i.e., either the instance state or the local state (cf. rules Assinst

and Assloc). Object creation by u := newc as shown in rule New creates a new
object of type c with a fresh identity stored in the local variable u, and initializes
its instance variables. Invoking a method extends the call chain by a new local
configuration (cf. rule Call). We have a similar rule not shown in the table for
the invocation of methods without return value. After initializing the local state
and passing the parameters, the thread begins to execute the method body. The
condition sync(c, m) → ¬owns(T, β) expresses that a synchronized method of
an object can be invoked by a thread only if no other threads holds its lock, i.e.,
if the lock is free or if the executing thread already owns it.

Threads being blocked or waiting at an object, though, temporarily relinquish
the lock. Formally, the wait set wait(T, α) of an object α is given as the set of
all stacks in T with a top element of the form (α, τ, ?signal; stm). Analogously,
we need the set notified(T, α) of threads that have been notified and trying to
get hold of the lock again: It is given as the set of all stacks in T with a top
element of the form (α, τ, returngetlock).

Thus a thread owns the lock of an object, if it currently executes some syn-
chronized methods of that object, but not its wait-method. Formally, the pred-

12 The programming language JavaMT

icate owns(ξ, α) is true iff there exists a (α, τ, stm) ∈ ξ with stm synchronized
and ξ /∈ wait({ξ}, α) ∪ notified({ξ}, α). The definition is used analogously for
sets of threads. An invariant of the semantics is that at most one thread can
own the lock of an object at a time, i.e., for all reachable 〈T, σ〉, for all ξ and ξ′

in T and α ∈ Val (σ), owns(ξ, α) and owns(ξ′, α) imply ξ = ξ′.
When returning from a method call (cf. rule Return), the callee evaluates its

return expression and passes it to the caller which subsequently updates its local
state. The method body terminates its execution and the caller can continue.

We elide the rules for the remaining sequential constructs —sequential com-
position, conditional statement, and iteration— as they are standard.

Assinst

〈T ∪̇ {ξ ◦ (α, τ, x:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ[α.x 7→[[e]]
σ(α),τ
E

]〉

Assloc

〈T ∪̇ {ξ ◦ (α, τ, u:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→[[e]]
σ(α),τ
E

], stm)}, σ〉

β ∈ Valc\Val (σ) σinst = σc,init
inst [this 7→ β] σ′ = σ[β 7→ σinst]

New

〈T ∪̇ {ξ ◦ (α, τ, u:=new
c
; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→ β], stm)}, σ

′
〉

m /∈ {start, run, wait, notify, notifyAll} modif m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E

∈ Valc(σ) τ ′ = τm,c
init [~u 7→[[~e]]

σ(α),τ
E

] sync(c, m) → ¬owns(T, β)
Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret 7→[[eret]]
σ(β),τ′

E
]

Return

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

Table 4. Operational semantics (1)

The remaining rules of Table 5 handle JavaMT’s methods for thread manip-
ulation. The invocation of a start-method brings a new thread into being (cf.
rule Callstart), thereby initializing the first activation record of a new stack.
Only the first invocation of the start-method has this effect. This is captured by
the predicate started which holds for a global configuration T and an instance
α iff there exists a stack (α0, τ0, stm0) . . . (αn, τn, stmn) ∈ T such that α = α0.

Further invocations of the start-method are without effect (cf. rule Call
skip
start).

5

A thread ends its lifespan by arriving at the end of its earliest local configura-

5 In Java an exception is thrown if the thread is already started but not yet terminated.

The programming language JavaMT 13

tion (cf. rule Returnrun), that is by returning from a run-method.6 Note that,
since the initial thread begins its execution in the initial object, according to the
definition of the started predicate, the start-method of the initial object cannot
be invoked.

The remaining three methods offer typical monitor synchronization mech-
anism at the object boundary, whose calls are described in rule Callmonitor .
In all three cases it is necessary that the caller owns the lock of the object in
question. If not, the caller will deadlock, as, once devoid of the lock, the caller
stops and will never obtain it. In contrast, the successful call of synchronized
methods as formalized by rule Call of Table 4 depends contra-positively on the
non-ownership of the lock by the rest of the program, which of course changes if
another thread gives it free again. In Java, invoking a monitor-method without
owning the lock raises an exception, which terminates the culprit thread, but
lets the rest of the program continue. In this sense, our model is faithful to the
behavior in Java.

A thread can block itself on an object whose lock it owns by invoking the
object’s wait-method, thereby relinquishing the lock and placing itself into α’s
wait set (cf. rule Callmonitor). In our formalization, this is indicated in that
the thread is about to execute the statement ?signal after successful invocation
of the wait-method. Remember that according to the predicate owns the thread
releases the lock thereby.

After having put itself on ice, the thread awaits notification to be reactivated
by another thread which invokes the notify-method of the object. The notifier
must own the lock of the object in question. The !signal-statement in the above
method thus reactivates a thread waiting for notification on the given object
(cf. rule Signal). It reactivates one of the blocked threads at least insofar as
it is given the chance to re-apply for the lock: According to rule Returnwait ,
the receiver can continue after notification in executing returngetlock only if the
lock is free. Note that the notifier does not hand over the lock to the one being
notified but continues to own it. This behavior is known as signal-and-continue
monitor discipline [9].

If there are no threads waiting on the object, then the !signal of the notifier is
without effect (rule Signalskip). The notifyAll-method generalizes notify in that
all waiting threads are notified via the !signal all-broadcast (cf. rule SignalAll).
The effect of this statement is given by setting signal (T, α) as {ξ ◦ (β, τ, stm) |
ξ ◦ (β, τ, stm) ∈ T \ wait(T, α) ∨ ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

2.3.3 Representation of states in PVS Before dealing with verification
conditions, let us have a look how objects are represented in PVS. Besides a
theory defining objects, two additional theories are generated for each class:
One defining the reference type, and one specifying the state of class instances.
In this way, the classes can use each other’s type definition without mutual
dependency.

6 The worked-off local configuration (α, τ, ε) is kept in the global configuration to
ensure that the thread of α cannot be started twice.

14 The programming language JavaMT

β = [[e]]
σ(α),τ
E

∈ Valc(σ) ¬started(T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)
Callstart

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ run,c
init , bodyrun,c)}, σ〉

β = [[e]]
σ(α),τ
E

∈ Val (σ) started(T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)
Call

skip
start

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Returnrun

〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ε)}, σ〉

m ∈ {wait, notify, notifyAll}

β = [[e]]
σ(α),τ
E

∈ Valc(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)
Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ
m,c

init , bodym,c)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ
′
, returngetlock)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm′)}, σ〉

wait(T, α) = ∅
Signalskip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 5. Operational semantics (2)

The assertion language 15

Note that we do not define states in general, but specify an arbitrary single
state. The type Object (which would in our case be the integers) is not repre-
sented, but the PVS definition specifies all objects existing in the given state.
The verification conditions should be satisfied by all states. Instead of showing
the quantification, the PVS implementation assures validity of the conditions
for the given arbitrary state. This simple representation increases the proof au-
tomation.

Example 2. For the class

class c { int x; }

Verger generates the following type definitions:

Object : THEORY
BEGIN

null : int
Object_type : NONEMPTY_TYPE = {p:PRED [int] | p(null)}

CONTAINING (LAMBDA (i:int): TRUE)
Object ?: Object_type
Object: NONEMPTY_TYPE = (Object ?) CONTAINING null
class_name : NONEMPTY_TYPE = { cn:string | cn = "c"}

CONTAINING "c"
class : [Object ->class_name]

END Object

c_type : THEORY
BEGIN

IMPORTING Object
c?: [Object ->bool] = LAMBDA (i:Object): i=null OR class

(i)="c"
c: NONEMPTY_TYPE = (c?) CONTAINING null
c_nn : TYPE = {i:c | i/= null }

END c_type

c: THEORY
BEGIN

IMPORTING c_type
x : [c_nn -> int] ...

END c

The instance state definitions are used in global conditions only. Local conditions
define the instance variables of the given object locally in the theories containing
the verification conditions. Also local variables are represented this way.

3 The assertion language

In this section we introduce assertions to specify properties of JavaMT programs.
The assertion logic consists of a local and a global sublanguage. Local assertions
describe instance local states, and are used to annotate methods in terms of their
local variables and of the instance variables of the class to which they belong.
Global assertions describe the global state, i.e., a whole system of objects and
their communication structure.

16 The assertion language

To be able to argue about communication histories, represented as lists of
objects, we add the type Object as the supertype of all classes into the assertion
language. Note that we allow this type solely in the assertion language, but not in
the programming language, thus preserving the assumption of monomorphism.

After fixing the syntax of assertions in the next section, we define its seman-
tics and provide basic substitution properties.

3.1 Syntax

In the language of assertions, we introduce a countably infinite set LVar of well-
typed logical variables with typical element z, where we assume that instance
variables, local variables, and this are not in LVar . Logical variables are used for
quantification in both the local and the global language. Besides that, they are
used as free variables to represent local variables in the global assertion language:
To express a local property on the global level, each local variable in a given local
assertion will be replaced by a fresh logical variable.

Table 6 defines the syntax of the assertion language. For readability, we use
in the theoretical part ∀z. p and ∃z. p for quantification; the Verger tool supports
quantification in jml syntax: (\forall t z ; p1 ; p2) expresses that all values z of
type t with the property p1 satisfy p2, where (\exists t z ; p1 ; p2) expresses that
there is a value z of type t with the property p1, which satisfies p2.

Local expressions expl ∈ LExp are expressions of the programming language
possibly containing logical variables. The sets LExpt

m,c, LExpt, and LExpm,c

are defined as for program expressions. In abuse of notation, we use e, e′ . . .
not only for program expressions of Table 1, but also for typical elements of lo-
cal expressions. Local assertions ass l ∈ LAss , with typical elements p, p′, q, . . . ,
are standard logical formulas over boolean local expressions; local assertions in
method m of class c form the set LAssm,c. We allow three forms of quantification
over the logical variables: Unrestricted quantification ∃z. p is solely allowed for
integer and boolean domains, i.e., z is required to be of type Int, Bool, or com-
pound types built from them. For reference types c, this form of quantification is
not allowed, as for those types the existence of a value dynamically depends on
the global state, something one cannot speak about on the local level, or more
formally: Disallowing unrestricted quantification for object types ensures that
the value of a local assertion indeed only depends on the values of the instance
and local variables, but not on the global state. Nevertheless, one can assert
the existence of objects on the local level satisfying a predicate, provided one is
explicit about the set of objects to range over. Thus, the restricted quantifica-
tions ∃z ∈ e. p or ∃z v e. p assert the existence of an element, respectively, the
existence of a subsequence of a given sequence e, for which a property p holds.

Global expressions expg ∈ GExp , with typical elements E, E′, . . . , are con-
structed from logical variables, null, operator expressions, and qualified refer-
ences E.x to instance variables x of objects E. We write GExpt for the set of
global expressions of type t. Global assertions assg ∈ GAss , with typical ele-
ments P, Q . . . , are logical formulas over boolean global expressions. Unlike the
local language, the meaning of the global one is defined in the context of a global

The assertion language 17

state. Thus unrestricted quantification is allowed for all types and is interpreted
to range over the set of existing values, i.e., the set of values Valnull (σ) in a
global configuration 〈T, σ〉.

expl ::= z | x | u | this | null | f(exp l, . . . , expl) e ∈ LExp local expressions
ass l ::= expl | ¬ass l | ass l ∧ ass l

| ∃z. ass l | ∃z ∈ expl. ass l | ∃z v expl. ass l p ∈ LAss local assertions

expg ::= z | null | f(expg, . . . , expg) | expg.x E ∈ GExp global expressions
assg ::= expg | ¬assg | assg ∧ assg | ∃z. assg P ∈ GAss global assertions

Table 6. Syntax of assertions

3.2 Semantics

Next, we define the interpretation of the assertion language. The semantics is
fairly standard, except that we have to cater for dynamic object creation when
interpreting quantification.

Logical variables are interpreted relative to a logical environment ω ∈ Ω, a
partial function of type LVar ⇀ Valnull , assigning values to logical variables.
We denote by ω[~z 7→~v] the logical environment that assigns the values ~v to
the variables ~z, and agrees with ω on all other variables. Similarly to local and
instance state updates, the occurrence of instance variables in ~z is without effect.
For a logical environment ω and a global state σ we say that ω refers only to
values existing in σ, if ω(z) ∈ Valnull (σ) for all z ∈ dom(ω). This property
matches with the definition of quantification which ranges only over existing
values and null , and with the fact that in reachable configurations local variables
may refer only to existing values or to null .

The semantic function [[]]L of type (Ω × Σinst × Σloc) → (LExp ∪ LAss ⇀
Valnull) evaluates local expressions and assertions in the context of a logical
environment ω and an instance local state (σinst , τ) (cf. Table 7). The evalua-
tion function is defined for expressions and assertions that contain only variables
from dom(ω) ∪ dom(σinst) ∪ dom(τ). The instance local state provides the con-
text for giving meaning to programming language expressions as defined by the
semantic function [[]]E ; the logical environment evaluates logical variables. An
unrestricted quantification ∃z. p with z ∈ LVar t is evaluated to true in the logical
environment ω and instance local state (σinst , τ) if and only if there exists a value
v ∈ Val t such that p holds in the logical environment ω[z 7→ v] and instance local
state (σinst , τ), where for the type t of z only Int, Bool, or compund types built
from them are allowed. The evaluation of a restricted quantification ∃z ∈ e. p
with z ∈ LVar t and e ∈ LExp list t is defined analogously, where the existence of
an element in the sequence is required. An assertion ∃z v e. p with z ∈ LVar list t

18 The assertion language

and e ∈ LExp list t states the existence of a subsequence of e for which p holds. In
the following we also write ω, σinst , τ |=L p for [[p]]

ω,σinst ,τ
L = true. By |=L p, we

express that ω, σinst , τ |=L p holds for arbitrary logical environments, instance
states, and local states.

[[z]]
ω,σinst ,τ

L
= ω(z)

[[x]]
ω,σinst ,τ

L = σinst (x)

[[u]]
ω,σinst ,τ

L
= τ (u)

[[this]]
ω,σinst ,τ

L
= σinst (this)

[[null]]
ω,σinst ,τ

L
= null

[[f(e1, . . . , en)]]
ω,σinst ,τ

L
= f([[e1]]

ω,σinst ,τ

L
, . . . , [[en]]

ω,σinst ,τ

L
)

([[¬p]]
ω,σinst ,τ

L
= true) iff ([[p]]

ω,σinst ,τ

L
= false)

([[p1 ∧ p2]]
ω,σinst ,τ

L
= true) iff ([[p1]]

ω,σinst ,τ

L
= true and [[p2]]

ω,σinst ,τ

L
= true)

([[∃z. p]]
ω,σinst ,τ

L
= true) iff ([[p]]

ω[z 7→ v],σinst ,τ

L
= true for some v ∈ Val)

([[∃z∈e. p]]
ω,σinst ,τ

L
= true) iff ([[z∈e ∧ p]]

ω[z 7→ v],σinst ,τ

L
=true for some v ∈ Valnull)

([[∃zve. p]]
ω,σinst ,τ

L
= true) iff ([[zve ∧ p]]

ω[z 7→ v],σinst ,τ

L
=true for some v ∈ Valnull)

Table 7. Local evaluation

Since global assertions do not contain local variables and non-qualified ref-
erences to instance variables, the global assertional semantics does not refer to
instance local states but to global states. The semantic function [[]]G of type
(Ω × Σ) ⇀ (GExp ∪ GAss ⇀ Valnull), shown in Table 8, gives meaning to
global expressions and assertions in the context of a global state σ and a logical
environment ω. To be well-defined, ω is required to refer only to values existing
in σ, and the expression respectively assertion may only contain free variables
from the domain of ω or σ. Logical variables, null, and operator expressions are
evaluated analogously to local assertions. The value of a global expression E.x
is given by the value of the instance variable x of the object referred to by the
expression E. The evaluation of an expression E.x is defined only if E refers
to an object existing in σ. Note that when E and E′ refer to the same object,
that is, E and E′ are aliases, then E.x and E′.x denote the same variable. The
semantics of negation and conjunction is standard. A quantification ∃z. P with
z ∈ LVar t evaluates to true in the context of ω and σ if and only if P evaluates
to true in the context of ω[z 7→ v] and σ, for some value v ∈ Val tnull (σ). Note
that quantification over objects ranges over the set of existing objects and null ,
only.

For a global state σ and a logical environment ω referring only to values
existing in σ we write ω, σ |=G P when P is true in the context of ω and σ. We
write |=G P if P holds for arbitrary global states σ and logical environments ω
referring only to values existing in σ.

The assertion language 19

[[z]]ω,σ

G
= ω(z)

[[null]]ω,σ

G
= null

[[f(E1, . . . , En)]]ω,σ

G
= f([[E1]]

ω,σ

G
, . . . , [[En]]ω,σ

G
)

[[E.x]]ω,σ

G
= σ([[E]]ω,σ

G
)(x)

([[¬P]]ω,σ

G
= true) iff ([[P]]ω,σ

G
= false)

([[P1 ∧ P2]]
ω,σ

G
= true) iff ([[P1]]

ω,σ

G
= true and [[P2]]

ω,σ

G
= true)

([[∃z. P]]ω,σ

G
= true) iff ([[P]]

ω[z 7→ v],σ
G

= true for some v ∈ Valnil(σ))

Table 8. Global evaluation

3.3 Substitution operations

The verification conditions defined in the next section involve three substitution
operations: the local, the global, and the lifting substitution. The local substi-
tution will be used to express the effect of assignments in local assertions. The
global substitution is used similarly for global assertions. The lifting substitution,
finally, allows to express local assertions in the global language.

The local substitution p[~e/~y] is the standard capture-avoiding substitution,
replacing in the local assertion p all occurrences of the given distinct variables ~y
by the local expressions ~e. We apply the substitution also to local expressions.
The following lemma expresses the standard property of the above substitution,
relating it to state-update. The relation between substitution and update for-
mulated in the lemma asserts that p[~e/~y] is the weakest precondition of p wrt.
to the assignment ~y := ~e. As for all three substitutions, the lemma is formulated
for assertions, but the same property holds for expressions.

Lemma 1 (Local substitution). For arbitrary logical environments ω and
instance local states (σinst , τ) we have

ω, σinst , τ |=L p[~e/~y] iff ω, σinst [~y 7→[[~e]]
ω,σinst ,τ
L], τ [~y 7→[[~e]]

ω,σinst ,τ
L] |=L p .

The effect of assignments to instance variables is expressed on the global level
by the global substitution P [~E/z.~x], which replaces in the global assertion P the

instance variables ~x of the object referred to by z by the global expressions ~E. To
accommodate properly for the effect of assignments, though, we must not only
syntactically replace the occurrences z.xi of the instance variables, but also all
their aliases E′.xi, when z and the result of the substitution applied to E′ refer
to the same object. As the aliasing condition cannot be checked syntactically,
we define the main case of the substitution by a conditional expression [8]:

(E′.xi)[~E/z.~x] = (if E′[~E/z.~x] = z then Ei else (E′[~E/z.~x]).xi fi) .

The substitution is extended to global assertions homomorphically. We will also
use the substitution P [~E/z.~y] for arbitrary variable sequences ~y possibly con-
taining logical variables, whose semantics is defined by the simultaneous substi-
tutions [~Ex/z.~x] and [~Eu/~u], where ~x and ~u are the sequences of the instance

20 The proof system

and local variables of ~y, and ~Ex and ~Eu the corresponding subsequences of ~E; if
only logical variables are substituted, we simply write P [~E/~u]. That the substi-
tution accurately catches the semantical update, and thus represents the weakest
precondition relation, is expressed by the following lemma:

Lemma 2 (Global substitution). For arbitrary global states σ and logical
environments ω referring only to values existing in σ we have

ω, σ |=G P [~E/z.~y] iff ω′, σ′ |=G P ,

where ω′ = ω[~y 7→[[~E]]ω,σ
G] and σ′ = σ[[[z]]ω,σ

G .~y 7→[[~E]]ω,σ
G].

To express a local property p in the global assertion language, we define
the substitution p[z/this] by simultaneously replacing in p all occurrences of
the self-reference this by the logical variable z, which is assumed not to occur
in p. For notational convenience we view the local variables occurring in the
global assertion p[z/this] as logical variables. Formally, these local variables are
replaced by fresh logical variables. We write P (z) for p[z/this], and similarly
for expressions. The substitution replaces all occurrences of the self-reference
this by z, and transforms all occurrences of instance variables x into qualified
references z.x. For unrestricted quantifications (∃z′. p)[z/this] the substitution
applies to the assertion p. Local restricted quantifications are transformed into
global unrestricted ones where the relations ∈ and v are expressed at the global
level as operators. The main cases of the substitution are defined as follows:

this[z/this] = z

x[z/this] = z.x

u[z/this] = u

(∃z′. p)[z/this] = ∃z′. p[z/this]

(∃z′ ∈ e. p)[z/this] = ∃z′. (z′ ∈ e[z/this] ∧ p[z/this])

(∃z′ v e. p)[z/this] = ∃z′. (z′ v e[z/this] ∧ p[z/this]) ,

where z 6= z′ in the cases for existential quantification.
This substitution will be used to combine properties of instance local states

on the global level. The substitution [z/this] preserves the meaning of local as-
sertions, provided the meaning of this and the local variables ~u is matchingly
represented by ω:

Lemma 3 (Lifting substitution). Let σ be a global state, ω and τ a logical
environment and local state, both referring only to values existing in σ. Let fur-
thermore p be a local assertion containing local variables ~u. If τ(~u) = ω(~u) and
z a fresh logical variable, then

ω, σ |=G p[z/this] iff ω, σ(ω(z)), τ |=L p .

4 The proof system

This section presents the assertional proof system to reason about JavaMT pro-
grams, formulated in terms of proof outlines [30, 16], i.e., where Hoare-style pre-

The proof system 21

and postconditions [17, 21] are associated with each control point. The proof sys-
tem has to accommodate for dynamic object creation, shared-variable concur-
rency, aliasing, method invocation, synchronization, and, especially, the monitor
concept.

The following section defines how to augment and annotate programs to proof
outlines, before Section 4.2 describes the proof method.

4.1 Proof outlines

4.1.1 Augmentation For a complete proof system it is necessary that the
transition semantics of JavaMT can be encoded in the assertion language. As the
assertion language reasons about the local and global states, we have to aug-
ment the program with fresh auxiliary variables to represent information about
the control points and stack structures within the local and global states. An
augmentation extends a program by atomically executed multiple assignments
~y := ~e to auxiliary variables, which we call observations. Furthermore, the ob-
servations have, in general, to be “attached” to statements they observe in a
non-interleavable manner. This is syntactically represented using the special
comment /∗1〈~y := ~e〉∗/ which attaches the observation to the preceding state-
ment. As method calls u := e0.m(~e) conceptually consist of two steps —handing
over the parameters and reception of the result being stored in u— we need an
additional form to observe atomically the reception of the return value. This
form is represented as /∗2〈~y := ~e〉∗/ . A stand-alone observation not attached to
any statement is written as /∗〈~y := ~e〉∗/ ; it can be inserted at any point in the
program. For readability, in the following we use the shortcuts 〈stm〉 , 〈stm〉1 ,
and 〈stm〉2 for /∗〈stm〉∗/ , /∗1〈stm〉∗/ , and /∗2〈stm〉∗/ .

Formally, assignments y := e of the program can be extended to multiple
assignments y := e; 〈~y′ := ~e ′

〉1 by inserting additional assignments to distinct
auxiliary variables ~y′, which are executed simultaneously with the program state-
ment. Besides the above extension of already occurring assignments, additional
multiple assignments 〈~y′ := ~e ′

〉 to auxiliary variables can be inserted at any
point in the program. Object creation can be observed by

u := newc; 〈~y := ~e; 〉1 .

Object creation and its observation are executed atomically in one computation
step and in this order; the execution is not simultaneous, in order to allow to
observe the identity of the new object.

An observation ~y1 := ~e1 of a call u := e0.m(~e) and the observation ~y4 := ~e4

of the reception of a return value are indicated by

u := e0.m(~e); 〈~y1 := ~e1; 〉1 〈~y4 := ~e4; 〉2 .

Similarly for the callee, the observation ~y2 := ~e2 of the reception of a call invoking
method m and the observation ~y3 := ~e3 of its return are indicated by extending
the body stm; return uret of m to

〈~y2 := ~e2; 〉1 stm; return uret ; 〈~y3 := ~e3; 〉1 .

22 The proof system

The augmentation does not influence the control flow of the program but enforce
a particular scheduling policy. An assignment statement and its observation are
executed simultaneously. Object creation and its observation are executed in a
single computation step, in this order. For method call, communication, sender,
and receiver observations are executed in a single computation step, in this order.
I.e., they are executed atomically in the sense that they cannot be interleaved
by other threads. Points which can be interleaved we call control points. Points
between communication and its observation cannot be interleaved; we call them
auxiliary points.

The proof system defines conditions which should hold for all simultaneously
executed assignments. To collect these cases, in the following we will use multi-
ple assigments ~y := ~e to denote an assignment statement with its observation,
an unobserved assignment, an alone-standing observation, or an observation of
communication or object creation.

In [4] we allowed that in a self-communication both the caller and the callee
may change the instance state. This complicated the proof system, especially the
interference freedom test. Here we avoid this complication in that we require that
the observation on the caller side in a self-communication may not change the
values of instance variables. Formally, each observation of a method invocation
statement e0.m(~e) assigning a new value to an instance variable must have the
form x := if e0 = this then x else e fi. Invoking the start-method by a self-call is
specific in that, when the thread is already started, the caller is the only active
entity (cf. rule Call

skip
start). In this case, it has to be the caller that updates

the instance state; the corresponding observation has the form x := if e0 =
this ∧ ¬started then x else e fi.

Example 3. Extending an assignment x := e to x := e; 〈u := x; 〉1 stores the
value of x prior to the execution of x := e in the auxiliary variable u.

Extending the assignment x := e to x := e; 〈u := x; 〉 stores the value of x in
u after the execution of x := e.

Example 4. We can store the number objects created by an instance in an auxil-
iary instance variable n of type Int by extending each object creation statement
u := new in the given class to u := new 〈n := n + 1; 〉1 .

Example 5. We extend Example 4 by additionally extending each call u :=
e0.m(~e) with m 6= start in c to u := e0.m(~e); 〈m := n; 〉1 〈m := n − m; 〉2 .
Then the value of m after method call, but before return stores the number
of objects created up to the call; after return, it stores the number of objects
created during the method evaluation.

Example 6. Let k of type Int be an auxiliary instance variable of class c. We
can count the number of local configurations executing in an instance of c
by extending the body stm; return eret of each method in class c to 〈k = k +
1; 〉1 stm; return eret ; 〈k = k − 1; 〉1

The proof system 23

The above examples show how to count objects, local configurations in an
object, etc. But those informations are not sufficient for a complete proof sys-
tem: We have to be able to identify those entities. In the following we define
some specific auxiliary variables, which we will use to formulate the verification
conditions.They are automatically included in all augmentations; the user may
not change their values. The built-in augmentation is not visible to the user,
but the values of the built-in variables may be used in the augmentation and
annotation.

An important point of the proof system is the identification of communicating
objects and threads. Roughly speaking, the local state of the execution of a
method must represent information about the caller object to distinguish self-
calls from others. Additionally, information about its thread membership and
an object-unique identification is needed, to detect local configurations in caller-
callee relationship and reentrant calls.

We identify a thread by the object in which it has begun its execution, i.e.,
by the self-reference of the deepest local configuration in the thread’s stack. This
identification is unique since the start-method of an object can be invoked only
once, i.e., at most one thread can begin its execution in a single object. For each
method invocation, the callee thread identity is handed over in the auxiliary
formal parameter thread of type Object. For readability, we use in the following
the type Thread = Object for the domain of thread identities.

A local configuration is identified by the object in which it executes together
with the value of its auxiliary local variable conf storing a unique object-internal
identifier. Its uniqueness is assured by the auxiliary instance variable counter, in-
cremented for each new local configuration in that object. The callee receives the
“return address” as auxiliary formal parameter caller of type Object×Int×Thread,
storing the identities of the caller object, the calling local configuration, and the
caller thread. Note that the thread identities of caller and callee are the same in
all cases but the invocation of a start-method. The run-method of the initial ob-
ject is executed with the parameters (thread, caller) = (α0, (null , 0,null)), where
α0 is the initial object.

To capture mutual exclusion and the monitor discipline, the instance variable
lock of Type Thread × Int stores the identity of the thread who owns the lock,
if any, together with the number of synchronized calls in the call chain. Its
initial value (null , 0), for which we also write free, indicates, that the lock is
free. We write thread(lock) to refer to the first component of the lock value, i.e.,
to the thread owning the lock. The instance variables wait and notified of Type
list(Thread× Int) are the analogues of the wait - and notified -sets of the semantics
and store the threads waiting at the monitor, respectively those having been
notified. Besides the thread identity, the number of synchronized calls is stored.
In other words, these variables remember the old lock-value prior to suspension
which is restored when the thread becomes active again. The boolean instance
variable started, finally, remembers whether the object’s start-method has already
been invoked. All auxiliary variables are initialized as usual.

24 The proof system

In general, the specific auxiliary variables are needed to make the global pred-
icates of the semantics expressible in the assertion language. That the variables
and the predicates match will be shown in Section 5.1 as part of the soundness.
Note that while object creation statements are observable, we do not introduce
a specific augmentation as for the communication statements. The crucial predi-
cate for object creation, the freshness-proviso, is already expressible in the global
assertion language by existential quantification over existing objects. Therefore
we do not need to prescribe a specific augmentation.

For the update of lists, which are represented in PVS by finite sequences
finseq[t] of type t, we need the following functions, whose PVS definition is
automatically generated by Verger: Given a sequence s of type finseq[t] and a
value e of type t, the function index retrieves the index of an occurrence of e in
s, if any, and gives -1 otherwise. The function choose assigns to each non-empty
sequence a non-negative integer smaller then the length of the sequence; for the
empty sequence its value is -1. The expression remove(s,i) gives s without
its ith element if 0 ≤ i ≤ |s|, and returns s otherwise. The predicate e ∈ s is
syntactically represented by includes(s,e). The function append appends an
element at the end of a sequence, and finally o concatenates two sequences. The
above functions are deterministic. The use of the specific auxiliary variables is
illustrated by the following example, where [:t1,. . .,tn:] and (:e1,. . .,en:)

define product types and tuples, and proj(s,i) gives the ith tuple element.:

Example 7. For the class

public class Annotation extends Thread{

void m1 (){}

synchronized void m2() {}

public void run(){
this .m1();
this .start();

}
}

Verger generates the following proof outline by extending the class with the
built-in augmentation:

public class Annotation extends Thread {
/* < finseq[[:Thread,int:]] wait; >*/

/* < finseq[[:Thread,int:]] notified; >*/

/* < boolean started; >*/

/* < int counter; >*/

/* < [:Thread,int:] lock; >*/

void m1(Thread thread , [: Object ,int ,Thread :] caller) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1;>*/

return;
}

The proof system 25

synchronized void m2(Thread thread , [: Object ,int ,Thread
:] caller) {

/* < int conf; >*/

/*1<conf = counter; counter = counter+1;

lock = (: thread,proj(lock ,2)+1:);>*/

return;
/*1<lock = (: proj(lock ,2) == 1 ? null : proj(lock ,1),proj(lock ,2) -1:);>

*/

}

public void run(Thread thread , [: Object ,int ,Thread :]
caller) {

/* < int conf; >*/

/*1<conf = counter; counter = counter+1; started = true;>*/

this .m1(thread , (: this ,conf ,thread :));
this .start(this , (: this ,conf ,thread :));
return;

}
}

The class is further extended with the specification of the monitor methods:

public void wait (Thread thread , [: Object ,int ,Thread :]
caller) {

/* < int conf; >*/

/*1<conf = counter; counter = counter +1;

wait = append(wait ,lock); lock = (:null ,0:);>*/

return;
/*1<lock = notified[get(notified,thread)];

notified = remove(notified,get(notified,thread));>*/

}

public void notify(Thread thread , [: Object ,int ,Thread :]
caller) {

/* < int conf; >*/

/*1<conf = counter; counter = counter+1;>*/

/*<wait = remove(wait ,choose(wait));

notified = append(notified,wait[choose(wait)]);>*/

return;
}

public void notifyAll (Thread thread , [: Object ,int ,Thread :]
caller) {

/* < int conf; >*/

/*1<conf = counter; counter = counter+1;>*/

/*<notified = o(notified,wait); wait = empty_seq ();>*/

return;
}

The user may additionally augment and annotate the monitor methods using
special comments. Note that the statements of the monitor methods, generated
by Verger, do not use the auxiliary statements !signal, !signal all, and ?signal of the
semantics. Instead we implement the wait and notify methods by means of the
auxiliary instance variables wait and notified which represent the corresponding
sets of the semantics. In the augmented wait-method both the waiting and the
notified status of the executing thread are represented by a single control point.

26 The proof system

The two statuses can be distinguished by the values of the wait and notified

variables.

4.1.2 Annotation To specify invariant properties of the system, the aug-
mented programs are annotated by attaching local assertions to each control
and auxiliary point. In Verger syntax, assertions are special comments /∗{p}∗/ ,
/∗1{p}∗/ , etc., as shown in the example below. For readability, we also use the
shortcuts {p} , {p}1 , etc. We use the triple notation {p} stm {q} and write pre(stm)
and post(stm) to refer to the pre- and the post-condition of a statement. For
assertions at auxiliary points we use the following notation: The annotation

{p0} u := new c; {p1}
1 〈y := e; 〉1 {p2}

of an object creation statement specifies p0 and p2 as pre- and postconditions,
where p1 at the auxiliary point should hold directly after object creation but
before observation. The annotation

{p0} u := e0.m(~e); {p1}
1 〈y1 := e1; 〉1 {p2}

2

{p3}
3 〈y4 := e4; 〉2 {p4}

assigns p0 and p4 as pre- and postconditions to the method invocation; p1 is
assumed to hold directly after method call, but prior to its observation; p2 de-
scribes the control point of the caller after method call and before return; finally,
p3 specifies the state directly after return but before its observation. The anno-
tation of method bodies stm; return e; is as follows:

{p1}
1 〈y2 := e2; 〉1 {p2}

stm; {p3}

return e; {p4}
1 〈y3 := e3; 〉1 {p5}

The callee postcondition of the method call is p2; the callee pre- and postcon-
ditions of return are p3 and p5. The assertions p1/p4 specify the states of the
callee between method call/return and its observation.

Besides pre- and postconditions, for each class c, the annotation defines a
local assertion Ic called class invariant, which may refer only to the instance
variables of c, and which expresses invariant properties of instances of the class.7

We require that pre(bodym,c) = Ic for all methods. Finally, a global assertion
GI called the global invariant specifies properties of communication between
objects. As such, it should be invariant under object-internal computation. For
that reason, we require that for all qualified references E.x in GI with E of type
c, all assignments to x in class c occur in the observations of communication
or object creation. Note that the global invariant is not affected by the object-
internal monitor signaling mechanism. We require that in the annotation no free
logical variables occur. An augmented and annotated program is called a proof
outline.
7 The notion of class invariant commonly used for sequential object-oriented languages

differs from our notion: In a sequential setting, it is sufficient that the class invariant
holds initially and is preserved by whole method calls, but not necessarily in between.

The proof system 27

Example 8. The following proof outline annotates the class of Example 1. Verger
allows partial annotation: unspecified assertions are true by definition. Note
the way how we define the functions owns and free for and use them in the
assertions. Note furthermore how the wait method is annotated, expressing that
it is not called, and thus the assertions do not have to be invariant under its
built-in augmentation.

1 //function definitions

2 /*{ boolean owns(Thread thread , [:Thread,int:] lock) =

3 thread!=null && thread== proj(lock ,1) }*/

4 /*{ boolean free_for(Thread thread , [:Thread,int:] lock) =

5 thread!=null && (thread==proj(lock ,1) || proj(lock ,1)== null) }*/

7 public class Account {
8 private int x;

10 /*{ x >=0 } */ // class invariant

12 /*[wait]*/ /*1{ false }*/ /*{ false }*/

13 /* < return; >*/ /*1{ false }*/ /*[]*/

15 private void change_balance (int i){
16 /*{ i>0 || (x+i >=0 && owns(thread,lock)) }*/

17 x = x+i;
18 /*{ i>0 || owns(thread,lock) }*/

19 }

21 public void deposit(int i){
22 /*{i>0}*/

23 change_balance (i);
24 }

26 public synchronized void withdraw (int i){
27 /*1{ free_for(thread,lock) }*/

28 /*{ i>0 && owns(thread,lock) }*/

29 if (x>=i) {
30 /*{ x>=i && i >0 && owns(thread,lock) }*/

31 change_balance (-i);
32 /*2{ i >0 } */

33 /*{ owns(thread,lock) }*/

34 }
35 return;
36 /*1{ owns(thread,lock) }*/

37 }
38 }

All verification conditions for the above proof outline, as introduced in the
following section, are proven by PVS automatically, using the grind strategy.

4.2 Verification conditions

The proof system formalizes a number of verification conditions which induc-
tively ensure that for each reachable configuration 〈T, σ〉 and for each local con-
figuration (α, τ, stm) in T , the precondition of the statement stm is satisfied
and the class invariants and the global invariant hold. To cover concurrency

28 The proof system

and communication, the verification conditions are grouped, as usual, into ini-
tial conditions, local correctness conditions, an interference freedom test, and a
cooperation test.

A proof outline is initially correct, if the precondition of the main statement,
the class invariant of the initial object, and the global invariant are satisfied
in the initial configuration. Local correctness ensures that local properties of a
thread are invariant under its own execution. This invariance can be guaran-
teed by local correctness conditions only if no communication or object creation
takes place, since their effect depends on the communicated values and cannot
be determined locally. They will be analyzed in the cooperation test whose con-
ditions are formalized in the global language. The invariance of local properties
of a thread can also be influenced by other threads executing in the same object
since they are sharing the same instance state. The corresponding verification
conditions are formalized in the interference freedom test.

We define cooperations tests for communication and object creation, but
we have no cooperation test for notification. As mentioned earlier, notification
takes place within a single object, and thus its effect can be captured by a single
assignment to the auxiliary variables wait and notified executed by the notifier.
Invariance for the notifying thread is covered by the local correctness conditions,
whereas preservation of the assertions for the notified partners is assured by the
interference freedom test.

Our proof method is modular in the sense that it allows for separate interfer-
ence freedom and cooperation tests. This modularity, which in practice simplifies
correctness proofs considerably, is obtained by disallowing the assignment of the
result of communication and object creation to instance variables. Clearly, such
assignments can be avoided by additional assignments to fresh local variables
and thus at the expense of new interleaving points.

Before specifying the verification conditions for a proof outline, we first list
some notation. Let Init be a syntactical operator with interpretation Init (cf.
page 8). Given IVar c as the set of instance variables of class c without the
self-reference, and z ∈ LVarc, then InitState(z) denotes the global assertion
z 6= null ∧

∧

x∈IVarc
z.x = Init(x), expressing that the object denoted by z is in

its initial instance state.
For readability, in the following definitions we will use the notation p ◦ f

with f = [~e/~y] for the substitution p[~e/~y]; we use a similar notation for global
assertions. Note that the substitution binds stronger than the logical operators.

Finally, arguing about two different local configurations makes it necessary to
distinguish between their local variables, since they may have the same names;
in such cases we will rename the local variables in one of the local states. We use
primed assertions p′ to denote the given assertion p with every local variable u
replaced by a fresh one u′, and correspondingly for expressions.

4.2.1 Initial correctness A proof outline is initially correct, if the precon-
dition of the main statement, the class invariant of the initial object, and the
global invariant are satisfied initially, i.e., in the initial global configuration after

The proof system 29

the execution of the callee observation at the beginning of the main statement.
Furthermore, the precondition of the observation should be satisfied prior to its
execution.8

Definition 1 (Initial correctness). A proof outline is initially correct, if

|=G ∀z.
(

InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) → (1)

P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit

)

, (2)

where {p2}
1 〈~y2 := ~e2〉

1 {p3} stm is the body and ~v the local variables of the run-
method of the main class, I is the class invariant of the main class, z is of the
type of the main class, and z′ ∈ LVarObject. Furthermore,

finit = [z, (null, 0, null)/thread, caller][Init(~v)/~v] , and

fobs = [~E2(z)/z.~y2] .

Example 9. For the proof outline

//global invariant

/*{(\exists Initial z1; z1!= null; (\ forall Initial z2; z2!= null; z1==z2))}*/

public class Initial extends Thread{
int x;

//class invariant

/*{ started }*/

public static void main (String [] args){
Initial obj;
obj = new Initial ();
obj.start();

}

public void run(){
int v;
/* < int u; >*/

/*1{ u==0 && v==0 && x==0 } */ // precondition of observation

/*1< u = 1; >*/ // observation of call

/*{ u==1 && v==0 && x==0 } */ // postcondition of observation

}
}

the following initial condition is generated:

FORALL (z:Initial) :
(Initial .init (z) AND
(FORALL (obj:Object) : (obj=null OR z=obj))) IMPLIES
%precondition of observation:

((0=0 AND 0=0 AND Initial.x(z)=0) AND
%global invariant:

(EXISTS (z1:Initial) : z1 /= null AND
FORALL (z2:Initial) : (z2 /= null IMPLIES z1=z2)) AND

8 We need this condition in the interference freedom test to show invariance of asser-
tions under the execution of the observation.

30 The proof system

%postcondition of observation:

(1=1 AND 0=0 AND Initial.x(z)=0) AND
%class invariant:

true)

where the init function in theory Initial is defined by

init (o:Initial): bool = (o/= null AND Initial .x(o)=0 AND
Initial .started (o)=false AND ...

4.2.2 Local correctness A proof outline is locally correct, if the usual ver-
ification conditions [10] for standard sequential constructs hold. Especially, the
precondition of an ordinary assignment, as given in the proof outline, must im-
ply its postcondition after the execution of the assignment (cf. Equation (3)).
We can additionally use validity of the class invariant, whose invariance is as-
sured by the interference freedom test. Note that using the class invariant as an
antecedent would not be necessary for a minimal proof system, since the class
invariant itself can be stated in the local assertions, also. However, it allow less
annotation. In case of notification, local correctness covers also invariance for
the notifying thread, as the effect of notification is captured by an auxiliary
assignment.

Definition 2 (Local correctness: Assignment). A proof outline is locally
correct, if for all multiple assignments {p1} ~y := ~e {p2} in class c, which is not
the observation of communication or object creation,

|=L p1 ∧ Ic → p2 ◦ fass , (3)

with fass = [~e/~y].

The conditions for loops and conditional statements are similar. Note that we
have no local verification conditions for observations of communication and ob-
ject creation. The postconditions of such statements express assumptions about
the communicated values. These assumptions will be verified in the cooperation
test.

Example 10. For the proof outline of Example 9 no local conditions are gener-
ated, since the only assignment observes communication.

Example 11. The proof outline

class Local{
public void m(){

int y;
y = 0;
/*{ y<=10 } */

while (y <10) {
/*{ y <10 } */

y = y+1;
/*{ y <=10 } */

}
/*{ y==10 } */

}
}

The proof system 31

specifies, that after the while-loop, the variable y has the value 10. The following
local conditions are generated:

%local condition for the assignment y:=0

m_0 : LEMMA (0 <=10)
% local condition for entering the loop

m_1 : LEMMA (y <=10 AND y <10) IMPLIES (y <10)
% local condition for exiting the loop

m_2 : LEMMA (y <=10 AND (NOT (y <10))) IMPLIES (y=10)
% local condition for jumping back

m_3 : LEMMA y <=10 IMPLIES y <=10
% local condition for the assignment y:=y+1

m_4 : LEMMA y <10 IMPLIES y+1 <=10

Example 12. The following proof outline is a producer-consumer example. In-
stances of the WaitSynch class have a memory obj storing a single value. A
boolean variable written, having the initial value false, remembers, if the mem-
ory is written but not yet read. If the memory is written but not yet read, pro-
ducer threads, executing the synchronized put method, suspend themselfs and
give the lock free by invoking the object’s wait-method. If a consumer thread,
executing the get-method, reads the memory, it notifies a waiting thread, and
returns. Now a producer thread can have access to write the memory. After writ-
ing, it notifies a thread, and returns. However, it can happen, that a producer
notifies a producer, in which case the notified thread should not have write ac-
cess. In this case the notified thread notifies again and suspend itself, until the
memory got read. The get method executed by consumer threads work similarly.

We show a very simple annotation satisfying the verification conditions,
which already shows correctness of the requirement, that producers write only
if the memory is not yet written at all or already read, and consumers read only
if the memory contains a new, not yet read value.9

public class WaitSynch extends Thread{

DT obj;
boolean written ;

public synchronized DT get (){
DT result;
while (! written){

try { this .wait () ; } catch (InterruptedException
e){}

if (! written){ this .notify (); }
}
/*{ written }*/

result = obj;
written = false;
this .notify ();
return result;

}

9 We don’t handle exceptions in JavaMT. However, in order to call the wait-method,
we must syntactically catch InterruptedExceptions. But, since we don’t support the
interrupt method, it cannot be thrown.

32 The proof system

public synchronized void put(DT value){
while (written) {

try { this .wait () ; } catch (InterruptedException
e){}

if (written){ this .notify () ; }
}
/*{ ! written }*/

obj = value;
written = true ;
this .notify ();
return;

}
}

class DT{}

For the above example the following local conditions are generated, expressing
that after the while-loop, its condition is false:

%local condition for exiting the loop in get

get_0 : LEMMA (NOT (NOT written)) IMPLIES written
%local condition for exiting the loop in put

put_0 : LEMMA (NOT written) IMPLIES (NOT written)

Other threads concurrently executing in the same object may influence or
interfere with the invariance of the local assertions. This is covered by the inter-
ference freedom test.

4.2.3 The interference freedom test Besides invariance of the class invari-
ants, the interference freedom test shows that local assertions at control points
are invariant under computation steps in which they are not involved.

Note that assertions at auxiliary points do not have to be invariant, since
these points are not interleavable. Furthermore, the interference freedom test
does not treat the global invariant: Inductivity for the global invariant is covered
by the cooperation test.

Since we disallow qualified references to instance variables in JavaMT, we only
have to deal with the invariance under execution within the same object. Affect-
ing only local variables, communication and object creation do not change the
instance states of the executing objects. Thus we only have to take assignments
into account. In the following, let p be an assertion at a control point, and ~y := ~e
a multiple assignment occurring in the same class, which can be an assignment
statement with its observation, an unobserved assignment, an alone-standing
observation, or the observation of communication or object creation.

Synchronized methods of a single object can be executed concurrently only
if one of the corresponding local configurations is waiting for return: If the exe-
cuting threads are different, then one of the threads is in the wait or notified set
of the object; otherwise, both executing local configurations are in the same call
chain. Thus we assume that either not both the assignment and the assertion

The proof system 33

occur in a synchronized method, or the assertion is at a control point waiting
for return.10

To avoid name clashes, we replace the local variables u in p by fresh ones
u′ resulting in p′. Using the specific auxiliary variables, we next formalize the
conditions when p has to be invariant under the assignment, namely if ~y := ~e is
executed independently of p.

If p and ~y := ~e belong to the same thread, expressed by thread = thread′, the
only assertions endangered are those at control points waiting for a return value
earlier in the current execution stack. For example, for the situation in Figure 2,
the assertion p7 is at a control point waiting for return, and it has to be invariant
under the execution of the assignment. In other words, an assignment belonging
to a reentrant code segment can affect properties of a local configuration, whose
execution is suspended earlier in the same call chain. Invariance of a local con-

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

y:=e

p

p

p

p

p

p

p

1

2

3

4

6

7

8 p9

p
5 Thread

Object

Method
execution

Fig. 2. Interference between threads

figuration under its own execution, however, need not be considered, expressed
by requiring conf 6= conf′. Referring again to the above constallation, p8 do not
have to be invariant under the assignment. Neither can the assertion interfere
with the observation of the matching return statement, because communicating
partners execute simultaneously. Applied to the above example, if the assign-
ment oberves return, then p7 do not have to be invariant under the assignment.
This requirement can be expressed by using the auxiliary variable caller, whose
value identifies the caller local configuration, and by requiring that this identity

10 This restriction is not necessary for a minimal proof system, but reduces the number
of verification conditions.

34 The proof system

is not identical to that of p, i.e., that this 6= proj(caller, 1)∨ conf′ 6= proj(caller, 2).
Collecting the above observations, we define waits for ret(p, ~y := ~e) by

– conf′ 6= conf, if p is at a control point waiting for return and ~y := ~e is not
the observation of a return statement;

– conf′ 6= conf∧(this 6= proj(caller, 1)∨conf′ 6= proj(caller, 2)) if p is at a control
point waiting for return and ~y := ~e is the observation of a return statement;

– false, otherwise.

If the assertion and the assignment belong to different threads, interference
freedom must be shown in any case except for the self-invocation of the start-
method: The precondition of such a method invocation cannot interfere with the
corresponding observation of the callee. For the above example it means, that
both p2 and p4 have to be shown invariant. To describe this setting, we define
self start(p, ~y := ~e) by caller = (: this, conf′, thread′ :) iff p is the precondition of
a method invocation e0.start(~e) and the assignment is the callee observation at
the beginning of the run-method, and by false otherwise.

Using the above assertions, we define for assertions p at control points and
assignments ~y := ~e in the same class:

interleavable(p, ~y := ~e) := thread = thread′ → waits for ret(p, ~y := ~e) ∧

thread 6= thread′ → ¬self start(p, ~y := ~e) .

The interference freedom test can now be formulated as follows.

Definition 3 (Interference freedom). A proof outline is interference free, if
for all classes c with class invariant I, and for all multiple assignments ~y := ~e
with precondition p in c,

|=L p ∧ I → I ◦ fass , (4)

with fass = [~e/~y]. Furthermore, for all assertions q at control points in c, such
that either not both p and q occur in a synchronized method, or q is at a control
point waiting for return,

|=L p ∧ q′ ∧ I ∧ interleavable(q, ~y := ~e) → q′ ◦ fass . (5)

Note that including the class invariant as an antecedent in the second part
of the definition is not necessary for a minimal proof system. However, it allows
simpler annotations: Invariant instance properties can be expressed in the class
invariant, and do not have to be included in the definition of local properties of
threads.

Especially for notification, we require also invariance of the assertions for the
notified thread. We do so, as notification is described by an auxiliary assignment
executed by the notifier. That means, both the waiting and the notified status of
the executing thread are represented by a single control point in the wait-method.
The two statuses can be distinguished by the values of the wait and notified

The proof system 35

variables. The invariance of the precondition of the return statement in the wait-
method under the assignment in the notify-method represents the notification
process, whereas invariance of that assertion over assignments changing the lock
represents the synchronization mechanism. Information about the lock variable
will be imported from the cooperation test as this information depends on the
global behavior.

In the following we apply the interference freedom test to a few examples
using Verger. Renaming is implemented by extending the name of each local
variable of the local configuration executing the assignment with 1, where the
names of local variables in the assertion get extended with 2; the names of
instance variables get the extension inst.

Verger does not generate conditions for trivial cases, for example if the as-
sertion is true by definition, or if the substitution does not change the assertion.

Example 13. For the proof outline of Example 11 no interference freedom con-
ditions are generated. Though the method can be executed concurrently, the
assertions refer to local variables only. Due to the renaming mechanism, assign-
ing a new value to the local variable y of a thread does not affect the assertions
describing the local variable y of another thread, executing the same method.

Example 14. For the proof outline of Example 12 no interference freedom con-
ditions are generated, since both methods are synchronized, and none of the
assertions are at a control point waiting for a return value.

Example 15. Invariance of the class invariant of the proof outline of Example 8
is assured by the condition

%precondition assignment

((i_1 >0 OR (x_inst+i_1 >=0 AND owns (thread_1 ,lock_inst)))
AND

%class invariant

x_inst >=0)
%class invariant after execution

IMPLIES (x_inst+i_1 >=0)

generated for the only assignment (17), which changes the balance x. That (30)
is invariant under the same assignment, is assured by the condition

%preconditions assignment

((i_1 >0 OR (x_inst+i_1 >=0 AND owns (thread_1 ,lock_inst)))
AND

%assertion

x_inst >= i_2 AND i_2 >0 AND owns (thread_2 ,lock_inst) AND
%class invariant

x_inst >= 0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(x_inst+i_1 >=i_2 AND i_2 >0 AND owns (thread_2 ,lock_inst))

36 The proof system

If i 1>0, then x inst>=i 2 implies x inst+i 1>=i 2, and the condition is satis-
fied. This case corresponds to the concurrent execution of the methods withdraw
and deposit. Otherwise, owns(thread 1,lock inst), owns(thread 2,lock inst),
and thread 1/=thread 2 lead to a contradiction. This case corresponds to the
concurrent execution of withdraw, which is not possible. The case that two
threads are concurrently executing the change balance method, is covered by
the following condition, showing that (16) is invariant under (17):

%precondition assignment

((i_1 >0 OR (x_inst+i_1 >=0 AND owns (thread_1 ,lock_inst)))
AND

%assertion

(i_2 >0 OR (x_inst+i_2 >=0 AND owns (thread_2 , lock_inst))) AND
%class invariant

x_inst >=0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(i_2 >0 OR (x_inst+i_1+i_2 >=0 AND owns (thread_2 ,lock_inst)))

The remaining conditions are all generated for invariance under changing
the lock value. We have 5 assertions at control points, which must be invariant
under entering and exiting the wait method. However, since we’ve expressed by
the annotation of the wait-method, that it is not invoked, the left-hand-side of
the generated conditions is false.

The only remaining assignments changing the lock value are the observations
at the beginning and at the end of the synchronized withdraw method, which
do not have to be invariant under its own execution. Thus only the assertions
(16) and (18) in change balance have to be shown invariant (4 conditions). For
invariance of (16) under entering the withdraw method we get the condition

%precondition assignment

(free_for (thread_1 ,lock_inst) AND
%assertion

(i_2 >0 OR (x_inst+i_2 >=0 AND owns (thread_2 , lock_inst))) AND
%class invariant

x_inst >=0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(i_2 >0 OR (x_inst+i_2 >=0 AND owns (thread_2 ,(thread_1 ,(
PROJ_2(lock_inst)+1)))))

Similarly for (18):

%precondition assignment

(free_for (thread_1 ,lock_inst) AND
%assertion

(i_2 >0 OR owns(thread_2 ,lock_inst)) AND
%class invariant

x_inst >=0 AND
%interleavable

The proof system 37

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(i_2 >0 OR owns(thread_2 ,(thread_1 ,(PROJ_2(lock_inst)+1))))

Note that the predicates free for(thread 1,lock inst), owns(thread 2,lock inst),
and thread 1/=thread 2 together lead to a contradiction. This corresponds to
the fact, that if the change balance-method was called from the withdraw-
method, then no threads can enter the synchronized withdraw-method, since the
first thread owns the lock. Finally, invariance of (16) under exiting withdraw is
assured by

%precondition assignment

(owns (thread_1 , lock_inst) AND
%assertion

(i_2 >0 OR (x_inst+i_2 >= 0 AND owns (thread_2 ,lock_inst)))
AND

%class invariant

x_inst >=0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(i_2 >0 OR (x_inst+i_2 >=0 AND owns (thread_2 ,(IF (PROJ_2(
lock_inst)=1) THEN null ELSE PROJ_1(lock_inst) ENDIF ,(
PROJ_2(lock_inst) -1)))))

and for (18) we have

%precondition assignment

(owns (thread_1 , lock_inst) AND
%assertion

(i_2 >0 OR owns(thread_2 ,lock_inst)) AND
%class invariant

x_inst >=0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(i_2 >0 OR owns(thread_2 ,(IF (PROJ_2(lock_inst)=1) THEN null
ELSE PROJ_1(lock_inst) ENDIF ,(PROJ_2(lock_inst) -1))))

In these cases, similarly to invariance under entering the withdraw method,
the predicates owns(thread 1,lock inst), owns(thread 2,lock inst), and
thread 1/=thread 2 together lead to a contradiction.

Example 16. The following example illustrates properties of the wait-method.
All conditions generated for the proof outline are proven in PVS.

1 /*{ boolean owns(Thread thread , [:Thread,int:] lock) =

2 thread!=null && proj(lock ,1)== thread }*/

3 /*{ boolean not_owns(Thread thread , [:Thread,int:] lock) =

4 thread!=null && proj(lock ,1)!= thread }*/

5 /*{ boolean free_for(Thread thread , [:Thread,int:] lock) =

6 thread!=null && (thread==proj(lock ,1) || lock==(:null ,0:)) }*/

7 /*{ boolean disjunct(finseq[[:Thread,int:]] x) =

38 The proof system

8 (\forall int i,j; 0 <=i && 0 <=j && i<length(x)&& j<length(x) && i!=j

; proj(x[i],1)!=proj(x[j],1)) }*/

10 public class WaitExample {
11 /* < finseq[[:Thread,int:]] x;>*/

13 /*{ disjunct(x) }*/ //class invariant

15 /*[wait]*/ /*1{ owns(thread,lock) }*/

16 /*{ not_owns(thread,lock) && proj(caller ,1)==this && includes(x,(:

thread,proj(caller ,2):)) }*/

17 /*<return;>*/

18 /*1{ lock==(:null ,0:) && proj(caller ,1)==this && includes(x ,(:thread

,proj(caller ,2):)) && get(notified,thread)!= -1 }*/

19 /*[]*/

21 public synchronized void m(){
22 /*1{ free_for(thread,lock) && (\ forall int i;true;! includes(x,(:

thread,i:))) }*/

23 /*1< x=append(x,(:thread,counter:)); >*/

24 /*{ owns(thread,lock) && includes(x,(:thread,conf:)) }*/

25 try { this .wait () ;} catch (InterruptedException e){}
26 /*2{ not_owns(thread,lock) && includes(x,(:thread,conf:)) }*/

27 /*{ owns(thread,lock) && includes(x,(:thread,conf:)) }*/

28 return;
29 /*1{ owns(thread,lock) && includes(x,(:thread,conf:)) }*/

30 /*1< x=remove(x,index(x,(:thread,conf:))); >*/

31 }
32 }

The wait-method can be called only by a thread owning the lock of the callee
object, as expressed by the precondition (24). After invoking wait, the thread
gives the lock free, as formalized in (26); when returning, it becomes the lock
owner again, as stated by (27).

We use the auxiliary instance variable x to store for each local configuration
executing m the thread and local configuration identities. We use this information
to identify local configurations in caller-callee relationship: We can exclude from
the interference freedom test for example the invariance of (26) under the built-in
return-observation of its callee, setting the lock owner to the identity of the exe-
cuting thread. Clearly, (26) would not be invariant under the return-observation
of its callee; caller and callee execute a common step, and the control point
of the caller moves from (26) to (27). We get the following interference freedom
condition for setup, where the case thread 1=thread 2 leads to a contradiction:

%precondition assignment

(lock_inst =(null ,0) AND PROJ_1(caller_1)=this AND includes (
x_inst ,(thread_1 ,PROJ_2(caller_1))) AND get(
notified_inst , thread_1)/=(-1) AND

%assertion

not_owns (thread_2 ,lock_inst) AND includes (x_inst ,(thread_2 ,
conf_2)) AND

%class invariant

disjunct (x_inst) AND
%interleavable

The proof system 39

(thread_1 =thread_2 IMPLIES (conf_1 /= conf_2 AND (this /=
PROJ_1(caller_1) OR conf_2 /= PROJ_2(caller_1)))) AND

(thread_1 /= thread_2 IMPLIES true)) IMPLIES
%assertion after execution

(not_owns (thread_2 ,seq(notified_inst)(get(notified_inst ,
thread_1))) AND includes (x_inst ,(thread_2 ,conf_2)))

4.2.4 The cooperation test Whereas the interference freedom test assures
invariance of assertions under steps in which they are not involved, the coop-
eration test deals with inductivity for communicating partners, assuring that
the global invariant, and the preconditions and the class invariants of the in-
volved statements imply their postconditions after the joint step. The soundness
of the proof system requires, that the precondition of an observation, used in
the interference freedom test, describes the state in which the assignment is ex-
ecuted. Therefore, we additionally have to show that these assertions are valid
immediately after communication.

Like in the interference freedom test, we use the class invariants as an-
tecedents, but it would not be necessary for a minimal proof system. The only
exception is method call: In this case the callee class invariant is the only as-
sertion which can be used to describe the callee instance state. But in this case
the callee class invariant is already included as the precondition of the called
method, which is by definition the class invariant.

The global invariant expresses global invariant properties using auxiliary
instance variables which can be changed by observations of communication,
only. Consequently, it is automatically invariant under the execution of non-
communicating statements. For communication and object creation, however,
the invariance must be shown as part of the cooperation test.

We define the corresponding verification conditions for communication and
object creation, but we have no cooperation test for notification. As mentioned
earlier, notification takes place within a single object, and thus its effect can
be captured by a single assignment to the auxiliary variables wait and notified

executed by the notifier. Invariance for the notifying thread is covered by the lo-
cal correctness conditions, whereas preservation of the assertions for the notified
partners is assured by the interference freedom test.

We start with the cooperation test for communication; for the corresponding
augmentation see Example 18. The semantics is intuitively shown in Fig.3. Since
different objects may be involved, the cooperation test is formulated in the global
assertion language. The local properties and expressions are expressed in the
global language using the lifting substitution. To avoid name clashes between
local variables of the partners, we rename those of the callee.

Let z and z′ be logical variables representing the caller, respectively the callee
object in a method call. We assume the global invariant, the class invariants of
the communicating partners, and the preconditions of the communicating state-
ments to hold prior to communication. For method invocation, the precondition
of the callee is its class invariant. That the two statements indeed represent

40 The proof system

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

call

c’I

stm;

return

callee

GI

caller
I c

1 1

p1 p p p2 3 4

q q q q2 3 4 5

y :=e ;4

return; y :=e ;2 2

4

p 5

3 3

q 6

y :=e ;

e .m(e); y :=e ;0

=q1

Fig. 3. Communication

communicating partners and especially that the communication is enabled is
captured in the assertion comm, which depends on the type of communica-
tion. For instance, in case of a synchronized method invocation, the lock of
the callee object has to be free or owned by the caller. This is expressed by
z′.lock = free ∨ thread(z′.lock) = thread, where thread is the caller-thread, and
where thread(z′.lock) is the first component of the lock value, i.e., the thread
owning the lock of z′. For the invocation of the monitor methods we require that
the executing thread is holding the lock. An additional predicate E0(z) = z′ in
the condition of a method call e0.m(~e) states, that z′ is indeed the callee object,
where E0(z) is e0[z/this]. Invoking the start-method of an object whose thread
is already started does not have communication effects. The same holds for re-
turning from a run-method. Returning from the wait-method assumes that the
thread has been notified and that the callee’s lock is free.

Remember that method invocation hands over the return address, and that
the values of formal parameters remain unchanged. Furthermore, actual parame-
ters may not contain instance variables, i.e., their interpretation does not change
during method execution. Therefore, the formal and actual parameters can be
used to identify partners being in caller-callee relationship, using the built-in
auxiliary variables.

Note the execution order: first communication takes place, followed by the
sender, and then the receiver observation. To describe the common effect, we
first have to substitute for the receiver, then for the sender observation, and

The proof system 41

finally for communication. For method call, we additionally have to substitute
for the initialization of the local variables.

Let again p′ denote the assertion p with every local variable u replaced by
a fresh one u′, and similarly for expressions. As already mentioned, we use the
shortcuts P (z) for p[z/this], Q′(z′) for q′[z′/this], and similarly for expressions,
where local variables are viewed on the global level as logical ones.

Definition 4 (Cooperation test: Communication). A proof outline satis-
fies the cooperation test for communication, if

|=G GI ∧ P1(z) ∧ Ic(z) ∧ Q′
1(z

′) ∧ Ic′(z
′) ∧ (6)

comm ∧ z 6= null ∧ z′ 6= null → (7)

(P2(z) ∧ Q′
2(z

′)) ◦ fcomm ∧ (GI ∧ P3(z) ∧ Q′
3(z

′)) ◦ fobs2 ◦ fobs1 ◦ fcomm

holds for distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc′

, in the
following cases:

1. (a) Call: For all statements {p1} uret := e0.m(~e); {p2}
1 〈~y1 := ~e1〉

1 {p3}

(or such without receiving a value) in class c with e0 ∈ Expc′

c , where
method m /∈ {start, wait, notify, notifyAll} of c′ is synchronized with body
{q2}

1 〈~y2 := ~e2〉
1 {q3} stm, formal parameters ~u, and local variables ~v ex-

cept the formal parameters. The callee class invariant is q3 = Ic′ . The
assertion comm is given by E0(z) = z′∧(z′.lock = free∨thread(z′.lock) =

thread). Furthermore, fcomm = [~E(z), Init(~v)/~u′, ~v′], fobs1 = [~E1(z)/z.~y1],

fobs2 = [~E′
2(z

′)/z′.~y′
2]. If m is not synchronized, z′.lock = free∨thread(z′.lock) =

thread in comm is dropped.
(b) Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by E0(z) =

z′ ∧ thread(z′.lock) = thread.
(c) Callstart : For m = start, comm is E0(z) = z′ ∧ ¬z′.started, where

{q2}
1 〈~y2 := ~e2〉

1 {q3} stm is the body of the run-method of c′.
(d) Call

skip
start : For m = start, additionally, (6) must hold with comm given

by E0(z) = z′ ∧ z′.started, q2 = q3 = true, and fcomm and fobs2 are the
identity functions.

2. (a) Return: For all method call statements uret := e0.m(~e); {p}1 〈~y1 :=
~e1〉

1 {p1}
2 {p2}

3 〈~y4 := ~e4〉
2 {p3} (or such without receiving a value) oc-

curring in c with e0 ∈ Expc′

c , such that method m of c′ has the return
statement {q1} return eret ; {q2}

1 〈~y3 := ~e3〉
1 {q3} , and formal parameter

list ~u, Equation (6) must hold with comm given by E0(z) = z′ ∧ ~u′ =
~E(z), and where fcomm = [E′

ret(z
′)/uret], fobs1 = [~E′

3(z
′)/z′.~y′

3], and

fobs2 = [~E4(z)/z.~y4].
(b) Returnwait : For {q1} returngetlock ; {q2}

1 〈~y3 := ~e3〉
1 {q3} in a wait-method,

comm is E0(z) = z′ ∧ ~u′ = ~E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.
(c) Returnrun : For {q1} return; {q2}

1 〈~y3 := ~e3〉
1 {q3} occurring in a run-

method, p1 = p2 = p3 = true, comm = true, and furthermore fcomm and
fobs2 the identity function.

42 The proof system

Example 17. For the proof outline of Example 8 three global conditions are
generated: one for the method call at (23), one for the call at (31), and one
for the corresponding return for the second call. Note that we do not have any
conditions for returning from the first call (23), because all postconditions are
by definition true. The first condition

FORALL (caller:Account) : caller /= null IMPLIES
FORALL (callee:Account) : callee /= null IMPLIES
%precondition caller

((i_1 >0 AND
%class invariant caller and callee + caller-callee relationship

Account .x(caller) >=0 AND Account .x(callee) >=0 AND caller=
callee) IMPLIES

%postcondition callee

(i_1 >0 OR (Account .x(callee)+i_1 >=0 AND owns (thread_1 ,
Account .lock (callee)))))

states that the class invariants and the preconditions of caller and callee imply
the postcondition of the callee. The PVS-expression c.x(z) represents the quali-
fied reference z.x for z of type c. Note that the global invariant, the postcondition
of the caller, and the assertions at the auxiliary points are by definition true. The
caller-callee relationship of the partners is assured by requiring caller = callee,
since it is a self-call. The condition for the second call is similar:

FORALL (caller:Account) : caller /= null IMPLIES
FORALL (callee:Account) : callee /= null IMPLIES
%precondition caller

((Account.x(caller) >=i_1 AND i_1 >0 AND owns (thread_1 ,
Account .lock (caller)) AND

%class invariants caller and callee + caller-callee relationship

Account .x(caller) >=0 AND Account .x(callee) >=0 AND caller=
callee) IMPLIES

%postcondition caller

(i_1 >0 AND
%postcondition callee

(-i_1 >0 OR (Account .x(callee)+(- i_1) >=0 AND owns (thread_1 ,
Account .lock (callee))))))

The condition for return assures the caller-callee relationship of the partners by
additionally requiring, that the formal parameters equal the actual ones. Applied
to the built-in auxiliary parameter thread, this requirement implies for example
that caller and callee are the same thread, i.e., thread 1 = thread 2, which we
need to show that the caller owns the lock after communication:

FORALL (caller:Account) : caller /= null IMPLIES
FORALL (callee:Account) : callee /= null IMPLIES
%precondition caller

((i_1 >0 AND
%class invariant caller

Account .x(caller) >=0 AND
%precondition callee

(i_2 >0 OR owns(thread_2 ,Account .lock (callee))) AND
%class invariant callee

Account .x(callee) >=0 AND
%caller-callee relationship

The proof system 43

caller=callee AND i_2=(-i_1) AND thread_2 = thread_1 AND
caller_2 =(caller ,conf_1 ,thread_1)) IMPLIES

%postcondition caller

owns (thread_1 ,Account .lock (caller)))

Besides method calls and return, the cooperation test needs to handle object
creation, taking care of the preservation of the global invariant, the postcondition
of the new-statement and its observation, and the new object’s class invariant.
We can assume that the precondition of the object creation statement, the class
invariant of the creator, and the global invariant hold in the configuration prior
to instantiation. Note again that the class invariant as antecedent would not be
necessary for a minimal proof system. The extension of the global state with a
freshly created object is formulated in a strongest postcondition style, i.e., it is
required to hold immediately after the instantiation. We use existential quan-
tification to refer to the old value: z′ of type LVar listObject represents the existing
objects prior to the extension. Moreover, that the created object’s identity stored
in u is fresh and that the new instance is properly initialized is expressed by the
global assertion Fresh(z′, u) defined as InitState(u) ∧ u 6∈ z′ ∧ ∀v. v ∈ z′ ∨ v = u
(see page 28 for the definition of InitState). To express that an assertion refers to
the set of existing objects prior to the extension of the global state, we need to
restrict any existential quantification in the assertion to range over objects from
z′, only. So let P be a global assertion and z′ ∈ LVar listObject a logical variable
not occurring in P . Then P ↓ z′ is the global assertion P with all quantifications
∃z. P ′ replaced by ∃z. obj(z) ⊆ z′ ∧ P ′, where obj (v) denotes the set of objects
occurring in the value v, formally

obj (v) =

∅ if v ∈ ValBool ∪ Val Int

{v} if v ∈
⋃

c Valcnull

obj (v1) ∪ obj (v2) if v = (v1, v2)∈
⋃

t1,t2
Val t1×t2

null
⋃

vi∈v obj (vi) if v ∈
⋃

t Val list t
null .

The following lemma formulates the basic property of the projection operator:

Lemma 4. Assume a global state σ, an extension σ′ = σ[α 7→σc,init
inst] for some

α ∈ Valc, α /∈ Val (σ), and a logical environment ω referring only to values exist-
ing in σ. Let v be the sequence consisting of all elements of

⋃

c Valcnull (σ). Then
for all global assertions P and logical variables z′ ∈ LVar listObject not occurring
in P ,

ω, σ |=G P iff ω[z′ 7→ v], σ′ |=G P ↓ z′.

Thus a predicate P ↓ z′, evaluated immediately after the instantiation, express
that P holds prior to the creation of the new object. This leads to the following
definition of the cooperation test for object creation:

Definition 5 (Cooperation test: Instantiation). A proof outline satisfies
the cooperation test for object creation, if for all classes c′ and statements

44 The proof system

{p1} u := newc; {p2}
1 〈~y := ~e〉1 {p3} in c′:

|=G z 6= null ∧ z 6= u ∧ (8)

∃z′.
(

Fresh(z′, u) ∧ (GI ∧ (∃u. P1(z)) ∧ Ic′(z)) ↓ z′
)

→ (9)

P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z)) ◦ fobs ,

with z ∈ LVarc′

and z′ ∈ LVar list Object fresh , and where fobs = [~E(z)/z.~y].

Example 18. The proof outline below specifies two classes, called Creator and
Created. Instances of the Creator class offer the method create()which creates
an instance of the Created class and gives it back as a return value. The global
invariant states that there exists at most one instance of the Creator class, and
that its auxiliary instance variable nr stores the number of the existing Created

instances.

//function definition

/*{ boolean disjunct(finseq[Created] z) =

(\forall int i; 0 <=i && i<length(z); z[i]!=null &&

(\forall int j; 0 <=j && j<length(z) && i!=j ; z[i]!=z[j]))}*/

//global invariant

/*{ (\ forall Creator o; o!=null;

(\forall Creator o2; o2!=null; o2==o) &&

(\forall finseq[Created] z; disjunct(z) && (\ forall Created z2; z2!=

null; includes(z,z2)); o.nr == length(z)))

}*/

public class Creator {
/* < int nr; >*/

public void create (){
Created o;

o = new Created ();
/*1< nr = nr + 1; > */

}
}

class Created {}

We apply the proof system to these two classes. Of course, the global invari-
ant describes a program, which contains these classes, only then correctly, if the
context of these classes also preserve it. Thus this example shows also, how to
verify parts of a program to be correct under the assumption that the remaining
verification conditions hold for the environment. Verger generates the follow-
ing cooperation test condition for object creation, where the type Objectold in
theory Object represents the logical variable z′ in the cooperation test.

Object : THEORY
BEGIN

...
new_Object : Object
Object_old : NONEMPTY_TYPE = {o:Object | o=null OR o /=

new_Object } CONTAINING null

Soundness and completeness 45

END Object

Created_type : THEORY
BEGIN

...
Created_old : NONEMPTY_TYPE = {o:Created | o=null OR o

/= new_Object } CONTAINING null
END Created_type

Created : THEORY
BEGIN

...
init (o:Created): bool = (o=new_Object AND o/= null AND

... AND Created .lock (o)=(null ,0))
END Created

...

global_cond_0 : THEORY
BEGIN
...
condition : LEMMA
% z /= null /\

FORALL (creator :Creator) : creator /= null IMPLIES
% z /= u /\ Fresh(z’,u)

((creator /=u AND Created.init (u) AND
% GI restricted to z’

(FORALL (o:Creator) : o/= null IMPLIES
((FORALL (o2:Creator) : o2/= null IMPLIES o2=o) AND
(FORALL (z:finseq[Created_old]) : ((disjunct (z) AND
(FORALL (z2: Created_old) : (z2/= null IMPLIES includes (z,

z2)))) IMPLIES
(Creator.nr(o)=length(z))))))) IMPLIES

% GI after execution

(FORALL (o:Creator) : (o/= null IMPLIES
((FORALL (o2:Creator) : (o2/= null IMPLIES o2=o)) AND
(FORALL (z:finseq[Created]) : ((disjunct (z) AND
(FORALL (z2:Created) : (z2/= null IMPLIES includes (z,z2))

)) IMPLIES
(IF (o=creator) THEN (Creator .nr(creator)+1) ELSE Creator

.nr(o) ENDIF = length(z))))))))

END global_cond_0

Further examples can be found in Appendix A.

5 Soundness and completeness

This section contains soundness and completeness of the proof method of Sec-
tion 4. Given a program together with its annotation, the proof system stipulates
a number of induction conditions for the various types of assertions and program
constructs. Soundness for the inductive method means that for a proof outline
satisfying the verification conditions, all configurations reachable in the opera-
tional semantics satisfy the given assertions, completeness conversely means that

46 Soundness and completeness

if a program does satisfy an annotation, this fact is provable. For convenience, let
us introduce the following notations. Given a program prog , we will write ϕprog

or just ϕ for its annotation, and write prog |= ϕ, if prog satisfies all require-
ments stated in the assertions, and prog ′ ` ϕ′, if prog ′ satisfies the verification
conditions of the proof system:

Definition 6. Given a program prog with annotation ϕ, then prog |= ϕ iff for
all reachable configurations 〈T, σ〉 of prog, for all (α, τ, stm) ∈ T , and for all
logical environments ω referring only to values existing in σ:

1. ω, σ(α), τ |=L pre(stm), and

2. ω, σ |=G GI .

Furthermore, for all classes c, objects β ∈ Valc(σ), and local states τ ′:

3. ω, σ(β), τ ′ |=L Ic .

For proof outlines, we write prog ′ ` ϕ′ iff prog ′ satisfies the verification condi-
tions of the proof system.

5.1 Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their
assertions for an annotated program that has been verified using the proof con-
ditions. Soundness of the method is proved by a straightforward, albeit tedious,
induction on the computation steps.

Before embarking upon the soundness formulation and its proof, we need
to clarify the connection between the original program and proof outline, i.e.,
the one decorated with assertions, and extended by auxiliary variables. The
transformation is done for the sake of verification, only, and as far as the un-
augmented portion of the states and the configurations is concerned, the behavior
of the original and the transformed program are the same.

To make the connection between original program and the proof outline pre-
cise, we define a projection operation ↓ prog , that jettisons all additions of the
transformation. So let prog ′ be a proof outline for prog , and 〈T ′, σ′〉 a global
configuration of prog ′. Then σ′ ↓ prog is defined by removing all auxiliary in-
stance variables from the instance state domains. For the set of thread config-
urations, T ′ ↓ prog is given by restricting the domains of the local states to
non-auxiliary variables and removing all annotations and augmentations. Ad-
ditionally, for local configurations (α, τ, returngetlock ; stm) ∈ T ′, if the execut-
ing thread is in the wait set, i.e., τ(thread) ∈ σ′(α)(wait) then the statement
returngetlock gets replaced by ?signal; returngetlock . Furthermore, for local config-
urations (α, τ, stm ; return; stm ′) with stm 6= ε an auxiliary assignment in the
notify- or the notifyAll-method, the auxiliary assignment stm gets replaced by
!signal and !signal all, respectively. The following lemma expresses that the trans-
formation does not change the behavior of programs:

Soundness and completeness 47

Lemma 5. Let prog ′ be a proof outline for a program prog. Then 〈T, σ〉 is a
reachable configuration of prog iff there exists a reachable configuration 〈T ′, σ′〉
of prog ′ with 〈T ′ ↓ prog , σ′ ↓ prog〉 = 〈T, σ〉.

The augmentation introduced a number of specific auxiliary variables that
reflect the predicates used in the semantics. That the semantics is faithfully
represented by the variables is formulated in the following lemmas.

Lemma 6 (Identification). Let 〈T, σ〉 be a reachable configuration of a proof
outline. Then

1. for all stacks ξ and ξ′ in T and for all local configurations (α, τ, stm) ∈ ξ
and (α′, τ ′, stm ′) ∈ ξ′ we have τ(thread) = τ ′(thread) iff ξ = ξ′, and

2. for each stack (α0, τ0, stm0) . . . (αn, τn, stmn) in T and indices i < j,
(a) τi(thread) = α0;
(b) αi = αj implies τi(conf) < τj(conf) < σ(αi)(counter),
(c) τj(caller) = (αj−1, τj−1(conf), τj−1(thread)), and
(d) proj(τ0(caller), 3)) 6= τ0(thread).

Lemma 7 (Lock, Wait, Notify). Let 〈T, σ〉 be a reachable configuration of a
proof outline for the original program prog, α ∈ Val (σ) and ξ = (α0, τ0, stm0) ◦
ξ′ ∈ T . Let furthermore n be the number synchronized method executions of ξ in
α, i.e., n = |{(α, τ, stm) ∈ ξ | stm synchr.}|. Then

1. (a) ¬owns(T ↓ prog , α) iff σ(α)(lock) = free
(b) owns(ξ ↓ prog , α) iff σ(α)(lock) = (α0, n)

2. (a) proj (σ(α)(wait)[i], 1) = proj (σ(α)(wait)[j], 1) implies i = j
(b) proj (σ(α)(notified)[i], 1) = proj (σ(α)(notified)[j], 1) implies i = j
(c) if (α0, m) ∈ σ(α)(wait) or (α0, m) ∈ σ(α)(notified) then m = n
(d) σ(α)(wait) ∩ σ(α)(notified) = ∅
(e) ξ ∈ wait(T ↓ prog , α) iff (α0, n) ∈ σ(α)(wait)
(f) ξ ∈ notified(T ↓ prog , α) iff (α0, n) ∈ σ(α)(notified).

The above Lemma assures disjunctness of the sequences stored in the wait and
notified variables; if the order of the elements is unimportant, in the following
we sometimes use set notation for their values.

Lemma 8 (Started). For all reachable configurations 〈T, σ〉 of a proof outline
and all objects α ∈ Val (σ), we have started(T ↓ prog , α) iff σ(α)(started).

Let prog be a program with annotation ϕ, and prog ′ a a corresponding proof
outline with annotation ϕ′. Let GI ′ be the global invariant of ϕ′, I ′c denote its
class invariants, and for an assertion p of ϕ let p′ denote the assertion of ϕ′

associated with the same control point. We write |= ϕ′ → ϕ iff |=G GI ′ → GI ,
|=L I ′c → Ic for all classes c, and |=L p′ → p, for all assertions p of ϕ associated
with some control point. To give meaning to the auxiliary variables, the above
implications are evaluated in the context of states of the augmented program.
The following theorem states the soundness of the proof method.

48 Soundness and completeness

Theorem 1 (Soundness). Given a proof outline prog ′ with annotation ϕprog′ .

If prog ′ ` ϕprog′ then prog ′ |= ϕprog′ .

The soundness proof is basically an induction on the length of computation,
simultaneous on all three parts from Definition 6. Theorem 1 is formulated for
reachability of augmented programs. With the help of Lemma 5, we immediately
get:

Corollary 1. If prog ′ ` ϕprog′ and |= ϕprog′ → ϕprog , then prog |= ϕprog .

5.2 Completeness

Next we conversely show that if a program satisfies the requirements asserted
in its proof outline, then this is indeed provable, i.e., then there exists a proof
outline which can be shown to hold and which implies the given one:

∀prog . prog |= ϕprog ⇒ ∃prog ′. prog ′ ` ϕprog′ ∧ |= ϕprog′ → ϕprog .

Given a program satisfying an annotation prog |= ϕprog , the consequent can be
uniformly shown, i.e., independently of the given assertional part ϕprog , by in-
stantiating ϕprog′ to the strongest annotation still provable, thereby discharging
the last clause |= ϕprog′ → ϕprog . Since the strongest annotation still satisfied
by the program corresponds to reachability, the key to completeness is to

1. augment each program with enough information, to be able to
2. express reachability in the annotation, i.e., annotate the program such that

a configuration satisfies its local and global assertions exactly if reachable
(see Definition 8 below), and finally

3. to show that this augmentation indeed satisfies the verification conditions.

We begin with the augmentation, using the transformation from Section 4.1
as starting point, where the programs are augmented with the specific auxil-
iary variables. To facilitate reasoning, we introduce an additional auxiliary local
variable loc, which stores the current control point of the execution of a thread.
Given a function which assigns to all control points unique location labels, we ex-
tend each assignment with the update loc := l, where l is the label of the control
point after the given occurrence of the assignment. Also unobserved statements
are extended with the update. We write l ≡ stm if l represents the control point
in front of stm.

The standard way for completeness augmentation is to add information into
the states about the way how it has been reached, i.e., the history of the com-
putation leading to the configuration. This information is recorded using history
variables.

The assertional language is split into a local and a global level, and likewise
the proof system is tailored to separate local proof obligations from global ones
to obtain a modular proof system. The history will be recorded in instance

Soundness and completeness 49

variables, and thus each instance can keep track only of its own past. To mirror
the split into a local and a global level in the proof system, the history per
instance is recorded separately for internal and external behavior. The sequence
of internal state changes local to that instance is recorded in the local history
and the external behavior in the communication history.

The local history keeps track of the state updates due to local steps of threads,
i.e., steps which does not communicate or create a new object. We store in
the local history the updated local and instance states of the executing local
configuration and the object in which the execution takes place. Note that the
local history stores also the values of the built-in auxiliary variables, and thus the
identities of the executing thread and especially the executing local configuration.

The communication history keeps information about the kind of communica-
tion, the communicated values, and the identity of the communication partners
involved. For the kind of communication, we distinguish as cases object creation,
ingoing and outgoing method calls, and likewise ingoing and outgoing commu-
nication for the return value. We use the set

⋃

c∈C {newc} ∪
⋃

m∈M {!m, ?m} ∪
{!return, ?return} of constants for this purpose. Notification does not update the
communication history, since it is object-internal computation. For the same
reason, we don’t record self-communication in hcomm . Note in passing that the
information stored in the communication history matches exactly the informa-
tion needed to decorate the transitions in order to obtain a compositional variant
of the operational semantics of Section 2.3.2. See [5] for such a compositional
semantics.

Definition 7 (Augmentation with histories). Each class is further extended
by two auxiliary instance variables hinst and hcomm, both initialized to the empty
sequence. They are updated as follows:

1. Each assignment ~y := ~e in each class c that is not the observation of a
method call or of the reception of a return value is extended with

hinst := hinst ◦ ((~x,~v)[~e/~y]) ,

where ~x are the instance variables of class c containing also hcomm but with-
out hinst , and ~v are the local variables. Observations ~y := ~e of uret :=
e0.m(~e ′) and of the corresponding reception of the return value get extended
with the assignment

hinst := if (e0 = this) then hinst else hinst ◦ ((~x,~v)[~e/~y]) fi ,

instead, if m 6= start. For e0.start(~e
′); /∗1〈~y := ~e〉∗/ we use the same update

with the condition e0 = this replaced by e0 = this ∧ ¬started.

2. Every communication and object creation gets observed by

hcomm := if (partner = this) then hcomm else

hcomm ◦ (sender, receiver, values) fi ,

50 Soundness and completeness

where the expressions partner, sender, receiver, and values are defined depend-
ing on the kind of communication statements as follows:

communication statement partner sender receiver values

u := newc null this null newc u, thread

uret := e0.m(~e) e0 this e0 !m(~e)
corresponding reception of return e0 e0 this ? return u
reception of method call m(~u) caller obj caller obj this ?m(~u)
return eret caller obj this caller obj ! return eret

where caller obj is the first component of the variable caller.

In the update of the history variable hinst , the expression (~x, ~u)[~e/~y] identifies
the active thread by the local variables thread and conf, and specifies its instance
local state after the execution of the assignment. Note that especially the values
of the auxiliary variables introduced in the augmentation are recorded in the local
history. In the following we will also write (σinst , τ) when referring to elements
of hinst .

Note furthermore that the communication history records also the identities
of the communicating threads in values.

Next we introduce the annotation for the augmented program.

Definition 8 (Reachability annotation).

1. ω, σ |=G GI iff there exists a reachable 〈T, σ′〉 such that Val (σ) = Val (σ′),
and for all α ∈ Val (σ), σ(α)(hcomm) = σ′(α)(hcomm).

2. For each class c, let ω, σinst , τ |=L Ic iff there is a reachable 〈T, σ〉 such that
σ(α) = σinst , where α = σinst (this). For each class c and method m of c, the
pre- and postconditions of m are given by Ic.

3. For assertions at control points, ω, σinst , τ |=L pre(stm) iff there is a reach-
able 〈T, σ〉 with σ(α) = σinst for α = σinst (this), and with (α, τ, stm; stm ′) ∈
T .

4. For preconditions p of observations of communication or object creation,
let ω, σinst , τ |=L p iff there is a reachable 〈T, σ〉 with σ(α) = σinst for
α = σinst (this), and with (α, τ ′, stm; stm ′) ∈ T enabled to communicate re-
sulting in the local state τ directly after communication, where stm is the
corresponding communication statement.
For observing the reception of a method call, instead of the existence of the
enabled (α, τ ′, stm; stm ′) ∈ T , we require that a call of method m of α is
enabled with resulting callee local state τ directly after communication.

It can be shown that these assertions are expressible in the assertion language
[40]. The augmented program together with the above annotation build a proof
outline that we denote by prog ′.

What remains to be shown for completeness is that the proof outline prog ′

indeed satisfies the verification conditions of the proof system. Initial and local
correctness are straightforward.

Conclusion 51

Completeness for the interference freedom test and the cooperation test are
more complex, since, unlike initial and local correctness, the verification condi-
tions in these cases mention more than one local configuration in their respective
antecedents. Now, the reachability assertions of prog ′ guarantee that, when sat-
isfied by an instance local state, there exists a reachable global configuration
responsible for the satisfaction. So a crucial step in the completeness proof for
interference freedom and the cooperation test is to show that individual reach-
ability of two local configurations implies that they are reachable in a common
computation. This is also the key property for the history variables: they record
enough information such that they allow to uniquely determine the way a con-
figuration has been reached; in the case of instance history, uniqueness of course,
only as far as the chosen instance is concerned. This property is stated formally
in the following local merging lemma.

Lemma 9 (Local merging lemma). Let 〈T1, σ1〉 and 〈T2, σ2〉 be two reachable
global configurations of prog ′ and (α, τ, stm) ∈ T1 with α ∈ Val (σ1) ∩ Val (σ2).
Then σ1(α)(hinst) = σ2(α)(hinst) implies (α, τ, stm) ∈ T2.

For completeness of the cooperation test, connecting two possibly different
instances, we need an analogous property for the communication histories. Argu-
ing on the global level, the cooperation test can assume that two control points
are individually reachable but agreeing on the communication histories of the
objects. This information must be enough to ensure common reachability. Such a
common computation can be constructed, since the internal computations of dif-
ferent objects are independent from each other, i.e., in a global computation, the
local behavior of an object is interchangeable, as long as the external behavior
does not change. This leads to the following lemma:

Lemma 10 (Global merging lemma). Let 〈T1, σ1〉 and 〈T2, σ2〉 be two reach-
able global configurations of prog ′ and α ∈ Val (σ1) ∩ Val (σ2) with the prop-
erty σ1(α)(hcomm) = σ2(α)(hcomm). Then there exists a reachable configura-
tion 〈T, σ〉 with Val (σ) = Val (σ2), σ(α) = σ1(α), and σ(β) = σ2(β) for all
β ∈ Val (σ2)\{α}.

Note that together with the local merging lemma this implies that all local
configurations in 〈T1, σ1〉 executing in α and all local configurations in 〈T2, σ2〉
executing in β 6= α are contained in the commonly reached configuration 〈T, σ〉.

This brings us to the last result of the paper:

Theorem 2 (Completeness). Given a program prog, the proof outline prog ′

satisfies the verification conditions of the proof system from Section 4.

6 Conclusion

This paper presents the first sound and complete assertional proof method for
a multithreaded sublanguage of Java including its monitor discipline. It extends
earlier work ([3] and especially [4]) by integrating Java’s wait and notify con-
structs into the assertional proof system and by moving towards a more compo-
sitional identification mechanism for threads.

52 Conclusion

Related work From its inception, Java attracted interest from the formal meth-
ods community: The widespread use of Java across platforms made the need
for formal studies and verification support more urgent, the grown awareness
and advances of formal methods for real-life applications and languages made
it more acceptable, and last not least the array of non-trivial language features
made it challenging and interesting. Thus Java offered a rich field for formal stud-
ies, ranging from formal semantics [38, 6] over bytecode verification and static
analysis [27] to model checking [19].

As far as proof systems and verification support for object-oriented programs
is concerned, research mostly concentrated on sequential languages resp. sequen-
tial subsets of Java. For instance, Poetzsch-Heffter and Müller [35, 33, 32, 34] de-
velop a Hoare-style programming logic presented in sequent formulation for a
sequential kernel of Java. Their Java-fragment does not contain multithreading,
but goes beyond this work in featuring interfaces, subtyping, and inheritance.
Translating the operational and the axiomatic semantics into the HOL theorem
prover allows a computer assisted soundness proof of the proof system. Two
papers dealing with an axiomatic semantics for object-oriented languages in a
weakest liberal precondition style are [15] and [26].

[37, 36] use (a modification of) the object constraint language OCL as asser-
tional language to annotate UML class diagrams and to generate proof conditions
for Java-programs. The work [12] presents a model checking algorithm and its
implementation in Isabelle/HOL to check type correctness of Java bytecode. The
work [41] formalizes a large subset of JavaCard, including exception handling, in
Isabelle/HOL, and its soundness and completeness is shown within the theorem
prover. The work in [2] presents a Hoare-style proof system for a sequential
object-oriented calculus [1]. Their language features heap-allocated objects (but
no classes), side-effects and aliasing, and its type system supports subtyping.
Furthermore, their language allows nested statically let-bound variables, which
requires a more complex semantical treatment for variables based on closures,
and ultimately renders their proof system incomplete. Their assertion language
is presented as an extension of the object calculus’ language of type and anal-
ogously, the proof system extends the type derivation system, where the types
cater for the static properties of the program and the “specification” takes care
of the dynamic behavior. The close connection of types and specifications in the
presentation in is exploited in [39] for the generation of verification conditions.
Applying type inference technology to (a syntax-directed version of) Abadi and
Leino’s proof system allows to factor out the proof obligations from the struc-
tural part of the proof. In [23], the logic is implemented in the Lego theorem
prover. A survey about monitors in general, including proof rules for various
monitor semantics, can be found in [13].

Formal semantics of Java, including multithreaded execution, and its vir-
tual machine in terms of abstract state machines is given in [38]. A structural
operational semantics of multithreaded Java can be found in [14].

Future work Based on the proof theory presented, we are currently developing
a verification condition generator for Java, where a theorem prover is used to

Conclusion 53

verify the conditions. Of particular interest in this context is an integration of
our method with related approaches like the Loop project [20, 29].

As future work, we plan to extend JavaMT by further constructs, especially in
the direction of “object-orientedness”, adding inheritance, subtyping, and other
concepts featured in Java. To deal with subtyping on the logical level requires a
notion of behavioral subtyping [7]. An extension of the semantics and the proof
theory to detect deadlocks and termination is also of interest.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In M. Bidoit
and M. Dauchet, editors, Proceedings of TAPSOFT ’97, volume 1214 of Lecture
Notes in Computer Science, pages 682–696, Lille, France, Apr. 1997. Springer-
Verlag. An extended version of this paper appeared as SRC Research Report 161
(September 1998).

3. E. Ábrahám-Mumm and F. de Boer. Proof-outlines for threads in Java. In
C. Palamidessi, editor, Proceedings of CONCUR 2000, volume 1877 of Lecture
Notes in Computer Science. Springer-Verlag, Aug. 2000.

4. E. Ábrahám-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept. In M. Nielsen and U. H. Engberg,
editors, Proceedings of FoSSaCS 2002, volume 2303 of Lecture Notes in Computer
Science, pages 4–20. Springer-Verlag, Apr. 2002. A longer version, including the
proofs for soundness and completeness, appeared as Technical Report TR-ST-02-1,
March 2002.

5. E. Ábrahám-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. A compositional
operational semantics for JavaMT . 2003. To appear. A preliminary version appeared
as Technical Report TR-ST-02-2, May 2002.

6. J. Alves-Foss, editor. Formal Syntax and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer-Verlag, 1999.

7. P. America. A behavioural approach to subtyping in object-oriented programming
languages. 443, Phillips Research Laboratories, January/April 1989.

8. P. America and F. de Boer. Reasoning about dynamically evolving process struc-
tures. Formal Aspects of Computing, 6(3):269–316, 1993.

9. G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 2000.

10. K. R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, Oct. 1981.

11. K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359–385, 1980.

12. D. Basin, S. Friedrich, and M. Gawkowski. Verified bytecode model checkers. In
V. A. Carreño, C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher
Order Logics (TPHOLs’02), pages 47–66, August 2002.

13. P. A. Buhr, M. Fortier, and M. H. Coffin. Monitor classification. ACM Computing
Surveys, 27(1):63–107, Mar. 1995.

14. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [6], pages 157–200.

54 Conclusion

15. F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Proceedings of
FoSSaCS ’99, volume 1578 of Lecture Notes in Computer Science, pages 135–156.
Springer-Verlag, 1999.

16. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

17. R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19–32, 1967.

18. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

19. K. Havelund. Java Pathfinder User Manual. NASA, Aug. 1999. NASA Ames
Technical Report, available at http://ase.arc.nasa.gov/havelund/jpf.html.

20. U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In C. Hankin, editor, Proceedings of
ESOP ’98, volume 1381 of Lecture Notes in Computer Science. Springer-Verlag,
1998.

21. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969. Also in [22].

22. C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

23. M. Hofmann and F. Tang. Implementing a program logic of objects n a higher-
order logic theorem prover. In J. Harrison and M. Aagaard, editors, Theorem
Proving in Higher Order Logics (TPHOL 2000), volume 1869 of Lecture Notes in
Computer Science, pages 267–282. Springer-Verlag, 2000.

24. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

25. H. Hussmann, editor. Fundamental Approaches to Software Engineering, volume
2029 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

26. K. R. M. Leino. Exstatic: An object-oriented programming language with
axiomatic semantics. In B. C. Pierce, editor, Proceedings of FOOL 4.
Free electronic publication, Jan. 1997. Available electronically through
http://www.cs.indiana.edu/hyplan/pierce/fool/.

27. X. Leroy. Java bytecode verification: An overview. In G. Berry, H. Comon, and
A. Finkel, editors, Proceedings of CAV ’01, volume 2102 of Lecture Notes in Com-
puter Science, pages 265–285. Springer-Verlag, 2001.

28. G. M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informatica, 15(3):281–302, 1981.

29. The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/˜bart/LOOP/, 2001.

30. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319–340, 1976.

31. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, Automated Deduction (CADE-11), volume 607 of Lecture Notes
in Computer Science, pages 748–752. Springer-Verlag, 1992.

32. A. Poetzsch-Heffter. A logic for the verification of object-oriented programs. In
R. Berghammer and F. Simon, editors, Proceedings of Programming Languages and
Fundamentals of Programming, pages 31–42. Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität Kiel, Nov. 1997. Bericht Nr. 9717.

33. A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Programs.
Technische Universität München, Jan. 1997. Habilitationsschrift.

Conclusion 55

34. A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented
languages. In D. Gries and W.-P. de Roever, editors, Proceedings of PROCOMET
’98. International Federation for Information Processing (IFIP), Chapman & Hall,
1998.

35. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. Swierstra, editor, Programming Languages and Systems, volume 1576 of Lecture
Notes in Computer Science, pages 162–176. Springer, 1999.

36. B. Reus, R. Hennicker, and M. Wirsing. A Hoare calculus for verifying Java real-
izations of OCL-constrained design models. In Hussmann [25], pages 300–316.

37. B. Reus and M. Wirsing. A Hoare-logic for object-oriented programs. Technical
report, LMU München, 2000.

38. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer-
Verlag, 2001.

39. F. Tang and M. Hofmann. Generation of verification conditions for Abadi and
Leino’s logic of objects (extended abstract). In Proceedings of the 9th Interna-
tional Workshop on Foundations of Object-Oriented Languages (FOOL’02), 2002.
A longer version is available as LFCS technical report.

40. J. V. Tucker and J. I. Zucker. Program Correctness over Abstract Data Types, with
Error-State Semantics, volume 6 of CWI Monograph Series. North-Holland, 1988.

41. D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Compu-
tation: Practice and Experience, 13(13):1173–1214, 2001.

42. D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited. In L.-H. Eriksson and P.-A. Lind-
say, editors, Proceedings of Formal Methods Europe: Formal Methods – Getting
IT Right (FME’02), volume 2391 of Lecture Notes in Computer Science, pages
89–105. Springer-Verlag, 2002.

43. J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling
With Uml. Object Technology Series. Addison-Wesley, 1999.

56 Examples

A Examples

B Proofs

B.1 Properties of substitutions and projection

Proof (of Lemma 1). We prove the lemma by straightforward induction on the

structure of local assertions. Let σ́inst = σ̀inst [~y 7→[[~e]]
ω,σ̀inst ,τ̀
L] and τ́ = τ̀ [u 7→[[ei]]

ω,σ̀inst ,τ̀
L].

In the case for local variables u = yi we get

[[u[~e/~y]]]
ω,σ̀inst ,τ̀
L = [[ei]]

ω,σ̀inst ,τ̀
L

= τ́ (u)

= [[u]]
ω,σ́inst ,τ́
L .

For instance variables x = yi similarly:

[[x[~e/~y]]]
ω,σ̀inst ,τ̀
L = [[ei]]

ω,σ̀inst ,τ̀
L

= σ́inst (x)

= [[x]]
ω,σ́inst ,τ́
L .

The remaining cases are straightforward. ut

Proof (of Lemma 2). Let ώ = ὼ[~y 7→[[~E]]ὼ,σ̀
G] and let σ́ be defined by σ̀[[[z]]ὼ,σ̀

G .~y 7→[[~E]]ὼ,σ̀
G].

We proceed by induction on the structure of global expressions and assertions.
The base cases for null and z′ are straightforward. For the induction cases, we
start with the crucial one for qualified reference to instance variables:

[[(E′.xi)[~E/z.~y]]]ὼ,σ̀
G = [[if E′[~E/z.~x] = z then Ei else (E′[~E/z.~x]).xi fi]]ὼ,σ̀

G .

This conditional assertion evaluates to [[Ei]]
ὼ,σ̀
G if [[E′[~E/z.~x]]]ὼ,σ̀

G = [[z]]ὼ,σ̀
G and to

[[(E′[~E/z.~x]).xi]]
ὼ,σ̀
G otherwise. So in the first case we get

[[(E′.xi)[~E/z.~x]]]ὼ,σ̀
G = [[Ei]]

ὼ,σ̀
G

= σ́([[z]]ὼ,σ̀
G)(xi) by def. of σ́

= σ́([[E′[~E/z.~x]]]ὼ,σ̀
G)(xi) by the case assumption

= σ́([[E′]]ώ,σ́
G)(xi) by induction

= [[E′.xi]]
ώ,σ́
G by def. of [[]]G .

If otherwise [[E′[~E/z.~x]]]ὼ,σ̀
G 6= [[z]]ὼ,σ̀

G , then

[[(E′.xi)[~E/z.~x]]]ὼ,σ̀
G = [[(E′[~E/z.~x]).xi]]

ὼ,σ̀
G

= σ̀([[E′[~E/z.~x]]]ὼ,σ̀
G)(xi) by def. of [[]]G

= σ́([[E′[~E/z.~x]]]ὼ,σ̀
G)(xi) case assumption+def. σ́

= σ́([[E′]]ώ,σ́
G)(xi) by induction

= [[E′.xi]]
ώ,σ́
G by def. of [[]]G .

Proofs 57

For operator expressions we get:

[[(f(E1, . . . , En))[~E/z.~x]]]ὼ,σ̀
G

= [[f(E1[~E/z.~x], . . . , En[~E/z.~x])]]ὼ,σ̀
G def. substitution

= f([[E1[~E/z.~x]]]ὼ,σ̀
G , . . . , [[En[~E/z.~x]]]ὼ,σ̀

G) def. [[]]G
= f([[E1]]

ώ,σ́
G , . . . , [[En]]ώ,σ́

G) by induction

= [[f(E1, . . . , En)]]ώ,σ́
G def. [[]]G .

For global assertions, the cases of negation and conjunction are straightforward.
For quantification,

[[(∃z′. P)[~E/z.~x]]]ὼ,σ̀
G = true

⇐⇒ [[∃z′. P [~E/z.~x]]]ὼ,σ̀
G = true def. substitution

⇐⇒ [[P [~E/z.~x]]]
ὼ[z′ 7→ v],σ̀
G = true for some v∈Valnull (σ̀) def. [[]]G

⇐⇒ [[P]]
ώ[z′ 7→ v],σ́
G = true for some v ∈ Valnull (σ̀) by induction

⇐⇒ [[∃z′. P]]ώ,σ́
G = true . Val (σ̀)=Val (σ́)

ut

Proof (of Lemma 3). By induction on the structure of local expressions and
assertions. The base cases for local expressions are listed below, where the ones
for instance and local variables are covered by the respective provisos of the
lemma.

[[x[z/this]]]ω,σ
G = [[z.x]]ω,σ

G = σ([[z]]ω,σ
G)(x) = σ(ω(z))(x) = [[x]]

ω,σ(ω(z)),τ
L

[[u[z/this]]]ω,σ
G = τ(u) = ω(u) = [[u]]

ω,σ(ω(z)),τ
L

[[this[z/this]]]ω,σ
G = [[z]]ω,σ

G = ω(z) = [[this]]
ω,σ(ω(z)),τ
L

[[null[z/this]]]ω,σ
G = null = [[null]]

ω,σ(ω(z)),τ
L

[[z′[z/this]]]ω,σ
G = [[z′]]ω,σ

G = ω(z′) = [[z′]]
ω,σ(ω(z)),τ
L .

Compound expressions are treated by straightforward induction:

[[f(e1, . . . , en)[z/this]]]ω,σ
G

= f ([[e1[z/this]]]ω,σ
G , . . . , [[en[z/this]]]ω,σ

G) semantics of assertions

= f ([[e1]]
ω,σ(ω(z)),τ
L , . . . , [[en]]

ω,σ(ω(z)),τ
L) by induction

= [[f(e1, . . . , en)]]
ω,σ(ω(z)),τ
L semantics of assertions .

For local assertions, negation and conjunction are straightforward. Unrestricted
quantification ∃z′. p in the local assertion language is only allowed for variables
of type t ∈ {Int, Bool}, for which Val tnull (σ) = Val t. We get

[[(∃z′. p)[z/this]]]ω,σ
G = true

⇐⇒ [[∃z′. p[z/this]]]ω,σ
G = true def. substitution

⇐⇒ [[p[z/this]]]
ω[z′ 7→ v],σ
G = true for some v ∈ Val t assertion semantics

⇐⇒ [[p]]
ω[z′ 7→ v],σ(ω(z)),τ
L = true for some v ∈ Val t by induction

⇐⇒ [[∃z′. p]]
ω,σ(ω(z)),τ
L = true assertion semantics.

58 Proofs

For restricted quantification over elements of a sequence let z′ ∈ LVar t . Then

[[(∃z′ ∈ e. p)[z/this]]]ω,σ

G
= true

⇐⇒ [[∃z′. z′ ∈ e[z/this] ∧ (p[z/this])]]ω,σ

G
= true by definition

⇐⇒ [[(z′ ∈ e[z/this]) ∧ p[z/this]]]ω
′,σ

G
= true semantics

for some v ∈ Val t
null(σ) and ω′ = ω[z′ 7→ v]

⇐⇒
(

([[z′]]ω
′,σ

G
∈ [[e[z/this]]]ω

′ ,σ

G
) ∧ [[p[z/this]]]ω

′,σ

G

)

= true semantics

for some v ∈ Val t
null(σ) and ω′ = ω[z′ 7→ v]

⇐⇒
(

([[z′]]
ω′,σ(ω(z)),τ
L

∈ [[e]]
ω′,σ(ω(z)),τ
L

) ∧ [[p]]
ω′,σ(ω(z)),τ
L

)

= true by induction

for some v ∈ Val t
null(σ) and ω′ = ω[z′ 7→ v]

⇐⇒ [[(z′ ∈ e) ∧ p]]
ω′,σ(ω(z)),τ
L

= true semantics
for some v ∈ Val t

null(σ) and ω′ = ω[z′ 7→ v]

⇐⇒ [[∃z′ ∈ e. p]]
ω,σ(ω(z)),τ
L

= true semantics .

The last equation uses the assumption that the local state τ and the instance
state σ(ω(z)) assign values from Valnull (σ) to all variables, i.e., e does not re-
fer to values of non-existing objects. Consequently, v ∈ Val tnull together with

[[z′ ∈ e]]
ω[z′ 7→ v],σ(ω(z)),τ
L = true implies v ∈ Val tnull (σ). The case for restricted

quantification over subsequences is analogous. ut

Lemma 11. Let σ be a global state and ω a logical environment referring only
to values existing in σ. Then [[E]]ω,σ

G ∈ Valnull (σ) for all global expressions E ∈
GExp that can be evaluated in the context of ω and σ.

Proof (of Lemma 11). By structural induction on the global assertion. The case
for logical variables z ∈ LVar t is immediate by the assumption about ω, the ones
for null and operator expressions are trivial, respectively follows by induction.
For qualified references E.x with E ∈ GExpc and x ∈ IVar t

c an instance variable
of class c, if E.x can be evaluated in the context of ω and σ, then [[E]]ω,σ

G 6= null .
Hence by induction [[E]]ω,σ

G ∈ Valnull (σ), more specifically [[E]]ω,σ
G ∈ Val (σ).

Therefore by definition of global states σ([[E]]ω,σ
G)(x) ∈ Valnull (σ). ut

Proof (of Lemma 4). By structural induction on global assertions. Assume a
global state σ̀, an extension σ́ = σ̀[α 7→σc,init

inst] for some α ∈ Valc, α /∈ Val (σ̀),
and a logical environment ω referring only to values existing in σ̀. Let v be the
sequence consisting of all elements of

⋃

c Valcnull (σ̀). Let finally P be a global
assertion, z′ ∈ LVar listObject a logical variable not occurring in P , and ώ =
ὼ[z′ 7→ v]. Since z′ is fresh in P , we have for all logical variables z in P that

[[z]]ὼ,σ̀
G = ὼ(z) = ώ(z) = [[z]]ώ,σ́

G . For qualified references to instance variables, the

Proofs 59

argument is as follows:

[[E.x]]ὼ,σ̀
G = σ̀([[E]]ὼ,σ̀

G)(x) semantics

= σ́([[E]]ὼ,σ̀
G)(x) [[E]]ὼ,σ̀

G 6= α by Lemma 11 and α/∈Val (σ̀)

= σ́([[E ↓ z′]]ώ,σ́
G)(x) by induction

= [[(E ↓ z′).x]]ώ,σ́
G semantics

= [[(E.x) ↓ z′]]ώ,σ́
G def. ↓ z′ .

The interesting case is the one for quantification. For z ∈ LVar t :

ὼ, σ̀ |=G ∃z. P
⇐⇒ ὼ[z 7→u], σ̀ |=G P for some u ∈ Val tnull (σ̀) semantics
⇐⇒ ώ[z 7→u], σ́ |=G P ↓ z′ for some u ∈ Val tnull (σ̀) induction
⇐⇒ ώ[z 7→u], σ́ |=G obj(z) ⊆ z′∧P ↓ z′ Val tnull (σ̀) ⊆ v

for some u ∈ Val tnull (σ̀)
⇐⇒ ώ, σ́ |=G ∃z. obj(z) ⊆ z′ ∧ P ↓ z′ semantics
⇐⇒ ώ, σ́ |=G (∃z. P) ↓ z′.

The remaining cases are straightforward. ut

B.2 Soundness

This section contains the inductive proof of soundness of the proof method.
We start with some ancillary lemmas about basic invariant properties of proof
outlines, for instance properties of the auxiliary variables added in the transfor-
mation. Afterwards, we show soundness of the proof system.

B.2.1 Invariant properties

Proof (of the transformation Lemma 5). Both directions can be shown by straight-
forward induction on the length of reduction. The only interesting property of
the transformation is the representation of notification by a single auxiliary as-
signment of the notifier. For this case we use Lemma 7 showing soundness of the
representation of the wait and notified sets by the auxiliary instance variables
wait and notified. ut

Proof (of Lemma 6). All parts by straightforward induction on the steps of proof
outlines. ut

Proof (of Lemma 7). The cases 2e and 2f are satisfied by the definition of the
projection operator. Inductivity for the cases 2a and 2b are easy to show using
Lemma 6 and the cases 2e and 2f of this lemma. If the order of the elements is
unimportant, in the following we also use set notation for the values of the wait

and notified variables. Correctness of the projection operation uses the results of

60 Proofs

this lemma and is formulated in Lemma 5. For the other cases we proceed by
induction on the length of the run 〈T0, σ0〉−→∗〈T́ , σ́〉 of the proof outline prog ′.

In the base case of an initial configuration 〈T0, σ0〉 (cf. page 11), the set T0

contains exactly one thread (α, τ, stm), executing the non-synchronized main-
statement of the program, i.e., ¬owns(T0 ↓ prog , α), and initially the lock of the
only object α is set to free. Furthermore, the instance variables wait and notified

of the initial object are set to ∅.
For the inductive step, assume 〈T0, σ0〉−→∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉. We distinguish

on the kind of the last computation step.

Case: Callstart , Call
skip
start , Returnrun

In these cases none of the concerned variables or predicates are touched, no new
objects are created, and no local configurations are pushed or popped, and the
property follows directly by induction.

Case: Assinst , Assloc, Signal, Signalskip , SignalAll

Note that this case handles assignments, but not the observations of communica-
tion and object creation. Remember furthermore that the signaling mechanism
is implemented in proof outlines by auxiliary assignments.

If the assignment is not in a notify- or in a notifyAll-method representing
notification, then the case is analogous to the above one.

Assume now that the assignment in the last computation step represents no-
tification in a notify-method of the proof outline. I.e., a thread ξ1 ∈ T̀ notifies
another thread ξ2 = (α2, τ, stm) ◦ ξ′2 ∈ T̀ in the wait set of α. Remember that
notification is represented by a single assignment of the notifier, and thus the
stack of the notified thread ξ2 does not change. However, according to the pro-
jection definition, as the notifier changes the value of wait of α, the projection
ξ2 ↓ prog represents a thread being in the wait set in 〈T̀ , σ̀〉 and being in the
notified set in 〈T́ , σ́〉.

The only relevant effect of the step is moving (α2, n) ∈ σ̀(α)(wait) from
the wait set into the notified set of α, where n is by induction the number
of synchronized invocations of ξ2 in α. Thus the properties 1a, 1b and 2c are
automatically invariant. Induction implies also uniqueness of the representation
of the wait and notified sets, i.e., α2 is contained neither in σ̀(α)(notified) nor
in σ́(α)(wait). Thus moving the thread of α2 from the wait into the notified set
does not violate uniqueness of the representation.

If the wait set σ̀(α)(wait) is empty, then no notification takes place; the
property follows directly by induction.

The case for the assignment in the notifyAll-method is analogous, with the dif-
ference that all threads in the wait set get notified by ξ1. The notifier observation
sets the value of the auxiliary instance variable notified of α to σ̀(α)(notified) ∪̇
σ̀(α)(wait), whereas the corresponding wait variable gets the value ∅. By induc-
tion we have σ̀(α)(notified) ∩ σ̀(α)(wait) = ∅, and thus the required properties
are invariant under notification.

Case: New

Assume that the last step creates a new object (rule New), and executes the
corresponding observation. Let α ∈ dom(σ́). Then α either reference the newly

Proofs 61

created object, or α ∈ dom(σ̀). In the first case α /∈ dom(σ̀), and by the definition
of global configurations (cf. page 10) there is no local configuration (α, τ, stm) ∈
T̀ . Since the last step doesn’t add any local configurations to T̀ , we have α 6= β
for all (β, τ, stm) ∈ T́ and thus ¬owns(T́ ↓ prog , α). Since the lock of the new
object is initialized to free, and wait and notified of α get the value ∅, the required
property holds for the new object. In the second case, if α ∈ dom(σ̀), the property
follows directly by induction.

Case: Call

Let α ∈ dom(σ́). Then also α ∈ dom(σ̀). If α is not the callee object, then the
property holds directly by induction. If α is the callee object, the only new local
configuration (α, τ, stm) in T́ represents the execution of the invoked method.

If the invoked method is non-synchronized, then the property follows by
induction. In the case of a synchronized method, let ξ ∈ T̀ be the executing
thread. The antecedent ¬owns(T̀\{ξ} ↓ prog , α) implies by induction that, if
there is no local configuration in the thread’s stack executing a synchronized
method of α then σ̀(α)(lock) = free, and σ̀(α)(lock) = (α0, n) otherwise, where
(α0, τ0, stm0) is the deepest configuration in the thread’s stack and n the num-
ber of synchronized method invocations in the stack ξ. If in the state prior to
the method invocation σ̀(α)(lock) = free, then (α, τ, stm) is the only local con-
figuration in T́ representing the execution of a synchronized method of α by a
thread not in the wait or notified sets of α. Furthermore, the callee observation
sets σ́(α)(lock) = (α0, 1), and thus the required property holds. In the second
case, using the fact that the callee configuration is on top of its stack, the callee
observation changes σ̀(α)(lock) = (α0, n) to σ́(α)(lock) = (α0, n+1), and we get
the property by Lemma 6 and by induction.

Case: Callmonitor

Similarly to the case Call, for α ∈ dom(σ́) also α ∈ dom(σ̀), and if α is not
the callee object, then the property holds by induction. In the case of the non-
synchronized notify- and notifyAll-methods, none of the concerned variables or
predicates are touched, and thus the property holds by induction again. So let
ξ ∈ T̀ be the executing thread invoking the non-synchronized wait-method of α.

The antecedent owns(ξ ↓ prog , α) implies by induction σ̀(α)(lock) = (α0, n),
where (α0, τ0, stm0) is the deepest configuration in the stack ξ and n is the
number of its synchronized method invocations in α. Furthermore, since ξ does
not yet execute a wait-method prior to the call, from ξ /∈ wait(T̀ ↓ prog , α) ∪
notified(T̀ ↓ prog , α) we conclude by induction that α0 is contained neither in
wait or in notified of α in σ̀.

The execution places the thread into α’s wait set and, since at most one
thread can own a lock at a time, it gives the lock of α free, i.e., we have ¬owns(T́ ↓
prog , α). The corresponding callee observation extends σ̀(α)(wait) with (α0, n),
and sets the lock-value of α to free. Thus the case follows by induction.

Case: Return

Assume α ∈ dom(σ́) = dom(σ̀). If α is not the callee object, or if the invoked
method is non-synchronized, then the property holds directly by induction. So

62 Proofs

let ξ ∈ T̀ be the thread of α0 returning from a synchronized method of α; we
denote the thread after execution by ξ′ ∈ T́ .

Since the wait-method is terminated by a syntactically different returngetlock -
statement, ξ is neither in the wait nor in the notified set of α, and we get by
definition owns(ξ ↓ prog , α) prior to execution. If the given method is the only
synchronized method of α executed by ξ, then in the successor configuration
¬owns(ξ′ ↓ prog , α), and from the invariant property that at most one thread can
own a lock at a time we imply ¬owns(T́ ↓ prog , α). Otherwise, if ξ has reentrant
synchronized method invocations in α, then the thread doesn’t give the lock free
upon return, i.e., in the successor state we still have owns(ξ′ ↓ prog , α).

Using owns(ξ ↓ prog , α), we get by induction σ̀(α)(lock) = (α0, n), where n
is the number of invocations of synchronized methods of α by ξ. The auxiliary
variable lock of α is set by the callee augmentation to free, if n = 1, and to
(α0, n − 1), otherwise. Since the auxiliary variables wait and notified are not
touched, the property follows by induction.

Case: Returnwait

Assume that the thread ξ ∈ T̀ of an object α0 is returning from the wait-method
of α ∈ dom(σ́) = dom(σ̀); we denote the thread after execution by ξ′ ∈ T́ .

The semantics assures ¬owns(T̀ ↓ prog , α) and by definition ξ ∈ notified(T̀ ↓
prog , α). We get by induction σ̀(α)(lock) = free and (α0, n) ∈ σ̀(α)(notified),
where n is the number of invocations of synchronized methods of α by ξ. After
returning, the thread gets removed from the notified -set of α and gathers the
lock of α, i.e., ξ′ /∈ notified(T́ ↓ prog , α) and owns(ξ′ ↓ prog , α).

The augmentation of the wait-method removes (α0, n) from σ̀(α)(notified);
from the uniqueness of the representation follows α0 6= β for all (β, m) ∈
σ́(α)(notified). Furthermore, the observation sets the lock of α to (α0, n), by
which we get the required property. ut

Proof (of Lemma 8). Straightforward by the definition of augmentation. ut

B.2.2 Proof of the soundness theorem

Proof (of the soundness Theorem 1). We proceed by induction on the length of
the computation, simultaneously for all parts of Definition 6.

For the initial case let dom(σ0) = {α}, σ0(α) = σinit
inst [this 7→α], τ0 = τinit [thread 7→α],

and let 〈~y2 := ~e2〉
1 stm be the main statement. Then the initial configuration

〈T ′
0, σ

′
0〉 of the proof outline satisfies the following: σ′

0 = σ0[α.~y2 7→[[~e2]]
σ0(α),τ0

E],

and for the stack we have T ′
0 = {(α, τ ′

0, stm)} with τ ′
0 = τ0[~y2 7→[[~e2]]

σ0(α),τ0

E].

Let ω be a logical environment referring only to values existing in σ0. As in
σ0 there exists exactly one object α being in its initial instance state, we have

ω[z 7→α], σ0 |=G InitState(z) ∧ ∀z′. z′=null ∨ z=z′ ,

Proofs 63

where z is of the type of the main class, and z′ is a logical variable of type Object.
Using the initial correctness condition we get

ω[z 7→α], σ0 |=G (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit

with I the class invariant of α,

finit = [this, (null, 0, null)/thread, caller][Init(~u)/~u] , and

fobs = [~E2(z)/z.~y2] .

Applying Lemma 2, we get for the global invariant ω′, σ′
0 |=G GI for ω′ =

ω[z 7→α][~u 7→ τ ′
0(~u)]. Since GI may not contain free logical variables, its value

does not depend on the logical environment, and therefore ω, σ′
0 |=G GI .

Similarly for the local property p3 = pre(stm), we get with Lemma 2 that
ω′, σ′

0 |=L P3. With Lemma 3 we get ω′, σ′
0(α), τ ′

0 |=L pre(stm). Since pre(stm)
does not contain free logical variables, we get finally ω, σ′

0(α), τ ′
0 |=L pre(stm).

Part 3 is analogous.

For the inductive step, assume 〈T0, σ0〉−→
∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that 〈T̀ , σ̀〉

satisfies the conditions of Definition 6. Let ω be a logical environment referring
only to values existing in σ́. We distinguish on the kind of the computation step
〈T̀ , σ̀〉 −→ 〈T́ , σ́〉.

Case: Assinst , Assloc

Note that signaling is represented in proof outlines by auxiliary assignments,
thus this case covers also the rules Signal, SignalAll, and Signalskip . Note
furthermore that this case does not cover observations of communication or
object creation.

Let the last computation step be the execution of an assignment in the local
configuration (α, τ̀1, ~y := ~e; stm1) ∈ T̀ resulting in (α, τ́1, stm1) ∈ T́ . According

to the semantics, τ́1 = τ̀1[~y 7→[[~e]]
σ̀(α),τ̀1

E] and σ́ = σ̀[α.~y 7→[[~e]]
σ̀(α),τ̀1

E].
Since assignments, that does not observe object creation or communication,

don’t change the values of variables occurring in GI , part (2) is satisfied.
For part (1), assume (β, τ2, stm2) ∈ T́ . If (β, τ2, stm2) = (α, τ́1, stm1) is the

executing local configuration, then by induction ω, σ̀(α), τ̀1 |=L pre(~y := ~e). The
local correctness condition implies that ω, σ̀(α), τ̀1 |=L pre(stm1)[~e/~y]. Using the
properties of the local substitution formulated in Lemma 1 we get ω, σ́(α), τ́1 |=L

pre(stm1).
If otherwise (β, τ2, stm2) is not the executing local configuration, then it

is contained in T̀ . If α 6= β, i.e., the execution didn’t take place in β, then
σ̀(β) = σ́(β), and thus ω, σ́(β), τ2 |=L pre(stm2) by induction. Otherwise let τ
be τ̀1[~u

′ 7→ τ2(~u)], where ~u = dom(τ2) and ~u′ fresh. Then Lemma 6, the induction
assumptions, and the definition of interleavable imply

ω, σ̀(α), τ |=L pre(stm1) ∧ pre ′(stm2) ∧ interleavable(pre(stm2), ~y := ~e) ,

and with the interference freedom test we get ω, σ̀(α), τ |=L pre ′(stm2)[~e/~y]. Us-
ing the substitution Lemma 1 and the fact that, due to the renaming mechanism,
no variables in ~u′ may occur in ~y, yields ω, σ́(α), τ2 |=L pre(stm2).

64 Proofs

Part (3) is similar, using the fact that the class invariant may contain instance
variables only, and thus its evaluation doesn’t depend on the local state.

Case: Call

Let (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
1 stm1) ∈ T̀ be the caller configuration

prior to method invocation, and let (α, τ́1, stm1) ∈ T́ and (β, τ́2, stm2) ∈ T́ be
the local configurations of the caller and the callee after execution. Let fur-
thermore 〈~y2 := ~e2〉

1 stm2 be the invoked method’s body and ~u its formal pa-

rameters. Then β = [[e0]]
σ̀(α),τ̀1

E 6= null . Directly after communication the callee

has the local state τ̂2 = τinit [~u 7→[[~e]]
σ̀(α),τ̀1

E]; after the caller observation, the

global state is σ̂ = σ̀[α.~y1 7→[[~e1]]
σ̀(α),τ̀1

E] and the caller’s local state is updated to

τ́1 = τ̀1[~y1 7→[[~e1]]
σ̀(α),τ̀1

E]. Finally, the callee observation updates its local state to

τ́2 = τ̂2[~y2 7→[[~e2]]
σ̂(β),τ̂2

E] and the global state to σ́ = σ̂[β.~y2 7→[[~e2]]
σ̂(β),τ̂2

E].

If the method is synchronized and ξ is the stack of the executing thread in T̀ ,
then according to the transition rule ¬owns(T̀\{ξ} ↓ prog , β). Using Lemma 7
and Lemma 6 we get σ̀(β)(lock) = free ∨ thread(σ̀(β)(lock)) = τ̀1(thread) and
thus ὼ, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread with ~v1 = dom(τ̀1) and
ὼ = ω[z 7→α][z′ 7→β][~v1 7→ τ̀1(~v1)].

Similarly, β = [[e0]]
σ̀(α),τ̀1

E implies with Lemma 3 and the definition of ὼ that
ὼ, σ̀ |=G E0(z) = z′.

In the following let p1 = pre(uret := e0.m(~e)), p2 = pre(~y1 := ~e1), p3 =
post(~y1 := ~e1), q1 = Iq, q2 = pre(~y2 := ~e2), and q3 = post(~y2 := ~e2), where Iq is
the class invariant of the callee. Let Ip be caller class invariant. Then we have by
induction ὼ, σ̀ |=G GI ,ὼ, σ̀(α), τ̀1 |=L Ip, ὼ, σ̀(β), τ̀1 |=L Iq, and ὼ, σ̀(α), τ̀1 |=L

p1. Using the lifting lemma the cooperation test for communication implies

ὼ, σ̀ |=G (GI ∧ P3(z) ∧ Q′
3(z

′))[E′
2(z

′)/z′.~y′
2][E1(z)/z.~y1][~E(z), Init(~v)/~u′, ~v′] ,

where ~v contains the variables from dom(τ2) without the formal parameters
~u. Using the lifting lemma again but in the reverse direction and Lemma 2
results ω, σ́ |=G GI , and thus part (2). Note that in the annotation no free
logical variables occur, and thus the values of assertions in a proof outline do
not depend on the logical environment.

Furthermore, using the same lemmas we get

ω, σ́(α), τ́1 |=L p3 ω, σ́(β), τ́2 |=L q3 .

Thus part (1) is satisfied for the local configurations involved in the last
computation step. All other configurations (γ, τ3, stm3) in T́ are also in T̀ . If
γ 6= α and γ 6= β, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ3 |=L pre(stm3) by
induction.

Assume next γ = α and α 6= β, and let τ be τ̀1[~v
′ 7→ τ3(~v)], where ~v =

dom(τ3). Then Lemma 6, the induction assumptions, and the definition of the
assertion interleavable imply with the interference freedom test ω, σ̀(α), τ |=L

pre ′(stm3)[~e1/~y1]. The substitution Lemma 1 and the fact that, due to the re-
naming mechanism, no local variables in ~v′ occur in ~y1, yield ω, σ̂(α), τ3 |=L

Proofs 65

pre(stm3). Now, since β 6= α, the callee observation also does not change the
caller’s instance state, and we have σ̂(α) = σ́(α). Thus we get ω, σ́(α), τ3 |=L

pre(stm3).
The case γ = β and α 6= β is similar. Communication and caller observation

do not change the instance state of β, i.e., σ̀(β) = σ̂(β). The interference freedom
test results ω, σ̂(β), τ |=L pre ′(stm3)[~e2/~y2] with τ = τ̂2[~v

′ 7→ τ3(~v)]. Due to
the renaming mechanism, we conclude with the local substitution lemma that
ω, σ́(β), τ́ |=L pre ′(stm3) with τ́ (~v′) = τ3(~v), and thus ω, σ́(β), τ3 |=L pre(stm3).

For the last case γ = α = β note that, according to the restrictions on
the augmentation, the caller may not change the instance state. Thus the same
arguments as for γ = β and α 6= β apply. I.e., part (1) is satisfied.

Part (3) is analogous: Let I be the class invariant of α. The interference
freedom test implies ω, σ́(α), τ́1 |=L I. Since I may contain instance variables
only, its evaluation doesn’t depend on the local state. Similarly for the callee,
ω, σ́(β), τ́2 |=L I. The state of other objects is not changed in the last computa-
tion step, and we get the required property.

Case: Callstart , Call
skip
start

These cases are analogous to the above one, where we additionally need ὼ, σ̀ |=G

¬z′.started and ὼ, σ̀ |=G z′.started, resp., to be able to apply the cooperation
test. The above properties result from the transition antecedents ¬started(T̀ , β)
and started(T̀ , β), resp., using Lemma 8 and ὼ(z′) = β.

Case: Callmonitor

As above, where ὼ, σ̀ |=G thread(z′.lock) = thread is implied by the transition
antecedent owns(ξ ↓ prog , β) and Lemma 6.

Case: Return

This case is analogous to the Call case, where we define q1 as the precondition of
the corresponding return statement instead of the class invariant. The additional
requirement ὼ, σ̀ |=G E0(z) = z′ ∧~u′ = ~E(z) of the cooperation test results from
the fact that the values of formal parameters may not change during method
execution, and that the method invocation statements may not contain instance
variables, so that the values of the formal parameters and the expressions in the
method invocation statement are untouched during the execution of the invoked
method.

For the application of the interference freedom test, to show the validity of
the interleavable predicate, we use the fact that the assertion pre(stm3) neither
describes the caller nor the callee, since the corresponding local configuration is
not involved in the execution.

Case: Returnrun

Similar to the return case.

Case: Returnwait

In this case the antecedent ¬owns(T̀ ↓ prog , β) of the transition rule together
with Lemma 7 imply ὼ, σ̀ |=G z′.lock = free. Furthermore, the executing thread
is in the notified set prior to execution, and the same lemma yields that the
executing thread is registered in σ̀(β)(notified), i.e., ὼ, σ̀ |=G thread′ ∈ z′.notified.

66 Proofs

Case: New

Let (α, τ̀1, u := new; 〈~y1 := ~e1〉
1 stm1) ∈ T̀ be the local configuration of the

executing thread prior to object creation, and (α, τ́1, stm1) ∈ T́ after it. Ob-
ject creation updates the global state to σ̂ = σ̀[β 7→σinit

inst [this 7→β]], where β /∈
dom(σ̀); the executing thread’s local state gets updated to τ̂1 = τ̀1[u 7→β].

After observation we have τ́1 = τ̂1[~y1 7→[[~e1]]
σ̂(α),τ̂1

E] and for the global state

σ́ = σ̂[α.~y1 7→[[~e1]]
σ̂(α),τ̂1

E].
In the following let p1 = pre(u := new), p2 = pre(~y1 := ~e1), and p3 =

post(~y1 := ~e1). Then we have by induction ω, σ̀ |=G GI and ω, σ̀(α), τ̀1 |=L

p1 ∧ I, where I is the class invariant of the creator α. Using the lifting lemma
we get ὼ, σ̀ |=G GI ∧ P1(z) ∧ I(z) for ὼ = ω[z 7→α][~v1 7→ τ̀1(~v1)] and ~v1 the
variables from the domain of τ̀1. With Lemma 4 ὼ[z′ 7→ dom(σ̀)][u 7→β], σ̂ |=G

(GI ∧ (∃u. P1(z)) ∧ I(z)) ↓ z′. Note that GI may not contain free logical vari-
ables, and thus its evaluation does not depend on the logical environment. Since
the newly created object with a fresh identity is in its initial instance state,
ὼ[z′ 7→ dom(σ̀)][u 7→β], σ̂ |=G Fresh(z′, u). Thus

ὼ[u 7→β], σ̂ |=G z 6= null ∧ ∃z′. Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′ .

The cooperation test for object creation implies

ὼ[u 7→β], σ̂ |=G Inew(u) ∧ (GI ∧ P3(z))[~E1(z)/z.~y1] ,

where Inew is the class invariant of the new object. Using the lifting lemma again
but in the reverse direction and Lemma 2 results ω, σ́ |=G GI , and thus part (2).
Note that in the annotation no free logical variables occur, and thus the values
of assertions do not depend on the logical environment.

Furthermore, using the substitution lemmas we get

ω, σ́(α), τ́1 |=L p3

ω, σ́(β), τ |=L Inew

for all τ . For the class invariant of the executing thread, the interference freedom
test implies ω, σ́(α), τ́1 |=L I, where I is the class invariant of α. Since I may
contain instance variables only, its evaluation doesn’t depend on the local state,
and the required property holds. The state of other objects not involved in the
last step is not changed in the last computation step, and part (3) is satisfied.

Furthermore, part (1) is satisfied for the local configuration involved in the
last computation step. All other configurations (γ, τ̀2, stm2) in T́ are also in T̀
and γ 6= β. If γ 6= α, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ̀2 |=L pre(stm2) by
induction.

Assume now γ = α, and let τ be τ̂1[~v
′ 7→ τ̀2(~v)], where ~v = dom(τ̀2). Then,

since σ̀(α) = σ̂(α), Lemma 6, the induction assumptions, and the definition of
interleavable imply with the interference freedom test ω, σ̀(α), τ |=L pre ′(stm2)[~e1/~y1].
The substitution Lemma 1 and the fact that, due to the renaming mechanism,
no local variables in ~v′ occur in ~y1, yields ω, σ́(α), τ̀2 |=L pre(stm2). I.e., part (1)
is satisfied.

Proofs 67

Proof (of the soundness Corollary 1). The proof is straightforward using the
soundness Lemma 1.

B.3 Completeness

The following lemma states that the variable loc indeed stores the current control
point of a thread:

Lemma 12. Let 〈T, σ〉 be a reachable configuration of prog0 and assume (α, τ, stm) ∈
T . Then τ(loc) ≡ stm.

Proof (of Lemma 12). Straightforward by the definition of augmentation. ut

Proof (of the local merging Lemma 9). Let be given two computations 〈T0, σ0〉−→∗〈T́1, σ́1〉
and 〈T0, σ0〉−→∗〈T́2, σ́2〉 of prog ′, and assume (α, τ, stm) ∈ T́1 with α ∈ dom(σ́1)∩
dom(σ́2) and σ́1(α)(hinst) = σ́2(α)(hinst). We prove (α, τ, stm) ∈ T́2 by induction
over the sum of the length of the computations.

In the initial case both T́1 and T́2 contain the same single initial local con-
figuration, and thus the property holds.

For the inductive case, let 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be
the last steps of the computations. The augmentation definition implies that
each computation step appends at most one element to the instance history
of α. If σ̀1(α)(hinst) = σ́1(α)(hinst), then, by the definition of the augmenta-
tion, 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 did not execute in α, i.e., (α, τ, stm) ∈ T̀1, and the
property follows by induction. The case for σ̀2(α)(hinst) = σ́2(α)(hinst) is anal-
ogous. Thus assume in the following σ́1(α)(hinst) = σ̀1(α)(hinst) ◦ (σ1

inst , τ1) and
σ́2(α)(hinst) = σ̀2(α)(hinst) ◦ (σ2

inst , τ2). From σ́1(α)(hinst) = σ́2(α)(hinst) we
conclude that σ̀1(α)(hinst) = σ̀2(α)(hinst) and (σ1

inst , τ1) = (σ2
inst , τ2).

Since σ́1(α)(hinst) 6= σ̀1(α)(hinst), the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉
executed some statements in α. If there is only one local configuration in α
that was involved in the step, then the augmentation definition and the local
substitution lemma imply that its resulting local configuration in T́1 is given
by (α, τ1, stm1) with stm1 ≡ τ1(loc). From (σ1

inst , τ1) = (σ2
inst , τ2) we conclude

that the same local configuration executed in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉. Thus, either
(α, τ, stm) ∈ T́1 is the executing configuration (α, τ1, stm1) and then it is also in
T́2, or not, and then it is in T̀1, by induction in T̀2, and since it wasn’t involved
in the execution 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, also in T́2.

If otherwise there are two local configurations in α involved in 〈T̀1, σ̀1〉 −→
〈T́1, σ́1〉, then (σ1

inst , τ1) specifies the callee’s local configuration for communica-
tion. However, due to the built-in auxiliary variables, the identity of the caller
local configuration is also stored in τ1. In the case of a method invocation, the
identity of the caller local configuration is uniquely specified by the formal pa-
rameter caller of the callee. The caller configuration is in T̀1, and by induction
in T̀2. Furthermore, since there are no two local configurations with the same
identity in a reachable configuration, both steps execute in the same instance
local configuration.

68 Proofs

Thus, either (α, τ, stm) ∈ T́1 is one of the executing configurations and then
it is also in T́2, or not, and then it is in T̀1, by induction in T̀2, and since it wasn’t
involved in the execution, also in T́2. ut

Proof (of the global merging Lemma 10). Let the configurations 〈T́1, σ́1〉 and
〈T́2, σ́2〉 be reachable and let α ∈ dom(σ́1)∩ dom(σ́2) satisfying σ́1(α)(hcomm) =
σ́2(α)(hcomm). We show that there exists a reachable 〈T́ , σ́〉 with dom(σ́) =
dom(σ́2), σ́(α) = σ́1(α), and σ́(β) = σ́2(β) for all β ∈ dom(σ́2)\{α}. We proceed
by induction on the sum of the lengths of the computations.

In the base case we are given 〈T́1, σ́1〉 = 〈T́2, σ́2〉 and the property trivially
holds.

For the inductive step, let 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be
the last steps of the computations.

If α /∈ dom(σ̀1) or α /∈ dom(σ̀2), then α was created in one of the last steps,
and thus σ́1(α)(hcomm) = σ́2(α)(hcomm) = ε. That means, no methods of α were
involved yet, i.e., α is in its initial instance state σ́1(α) = σ́2(α) = σinit

inst [this 7→α];

in this case 〈T́2, σ́2〉 already satisfies the requirements. Assume in the following
α ∈ dom(σ̀1) ∩ dom(σ̀2).

We distinguish whether the last computation steps update the communica-
tion history of α or not.

Case: σ̀1(α)(hcomm) = σ́1(α)(hcomm)
In this case 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 doesn’t execute any non-self communication
or object creation in α. By induction there is a computation 〈T0, σ0〉−→∗〈T̀ , σ̀〉
leading to a configuration such that σ̀(α) = σ̀1(α) and σ̀(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}.

In case 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 does not execute in α at all, i.e., σ̀1(α) = σ́1(α),
then 〈T̀ , σ̀〉 already satisfies the requirements.

Otherwise, the local configurations in T̀1 which execute in α and which are
involved in the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 are by the local merg-
ing Lemma 9 also in T̀ . Furthermore, from σ̀1(α)(hcomm) = σ́1(α)(hcomm) we
conclude that they don’t execute any non-self communication or object creation,
and thus their enabledness and effect depends only on the instance state of α. We
conclude that the same computation as in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed
in 〈T̀ , σ̀〉, leading to a reachable global configuration satisfying the requirements.

Case: σ̀2(α)(hcomm) = σ́2(α)(hcomm)
In this case 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute any non-self communication
or object creation involving α. By induction, there is a reachable 〈T̀ , σ̀〉 with
σ̀(α) = σ́1(α) and σ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.

If 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 performs a step within α, then, according to the case
assumption, it executes exclusively within α. This means, σ̀2(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}, and 〈T̀ , σ̀〉 already satisfies the required properties.

If otherwise 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute in α, then all local con-
figurations in T̀2, executing in an object different from α, are also in T̀ ; this

Proofs 69

follows from σ̀2(β) = σ̀(β) for all β ∈ dom(σ̀2)\{α}, and with the help of the
local merging Lemma 9 applied to 〈T̀ , σ̀〉 and 〈T̀2, σ̀2〉. The enabledness of local
configurations, whose execution does not involve α, are independent of the in-
stance state of α; furthermore, the effect of their execution neither influences the
instance state of α nor depends on it. Thus in 〈T̀ , σ̀〉 we can execute the same
computation steps as in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, leading to a reachable configura-
tion with the required properties.

Case: σ̀1(α)(hcomm) 6= σ́1(α)(hcomm) and σ̀2(α)(hcomm) 6= σ́2(α)(hcomm)
In this case finally both 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 execute
some object creation or non-self communication in α. We show that in this case
σ́1(α)(hcomm) = σ́2(α)(hcomm) implies also σ̀1(α)(hcomm) = σ̀2(α)(hcomm), and
thus by induction there is a computation leading to a configuration 〈T̀ , σ̀〉 such
that dom(σ̀) = dom(σ̀2), σ̀(α) = σ̀1(α), and σ̀(β) = σ̀2(β) for all other objects
β ∈ dom(σ̀2)\{α}.

Furthermore, combining those local configurations involved in 〈T̀1, σ̀1〉 −→
〈T́1, σ́1〉 which execute within α with those in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 which execute
outside α, we can define a computation 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that σ́(α) = σ́1(α)
and σ́(β) = σ́2(β) for all other objects β ∈ dom(σ́2)\{α}.

The case assumptions imply, that the last elements of the communication
histories σ́1(α)(hcomm) and σ́2(α)(hcomm) were appended in the last computation
steps; σ́1(α)(hcomm) = σ́2(α)(hcomm) imply that the last elements are equal.

According to the augmentation, each computation step extends the commu-
nication history of α with at most one element. Thus we get σ̀1(α)(hcomm) =
σ̀2(α)(hcomm), and by induction there is a reachable 〈T̀ , σ̀〉 with dom(σ̀) =
dom(σ̀2), σ̀(α) = σ̀1(α), and σ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.

Note that the last elements of the communication histories σ́1(α)(hcomm)
and σ́2(α)(hcomm) record the kind of execution, and so we know that both steps
execute the same kind of communication in α. Furthermore, the last elements
record also the identity of the local configuration executing in α, the communi-
cation partner of α, and the communicated values, which are consequently also
equal.

We distinguish on the kind of the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉:

Subcase: New

In this case σ́1(α)(hcomm) = σ̀1(α)(hcomm) ◦ (α,null , (newcγ, threadα)), where
threadα is the identity of the creator thread as specified by its local variable
thread, and γ is the newly created object.

From the preliminary observations we conclude that 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉
creates the same new object γ being in the same initial state; furthermore, it
leaves the states of all objects from dom(σ̀2)\{α} untouched.

As σ̀(α) = σ̀1(α), the local merging Lemma 9 implies that the local config-
uration of the creator in T̀1 is also contained in T̀ . Thus, since γ /∈ dom(σ̀2) =
dom(σ̀), the same computation step as in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed
also in 〈T̀ , σ̀〉, leading to a reachable configuration 〈T́ , σ́〉 with ValObject(σ́) =
ValObject(σ̀) ∪̇ {γ} = ValObject(σ̀2) ∪̇ {γ} = ValObject(σ́2), σ́(α) = σ́1(α), and
σ́(β) = σ̀(β) = σ̀2(β) = σ́2(β) for all β ∈ dom(σ̀2)\{α}. Finally, for the newly

70 Proofs

created object we have σ́(γ) = σ́2(γ) = σinit
inst [this 7→ γ], and thus σ́(β) = σ́2(β)

for all β ∈ dom(σ́2)\{α}.

Subcase: Call

Assume first that α is the caller object and β 6= α the callee. According to
the preliminary observations, also 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 executes the invocation
of the same method of β, where α is the caller and β the callee. Furthermore,
by the local merging lemma, the caller local configuration from T̀1 is also in
T̀ , and its execution is also enabled in 〈T̀ , σ̀〉. The last property holds also for
synchronized and monitor methods, since the invocation of the same method of
β by the same thread is enabled in 〈T̀2, σ̀2〉, and σ̀2(β) = σ̀(β).

Thus the caller local configuration from T̀1 can execute the method invoca-
tion in 〈T̀ , σ̀〉, leading to a reachable configuration 〈T́ , σ́〉 with σ́(α) = σ́1(α).
Furthermore, 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 execute the same callee
observation in the same instance state σ̀2(β) = σ̀(β) and the same initial local
state after the communication of the same actual parameter values, and thus
σ́(β) = σ́2(β). The states of other objects are not touched, and thus 〈T́ , σ́〉
satisfies the required properties.

Similarly, if the callee object is α, then the same caller local configuration as
in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 can execute in 〈T̀ , σ̀〉 leading to a reachable configuration
satisfying the requirements.

Subcase: Return

This case is analogous to the above case for Call. The computation 〈T̀ , σ̀〉 −→
〈T́ , σ́〉 is constructed from the execution of the local configuration in α which ex-
ecutes in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉, together with the execution of the communication
partner of α which executes in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉.

ut

Lemma 13 (Initial correctness). The proof outline prog ′ satisfies the initial
conditions of Definition 1.

Proof (of Lemma 13). Let σ0 be a global state with dom(σ0) = {α} and σ0(α) =
σinit
inst [this 7→α], let {p2}

1 〈~y2 := ~e2〉
1 {p3} stm be the main statement with local

variables ~v, and let I be the class invariant of the main class. Then the initial con-

figuration 〈T ′
0, σ

′
0〉 of the proof outline prog ′ satisfies σ′

0 = σ0[α.~y2 7→[[~e2]]
σ0(α),τ0

E],
and T ′

0 = {(α, τ ′
0, stm)} with the local state τ0 defined by τinit [thread 7→α][caller 7→(null , 0,null)]

and with τ ′
0 = τ0[~y2 7→[[~e2]]

σ0(α),τ0

E].
We have to show for arbitrary σ ∈ Σ and ω ∈ Ω referring only to values

existing in σ, that

ω, σ |=G ∀z. InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) →

P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit ,

where z is of the type of the main class, z′ of type Object, and where finit =
[z, (null, 0, null)/thread, caller][Init(~v)/~v] and fobs = [~E2(z)/z.~y2].

Proofs 71

So let v′ ∈ Valmain
null . We observe that

ω[z 7→ v′], σ |=G InitState(z) ∧ ∀z′. z′ = null ∨ z′ = z

implies that σ is the initial global state σ0 defining exactly one existing object
ω(z) = α being in its initial instance state. We start transforming the right-hand
side using the substitution Lemmas 2 and 3:

[[P2(z)[z, (null, 0, null)/thread, caller][Init(~v)/~v]]]
ω[z 7→α],σ0

G

= [[P2(z)[z, (null, 0, null)/thread, caller]]]
ω[z 7→α][~v 7→ Init(~v)],σ0

G

= [[P2(z)]]
ω[z 7→α][~v 7→ Init(~v)][thread 7→α],σ0

G

= [[p2]]
ω,σ0(α),τ0

L

which evaluates to true, since the run-method of the main class is initially invoked
in the given context.

For the global invariant we get similarly

[[GI [~E2(z)/z.~y2][z, (null, 0, null)/thread, caller][Init(~v)/~v]]]
ω[z 7→α],σ0

G

= [[GI [~E2(z)/z.~y2]]]
ω[z 7→α][~v 7→ Init(~v)][thread 7→α],σ0

G

= [[GI]]
ω′,σ′

0

G

= [[GI]]
ω,σ′

0

G

for some logical environment ω′. In the last step we used the restriction that the
global invariant may not contain free logical variables. The step before made use
of the following equation for ~E2(z), which we get using Lemma 3 and with the
fact that ~e2 does not contain logical variables:

[[~E2(z)]]
ω[z 7→α][~v 7→ Init(~v)][thread 7→α],σ0

G = [[~e2[z/this]]]
ω[z 7→α][~v 7→ Init(~v)][thread 7→α],σ0

G

= [[~e2]]
ω[z 7→α][~v 7→ Init(~v)][thread 7→α],σ0(α),τ0

G

= [[~e2]]
ω′,σ0(α),τ0

G .

Since 〈T ′
0, σ

′
0〉 is reachable, the initial condition for the global invariant is satis-

fied. The cases for p3 and I are similar to that of GI , where we additionally use

the lifting substitution Lemma 3 to show that [[P (z)]]
ω′,σ′

0

G = [[p]]
ω′,σ′

0(α),τ ′

0

L . ut

Lemma 14 (Local correctness). The proof outline prog ′ satisfies the condi-
tions of local correctness from Definition 2.

Proof (of Lemma 14). Let c be a class of prog ′, ω ∈ Ω, σinst ∈ Σinst , and
τ ∈ Σloc with σinst (this) = α. Assume an assignment {p1} ~y := ~e{p2} in c with
class invariant I. We have to show that

ω, σinst , τ |=L p1 ∧ I → p2[~e/~y] . (10)

72 Proofs

From ω, σinst , τ |=L pre(~y := ~e) it follows that there is a reachable 〈T̀ , σ̀〉

with σ̀(α) = σinst and (α, τ, ~y := ~e; stm) ∈ T̀ . Executing the local configu-

ration in 〈T̀ , σ̀〉 leads to a reachable global configuration 〈T́ , σ́〉 with σ́(α) =
σinst [~y 7→[[~e]]

σinst ,τ
E] and (α, τ [~y 7→[[~e]]

σinst ,τ
E], stm) ∈ T́ . Thus by the definition of

the annotation for prog ′ we have

ω, σinst [~y 7→[[~e]]
σinst ,τ
E], τ [~y 7→[[~e]]

σinst ,τ
E] |=L post(~y := ~e) ,

and further with the substitution Lemma 1

ω, σinst , τ |=L post(~y := ~e)[~e/~y] ,

as required. ut

Lemma 15 (Interference freedom). The proof outline prog ′ satisfies the con-
ditions for interference freedom from Definition 3.

Proof (of Lemma 15). Assume an arbitrary assignment ~y := ~e with precondition
p in class c with class invariant I, and an arbitrary assertion q at a control point
in the same class. We show the verification condition from Equation (5) on
page 34

ω, σinst , τ |=L p ∧ q′ ∧ I ∧ interleavable(q, ~y := ~e) → q′[~e/~y] , (11)

for some logical environment ω together with some instance and local states σinst

and τ , where q′ denotes q with all local variables u replaced by some fresh local
variables u′.

Let α = σinst (this). The first clause ω, σinst , τ |=L p implies that there exists

a computation reaching 〈T̀p, σ̀p〉 with σ̀p(α) = σinst , and an enabled configura-

tion (α, τp, stmp; stm
′
p) ∈ T̀p, where stmp is ~y := ~e if the assignment does not

observe method call or object creation, and the corresponding communication
statement with its observation otherwise. The local state τp is τ if stmp does not
receive any values. Otherwise τp = τ [~u 7→~v], where ~u are the variables storing
the received values and ~v some value sequence, such that the local configuration
is enabled to receive the values τ(~u). If p is the precondition of a method body,
then additionally τp(~w) = Init(~w) for the sequence ~w of local variables in p that
are not formal parameters.

From ω, σinst , τ |=L q′ we get by renaming back the local variables that
ω, σinst , τ

′ |=L q for τ ′(u) = τ(u′) for all local variables u in q. Let q be the
precondition of the statement stmq. Note that q is an assertion at a control
point. Applying the annotation definition we conclude that there is a reachable
〈T̀q, σ̀q〉 with σ̀q(α) = σinst = σ̀p(α) and (α, τ ′, stmq; stm

′
q) ∈ T̀q. The local

merging Lemma 9 implies that (α, τ ′, stmq; stm
′
q) ∈ T̀p.

Let 〈T́p, σ́p〉 result from 〈T̀p, σ̀p〉 by executing the enabled local configura-
tion (α, τp, stmp; stm

′
p). If the local configuration is the caller part in a self-

communication, then, due to the restriction on the augmentation, [~e/~y] does not

Proofs 73

substitute any instance variables. Thus, due to the renaming mechanism, q′[~e/~y]
equals q′, and thus ω, σinst , τ |=L q′[~e/~y].

Otherwise, if (α, τp, stmp; stm
′
p) doesn’t represent the caller part in a self-

communication, then σ́p(α) = σinst [~y 7→[[~e]]
σinst ,τ
E]. Note that for self-communication,

the caller part does not change the instance state. Thus the only update of
the instance state of α is given by the effect of ~y := ~e. From the assumption
ω, σinst , τ |=L interleavable(q, ~y := ~e) we get that (α, τ ′, stmq; stm

′
q) cannot be

the communication partner of (α, τp, stmp; stm
′
p), and thus (α, τ ′, stmq; stm

′
q) ∈

T́p.
We get ω, σinst [~y 7→[[~e]]

σinst ,τ
E], τ ′ |=L q, and after renaming the local variables

of q also ω, σinst [~y 7→[[~e]]
σinst ,τ
E], τ |=L q′. Finally, by the substitution Lemma 1 we

get the required property ω, σinst , τ |=L q′[~e/~y]. Note that due to renaming, no
local variables of q′ occur in ~y, and thus τ(u′) = τ [~y 7→[[~e]]

σinst ,τ
E](u′) for all local

variables u in q.
Validity of the verification condition 4 for the class invariant is similar, where

we additionally use the fact the the class invariant refers to instance variables
only. ut

Lemma 16 (Cooperation test: Communication). The proof outline prog ′

satisfies the verification conditions of the cooperation test for communication of
Definition 4.

Proof (of Lemma 16). We distinguish on the kind of communication starting
with the verification condition for synchronized method invocation.

Case: Call

Let {p1} uret := e0.m(~e); {p2}
1 〈~y1 := ~e1〉

1 {p3}
2 be a statement in a class c of

prog ′ with e0 ∈ Expc′

c , where method m /∈ {start, wait, notify, notifyAll} of c′ is
synchronized with body {q2}

1 〈~y2 := ~e2〉
1 {q3} stm, formal parameters ~u, local

variables without the formal parameters given by ~v, and let q1 = Ic′ be the
callee class invariant. Assume

ὼ, σ̀ |=G GI ∧ P1(z) ∧ Q′
1(z

′) ∧ communicating ∧ z 6= null ∧ z′ 6= null

for distinct and fresh z ∈ LVarc and z′ ∈ LVarc′

, and where communicating =
E0(z) = z′∧(z′.lock = free∨thread(z′.lock) = thread). Note that for completeness
we don’t need the information stored in the caller class invariant. By definition
of the global invariant, the assumption ὼ, σ̀ |=G GI implies that there exists a
reachable 〈T, σ〉 with

dom(σ̀) = dom(σ) and σ̀(γ)(hcomm) = σ(γ)(hcomm) for all γ ∈ dom(σ) .

Assuming ὼ(z) = α as caller identity, ὼ, σ̀ |=G P1(z) implies ὼ, σ̀(α), τ̀1 |=L p1 by
the substitution Lemma 3, for some local state τ̀1 with τ̀1(u) = ὼ(u) for all local
variables u occurring in p1. By the annotation definition there exists a reachable
configuration 〈T1, σ1〉 such that

σ1(α) = σ̀(α) and (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
1 stm1) ∈ T1 .

74 Proofs

Recall that σ(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ), and especially
for the caller σ(α)(hcomm) = σ̀(α)(hcomm) = σ1(α)(hcomm). Using the global
merging Lemma 10 applied to 〈T1, σ1〉 and 〈T, σ〉 we get that there is a reachable
〈T ′, σ′〉 with dom(σ′) = dom(σ) and

σ′(α) = σ1(α) and σ′(γ) = σ(γ) for all γ ∈ dom(σ)\{α} .

Furthermore, (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
1 stm1) ∈ T1, σ1(α) = σ′(α), and

the local merging Lemma 9 implies that

(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
1 stm1) ∈ T ′ .

Let β = ὼ(z′) be the callee object. In case of a self-call, i.e., for α = β, we di-
rectly get that 〈T ′′, σ′′〉 = 〈T ′, σ′〉 is a reachable configuration such that σ′′(α) =
σ̀(α), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, uret :=
e0.m(~e); 〈~y1 := ~e1〉

1 stm1) ∈ T ′′.

Otherwise, the assumption ὼ, σ̀ |=G Ic′(z
′) implies ὼ, σ̀(β), τ2 |=L Ic′ for some

local state τ2. Note that the class invariant contains instance variables, only. By
definition of the class invariant, there is a reachable global configuration 〈T2, σ2〉
such that

σ2(β) = σ̀(β) .

We need to fall back upon the two merging lemmas once more to obtain a com-
mon reachable configuration: Analogously to the caller part, the global merging
Lemma 10 applied to 〈T2, σ2〉 and 〈T ′, σ′〉 yields that there is a reachable con-
figuration 〈T ′′, σ′′〉 with dom(σ′′) = dom(σ′) and

σ′′(β) = σ2(β) and σ′′(γ) = σ′(γ) for all γ ∈ dom(σ′)\{β} .

Furthermore, (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
1 stm1) ∈ T ′, σ′′(α) = σ′(α), and

the local merging Lemma 9 implies (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
1 stm1) ∈

T ′′.

Thus 〈T ′′, σ′′〉 is a reachable configuration with σ′′(α) = σ̀(α), σ′′(β) =
σ̀(β), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, uret :=
e0.m(~e); 〈~y1 := ~e1〉

1 stm1) ∈ T ′′.

With the antecedent ὼ, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread of the
cooperation test we get σ̀(β)(lock) = free∨thread(σ̀(β)(lock)) = τ̀1(thread). With
σ̀(β) = σ′′(β) and Lemma 7 we get ¬owns(T ′′\{ξ}, β), where ξ is the stack with
(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉

1 stm1) on top. Furthermore, ὼ, σ̀ |=G comm

implies ὼ, σ̀ |=G E0(z) = z′, and by the lifting substitution lemma [[e0]]
σ̀(α),τ̀1

E =

[[e0]]
σ′′(α),τ̀1

E = ω(z′) = β. This means, the invocation of method m of β is enabled
in the local configuration (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉

1 stm1) in 〈T ′′, σ′′〉.
The definition of the augmentation, and σ′′(α) = σ̀(α) gives

ὼ, σ̀(α), τ̀1 |=L p2 ,

Proofs 75

which by the substitution Lemma 3 and with the definition of τ̀1 yields ὼ, σ̀ |=G

P2(z). Due to the renaming mechanism we get

ὼ, σ̀ |=G P2(z) ◦ fcomm

for fcomm = [~E(z), Init(~v)/~u′, ~v′]. For the precondition of the method body, the
annotation definition implies

ὼ, σ̀(β), τ̂2 |=L q2

with τ̂2 = τinit [~u 7→[[~e]]
σ̀(α),τ̀1

E]. For the actual parameters we obtain by the sub-

stitution Lemma 3 [[~E(z)]]ὼ,σ̀
G = [[~e]]

ὼ,σ̀(α),τ̀1

L = [[~e]]
σ̀(α),τ̀1

E , and further with the
same lemma

ὼ, σ̀ |=G Q′
2(z

′)[~E(z), Init(~v)/~u′, ~v′]

as required by the cooperation test.
Directly after communication we have a global configuration with still the

same global state σ′′. The caller observation evolves its own local state to τ́1 =

τ̀1[~y1 7→[[~e1]]
σ′′(α),τ̀1

E], and the global state to σ̂ = σ′′[α.~y1 7→[[~e1]]
σ′′(α),τ̀1

E]. Finally,

the callee observation changes the global state to σ́ = σ̂[β.~y2 7→[[~e2]]
σ̂(β),τ̂2

E], where

its own local state is updated to τ́2 = τ̂2[~y2 7→[[~e2]]
σ̂(β),τ̂2

E]. According to the
annotation definition we get

ὼ, σ́(α), τ́1 |=L p3, ὼ, σ́(β), τ́2 |=L q3, and ὼ, σ́ |=G GI .

Let ώ = ὼ[~v′ 7→ Init(~v)][~u′ 7→[[~e]]
σ̀(α),τ̀1

E][~y1 7→[[~e1]]
σ̀(α),τ̀1

E][~y′
2 7→[[~e ′

2]]
σ̂(β),τ̂2

E]. The lift-
ing lemma implies ώ, σ́ |=G GI ∧ P3(z) ∧ Q′

3(z
′); with the global substitution

lemma finally

ὼ, σ̀ |=G (GI ∧ P3(z) ∧ Q′
3(z

′))[~E′
2(z

′)/z′.~y′
2][

~E1(z)/z.~y1][~E(z), Init(~v)/~u′, ~v′] ,

and thus the cooperation test is satisfied for the invocation of synchronous meth-
ods.

The case for non-synchronized methods is analogous, where the antecedent
z′.lock = free ∨ thread(z′.lock) = thread is dropped.

Case: Callmonitor

This case is similar to the above one of Call, where for the invocation of a
method m ∈ {wait, notify, notifyAll}, the assertion comm is given by E0(z) =
z′ ∧ thread(z′.lock) = thread, implying owns(ξ, β) for the caller thread ξ and the
callee object β.

Case: Callstart

Enabledness of starting the thread of an object β requires ¬started(T ′′, β). Due
to the definition of comm, we have additionally ὼ, σ′′ |=G ¬z′.started, which
implies ¬σ′′(β)(started). We get enabledness by Lemma 8 assuring started(T ′′, β)
iff σ′′(β)(started).

76 Proofs

Case: Call
skip
start

The enabledness argument is similar for Call
skip
start , where we use ὼ, σ′′ |=G

z′.started to imply the enabledness predicate started(T ′′, β).

Case: Return

For return, the construction of 〈T ′′, σ′′〉 is similar, where we get instead of the
enabledness of the caller that the callee configuration (β, τ̀2, return eret ; 〈~y3 :=
~e3〉

1) is in 〈T ′′, σ′′〉, and thus enabled to execute.

Case: Returnwait

In this case we additionally have to show ¬owns(T ′′, β), which we get from the
comm assertion implying ὼ, σ̀ |=G z′.lock = free and using Lemma 7.

Case: Returnrun

Since the run-method cannot be invoked directly, we conclude that the exe-
cuting local configuration is the only one in its stack, i.e., the transition rule
Returnrun of the semantics can be applied in 〈T ′′, σ′′〉 to terminate the callee
(β, τ̀2, return; 〈~y3 := ~e3〉

1).
ut

Lemma 17 (Cooperation test: Instantiation). The proof outline prog ′ sat-
isfies the verification conditions of the cooperation test for object creation of
Definition 5.

Proof (of Lemma 17). Let {p1} u := newc; {p2}
1 〈~y := ~e〉1 {p3} be a statement in

class c′ of prog ′, and assume

ω̂, σ̂ |=G z 6= null ∧ z 6= u ∧ ∃z′. Fresh(z′, u) ∧ (GI ∧ ∃u(P1(z))) ↓ z′

with z ∈ LVarc′

and z′ ∈ LVar list Object fresh. Note that we don’t need the class
invariant of the creator for completeness. We show that

ω̂, σ̂ |=G P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z))[~E(z)/z.~y] .

Let ω̂(z) = α and ω̂(u) = β. According to the semantics of assertions we have
that

ω, σ̂ |=G Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

for some logical environment ω that assigns to z′ a sequence of objects from
ValObject

null (σ̂) =
⋃

c Valcnull (σ̂), and agrees on the values of all other variables with
ω̂. The assertion Fresh(z′, u) is defined by

InitState(u) ∧ u 6∈ z′ ∧ ∀v. v ∈ z′ ∨ v = u ,

where InitState(u) expands to u 6= null ∧
∧

x∈IVarc
u.x = Init(x). Thus, ω, σ̂ |=G

Fresh(z′, u) implies that β ∈ Valc(σ̂) with σ̂(β) = σinit
inst [this 7→β], and addi-

tionally ValObject
null (σ̂) = ω(z′) ∪̇ {β}. Let σ̀ be the global state with domain

Proofs 77

ValObject(σ̀) = ValObject(σ̂)\{β} and such that σ̀(γ) = σ̂(γ) for all γ ∈ ValObject(σ̀).
Then σ̂ = σ̀[β 7→σinit

inst [this 7→β]], and from

ω, σ̂ |=G (GI ∧ ∃u. P1(z)) ↓ z′

we get with Lemma 4

ω, σ̀ |=G GI ∧ ∃u. P1(z) .

By definition of the annotation, ω, σ̀ |=G GI implies that there is a reachable
configuration 〈T̀1, σ̀1〉 such that

dom(σ̀1) = dom(σ̀) and σ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀) .

The precondition of the object creation statement

ω, σ̀ |=G ∃u. P1(z)

implies

ω[u 7→Z], σ̀ |=G P1(z)

for some Z ∈ ValObject
null (σ̀). Applying the lifting Lemma 3 we get that

ω, σ̀(α), τ̀ |=L p1

for a local state τ̀ with τ̀ (u) = Z and τ̀(v) = ω(v) for all other local variables v.
By definition of the annotation, there is a reachable global configuration 〈T̀2, σ̀2〉
such that

σ̀2(α) = σ̀(α) and (α, τ̀ , u := newc; 〈~y := ~e〉1 stm) ∈ T̀2 .

Recall that σ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀); especially we
have σ̀1(α)(hcomm) = σ̀(α)(hcomm) = σ̀2(α)(hcomm). Using the global merging
Lemma 10 applied to the reachable global configurations 〈T̀2, σ̀2〉 and 〈T̀1, σ̀1〉
we get that there is a reachable configuration 〈T̀3, σ̀3〉 with

dom(σ̀3)=dom(σ̀1), σ̀3(α) = σ̀2(α), and σ̀3(γ) = σ̀1(γ) for all γ∈dom(σ̀1)\{α}.

Furthermore, (α, τ̀ , u := newc; 〈~y := ~e〉1 stm) ∈ T̀2, σ̀2(α) = σ̀3(α), and the local
merging Lemma 9 implies that (α, τ̀ , u := newc; 〈~y := ~e〉1 stm) ∈ T̀3.

So we know that 〈T̀3, σ̀3〉 is a reachable configuration containing the lo-
cal configuration (α, τ̀ , u := newc; 〈~y := ~e〉1 stm) ∈ T̀3. With ValObject(σ̀) =
ValObject(σ̂)\{β}, dom(σ̀1) = dom(σ̀), and dom(σ̀3)=dom(σ̀1) we get that β /∈
dom(σ̀3), i.e., the local configuration is enabled to create the fresh object β =
ω(u). With σ̀3(α) = σ̀2(α) = σ̂(α) we get

ω, σ̂(α), τ̂ |=L p2 ,

78 Proofs

where τ̂ = τ̀ [u 7→β]; with the lifting Lemma 3 together with the definition of τ̀
this means ω, σ̂ |=G P2(z), as required in the cooperation test.

Executing the instantiation in the local configuration (α, τ̀ , u := newc; 〈~y :=
~e〉1 stm) in 〈T̀3, σ̀3〉, creating a new object β /∈ dom(σ̀3), results in 〈T̂3, σ̂3〉
with σ̂3 = σ̀3[β 7→σinit

inst [this 7→β]]; executing the creator observation leads to

a reachable 〈T́3, σ́3〉 with σ́3 = σ̂3[α.~y 7→[[~e]]
σ̂3(α),τ̂
E] and (α, τ́ , stm) in T́3 with

τ́ = τ̂ [~y 7→[[~e]]
σ̂3(α),τ̂
E].

As 〈T́3, σ́3〉 is reachable with σ́3(β) = σinit
inst [this 7→β] = σ̂(β) we know

ω̂, σ̂(β), τ́ |=L Ic .

As Ic may not contain local variables, applying the lifting Lemma 3 again with
ω(u) = β yields the required condition ω̂, σ̂ |=G Ic(u) for the class invariant. It
remains to show that

ω̂, σ̂ |=G (GI ∧ P3(z))[~E(z)/z.~y] .

Applying the substitution Lemma 2 and the fact that GI does not contain free
logical variables yields

[[GI [~E(z)/z.~y]]]ω̂,σ̂
G = [[GI]]ω̂,σ́

G

with σ́ = σ̂[α.~y 7→[[~E(z)]]ω̂,σ̂
G]. Thus we have to show the existence of a reachable

configuration with a global state defining the same object domain and com-
munication history values as σ́. The configuration 〈T́3, σ́3〉 satisfies the above
requirements, since, first, it is reachable with

ValObject(σ́3) = ValObject(σ̀3) ∪̇ {β} = ValObject(σ̀1) ∪̇ {β}

= ValObject(σ̀) ∪̇ {β} = ValObject(σ̂) = ValObject(σ́) .

Furthermore, σ́3(α) = σ̂3(α)[~y 7→[[~e]]
σ̂3(α),τ̂
E], and with σ̂3(α) = σ̀3(α) = σ̀2(α) =

σ̂(α) and

[[~E(z)]]ω̂,σ̂
G = [[~e[z/this]]]ω̂,σ̂

G = [[~e]]
σ̂(α),τ̂
E = [[~e]]

σ̂3(α),τ̂
E ,

we get σ́3(α) = σ́(α). For the new object, σ́3(β) = σ̂3(β) = σinit
inst [this 7→β] =

σ̂(β) = σ́(β). Finally, for all other objects γ different from both α and β from
the domain of σ́ we have σ́3(γ)(hcomm) = σ̀3(γ)(hcomm) = σ̀1(γ)(hcomm) =
σ́(γ)(hcomm).

Similarly for the postcondition p3 of the observation,

[[P3(z)[~E(z)/z.~y]]]ω̂,σ̂
G = [[P3(z)]]ώ,σ́

G = [[p3[z/this]]]ώ,σ́
G = [[p3]]

ώ,σ́(α),τ́
L = [[p3]]

ώ,σ́3(α),τ́
L .

Thus we have to show the existence of a reachable configuration with a global
state defining the same instance state for α as σ́3 and containing the local config-
uration (α, τ́ , stm). The configuration 〈T́3, σ́3〉 satisfies the above requirements.

ut

Proof (of Theorem 2). Straightforward using the Lemmas 13, 14, 15, 16, and 17.

