
An Assertion-based Proof System for

Multithreaded Java

Erika Ábrahám a,1 Frank S. de Boer b Willem-Paul de Roever a

Martin Steffen a

aChristian-Albrechts-University Kiel, Germany

bCWI Amsterdam, The Netherlands

Abstract

Besides the features of a class-based object-oriented language, Java integrates con-
currency via its thread classes, allowing for a multithreaded flow of control. The
concurrency model includes synchronous message passing, dynamic thread creation,
shared-variable concurrency via instance variables, and coordination via reentrant
synchronization monitors.

To reason about safety properties of multithreaded Java programs, we introduce
an assertional proof method for a multithreaded sublanguage of Java, covering the
mentioned concurrency issues as well as the object-based core of Java. The veri-
fication method is formulated in terms of proof-outlines, where the assertions are
layered into local ones specifying the behavior of a single instance, and global ones
taking care of the connections between objects. We establish the soundness and the
relative completeness of the proof system. From an annotated program, a number
of verification conditions are generated and handed over to the interactive theorem
prover PVS.

Key words: Java, multithreading, monitors, verification, Hoare-logic, soundness
and relative completeness

Email addresses: eab@informatik.uni-freiburg.de (Erika Ábrahám),
F.S.de.Boer@cwi.nl (Frank S. de Boer), wpr@informatik.uni-kiel.de
(Willem-Paul de Roever), ms@informatik.uni-kiel.de (Martin Steffen).
1 Currently at University Freiburg

Preprint submitted to Elsevier Science 31 March 2004

1 Introduction

Besides the features of a class-based object-oriented language, Java integrates
concurrency via its thread classes. Java’s semantical foundations [1] have been
thoroughly studied ever since the language gained widespread popularity (e.g.
[2–4]). The research concerning Java’s proof theory mainly focussed on se-
quential sub-languages (e.g. [5–7]). This work presents a sound and relatively
complete assertional proof system for Javasynch , a subset of Java, featuring
dynamic object creation, object references with aliasing, method invocation,
and, specifically, concurrency and Java’s monitor discipline.

The behavior of a Javasynch program results from the concurrent execution of
methods. To support a clean interface between internal and external object
behavior, the state of an object can be accessed from the outside only via
the object’s methods and not directly via qualified references e.x to instance
variables x. As a consequence, shared-variable concurrency is caused by si-
multaneous execution within a single object, only. To mirror this modularity,
the assertional logic and the proof system are formulated at two levels, a local
and a global one. The local assertion language describes the internal object
behavior. The global behavior, including the communication topology of the
objects, is expressed in the global language.

The language and the proof system for partial correctness are presented in-
crementally in three stages, starting with a sequential sublanguage, which
is extended by concurrency and monitor synchronization in next steps. The
proof systems are formulated in terms of proof outlines [8], i.e., of programs
augmented by auxiliary variables and annotated with Hoare-style assertions
[9,10]. To obtain a complete proof system, i.e., which allows to prove each
invariant property of a program, it must be possible to express the strongest
invariant property, which is reachability and which in general depends not
only on the current values of variables, but also on other control information.
Therefore, the standard route to achieve completeness is to represent the miss-
ing control information in the states in so-called auxiliary variables. Of course,
The incremental development shows, which information must be additionally
represented at the different stages for completeness. For method calls, already
in the sequential case, we use auxiliary variables to identify communicating
partners in method calls. Additionally, in the multithreaded case, we addi-
tionally need auxiliary variables to identify threads, and to capture monitor
synchronization at the third stage.

The satisfaction of the program properties specified by the assertions is guar-
anteed by the verification conditions of the proof system. The execution of a
single method body in isolation is captured by standard local correctness con-
ditions, using the local assertion language. Interference between concurrent

2

method executions is covered by the interference freedom test [8,11], formu-
lated also in the local language. It has especially to accommodate for reentrant
code and the specific synchronization mechanism. Possibly affecting more than
one instance, communication and object creation is treated in the cooperation
test, using the global language. The communication can take place within a
single object or between different objects. As these two cases cannot be dis-
tinguished syntactically, our cooperation test combines elements from similar
rules in [12] and in [11] for CSP.

Our proof method is modular in the sense that it allows for separate inter-
ference freedom and cooperation tests (Figure 1). This modularity, which in
practice simplifies correctness proofs considerably, is obtained by disallowing
the assignment of the result of communication and object creation to instance
variables. Clearly, such assignments can be avoided by additional assignments
to fresh local variables and thus at the expense of new interleaving points.
This restriction could be released, without loosing the mentioned modularity,
but it would increase the complexity of the proof system.

Javasynch -
correctness

sequential
correctness

interference
freedom

cooperation
test

Fig. 1. Modularity of the proof
system

augmentation

annotation

Syntax of
assertions

PVS

Verger

Semantics of
assertions

Verification
conditionsoutline

ProofJava
program tool

Program
correctness

proof

P
ro

o
f o

f th
e co

n
d
itio

n
s

C
o
n

d
itio

n
 g

en
era

tio
n

Fig. 2. The verification process

For readability, the verification conditions in this paper are formulated as
standard Hoare-triples {ϕ}stm{ψ}. The meaning of these partial correctness
formulas is, that if stm is executed in a state satisfying ϕ, and the execution
terminates, then the resulting state satisfies ψ. In [13] we reformulate these
Hoare-triples to logical implications using substitutions.

Computer-support is given by the tool Verger (VERification condition GEn-
eratoR), taking a proof outline as input and generating the verification condi-
tions as output. We use the interactive theorem prover PVS [14] to verify the
conditions, for which we only need to encode the semantics of the assertion
language (cf. Figure 2). In the verification conditions we model assignments
by substitutions, instead of more semantic approaches [15,16,6,7], which use
an explicit encoding of the semantics of assignments.

3

The remainder of the paper is structured as follows. We start in Section 2
with a sequential, class-based sublanguage of Java and its proof system, fea-
turing dynamic object creation and method invocation. This level shows how
to handle activities of a single thread of execution. At the second stage we
include concurrency in Section 3. The proof system is extended to handle dy-
namic thread creation, interleaving, and shared variable concurrency. Finally,
we integrate Java’s monitor synchronization mechanism in Section 4. Sound-
ness and completeness are discussed in Section 5. Section 6 shows how we can
prove deadlock freedom, and Section 7 discusses related and future work.

2 The sequential sublanguage

In this section we start with a sequential language, ignoring concurrency issues
of Java, which will be added in later sections. Furthermore —and throughout
the paper— we concentrate on the object-based core of Java, i.e., we disregard
inheritance and consequently subtyping, overriding, and late-binding. For sim-
plicity, we neither allow method overloading, i.e., we require that each method
name is assigned a unique list of formal parameter types and a return type.
In short, being concerned with the verification of the run-time behavior, we
assume a simple monomorphic type discipline.

Programs, as in Java, are given by a collection of classes containing instance
variable and method declarations. Instances of the classes, i.e., objects, are cre-
ated dynamically, and communicate via method invocation, i.e., synchronous
message passing.

The languages we consider are strongly typed. Besides class types c, they
support booleans Bool and integers Int as primitive types, furthermore pairs
t×t and lists list t as composite types. Each domain is equipped with a standard
set of operators. Without inheritance and subtyping, the type system is rather
straightforward. Throughout the paper, we tacitly assume all constructs of
the abstract syntax to be well-typed, without further explicating the static
semantics here. We thus work with a type-annotated abstract syntax where
we omit the explicit mentioning of types when no confusion can arise.

2.1 Syntax

The abstract syntax of the sequential language Javaseq is summarized in Ta-
ble 1. Though we use the abstract syntax for the theoretical part of this work,
our tool supports Java syntax.

4

e ::= x | u | this | null | f(e, . . ., e)

eret ::= ǫ | e

stm ::= x := e | u := e | u := newc | u := e.m(e, . . ., e) | e.m(e, . . ., e)

| ǫ | stm ; stm | if e then stm else stm fi | while e do stm od . . .

meth ::= m(u, . . ., u){ stm; return eret}

meth run ::= run(){ stm ; return }

class ::= c{meth. . .meth}

classmain ::= c{meth. . .meth meth run}

prog ::= 〈class . . .class classmain〉

Table 1
Javaseq abstract syntax

For variables, we notationally distinguish between instance variables x ∈ IVar
and local or temporary variables u ∈ TVar . Instance variables hold the state of
an object and exist throughout the object’s lifetime. Local variables are stack-
allocated; they play the role of formal parameters and variables of method
definitions and only exist during the execution of the method to which they
belong. We use Var = IVar ∪̇ TVar for the set of program variables with
typical element y. The set IVar c of instance variables of a class c is given
implicitly by the instance variables occurring in the class; the set of local
variables of method declarations is given similarly.

Besides using instance and local variables, expressions e ∈ Exp are built from
the self-reference this, the empty reference null, and from subexpressions using
the given operators. To support a clean interface between internal and external
object behavior, we disallow qualified references to instance variables.

As statements stm ∈ Stm , we allow assignments, object creation, method
invocation, and standard control constructs like sequential composition, con-
ditional statements, and iteration. We write ǫ for the empty statement. A
method definition consists of a method name m, a list of formal parameters
u1, . . . , un, and a method body of the form stm ; return eret , i.e., we require
that method bodies are terminated by a single return statement, giving back
the control and possibly a return value. The set Methc contains the methods
of class c. We denote the body of method m of class c by bodym,c. A class
is defined by its name c and its methods, whose names are assumed to be
distinct. A program, finally, is a collection of class definitions having different
class names, where classmain defines by its run-method the entry point of the
program execution. We call the body of the run-method of the main class the

5

main statement of the program. 2 The run-method cannot be invoked.

Besides the mentioned simplifications on the type system, we impose for tech-
nical reasons the following restrictions: We require that method invocation
and object creation statements contain only local variables, i.e., that none of
the expressions e0, . . . , en in a method invocation e0.m(e1, . . . , en) contains
instance variables. Furthermore, formal parameters must not occur on the
left-hand side of assignments. These restrictions imply that during the exe-
cution of a method the values of the actual and formal parameters are not
changed, and thus we can use their equality to describe caller-callee depen-
dencies when returning from a method call. The above restrictions could be
released by storing the identity of the callee object and the values of the formal
and actual parameters in additional built-in auxiliary variables. However, the
restrictions simplify the proof system and thus they make it easier to under-
stand the basic ideas of this work. Finally, the result of an object creation or
method invocation statement may not be assigned to instance variables. This
restriction allows for a proof system with separated verification conditions for
interference freedom and cooperation. It should be clear that it is possible to
transform a program to adhere to this restrictions at the expense of additional
local variables and thus new interleaving points. Also this restriction could be
released, but it would increase the complexity of the proof system.

2.2 Semantics

2.2.1 States and configurations

Let Val t be the disjoint domains of the various types t and Val = ˙⋃
t Val t,

where ∪̇ is the disjoint union operator. For class names c, the disjunct sets
Val c with typical elements α, β, . . . denote infinite sets of object identifiers.
The value of the empty reference null in type c is null c /∈ Val c. In general
we will just write null , when c is clear from the context. We define Val cnull

as Val c ∪̇ {null c} and correspondingly for compound types, and Valnull = ˙⋃
t

Val tnull . Let Init : Var → Valnull be a function assigning an initial value to
each variable y ∈ Var , i.e., null , false, and 0 for class, boolean, and integer
types, respectively, and analogously for compound types, where sequences are
initially empty. We define this /∈ Var , i.e., the self-reference is not in the

2 In Java, the entry point of a program is given by the static main-method of the
main class. Relating the abstract syntax to that of Java, we assume that the main
class is a Thread-class whose main-method just creates an instance of the main class
and starts its thread. The reason for this restriction is, that Java’s main-method is
static, but our proof system does not support static methods and variables.

6

domain of Init . 3

A local state τ ∈ Σloc of type TVar ⇀ Valnull is a partial function holding
the values of the local variables of a method. The initial local state τm,c

init of
method m of class c assigns to each local variable u of m the value Init(u).
A local configuration (α, τ, stm) of a thread executing within an object α
specifies, in addition to its local state τ , its point of execution represented by
the statement stm . A thread configuration ξ is a stack of local configurations
(α0, τ0, stm0) . . . (αn, τn, stmn), representing the call chain of the thread. We
write ξ ◦ (α, τ, stm) for pushing a new local configuration onto the stack.

An object is characterized by its instance state σinst ∈ Σinst , a partial function
of type IVar ∪̇ {this}⇀ Valnull , which assigns values to the self-reference this

and to the instance variables. The initial instance state σc,init
inst of instances of

class c assigns a value from Val c to this, and to each of its remaining instance
variables x the value Init(x). A global state σ ∈ Σ of type (˙⋃

c Val c) ⇀ Σinst

stores for each currently existing object, i.e., an object belonging to the do-
main dom(σ) of σ, its instance state. The set of existing objects of type
c in a state σ is given by Val c(σ), and Val cnull(σ) = Val c(σ) ∪̇ {null c}.
For the remaining types, Val t(σ) and Val tnull(σ) are defined correspondingly,
Val (σ) = ˙⋃

t Val t(σ), and Valnull(σ) = ˙⋃
t Val tnull(σ). A global configuration

〈T, σ〉 describes the currently existing objects by the global state σ, where the
set T contains the configuration of the executing thread. For the concurrent
languages of the later sections, T will be the set of configurations of all cur-
rently executing threads. In the following, we write (α, τ, stm) ∈ T if there
exists a local configuration (α, τ, stm) within one of the execution stacks of T .

We denote by τ [u 7→ v] the local state which assigns the value v to u and agrees
with τ on the values of all other variables; σinst [x 7→ v] is defined analogously,
where σ[α.x 7→ v] results from σ by assigning v to the instance variable x
of object α. We use these operators analogously for vectors of variables. We
use τ [~y 7→~v] also for arbitrary variable sequences, where instance variables are
untouched; σinst [~y 7→~v] and σ[α.~y 7→~v] are analogous. Finally for global states,
σ[α 7→ σinst] equals σ except on α; note that in case α /∈ Val (σ), the operation
extends the set of existing objects by α, which has its instance state initialized
to σinst .

2.2.2 Operational semantics

Expressions are evaluated with respect to an instance local state (σinst , τ),
where the instance state gives meaning to the instance variables and the
self-reference, whereas the local state determines the values of the local vari-

3 In Java, this is a “final” instance variable, which for instance implies, it cannot
be assigned to.

7

Assinst
〈T ∪̇ {ξ ◦ (α, τ, x:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ[α.x 7→[[e]]

σ(α),τ
E]〉

Assloc
〈T ∪̇ {ξ ◦ (α, τ, u:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→[[e]]

σ(α),τ
E], stm)}, σ〉

β ∈ Valc\Val (σ) σinst = σc,init
inst [this 7→β] σ′ = σ[β 7→σinst]

New

〈T ∪̇ {ξ ◦ (α, τ, u:=newc; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→ β], stm)}, σ′〉

m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Val c(σ) τ ′ = τm,c

init [~u 7→[[~e]]
σ(α),τ
E]

Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret 7→[[eret]]
σ(β),τ ′

E]
Return

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

Returnrun
〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ǫ)}, σ〉

Fig. 3. Javaseq operational semantics

ables. The main cases of the evaluation function are [[x]]
σ
inst

,τ

E = σinst(x) and
[[u]]

σ
inst

,τ

E = τ(u). The operational semantics of Javaseq is given inductively by
the rules of Figure 3 as transitions between global configurations. The rules
are formulated such a way that we can re-use them for the concurrent lan-
guages of the later sections. Note that for the sequential language, the sets T
in the rules are empty, since there is only one single thread in global configura-
tions. We elide the rules for the remaining sequential constructs —sequential
composition, conditional statement, and iteration— as they are standard.

Before having a closer look at the semantical rules for the transition relation
−→, let us start by defining the starting point of a program. The initial config-
uration 〈T0, σ0〉 of a program satisfies dom(σ0) = {α}, σ0(α) = σc,init

inst [this 7→α],
and T0 = {(α, τ run,c

init , body run,c)}, where c is the main class, and α ∈ Val c.

A configuration 〈T, σ〉 of a program is reachable if there exists a computation
〈T0, σ0〉−→

∗〈T, σ〉 where 〈T0, σ0〉 is the initial configuration of the program and

8

−→∗ the reflexive transitive closure of −→. A local configuration (α, τ, stm) ∈
T is enabled in 〈T, σ〉, if it can be executed, i.e., if there is a computation step
〈T, σ〉 → 〈T ′, σ′〉 executing stm in the local state τ and object α.

Assignments to instance or local variables update the corresponding state com-
ponent (see rules Assinst and Assloc). Object creation by u := newc, as shown
in rule New, creates a new object of type c with a fresh identity stored in the
local variable u, and initializes its instance variables. Invoking a method ex-
tends the call chain by a new local configuration (cf. Call). After initializing
the local state and passing the parameters, the thread begins to execute the
method body. When returning from a method call (cf. Return), the callee
evaluates its return expression and passes it to the caller which subsequently
updates its local state. The method body terminates its execution and the
caller can continue. We have similar rules not shown in the figure for the invo-
cation of methods without return value. The executing thread ends its lifespan
by returning from the run-method of the initial object (see Returnrun).

2.3 The assertion language

The assertion logic consists of a local and a global sublanguage. Local asser-
tions p, q, . . . are used to annotate methods in terms of their local variables
and of the instance variables of the class to which they belong. Global asser-
tions P,Q, . . . describe a whole system of objects and their communication
structure and will be used in the cooperation test. In the assertion language
we add the type Object as the supertype of all classes, and we introduce logical
variables z different from all program variables. Logical variables are used for
quantification and as free variables to represent local variables in the global
assertion language. Expressions and assertions are interpreted relative to a
logical environment ω, assigning values to logical variables.

Assertions are boolean program expressions, extended by logical variables and
quantification. 4 Global assertions may furthermore contain qualified refer-
ences. Quantification can be used for all types, also for reference types. How-
ever, the existence of objects dynamically depends on the global state, some-
thing one cannot speak about at the local level. Nevertheless, one can assert
the existence of objects on the local level, provided one is explicit about the
domain of quantification. Thus quantification over objects in the local asser-
tion language is restricted to ∀z ∈ e. p for objects and to ∀z ⊑ e. p for lists
of objects, and correspondingly for existential quantification and for compos-
ite types. Unrestricted quantification ∀z. p can be used in the local language

4 In this paper we use mathematical notation like ∀z. p etc. for phrases in abstract
syntax. The concrete syntax used by the Verger tool is an adaptation of JML.

9

for boolean and integer domains only. Global assertions are evaluated in the
context of a global state. Thus, quantification is allowed unrestricted for all
types and ranges over the set of existing values.

The evaluations of local and global assertions are given by [[p]]
ω,σ

inst
,τ

L and
[[P]]ω,σ

G . The main cases are shown in Table 2. We write ω, σinst , τ |=L p for
[[p]]

ω,σ
inst

,τ

L = true, and |=L p if p holds in all contexts; we use analogously |=G

for global assertions.

([[∃z. p]]
ω,σ

inst
,τ

L = true) iff ([[p]]
ω[z 7→ v],σ

inst
,τ

L = true for some v ∈ Val)

([[∃z∈e. p]]
ω,σ

inst
,τ

L = true) iff ([[z∈e ∧ p]]
ω[z 7→ v],σ

inst
,τ

L =true for some v ∈ Valnull)

[[E.x]]ω,σ
G = σ([[E]]ω,σ

G)(x)

([[∃z. P]]ω,σ
G = true) iff ([[P]]

ω[z 7→ v],σ
G = true for some v ∈ Valnull (σ))

Table 2
Semantics of assertions

To express a local property p in the global assertion language, we define the
lifting substitution p[z/this] by simultaneously replacing in p all occurrences of
this by z, and transforming all occurrences of instance variables x into qualified
references z.x. We assume z not to occur in p. For notational convenience we
view the local variables occurring in the global assertion p[z/this] as logical
variables. Formally, these local variables are replaced by fresh logical variables.
We will write P (z) for p[z/this], and similarly for expressions.

2.4 The proof system

The proof system has to accommodate for dynamic object creation, aliasing,
and method invocation. Before describing the proof method we first show
how to augment and annotate programs resulting in proof outlines or asserted
programs.

2.4.1 Proof outlines

For a complete proof system it is necessary that the transition semantics of
Javaseq can be encoded in the assertion language. As the assertion language
reasons about the local and global states, we have to augment the program
with fresh auxiliary variables to represent information about the control points
and stack structures within the local and global states. Invariant program
properties are specified by the annotation.

10

An augmentation extends a program by observations, which are atomically
executed multiple assignments ~y := ~e to auxiliary variables. Furthermore,
the observations have to be “attached” in an atomic manner to statements
they observe. For object creation this is syntactically represented by the aug-
mentation u := newc

〈~y := ~e〉new which attaches the observation to the ob-
ject creation statement. Observations ~y1 := ~e1 of a method call and obser-
vations ~y4 := ~e4 of the corresponding reception of a return value 5 are de-
noted by u := e0.m(~e)〈~y1 := ~e1〉

!call 〈~y4 := ~e4〉
?ret . The augmentation 〈~y2 :=

~e2〉
?call stm; return eret 〈~y3 := ~e3〉

!ret of method bodies specifies ~y2 := ~e2 as the
observation of the reception of the method call, and ~y3 := ~e3 as the obser-
vation attached to the return statement. Assignments can be observed using
~y := ~e〈~y′ := ~e ′

〉ass . A stand-alone observation not attached to any statement
is written as 〈~y := ~e〉 ; it can be inserted at any point in the program.

The augmentation does not influence the control flow of the program but
enforce a particular scheduling policy. An assignment statement and its ob-
servation are executed simultaneously. Object creation and its observation are
executed in a single computation step, in this order. For method calls, com-
munication, sender, and receiver observations are executed in a single com-
putation step, in this order. Points between a statement and its observation
are no control points, since the statement and its observation are executed
in a single computation step; we call them auxiliary points. We use the ex-
pression multiple assignment to refer generally to statements of the following
forms: assignment statements together with their observations, unobserved as-
signments, stand-alone observations, as well as observations of communication
and object creation.

Besides the auxiliary variables defined by the user, we have three built-in
auxiliary variables, described in the following. In order to express the transition
semantics in the logic, we identify each local configuration by a pair consisting
of the object in which it executes and a unique object-internal identifier. The
latter is stored in a built-in auxiliary local variable conf, and its uniqueness is
assured by the auxiliary instance variable counter, incremented for each new
local configuration in that object. The callee receives the “return address” as
auxiliary formal parameter caller of type Object × Int, storing the identities
of the caller object and the calling local configuration. The parameter caller

of the initial invocation of the run-method of the initial object gets the value
(null , 0).

Syntactically, the built-in augmentation translates each method definition
m(~u){stm} into m(~u, caller){〈conf, counter := counter, counter + 1〉?call stm}.

5 To exclude the possibility, that two multiple assignments get executed in a single
computation step in the same object, we require that caller observations in a self-
communication may not change the values of instance variables [17].

11

Correspondingly, method invocation statements u := e0.m(~e) get extended
to u := e0.m(~e , (this, conf)).

For readability, in the examples of the following sections we will not explicitly
list the built-in augmentation; they are meant to be automatically included.

To specify invariant properties of the system, the augmented programs are
annotated by attaching local assertions to each control and auxiliary point.
We use the triple notation {p}stm {q} and write pre(stm) and post(stm) to refer
to the pre- and the post-condition of a statement. For assertions at auxiliary
points we use the following notation: The annotation

{p0} u := new c {p1}
new 〈~y := ~e〉new {p2}

of an object creation statement specifies p0 and p2 as pre- and postconditions,
where p1 at the auxiliary point should hold directly after object creation but
before the observation. The annotation

{p0}u := e0.m(~e) {p1}
!call 〈~y1 := ~e1〉!call {p2}

wait {p3}
?ret 〈~y4 := ~e4〉?ret {p4}

assigns p0 and p4 as pre- and postconditions to the method invocation; p1 and
p3 are assumed to hold directly after method call and return, resp., but prior
to their observations; p2 describes the control point of the caller after method
call and before return. The annotation of method bodies stm ; return e is as
follows:

{p0}
?call 〈~y2 := ~e2〉?call {p1} stm; {p2} return e {p3}

!ret 〈~y3 := ~e3〉!ret {p4}

The callee postcondition of the method call is p1; the callee pre- and postcondi-
tions of return are p2 and p4. The assertions p0 resp. p3 specify the states of the
callee between method call resp. return and its observation. Note that method
annotations do not syntactically specify the state prior to call, i.e., there is
no precondition of method invocations from the callee side. Semantically, this
precondition is the class invariant.

Besides pre- and postconditions, the annotation defines for each class c a local
assertion Ic called class invariant, specifying invariant properties of instances
of c in terms of its instance variables. Finally, a global assertion GI called
the global invariant specifies properties of communication between objects.
As such, it should be invariant under object-internal computation. For that
reason, we require that for all qualified references E.x in GI with E of type
c, all assignments to x in class c occur in the observations of communication
or object creation. We require that in the annotation no free logical variables
occur. In the following we will also use partial annotation. Assertions which
are not explicitly specified are by definition true.

12

2.4.2 Verification conditions

The proof system generates a number of verification conditions which induc-
tively ensure that for each reachable configuration the local assertions attached
to the current control points in the thread configuration as well as the global
and the class invariants hold. The conditions are grouped, as usual, into ini-
tial conditions (which are not discussed in this paper, see [17]), and for the
inductive step into local correctness and tests for interference freedom and
cooperation.

Arguing about two different local configurations makes it necessary to distin-
guish between their local variables, since they may have the same names; in
such cases we will rename the local variables in one of the local states. We use
primed assertions p′ to denote the given assertion p with every local variable
u replaced by a fresh one u′, and correspondingly for expressions.

Local correctness A proof outline is locally correct, if the properties of
method instances, as specified by the annotation, are invariant under the ex-
ecution of the given method instance. For example, the precondition of an
assignment must imply its postcondition after its execution. The following
condition is required to hold for all multiple assignments being an assignment
statement with its observation, an unobserved assignment, or a stand-alone
observation:

Definition 2.1 (Local correctness: Assignment) A proof outline is lo-
cally correct, if for all multiple assignments {p1}~y := ~e {p2} in class c, which
is not the observation of object creation or communication,

|=L {p1} ~y := ~e {p2} . (1)

The conditions for loops and conditional statements are similar. Note that we
have no local verification conditions for observations of communication and
object creation. The postconditions of such statements express assumptions
about the communicated values. These assumptions will be verified in the
cooperation test.

The interference freedom test Invariance of local assertions under com-
putation steps in which they are not involved is assured by the proof obliga-
tions of the interference freedom test. Its definition covers also invariance of
the class invariants. Since Javaseq does not support qualified references to in-
stance variables, we only have to deal with invariance under execution within
the same object. Affecting only local variables, communication and object

13

creation do not change the instance states of the executing objects. Thus we
only have to cover invariance of assertions at control points over assignments
in the same object, including observations of communication and object cre-
ation. To distinguish local variables of the different local configurations, we
rename those of the assertion.

Let q be an assertion at a control point and ~y := ~e a multiple assignment
in the same class c. In which cases does q have to be invariant under the
execution of the assignment? Since the language is sequential, i.e., q and ~y := ~e
belong to the same thread, the only assertions endangered are those at control
points waiting for return earlier in the current execution stack. Invariance of a
local configuration under its own execution, however, need not be considered
and is excluded by requiring conf 6= conf ′. Interference with the matching
return statement in a self-communication need also not be considered, because
communicating partners execute simultaneously. Let caller obj be the first and
caller conf the second component of caller. We define waits for ret(q, ~y := ~e)
by

• conf ′ 6= conf, for assertions {q}wait attached to control points waiting for
return, if ~y := ~e is not the observation of return;

• conf ′ 6= conf ∧ (this 6= caller obj ∨ conf ′ 6= caller conf), for assertions {q}wait ,
if ~y := ~e observes return;

• false, otherwise.

The interference freedom test can now be formulated as follows:

Definition 2.2 (Interference freedom) A proof outline is interference
free, if for all classes c and multiple assignments ~y := ~e with precondition p
in c,

|=L {p ∧ Ic} ~y := ~e {Ic} . (2)

Furthermore, for all assertions q at control points in c,

|=L {p ∧ q
′ ∧ waits for ret(q, ~y := ~e)} ~y := ~e {q′} . (3)

Remember that q′ stands for the assertion q with each local variable appro-
priately renamed, e.g., the variable conf is replaced by conf ′ etc. Note further
that if we would allow program expressions to contain qualified references to
instance variables, we would have to show interference freedom of all asser-
tions under all assignments in programs, not only for those occurring in the
same class. For a program with n classes where each class contains k assign-
ments and l assertions at control points, the number of interference freedom
conditions is in O(n·k·l), instead of O((n·k) · (n·l)) with qualified references.

14

Example 2.3 Let {p1} this.m(~e) {p2}
!call 〈stm1〉

!call {p3}
wait {p4}

?ret 〈stm2〉
?ret {p5} be

an annotated method call statement in a method m′ of a class c with an integer
auxiliary instance variable x, such that each assertion implies conf = x. I.e.,
the identity of the executing local configuration is stored in the instance variable
x. The annotation expresses that no pairs of control points in m′ of c can be
simultaneously reached.

The assertions p2 and p4 need not be shown invariant, since they are attached
to auxiliary points. Interference freedom neither requires invariance of the as-
sertions p1 and p5, since they are not at control points waiting for return, and
thus the antecedents of the corresponding conditions evaluate to false. Invari-
ance of p3 under the execution of the observation stm1 with precondition p2 re-
quires validity of |=L {p2∧p

′
3∧waits for ret(p3, stm1)} stm1 {p

′
3}. The assertion

p2∧p
′
3∧waits for ret(p3, stm1) implies (conf = x)∧(conf ′ = x)∧(conf ′ 6= conf),

which evaluates to false. Invariance of p3 under stm2 follows analogously.

Example 2.4 Assume a partially 6 annotated method invocation statement
of the form {p1} this.m(~e) {conf = x ∧ p2}

wait {p3} in a class c with an inte-
ger auxiliary instance variable x, and assume that method m of c has the
annotated return statement {q1} return {caller = (this, x)}!ret 〈stm〉!ret {q2} . The
annotation expresses that the local configurations containing the above state-
ments are in caller-callee relationship. Thus upon return, the control point of
the caller moves from the point at conf = x∧p2 to that at p3, i.e., conf = x∧p2

does not have to be invariant under the observation of the return statement.

Again, the assertion caller = (this, x) at an auxiliary point does not have to
be shown invariant. For the assertions p1, p3, q1, and q2, which are not at a
control point waiting for return, the antecedent is false. Invariance of conf =
x∧ p2 under the observation stm with precondition caller = (this, x) is covered
by the interference freedom condition

|=L { caller = (this, x) ∧ (conf ′ = x ∧ p′2)∧

waits for ret((conf = x ∧ p2), stm) } stm {conf ′ = x ∧ p′2} .

The waits for ret assertion implies caller 6= (this, conf ′), which contradicts the
assumptions caller = (this, x) and conf ′ = x; thus the antecedent of the condi-
tion is false.

Satisfaction of conf = x ∧ p2 after the call, satisfaction of caller = (this, x)
directly after return, and satisfaction of p3 and q2 after the observation stm is
assured by the cooperation test.

6 As already mentioned, missing assertions are by definition true.

15

The cooperation test Whereas the interference freedom test assures in-
variance of assertions under steps in which they are not involved, the coop-
eration test deals with inductivity for communicating partners, assuring that
the global invariant, and the preconditions and the class invariants of the in-
volved statements imply their postconditions after the joint step. Additionally,
the preconditions of the corresponding observations must hold immediately
after communication. The global invariant expresses global invariant proper-
ties using auxiliary instance variables which can be changed by observations
of communication, only. Consequently, the global invariant is automatically
invariant under the execution of non-communicating statements. For commu-
nication and object creation, however, the invariance must be shown as part
of the cooperation test.

We start with the cooperation test for method invocation. The communica-
tion pattern of method call and return and the involved local assertions are
illustrated in Figure 4. Control points are represented by •’s, and auxiliary
points by ◦’s.

I
c
′

◦
?call

//

q2

◦
~y2:=~e2

//

call

q3

•
body

//

q4

•
!ret

//

q5

◦
~y3:=~e3

//

return

q6

◦

•
p1

!call
// ◦
p2

~y1:=~e1
// •
p3

?ret
// ◦
p4

~y4:=~e4
// •
p5

Fig. 4. Cooperation test: Communication

Since different objects may be involved, the cooperation test is formulated
in the global assertion language. Local properties are expressed in the global
language using the lifting substitution. As already mentioned, we use the short-
cuts P (z) for p[z/this], Q′(z′) for q′[z′/this], and similarly for expressions. To
avoid name clashes between local variables of the partners, we rename those of
the callee. Remember that after communication, i.e., after creating and initial-
izing the callee local configuration and passing on the actual parameters, first
the caller, and then the callee execute their corresponding observations, all in
a single computation step. Correspondingly for return, after communicating
the result value, first the callee and then the caller observation gets executed.

Let z and z′ be logical variables representing the caller, respectively the callee
object in a method call. We assume the global invariant, the class invariants
of the communicating partners, and the preconditions of the communicating
statements to hold prior to communication. For method invocation, the pre-
condition of the callee is its class invariant. That the two statements indeed
represent communicating partners is captured in the assertion comm, which

16

depends on the type of communication: For method invocation e0.m(~e), the
assertion E0(z) = z′ states, that z′ is indeed the callee object. Remember
that method invocation hands over the “return address”, and that the val-
ues of formal parameters remain unchanged. Furthermore, actual parameters
may not contain instance variables, i.e., their interpretation does not change
during method execution. Therefore, the formal and actual parameters can
be used at returning from a method to identify partners being in caller-callee
relationship, using the built-in auxiliary variables. Thus for the return case,
comm additionally states ~u′ = ~E(z), where ~u and ~e are the formal and the
actual parameters. Returning from the run-method terminates the executing
thread, which does not have communication effects.

As in the previous conditions, state changes are represented by assignments.
For the example of method invocation, communication is represented by the
assignment ~u′ := ~E(z), where initialization of the remaining local variables ~v

is covered by ~v′ := Init(~v). The assignments z.~y1 := ~E1(z) and z′.~y′2 := ~E ′
2(z

′)
stand for the caller and callee observations ~y1 := ~e1 and ~y2 := ~e2, executed in
the objects z and z′, respectively. Note that we rename all local variables of
the callee to avoid name clashes.

Definition 2.5 (Cooperation test for communication) A proof outline
satisfies the cooperation test for communication, if

|=G {GI ∧ P1(z) ∧Q
′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}

fcomm

{P2(z) ∧Q
′
2(z

′)} (4)

|=G {GI ∧ P1(z) ∧Q
′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}

fcomm ; fobs1
; fobs2

{GI ∧ P3(z) ∧Q
′
3(z

′)} (5)

hold for distinct fresh logical variables z of type c and z′ of type c′, in the
following cases:

(1) Call: For all statements {p1}uret := e0.m(~e) {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait

(or those without receiving a value) in class c with e0 of type c′, where
method m of c′ has body {q2}?call 〈~y2 := ~e2〉

?call {q3}stm; return eret , formal
parameters ~u, and local variables ~v except the formal parameters. The
callee class invariant is q1 = Ic′. The assertion comm is given by E0(z) =

z′. Furthermore, fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1
is z.~y1 := ~E1(z),

and fobs2
is z′.~y′2 := ~E ′

2(z
′).

(2) Return: For all uret :=e0.m(~e)〈~y1 := ~e1〉
!call {p1}

wait {p2}
?ret 〈~y4 := ~e4〉

?ret {p3}

(or those without receiving a value) occurring in c with e0 of type c′, such
that method m of c′ has the return statement {q1} return eret{q2}!ret 〈~y3 :=
~e3〉

!ret {q3} , and formal parameter list ~u, the above equations must hold with

17

comm given by E0(z) = z′∧~u′ = ~E(z), and where fcomm is uret := E ′
ret(z

′),

fobs1
is z′.~y′3 := ~E ′

3(z
′), and fobs2

is z.~y4 := ~E4(z).
(3) Returnrun: For the statement {q1} return {q2}!ret 〈~y3 := ~e3〉

!ret {q3} of the
run-method of the main class, p1 = p2 = p3 = true, comm = true, fobs1

is
z′.~y′3 := ~E ′

3(z
′), and furthermore fcomm and fobs2

are the empty statement.

Example 2.6 This example illustrates how one can prove properties of pa-
rameter passing. Let {p}e0.m(v,~e), with p given by v > 0, be a (partially)
annotated statement in a class c with e0 of type c′, and let method m(u, ~w)
of c′ have a body of the form {q}stm ; return where q is u > 0. Inductivity of
the proof outline requires that if p is valid prior to the call (besides validity of
the global and class invariants), then q is satisfied after the invocation. Omit-
ting irrelevant details, Condition 5 of the cooperation test requires proving
|=G {P (z)} u′ := v {Q′(z′)}, which expands to |=G {v > 0} u′ := v {u′ > 0}.

Example 2.7 The following example demonstrates how one can express de-
pendencies between instance states in the global invariant and use this infor-
mation in the cooperation test.

Let {p}e0.m(~e), with p given by x > 0 ∧ e0 = o, be an annotated state-
ment in a class c with e0 of type c′, x an integer instance variable, and o
an instance variable of type c′, and let method m(~u) of c′ have the anno-
tated body {q}stm; return where q is y > 0 and y an integer instance vari-
able. Let furthermore z ∈ LVar c and let the global invariant be given by
∀z. (z 6= null ∧ z.o 6= null ∧ z.x > 0) → z.o.y > 0. Inductivity requires that
if p and the global invariant are valid prior to the call, then q is satisfied after
the invocation (again, we omit irrelevant details). The cooperation test Condi-

tion 5, i.e., |=G {GI ∧P (z)∧ comm∧ z 6= null∧ z′ 6= null} ~u′ := ~E(z) {Q′(z′)}
expands to

|=G {(∀z. (z 6= null ∧ z.o 6= null ∧ z.x > 0) → z.o.y > 0)∧

(z.x > 0 ∧E0(z) = z.o) ∧E0(z) = z′ ∧ z 6= null ∧ z′ 6= null }

~u′ := ~E(z)

{z′.y > 0} .

Instantiating the quantification by z, the antecedent implies z.o.y > 0∧z′ = z.o,
i.e., z′.y > 0. Invariance of the global invariant is straightforward.

Example 2.8 This example illustrates how the cooperation test handles obser-
vations of communication. Let {¬b} this.m(~e){b}wait be an annotated statement
in a class c with boolean auxiliary instance variable b and let m(~u) of c have
a body of the form {¬b}?call 〈b := true〉?call {b}stm ; return. Condition 4 of the co-
operation test assures inductivity for the precondition of the observation. We

18

have to show

|=G {¬z.b ∧ comm}~u′ := ~E(z){¬z′.b}

(again, we omit irrelevant details), i.e., since it is a self-call,

|=G {¬z.b ∧ z = z′}~u′ := ~E(z){¬z′.b} ,

which is trivially satisfied. Condition 5 of the cooperation test for the postcon-
ditions requires

|=G {comm}~u′ := ~E(z); z′.b := true{z.b ∧ z′.b}

which expands to

|=G {z = z′}~u′ := ~E(z); z′.b := true{z.b ∧ z′.b} ,

whose validity is easy to see.

Besides method calls and return, the cooperation test needs to handle object
creation, taking care of the preservation of the global invariant, the postcon-
dition of the new-statement and its observation, and the new object’s class in-
variant. We can assume that the precondition of the object creation statement,
the class invariant of the creator, and the global invariant hold in the config-
uration prior to instantiation. The extension of the global state with a freshly
created object is formulated in a strongest postcondition style, i.e., it is required
to hold immediately after the instantiation. We use existential quantification
to refer to the old value: z′ of type list Object represents the existing objects
prior to the extension. Moreover, that the created object’s identity stored in
u is fresh and that the new instance is properly initialized is expressed by the
global assertion Fresh(z′, u) defined as InitState(u)∧u 6∈ z′∧∀v. v ∈ z′∨v = u,
where InitState(u) is the global assertion u 6= null∧

∧

x∈IVar \{this} u.x = Init(x),
expressing that the object denoted by u is in its initial instance state. In this
assertion, the syntactical operator Init has the interpretation Init (cf. page 6),
and IVar is the set of instance variables of u. To express that an assertion
refers to the set of existing objects prior to the extension of the global state,
we need to restrict any existential quantification in the assertion to range over
objects from z′, only. So let P be a global assertion and z′ of type list Object a
logical variable not occurring in P . Then P ↓ z′ is the global assertion P with
all quantifications ∃z. P ′ replaced by ∃z. obj(z) ⊆ z′ ∧ P ′, where obj (v) de-
notes the set of objects occurring in the value v. Thus a predicate (∃u. P) ↓ z′,
evaluated immediately after the instantiation, expresses that P holds prior to
the creation of the new object. This leads to the following definition of the
cooperation test for object creation:

Definition 2.9 (Cooperation test: Instantiation) A proof outline satis-
fies the cooperation test for object creation, if for all classes c′ and statements

19

{p1}u := newc; {p2}
new 〈~y := ~e〉new {p3} in c′:

|=G z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

→ P2(z) ∧ Ic(u) (6)

|=G {z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

}

z.~y := ~E(z)

{GI ∧ P3(z)} (7)

with z of type c′ and z′ of type list Object fresh.

Example 2.10 Assume a statement u := newc
{u 6= this} in a program, where

the class invariant of c is x ≥ 0 for an integer instance variable x. Condi-
tion 6 of the cooperation test for object creation assures that the class invari-
ant of the new object holds after its creation. We have to show validity of
|=G (∃z′. Fresh(z′, u)) → u.x ≥ 0, i.e., |=G u.x = 0 → u.x ≥ 0, which is trivial.
Remember that integer variables have the initial value 0. For the postcondi-
tion, Condition 7 requires |=G {z 6= u} ǫ {u 6= z} with ǫ the empty statement
(no observations are executed), which is true.

3 Multithreading

In this section we extend the language Javaseq to a concurrent language
Javaconc by allowing dynamic thread creation. Again, we define syntax and
semantics of the language, before formalizing the proof system.

3.1 Syntax and semantics

Expressions, statements, and methods can be constructed as in Javaseq . The
abstract syntax of the remaining constructs is summarized in Table 3. As we

class ::= c{meth . . .meth meth run methstart}

classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 3
Javaconc abstract syntax

focus on concurrency aspects, all classes are Thread classes in the sense of

20

β = [[e]]
σ(α),τ
E ∈ Val c(σ) ¬started(T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Callstart
〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ run,c

init , body run,c)}, σ〉

β = [[e]]
σ(α),τ
E ∈ Val (σ) started(T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Call
skip
start

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Fig. 5. Javaconc operational semantics

Java: Each class contains the pre-defined method start, which is identical for
all classes and therefore syntactically not represented in class definitions. Se-
mantically, when invoked, the start-method spawns a new thread, which starts
to execute the object’s run-method in parallel. The run-methods cannot be in-
voked directly. Remember that the syntax does not allow qualified references
to instance variables. As a consequence, shared-variable concurrency is caused
by simultaneous execution within a single object, only, but not across object
boundaries.

The operational semantics of Javaconc extends the semantics of Javaseq by dy-
namic thread creation. The additional rules are shown in Figure 5. The first in-
vocation of a start-method brings a new thread into being (Callstart). The new
thread starts to execute the user-defined run-method of the given object while
the initiating thread continues its own execution. Only the first invocation of
the start-method has this effect (Call

skip
start).

7 This is captured by the predicate
started(T, β) which holds iff there is a stack (α0, τ0, stm0) . . . (αn, τn, stmn) ∈ T
such that β = α0. A thread ends its lifespan by returning from a run-method
(Returnrun of Figure 3). 8

3.2 The proof system

In contrast to the sequential language, the proof system additionally has to
accommodate for dynamic thread creation and shared-variable concurrency.
Before describing the proof method, we show how to extend the built-in aug-
mentation of the sequential language.

7 In Java an exception is thrown if the thread is already started but not yet termi-
nated.
8 The worked-off local configuration (α, τ, ǫ) is kept in the global configuration to
ensure that the thread of α cannot be started twice.

21

3.2.1 Proof outlines

As mentioned, an important point in achieving completeness of the proof sys-
tem in the sequential case is the identification of communicating partners. For
the concurrent language we additionally have to be able to identify threads.
We identify a thread by the object in which it has begun its execution. This
identification is unique, since an object’s thread can be started only once. We
use the type Thread thus as abbreviation for the type Object. During a method
call, the callee thread receives its own identity as an auxiliary formal param-
eter thread. Additionally, we extend the auxiliary formal parameter caller by
the caller thread identity, i.e., let caller be of type Object×Int×Thread, storing
the identities of the caller object, the calling local configuration, and the caller
thread. Note that the thread identities of caller and callee are the same in all
cases but the invocation of a start-method. The run-method of the initial ob-
ject is executed with the values (α0, (null , 0, null)) assigned to the parameters
(thread, caller), where α0 is the initial object. The boolean instance variable
started, finally, remembers whether the object’s start-method has already been
invoked.

Syntactically, each formal parameter list ~u in the original program gets ex-
tended to (~u, thread, caller). Correspondingly for the caller, each actual param-
eter list ~e in statements invoking a method different from start gets extended
to (~e , thread, (this, conf, thread)). The invocation of the parameterless start-
method of an object e0 gets the actual parameter list (e0, (this, conf, thread)).
Finally, the callee observation at the beginning of the run-method executes
started := true. The variables conf and counter are updated as in the previous
section.

3.2.2 Verification conditions

Local correctness is not influenced by introducing concurrency. Note that local
correctness applies now to all concurrently executing threads.

The interference freedom test An assertion q at a control point has to
be invariant under an assignment ~y := ~e in the same class only if the local
configuration described by the assertion is not active in the computation step
executing the assignment. Note that assertions at auxiliary points do not have
to be shown invariant. Again, to distinguish local variables of the different
local configurations, we rename those of the assertion.

If q and ~y := ~e belong to the same thread, i.e., thread = thread′, then we have
the same antecedent as for the sequential language. If the assertion and the
assignment belong to different threads, interference freedom must be shown in

22

any case except for the self-invocation of the start-method: The precondition
of such a method invocation cannot interfere with the corresponding obser-
vation of the callee. To describe this setting, we define self start(q, ~y := ~e) by
caller = (this, conf ′, thread′) iff q is the precondition of a method invocation
e0.start(~e) and the assignment is the callee observation at the beginning of the
run-method, and by false otherwise.

Definition 3.1 (Interference freedom) A proof outline is interference
free, if the conditions of Definition 2.2 hold with waits for ret(q, ~y := ~e) re-
placed by

interleavable(q, ~y := ~e)
def
= thread = thread′ → waits for ret(q, ~y := ~e) ∧

thread 6= thread′ → ¬self start(q, ~y := ~e) . (8)

Example 3.2 Assume an annotated assignment {p}stm in a method, and an
assertion q at a control point not waiting for return in the same method,
such that both p and q imply thread = this. I.e., the method is executed only
by the thread of the object to which it belongs. Clearly, p and q cannot be
simultaneously reached by the same thread. For invariance of q under the as-
signment stm, the antecedent of the interference freedom condition implies
p ∧ q′ ∧ interleavable(q, stm). From p ∧ q′ we conclude thread = thread′, and
thus by the definition of interleavable(q, stm) the assertion q should be at a
control point waiting for return, which is not the case, and thus the antecedent
of the condition evaluates to false.

The cooperation test The cooperation test for object creation is not in-
fluenced by adding concurrency, but we have to extend the cooperation test
for communication by defining additional conditions for thread creation. In-
voking the start-method of an object whose thread is already started does not
have communication effects. The same holds for returning from a run-method,
which is already included in the conditions for the sequential language as for
the termination of the only thread. Note that this condition applies now to
all threads.

Definition 3.3 (Cooperation test: Communication) A proof outline
satisfies the cooperation test for communication, if the conditions of Defi-
nition 2.5 hold for the statements listed there with m 6= start, and additionally
in the following cases:

(1) Callstart : For all statements {p1}e0.start(~e) {p2}
!call 〈~y1 := ~e1〉

!call {p3} in
class c with e0 of type c′, comm is given by E0(z) = z′∧¬z′.started, where
{q2}?call 〈~y2 := ~e2〉

?call {q3} stm is the body of the run-method of c′ having

23

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm ; return eret}

meth run ::= nsync run(){ stm ; return }

methwait ::= nsyncwait(){ ?signal; returngetlock }

methnotify ::= nsync notify(){ !signal ; return }

methnotifyAll ::= nsync notifyAll(){ !signal all; return }

methpredef ::= methstart methwait methnotify methnotifyAll

class ::= c{meth. . .meth meth run methpredef }

classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 4
Javasynch abstract syntax

formal parameters ~u and local variables ~v except the formal parameters.
As in the Call case, q1 = Ic′, fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1

is

z.~y1 := ~E1(z), and fobs2
is z′.~y′2 := ~E ′

2(z
′).

(2) Call
skip
start : For the above statements, the equations must additionally hold

with the assertion comm given by E0(z) = z′ ∧ z′.started, q1 = Ic′, q2 =

q3 = true, fobs1
is z.~y1 := ~E1(z), and fcomm and fobs2

are the empty
statement.

4 The language Javasynch

In this section we extend the language Javaconc with monitor synchroniza-
tion. Again, we define syntax and semantics of the language Javasynch , before
formalizing the proof system.

4.1 Syntax and semantics

Expressions and statements can be constructed as in the previous languages.
The abstract syntax of the remaining constructs is summarized in the Ta-
ble 4. Formally, methods get decorated by a modifier modif distinguishing
between non-synchronized and synchronized methods. 9 In the sequel we also

9 Java does not have the non-synchronized modifier: methods are non-synchronized
by default.

24

m /∈ {start,wait, notify, notifyAll} modif m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Val c(σ) τ ′ = τm,c

init [~u 7→[[~e]]
σ(α),τ
E] (modif = sync) → ¬owns(T, β)

Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

m ∈ {wait, notify, notifyAll}

β = [[e]]
σ(α),τ
E ∈ Val c(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)

Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τm,c
init , bodym,c)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ ′, returngetlock)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm ′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm ′)}, σ〉

wait(T, α) = ∅
Signalskip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Fig. 6. Javasynch Operational semantics

refer to statements in the body of a synchronized method as being synchro-
nized. Furthermore, we consider the additional predefined methods wait, notify,
and notifyAll, whose definitions use the auxiliary statements !signal, !signal all,
?signal, and returngetlock .

10

The operational semantics extends the semantics of Javaconc by the rules of
Figure 6, where the Call rule is replaced. Each object has a lock which can
be owned by at most one thread. Synchronized methods of an object can
be invoked only by a thread which owns the lock of that object (Call), as

10 Java’s Thread class additionally support methods for suspending, resuming, and
stopping a thread, but they are deprecated and thus not considered here.

25

expressed by the predicate owns, defined below. If the thread does not own
the lock, it has to wait until the lock gets free. A thread owning the lock of
an object can recursively invoke several synchronized methods of that object,
which corresponds to the notion of reentrant monitors.

The remaining rules handle the monitor methods wait, notify, and notifyAll. In
all three cases the caller must own the lock of the callee object (Callmonitor).
A thread can block itself on an object whose lock it owns by invoking the
object’s wait-method, thereby relinquishing the lock and placing itself into the
object’s wait set. Formally, the wait set wait(T, α) of an object is given as the
set of all stacks in T with a top element of the form (α, τ, ?signal; stm). After
having put itself on ice, the thread awaits notification by another thread which
invokes the notify-method of the object. The !signal-statement in the notify-
method thus reactivates a non-deterministically chosen single thread waiting
for notification on the given object (Signal). Analogously to the wait set, the
notified set notified(T, α) of α is the set of all stacks in T with top element of
the form (α, τ, returngetlock), i.e., threads which have been notified and trying
to get hold of the lock again. According to rule Returnwait , the receiver
can continue after notification in executing returngetlock only if the lock is free.
Note that the notifier does not hand over the lock to the one being notified but
continues to own it. This behavior is known as signal-and-continue monitor
discipline [18]. If no threads are waiting on the object, the !signal of the notifier
is without effect (Signalskip). The notifyAll-method generalizes notify in that
all waiting threads are notified via the !signal all-broadcast (SignalAll). The
effect of this statement is given by setting signal(T, α) as (T \ wait(T, α)) ∪
{ξ ◦ (β, τ, stm) | ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize the owns predicate: A
thread ξ owns the lock of β iff ξ executes some synchronized method of β, but
not its wait-method. Formally, owns(T, β) is true iff there exists a thread ξ ∈ T
and a (β, τ, stm) ∈ ξ with stm synchronized and ξ /∈ wait(T, β)∪notified(T, β).
The definition is used analogously for single threads. An invariant of the se-
mantics is that at most one thread can own the lock of an object at a time.

4.2 The proof system

The proof system has additionally to accommodate for synchronization, reen-
trant monitors, and thread coordination via the wait and notify constructs.
First we define how to extend the augmentation of Javaconc , before we describe
the proof method.

26

4.2.1 Proof outlines

To capture mutual exclusion and the monitor discipline, the built-in auxiliary
instance variable lock of type Thread×Int stores the identity of the thread who
owns the lock, if any, together with the number of synchronized calls in the
call chain. Its initial value free = (null , 0) indicates that the lock is free. The
instance variables wait and notified of type list(Thread× Int) are the analogues
of the wait- and notified -sets of the semantics and store the threads waiting
at the monitor, respectively those having been notified. Besides the thread
identity, the number of synchronized calls is stored. In other words, these
variables remember the old lock-value prior to suspension which is restored
when the thread becomes active again. All auxiliary variables are initialized
as usual. For values thread of type Thread and wait of type list(Thread× Int),
we will also write thread ∈ wait instead of (thread , n) ∈ wait for some n.

Syntactically, besides the augmentation of the previous section, the callee ob-
servation at the beginning and at the end of each synchronized method body
executes lock := inc(lock) and lock := dec(lock), respectively. The semantics
of incrementing the lock [[inc(lock)]]

σ
inst

,τ

E is (τ(thread), n + 1) for σinst(lock) =
(α, n). Decrementing dec(lock) is inverse.

Instead of the auxiliary statements of the semantics, notification is repre-
sented in the proof system by auxiliary assignments operating on the wait

and notified variables. If the order of elements in sequences in not impor-
tant, we use in the sequel also set notation. Entering the wait-method gets the
observation wait, lock := wait∪{lock}, free; returning from the wait-method ob-
serves lock, notified := get(notified, thread), notified\{get(notified, thread)}. For
a thread α, the get function retrieves the value (α, n) from a wait or no-
tified set. The semantics assures uniqueness of the association. The !signal-
statement of the notify-method is represented by the auxiliary assignment
wait, notified := notify(wait, notified), where notify(wait , notified) is the pair of
the given sets with one element, chosen nondeterministically, moved from the
wait into the notified set; if the wait set is empty, it is the identity function.
Finally, the !signal all-statement of the notifyAll-method is represented by the
auxiliary assignment notified,wait := notified ∪ wait, ∅.

4.2.2 Verification conditions

Local correctness agrees with that for Javaconc . In case of notification, local
correctness covers also invariance for the notifying thread, as the effect of
notification is captured by an auxiliary assignment.

27

The interference freedom test Synchronized methods of a single object
can be executed concurrently only if one of the corresponding local configura-
tions is waiting for return: If the executing threads are different, then one of
the threads is in the wait or notified set of the object; otherwise, both execut-
ing local configurations are in the same call chain. Thus we assume that either
not both the assignment and the assertion occur in a synchronized method,
or the assertion is at a control point waiting for return.

Definition 4.1 (Interference freedom) A proof outline is interference
free, if Definition 3.1 holds in all cases, such that if both p and q occur in a
synchronized method, then q is at a control point waiting for return.

For notification, we require also invariance of the assertions for the notified
thread. We do so, as notification is described by an auxiliary assignment ex-
ecuted by the notifier. That means, both the waiting and the notified status
of the executing thread are represented by a single control point in the wait-
method. The two statuses can be distinguished by the values of the wait and
notified variables. The invariance of the precondition of the return statement in
the wait-method under the assignment in the notify-method represents the no-
tification process, whereas invariance of that assertion over assignments chang-
ing the lock represents the synchronization mechanism. Information about the
lock value will be imported from the cooperation test as this information de-
pends on the global behavior.

Example 4.2 This example shows how the fact that at most one thread can
own the lock of an object can be used to show mutual exclusion. We use the
assertion owns(thread, lock) for thread 6= null ∧ thread(lock) = thread, where
thread(lock) is the first component of the lock value. Let free for(thread, lock)
be thread 6= null ∧ (owns(thread, lock) ∨ lock = free).

Let q, given by owns(thread, lock), be an assertion at a control point and

let {p}?call 〈stm〉?call with p
def
= free for(thread, lock) be the callee observation

at the beginning of a synchronized method in the same class. Note that the
observation stm changes the lock value. The interference freedom condition
|=L {p ∧ q′ ∧ interleavable(q, stm)}stm{q′} assures invariance of q under the
observation stm. The assertions p and q′ imply thread = thread′. The points
at p and q can be simultaneously reached by the same thread only if q de-
scribes a point waiting for return. This fact is mirrored by the definition of the
interleavable predicate: If q is not at a control point waiting for return, then the
antecedent of the condition evaluates to false. Otherwise, after the execution of
the built-in augmentation lock := inc(lock) in stm we have owns(thread, lock),
i.e., owns(thread′, lock), which was to be shown.

28

The cooperation test We extend the cooperation test for Javaconc with
synchronization and the invocation of the monitor methods. In the previous
languages, the assertion comm expressed, that the given statements indeed
represent communicating partners. In the current language with monitor syn-
chronization, communication is not always enabled. Thus the assertion comm

has additionally to capture enabledness of the communication: In case of a
synchronized method invocation, the lock of the callee object has to be free
or owned by the caller. This is expressed by z′.lock = free ∨ thread(z′.lock) =
thread, where thread is the caller-thread, and where thread(z′.lock) is the first
component of the lock value, i.e., the thread owning the lock of z′. For the
invocation of the monitor methods we require that the executing thread is
holding the lock. Returning from the wait-method assumes that the thread
has been notified and that the callee’s lock is free. Note that the global invari-
ant is not affected by the object-internal monitor signaling mechanism, which
is represented by auxiliary assignments.

Definition 4.3 (Cooperation test: Communication) A proof outline
satisfies the cooperation test for communication, if the conditions of Defi-
nition 3.3 hold for the statements listed there with the exception of the Call-
case, and additionally in the following cases:

(1) Call: For all statements {p1}uret := e0.m(~e) {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait

(or such without receiving a value) in class c with e0 of type c′, where
method m /∈ {start,wait, notify, notifyAll} of c′ is synchronized with body
{q2}?call 〈~y2 := ~e2〉

?call {q3}stm, formal parameters ~u, and local variables ~v
except the formal parameters. The callee class invariant is q1 = Ic′. The
assertion comm is given by E0(z) = z′∧ (z′.lock = free∨ thread(z′.lock) =

thread). Furthermore, fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1
is given by

z.~y1 := ~E1(z), and fobs2
is z′.~y′2 := ~E ′

2(z
′). If m is not synchronized,

z′.lock = free ∨ thread(z′.lock) = thread in comm is dropped.
(2) Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by E0(z) =

z′ ∧ thread(z′.lock) = thread.
(3) Returnwait : For {q1} returngetlock {q2}!ret 〈~y3 := ~e3〉

!ret {q3} in a wait-method,

comm is E0(z) = z′ ∧ ~u′ = ~E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.

Example 4.4 Assume the invocation of a synchronized method m of a class
c, where m of c has the body 〈stm 〉?call {thread(lock) = thread}stm ′; return. Note
that the built-in augmentation in stm sets the lock owner by the assignment
lock := inc(lock). Omitting irrelevant details again, the cooperation test re-
quires |=G {true}z′.lock := inc(z′.lock){thread(z′.lock) = thread′}, which holds
by the definition of inc.

29

5 Soundness and relative completeness

This section contains soundness and relative completeness of the proof method
of Section 4.2. The proofs can be found in [17]. Given a program together with
its annotation, the proof system stipulates a number of induction conditions
for the various types of assertions and program constructs. Soundness for the
inductive method means that for a proof outline satisfying the verification
conditions, all configurations reachable in the operational semantics satisfy
the given assertions. Completeness conversely means that if a program does
satisfy an annotation, this fact is provable. For convenience, let us introduce
the following notations. Given a program prog, we will write ϕprog or just
ϕ for its annotation, and write prog |= ϕ, if prog satisfies all requirements
stated in the assertions, and prog ′ ⊢ ϕ′, if prog ′ with annotation ϕ′ satisfies
the verification conditions of the proof system:

Definition 5.1 Given a program prog with annotation ϕ, then prog |= ϕ iff
for all reachable configurations 〈T, σ〉 of prog, for all α ∈ dom(σ) with class
invariant Ic, for all (α, τ, stm) ∈ T , for all logical environments ω referring
only to values existing in σ, and for all local states τ ′:

(1) ω, σ |=G GI ,
(2) ω, σ(α), τ ′ |=L Ic , and
(3) ω, σ(α), τ |=L pre(stm).

For proof outlines, we write prog ′ ⊢ ϕ′ iff prog ′ with annotation ϕ′ satisfies
the verification conditions of the proof system.

5.1 Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy
their assertions for an annotated program that has been verified using the
proof conditions. Soundness of the method is proved by a straightforward,
albeit tedious, induction on the computation steps.

Before embarking upon the soundness formulation and its proof, we need to
clarify the connection between the original program and proof outline, i.e.,
the one decorated with assertions, and extended by auxiliary variables. The
transformation is done for the sake of verification, only, and as far as the
un-augmented portion of the states and the configurations is concerned, the
behavior of the original and the transformed program are the same.

To make the connection between original program and the proof outline pre-
cise, we define a projection operation ↓ prog, that jettisons all additions of the

30

transformation. So let prog ′ be a proof outline for prog, and 〈T ′, σ′〉 a global
configuration of prog ′. Then σ′ ↓ prog is defined by removing all auxiliary
instance variables from the instance state domains. For the set of thread con-
figurations, T ′ ↓ prog is given by restricting the domains of the local states to
non-auxiliary variables and removing all augmentations. Additionally, for lo-
cal configurations (α, τ, returngetlock) ∈ T ′, if the executing thread is in the wait
set, i.e., τ(thread) ∈ σ′(α)(wait) then the statement returngetlock gets replaced
by ?signal; returngetlock . Furthermore, for local configurations (α, τ, stm; return)
with stm 6= ǫ an auxiliary assignment in the notify- or the notifyAll-method,
the auxiliary assignment stm gets replaced by !signal and !signal all, respec-
tively. The following lemma expresses that the transformation does not change
the behavior of programs:

Lemma 5.2 Let prog ′ be a proof outline for a program prog. Then 〈T, σ〉 is a
reachable configuration of prog iff there exists a reachable configuration 〈T ′, σ′〉
of prog ′ with 〈T ′ ↓ prog, σ′ ↓ prog〉 = 〈T, σ〉.

The augmentation introduced a number of specific auxiliary variables that
reflect the predicates used in the semantics. That the semantics is faithfully
represented by the variables is formulated in [17].

Let prog be a program with annotation ϕ, and prog ′ a corresponding proof
outline with annotation ϕ′. Let GI ′ be the global invariant of ϕ′, I ′c denote its
class invariants, and for an assertion p of ϕ let p′ denote the assertion of ϕ′

associated with the same control point. We write |= ϕ′ → ϕ iff |=G GI ′ → GI ,
|=L I

′
c → Ic for all classes c, and |=L p

′ → p, for all assertions p of ϕ associated
with some control point. To give meaning to the auxiliary variables, the above
implications are evaluated in the context of states of the augmented program.
The following theorem states the soundness of the proof method.

Theorem 5.3 (Soundness) Given a proof outline prog ′ with annotation
ϕprog ′, then

if prog ′ ⊢ ϕprog ′ then prog ′ |= ϕprog ′ .

Theorem 5.3 is formulated for augmented programs. We get immediately with
the help of Lemma 5.2:

Corollary 5.4 If prog ′ ⊢ ϕprog ′ and |= ϕprog ′ → ϕprog , then prog |= ϕprog .

The soundness proof is basically an induction on the length of computations,
simultaneously on all three parts from Definition 5.1. After handling the initial
case, the inductive step assumes 〈T0, σ0〉−→

∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that 〈T̀ , σ̀〉
satisfies the conditions of Definition 5.1, and ω a logical environment referring
only to values existing in σ́. In the proof cases we distinguish between possible

31

kinds of the computation step 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉. We illustrate the soundness
proof on the case for synchronized method invocation.

Case: Call

Let (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉
!call stm1) ∈ T̀ be the caller configuration

prior to method invocation, and let (α, τ́1, stm1) ∈ T́ and (β, τ́2, stm2) ∈ T́
be the local configurations of the caller and the callee after execution. Let
furthermore 〈~y2 := ~e2〉

?call stm2 be the invoked method’s body, ~u its formal
parameters, and ~v its local variables except the formal parameters. Then
β = [[e0]]

σ̀(α),τ̀1
E 6= null . Directly after communication the callee has the lo-

cal state τ̂2 = τinit [~u 7→[[~e]]
σ̀(α),τ̀1
E]; after the caller observation, the global state

is σ̂ = σ̀[α.~y1 7→[[~e1]]
σ̀(α),τ̀1
E] and the caller’s local state is updated to τ́1 =

τ̀1[~y1 7→[[~e1]]
σ̀(α),τ̀1
E]. Finally, the callee observation updates its local state to

τ́2 = τ̂2[~y2 7→[[~e2]]
σ̂(β),τ̂2
E] and the global state to σ́ = σ̂[β.~y2 7→[[~e2]]

σ̂(β),τ̂2
E].

Since the invoked method is synchronized, if ξ is the stack of the execut-
ing thread in T̀ , then according to the transition rule ¬owns(T̀\{ξ}, β). Us-
ing the correctness of the representation of the lock ownership and unique-
ness of the identification mechanism by the built-in auxiliary variables we
get σ̀(β)(lock) = free ∨ thread(σ̀(β)(lock)) = τ̀1(thread) and thus ὼ, σ̀ |=G

z′.lock = free ∨ thread(z′.lock) = thread with ~v1 = dom(τ̀1) and where ὼ

is given by ω[z 7→α][z′ 7→β][~v1 7→ τ̀1(~v1)]. Similarly, β = [[e0]]
σ̀(α),τ̀1
E implies

ὼ, σ̀ |=G E0(z) = z′. Remember that E0(z) is a shortcut for e0[z/this].

In the following let p1 = pre(uret := e0.m(~e)), p2 = pre(~y1 := ~e1), p3 =
post(~y1 := ~e1), q1 = I, q2 = pre(~y2 := ~e2), and q3 = post(~y2 := ~e2), where I
is the class invariant of the callee. Then we have by induction ὼ, σ̀ |=G GI ,
ὼ, σ̀(β), τ̀1 |=L I, and ὼ, σ̀(α), τ̀1 |=L p1. The cooperation test for communica-
tion assures

ὼ, σ̀ |=G {GI ∧ P1(z) ∧Q
′
1(z

′) ∧ comm ∧ z 6=null ∧ z′ 6=null}

~u′, ~v′ := ~E(z), Init(~v); z.~y1 := ~E1(z); z′.~y′2 := ~E ′
2(z

′)

{GI ∧ P3(z) ∧Q
′
3(z

′)}

where comm is E0(z) = z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Note
that the above assignments represent exactly the state changes caused by
communication and the observations of caller and callee. Thus we have

ώ, σ́ |=G GI ∧ P3(z) ∧Q
′
3(z

′)

with ώ given by ὼ[~u′ 7→ [[~e]]
σ̀(α),τ̀1
E][~v′ 7→ Init(~v)][~y1 7→[[~e1]]

σ̀(α),τ̀1
E][~y′2 7→[[~e2]]

σ̂(β),τ̂2
E].

Note that in the annotation no free logical variables occur, and thus the values
of assertions in a proof outline do not depend on the logical environment. I.e.,

32

ω, σ́ |=G GI , and thus part (1). Using correctness of the lifting substitution
we get similarly ω, σ́(α), τ́1 |=L p3 and ω, σ́(β), τ́2 |=L q3.

Thus part (3) is satisfied for the local configurations involved in the last com-
putation step. All other configurations (γ, τ3, stm3) in T́ are also in T̀ . If γ 6= α
and γ 6= β, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ3 |=L pre(stm3) by induction.

Assume in the following that γ is either the caller α or the callee β. We need
to apply the interference freedom test to show invariance of the corresponding
assertions. To do so, we use the cooperation test to show that the preconditions
of the observations are satisfied in the state in which they get executed. The
cooperation test assures

ὼ, σ̀ |=G {GI ∧ P1(z) ∧Q
′
1(z

′) ∧ comm ∧ z 6=null ∧ z′ 6=null}

~u′, ~v′ := ~E(z), Init(~v)

{P2(z) ∧Q
′
2(z

′)} .

As above, the precondition is satisfied, and we get that σ̀(α), τ̀1 |=L p2 and
σ̀(β), τ̂2 |=L q2.

We distinguish three cases: γ can be the caller object, the callee object, or both
in case of a self-call. Assume first γ = α and α 6= β, and let τ be τ̀1[~v

′ 7→ τ3(~v)],
where ~v = dom(τ3). The interference freedom test assures

ω, σ̀(α), τ |=L {p2 ∧ pre ′(stm3) ∧ interleavable(pre(stm3), ~y1 := ~e1)}

~y1 := ~e1

{pre ′(stm3)} .

With the definition of interleavable this yields ω, σ̂(α), τ [~y1 7→[[~e1]]
σ̂(α),τ
E] |=L

pre(stm3). Due to the renaming mechanism, no local variables in ~v′ occur in
~y1. Renaming back the variables leads to ω, σ̂(α), τ3 |=L pre(stm3). Now, since
β 6= α, the callee observation neither changes the caller’s instance state, and
we have σ̂(α) = σ́(α). Thus we get ω, σ́(α), τ3 |=L pre(stm3).

The case γ = β and α 6= β is similar. Communication and caller observation
do not change the instance state of β, i.e., σ̀(β) = σ̂(β). The interference
freedom test applied to the states σ̂(β) and τ with τ = τ̂2[~v

′ 7→ τ3(~v)] re-
sults ω, σ́(β), τ́ |=L pre ′(stm3) with τ́(~v′) = τ3(~v), and thus ω, σ́(β), τ3 |=L

pre(stm3).

For the last case γ = α = β note that, according to the restrictions on the
augmentation, the caller may not change the instance state. Thus the same
arguments as for γ = β and α 6= β apply. I.e., part (3) is satisfied.

33

Part (2) is analogous: Let I be the class invariant of α. The interference
freedom test implies ω, σ́(α), τ́1 |=L I. Since I may contain instance variables
only, its evaluation does not depend on the local state. Similarly for the callee,
ω, σ́(β), τ́2 |=L I. The state of other objects is not changed in the last compu-
tation step, and we get the required property. 2

5.2 Relative completeness

Next we conversely show that if a program satisfies the requirements asserted
in its proof outline, then this is indeed provable, i.e., then there exists a proof
outline which can be shown to hold and which implies the given one:

∀prog. prog |= ϕprog ⇒ ∃prog ′. prog ′ ⊢ ϕprog ′ ∧ |= ϕprog ′ → ϕprog .

Given a program satisfying an annotation prog |= ϕprog , the consequent can
be uniformly shown, i.e., independently of the given assertional part ϕprog ,
by instantiating ϕprog ′ to the strongest annotation still provable, thereby dis-
charging the last clause |= ϕprog ′ → ϕprog . Since the strongest annotation
still satisfied by the program corresponds to reachability, the key to (relative)
completeness is to

(1) augment each program with enough information, to be able to
(2) express reachability in the annotation, i.e., annotate the program such

that a configuration satisfies its local and global assertions exactly if
reachable (see Definition 5.6 below), and finally

(3) to show that this augmentation indeed satisfies the verification conditions.

We begin with the augmentation, using the transformation of the previous
sections as starting point, where the programs are augmented with the specific
auxiliary variables.

To facilitate reasoning, we introduce an additional auxiliary local variable loc,
which stores the current control point of the execution of a thread. Given a
function which assigns to all control points unique location labels, we extend
each assignment with the update loc := l, where l is the label of the control
point after the given occurrence of the assignment. Also unobserved statements
are extended with the update. We write l ≡ stm if l represents the control
point in front of stm.

The standard way for relative completeness augmentation is to add informa-
tion into the states about the way how it has been reached, i.e., the history
of the computation leading to the configuration. This information is recorded
using history variables.

34

The assertional language is split into a local and a global level, and likewise
the proof system is tailored to separate local proof obligations from global ones
to obtain a modular proof system. The history will be recorded in instance
variables, and thus each instance can keep track only of its own past. To mirror
the split into a local and a global level in the proof system, the history per
instance is recorded separately for internal behavior in the local history, and
for external behavior in the communication history.

The local history keeps track of the state updates due to local steps of threads,
i.e., steps which does not communicate or create a new object. We store in
the local history the updated local and instance states of the executing local
configuration and the object in which the execution takes place. Note that
the local history stores also the values of the built-in auxiliary variables, and
thus the identities of the executing thread and especially the executing local
configuration.

The communication history keeps information about the kind of communica-
tion, the communicated values, and the identity of the communicating part-
ners. For the kind of communication, we distinguish as cases object creation,
ingoing and outgoing method calls, and likewise ingoing and outgoing com-
munication for the return value. We use the set

⋃

c {newc} ∪
⋃

m {!m, ?m} ∪
{!return, ?return} of constants for this purpose. Notification does not update
the communication history, since it is object-internal computation. For the
same reason, we don’t record self-communication in hcomm . Note in passing
that the information stored in the communication history matches exactly the
information needed to decorate the transitions in order to obtain a composi-
tional variant of the operational semantics in this paper. See [19] for such a
compositional semantics.

Definition 5.5 (Augmentation with histories) Each class is further ex-
tended by two auxiliary instance variables hinst and hcomm , both initialized to
the empty sequence. They are updated as follows:

(1) Each assignment ~y := ~e in each class c that is not the observation of a
method call or of the reception of a return value is extended with

hinst := hinst ◦ ((~x,~v)[~e/~y]) ,

where ~x are the instance variables of class c containing also hcomm but
without hinst , and ~v are the local variables. Observations ~y := ~e of uret :=
e0.m(~e ′) and of the corresponding reception of the return value get ex-
tended with the assignment

hinst := if (e0 = this) then hinst else hinst ◦ ((~x,~v)[~e/~y]) fi ,

instead, if m 6= start. For e0.start(~e
′)〈~y := ~e〉!call we use the same update

35

with the condition e0 = this replaced by e0 = this ∧ ¬started.
(2) Every communication and object creation gets observed by

hcomm := if (partner = this) then hcomm else

hcomm ◦ (sender, receiver, values) fi ,

where the expressions partner, sender, receiver, and values are defined de-
pending on the kind of communication statements as follows:

communication statement partner sender receiver values

u := newc null this null newc u, thread

uret := e0.m(~e) e0 this e0 !m(~e)

reception of return e0 e0 this ? returnuret , thread

reception of call m(~u) caller obj caller obj this ?m(~u)

return eret caller obj this caller obj ! return eret , thread

where caller obj is the first component of the variable caller.

Note that the communication history records also the identities of the commu-
nicating threads in values. Next we introduce the annotation for the augmented
program.

Definition 5.6 (Reachability annotation) We define

(1) ω, σ |=G GI iff there exists a reachable 〈T, σ′〉 such that Val (σ) = Val (σ′),
and for all α ∈ Val (σ), σ(α)(hcomm) = σ′(α)(hcomm).

(2) For each class c, let ω, σinst , τ |=L Ic iff there is a reachable 〈T, σ〉 such
that σ(α) = σinst , where α = σinst(this). For each class c and method m
of c, the pre- and postconditions of m are given by Ic.

(3) For assertions at control points, ω, σinst , τ |=L pre(stm) iff there is a
reachable 〈T, σ〉 with σ(α) = σinst for α = σinst(this), and such that
(α, τ, stm; stm ′) ∈ T .

(4) For preconditions p of observations of communication or object creation,
let ω, σinst , τ |=L p iff there is a reachable 〈T, σ〉 with σ(α) = σinst for
α = σinst(this), and with (α, τ ′, stm; stm ′) ∈ T enabled to communicate
resulting in the local state τ directly after communication, where stm is
the corresponding communication statement.

For observing the reception of a method call, instead of the existence of
the enabled (α, τ ′, stm; stm ′) ∈ T , we require that a call of method m of α
is enabled with resulting callee local state τ directly after communication.

It can be shown that these assertions are expressible in the assertion language
[20]. The augmented program together with the above annotation build a proof
outline prog ′.

36

What remains to be shown for completeness is that the proof outline prog ′

indeed satisfies the verification conditions of the proof system. Initial and local
correctness are straightforward. Completeness for the interference freedom test
and the cooperation test are more complex, since their verification conditions
mention more than one local configuration in their respective antecedents.
Now, the reachability assertions of prog ′ guarantee that, when satisfied by an
instance local state, there exists a reachable global configuration responsible
for the satisfaction. So a crucial step in the completeness proof for interference
freedom and the cooperation test is to show that individual reachability of two
local configurations implies that they are reachable in a common computation.
This is also the key property for the history variables: they record enough
information such that they allow to uniquely determine the way a configuration
has been reached; in the case of instance history, uniqueness of course, only
as far as the chosen instance is concerned. This property is stated formally in
the following local merging lemma.

Lemma 5.7 (Local merging lemma) Assume two reachable global config-
urations 〈T1, σ1〉 and 〈T2, σ2〉 of prog ′ and (α, τ, stm) ∈ T1 with α ∈ Val (σ1)∩
Val (σ2). Then σ1(α)(hinst) = σ2(α)(hinst) implies (α, τ, stm) ∈ T2.

For completeness of the cooperation test, connecting two possibly different
instances, we need an analogous property for the communication histories.
Arguing on the global level, the cooperation test can assume that two control
points are individually reachable but agreeing on the communication histories
of the objects. This information must be enough to ensure common reach-
ability. Such a common computation can be constructed, since the internal
computations of different objects are independent from each other, i.e., in a
global computation, the local behavior of an object is interchangeable, as long
as the external behavior does not change. This leads to the following lemma:

Lemma 5.8 (Global merging lemma) Assume two reachable global con-
figurations 〈T1, σ1〉 and 〈T2, σ2〉 of prog ′ and α ∈ Val (σ1) ∩ Val (σ2) with the
property σ1(α)(hcomm) = σ2(α)(hcomm). Then there exists a reachable configu-
ration 〈T, σ〉 with Val (σ) = Val (σ2), σ(α) = σ1(α), and σ(β) = σ2(β) for all
β ∈ Val (σ2)\{α}.

Note that both merging lemmas together imply that all local configurations
in 〈T1, σ1〉 executing in α and all local configurations in 〈T2, σ2〉 executing
in β 6= α are contained in the commonly reached configuration 〈T, σ〉. This
brings us to the last result of the paper:

Theorem 5.9 (Completeness) For a program prog, the proof outline prog ′

satisfies the verification conditions of the proof system from Section 4.2.

The completeness proof handles all cases for the different verification condition
groups. Here we illustrate the proof by the case of interference freedom:

37

Case: Interference freedom
Assume an arbitrary assignment ~y := ~e with precondition p in class c, and an
arbitrary assertion q at a control point in the same class. We show that the
proof outline prog ′ satisfies the conditions for interference freedom, i.e.,

ω, σinst , τ |=L {p ∧ q
′ ∧ interleavable(q, ~y := ~e)} ~y := ~e {q′}

for some logical environment ω together with some instance and local states
σinst and τ , where q′ denotes q with all local variables u replaced by some
fresh local variables u′. We do so by proving that ω, σinst , τ |=L p ∧ q′ ∧
interleavable(q, ~y := ~e) implies ω, σinst [~y 7→[[~e]]

σ
inst

,τ

E], τ [~y 7→[[~e]]
σ
inst

,τ

E] |=L q
′.

Let α = σinst(this). The first clause ω, σinst , τ |=L p implies that there exists a
computation reaching 〈T̀p, σ̀p〉 with σ̀p(α) = σinst , and an enabled configuration

(α, τp, stmp; stm
′
p) ∈ T̀p, where stmp is ~y := ~e if the assignment does not

observe method call or object creation, and the corresponding communication
statement with its observation otherwise. The local state τp is τ if stmp does
not receive any values. Otherwise τp = τ [~u 7→~v], where ~u are the variables
storing the received values and ~v some value sequence, such that the local
configuration is enabled to receive the values τ(~u). If p is the precondition of
a method body, then additionally τp(~w) = Init(~w) for the sequence ~w of local
variables in p that are not formal parameters.

From ω, σinst , τ |=L q′ we get by renaming back the local variables that
ω, σinst , τ

′ |=L q for τ ′(u) = τ(u′) for all local variables u in q. Assume that
q is the precondition of the statement stmq. Note that q is an assertion at a
control point. Applying the annotation definition we conclude that there is a
reachable 〈T̀q, σ̀q〉 with σ̀q(α) = σinst = σ̀p(α) and (α, τ ′, stmq; stm

′
q) ∈ T̀q. The

local merging Lemma 5.7 implies that (α, τ ′, stmq; stm
′
q) ∈ T̀p.

Let 〈T́p, σ́p〉 result from 〈T̀p, σ̀p〉 by executing stmp in the enabled local con-
figuration (α, τp, stmp; stm

′
p). If the local configuration is the caller part in

a self-communication, then, due to the restriction on the augmentation, the
caller observation ~y := ~e does not change the caller instance state. Thus, due
to the renaming mechanism, ω, σinst [~y 7→[[~e]]

σ
inst

,τ

E], τ [~y 7→[[~e]]
σ
inst

,τ

E] |=L q
′.

Otherwise, if (α, τp, stmp; stm
′
p) does not represent the caller part in a self-

communication, then σ́p(α) = σinst [~y 7→[[~e]]
σ
inst

,τ

E]. Note that in the case of
self-communication, the caller part does not change the instance state. Thus
the only update of the instance state of α is given by the effect of ~y :=
~e. From the assumption ω, σinst , τ |=L interleavable(q, ~y := ~e) we get that
(α, τ ′, stmq; stm

′
q) cannot be the communication partner of (α, τp, stmp; stm

′
p),

and thus (α, τ ′, stmq; stm
′
q) ∈ T́p.

38

Using the annotation definition we get ω, σinst [~y 7→[[~e]]
σ
inst

,τ

E], τ ′ |=L q, and
after renaming the local variables of q also ω, σinst [~y 7→[[~e]]

σ
inst

,τ

E], τ |=L q′.
Note that due to renaming, no local variables of q′ occur in ~y, and thus
τ(u′) = τ [~y 7→[[~e]]

σ
inst

,τ

E](u′) for all local variables u in q. This implies the re-
quired property ω, σinst [~y 7→[[~e]]

σ
inst

,τ

E], τ [~y 7→[[~e]]
σ
inst

,τ

E] |=L q
′.

Validity of the verification condition 2 for the class invariant is similar, where
we additionally use the fact that the class invariant refers to instance variables
only. 2

6 Proving deadlock freedom

The previous sections described a proof system which can be used to prove
safety properties of Javasynch programs. In this section we show how to apply
the proof system to show deadlock freedom.

A system of processes is in a deadlocked configuration, if no one of them is
enabled to compute, but not yet all started processes are terminated. A typical
deadlock situation can occur, if two threads t1 and t2 both try to gather the
locks of two objects z1 and z2, but in reverse order: t1 first applies for access
to synchronized methods of z1, and then for those of z2, while t2 first collects
the lock of z2, and tries to become the lock owner of z1. Now, it can happen,
that t1 gets the lock of z1, t2 gets the lock of z2, and both are waiting for the
other lock, which will never become free. Another typical source of deadlock
situations are threads which suspended themselves by calling wait and which
will never get notified.

What kind of Javasynch-statements can be disabled and under which condi-
tions? The important cases, to which we restrict, are

• the invocation of synchronized methods, if the lock of the callee object is
neither free nor owned by the executing thread,

• if a thread tries to invoke a monitor method of an object whose lock it does
not own, or

• if a thread tries to return from a wait-method, but either the lock is not free
or the thread is not yet notified.

To be exact, the semantics specifies method calls to be disabled also, if the
callee object is the empty reference. However, we won’t deal with this case; it
can be excluded in the preconditions by stating that the callee object is not
null.

Assume a proof outline with global invariant GI . For a logical variable z of

39

type Object, let I(z) = I[z/this] be the class invariant of z expressed on the
global level. Let the assertion terminated(z) express that the thread of z is
already terminated. Formally, we define terminated(z) = q[z/thread][z/this],
where q is the postcondition of the run-method of z. For assertions p in z′

let furthermore blocked(z, z′, p) express that the thread of z is disabled in the
object z′ at control point p. Formally, we define blocked(z, z′, p) by

• ∃~v. p[z/thread][z′/this] ∧ e0.lock 6= free ∧ thread(e0.lock) 6= thread if p is the
precondition of a call invoking a synchronized method of e0,

• ∃~v. p[z/thread][z′/this] ∧ thread(e0.lock) 6= thread if p is the precondition of
a call invoking a monitor method of e0,

• ∃~v. p[z/thread][z′/this]∧ (z′.lock 6= free∨ z /∈ z′.notified) if p is the precondi-
tion of the return-statement in the wait-method, and

• false otherwise,

where ~v is the vector of local variables in the given assertion without thread,
and z and z′ fresh. Let finally blocked(z, z′) express that the thread of ob-
ject z is blocked in the object z′. Formally, it is defined by the assertion
∨

p∈Ass(z′) blocked(z, z′, p), where Ass(z′) is the set of all assertions at control
points in z′. Now we can formalize the verification condition for deadlock
freedom:

Definition 6.1 A proof outline satisfies the test for deadlock freedom, if

|=G (GI ∧ (9)

(∀z. z 6= null → (I(z) ∧

(z.started → (terminated(z) ∨ (∃z′. z′ 6= null ∧ blocked(z, z′)))))) ∧

(∃z. z 6= null ∧ z.started ∧ (∃z′. z′ 6= null ∧ blocked(z, z′))))

→ false .

The above condition states, that the assumptions that all started processes
are terminated or disabled, and that at least one thread is not yet terminated,
i.e., that the program is in a deadlocked configuration, lead to a contradic-
tion. Soundness of the above condition, i.e., that the condition indeed assures
absence of deadlock, is easy to show. Completeness results directly from the
completeness of the proof method.

Example 6.2 The proof outline below defines two classes, Producer and Con-

sumer, where Producer is the main class. The initial thread of the initial
Producer-instance creates a Consumer-instance and calls its synchronized pro-

duce method. This method starts the consumer thread and enters a non-termi-
nating loop, producing some results, notifying the consumer, and suspending
itself by calling wait. After the producer suspended itself, the consumer thread
calls the synchronized consume method, which consumes the result of the pro-

40

ducer, notifies, and calls wait, again in a non-terminating loop.

The assertion owns is as in Example 4.2, proj (v, i) denotes the ith compo-
nent of the tuple v, and not owns(thread, lock) is thread 6= null∧proj(lock, 1) 6=
thread. Again, the built-in augmentation is not listed in the code. We addition-
ally list instance and local variable declarations type name;, where 〈type name;〉
declares auxiliary variables. We sometimes skip return statements without giv-
ing back a value, and write explicitly ∀(z : t).p for quantification over t-typed
values.

For readability, we only list a partial annotation and augmentation, which
already implies deadlock freedom. Invariance of the properties listed below has
been shown in PVS using an extended augmentation and annotation [13]. Also
deadlock freedom has been proven in PVS.

GI
def
=

(∀(p : Producer).(p 6= null ∧ ¬p.outside ∧ p.consumer 6= null) →
p.consumer .lock = (null , 0))∧

(∀(c : Consumer).(c 6= null ∧ c.started) →
(c.producer 6= null ∧ c.producer .started))∧

(∀(c1 : Consumer).(c1 6= null → (∀(c2 : Consumer).c2 6= null → c1 = c2))

IProducer
def
= true

IConsumer
def
= length(wait) ≤ 1∧

(lock = (null , 0) ∨ (owns(this , lock) ∧ started) ∨ owns(producer , lock))

c l a s s Producer {
〈 Consumer consumer ; 〉
〈 Bool o u t s i d e ; 〉

nsync Void wa i t () { {false} }

nsync Void run () {
Consumer c ;

c := newConsumer ; 〈consumer := c〉new

{c = consumer ∧ ¬outside ∧ consumer 6= null ∧ consumer 6= this∧
thread = this}

c . produce () 〈outside := (if c = this then outside else true fi)〉!call

{false}
}

}

c l a s s Consumer {
I n t b u f f e r ;
〈 Producer p roduce r ; 〉

nsync Void wa i t () {
{started ∧ not owns(thread , lock) ∧ (thread = this ∨ thread = producer)∧

41

(thread ∈ wait ∨ thread ∈ notified)}
}

sync Void produce () {
I n t i ;

〈producer := proj (caller , 1)〉?call

i :=0;
s t a r t () ;
wh i l e (t r u e) do

// produce i h e r e
b u f f e r := i ;
{owns(thread , lock)}
n o t i f y () ;
{owns(thread , lock)}
wa i t ()

od
}

nsync Void run () {
{not owns(thread , lock) ∧ thread = this}
consume ()
{false}

}

sync Void consume () {
I n t i ;

wh i l e (t r u e) do
i := b u f f e r ;
// consume i he r e
{owns(thread , lock)}
n o t i f y () ;
{owns(thread , lock)}
wa i t ()

od
}

}

Both run-methods have false as postcondition, stating that the corresponding
threads don’t terminate. The preconditions of all monitor method invocations
express that the executing thread owns the lock, and thus execution cannot be
enabled at these control points. The wait-method of Producer-instances is not
invoked; we define false as the precondition of its return-statement, implying
that disabledness is excluded also at this control point.

The condition for deadlock freedom assumes that there is a thread which is
started but not yet terminated, and whose execution is disabled. This thread is
either the thread of a Producer-instance, or that of a Consumer-instance.

42

We discuss only the case that the disabled thread belongs to a Producer-instance
z different from null; the other case is similar. Note that the control of the
thread of z cannot stay in the run-method of a Consumer-instance, since the
corresponding local assertion implies thread = this, which would contradict
the type assumptions. Thus the thread can have its control point prior to the
method call in the run-method of a Producer-instance, or in the wait-method of
a Consumer-instance. In the first case, the corresponding local assertion and the
global invariant imply that the lock of the callee is free, i.e., that the execution
is enabled, which is a contradiction. In the second case, if the thread of z
executes in the wait-method of a Consumer-instance z′, the local assertion in
wait together with the type assumptions implies z′.started∧not owns(z, z′.lock)∧
z = z′.producer, and that z is either in the wait- or in the notified-set of z′.

By the assumptions of the deadlock freedom condition, also the started thread of
z′ is disabled or terminated; its control point cannot be in a Producer-instance,
since that would contradict to the type assumptions. Thus the control of z′

stays in the run- or in the wait-method of a Consumer-instance; the annotation
implies that the instance is z′ itself.

If the control stays in the run-method, then the corresponding local assertion
and the class invariant imply that the lock is free, since neither the producer,
nor the consumer owns it, which leads to a contradiction, since in this case
the execution of the thread of z′ would be enabled. Finally, if the control of the
thread of z′ stays in the wait-method of z′, then the annotation assures that
the thread does not own the lock of z′; again, using the class invariant we get
that the lock is free.

Now, both threads of z and z′ have their control points in the wait-method of
z′, and the lock of z′ is free. Furthermore, both threads are disabled, and are
in the wait- or in the notified set. If one of them is in the notified set, then its
execution is enabled, which is a contradiction. If both threads are in the wait
set, then from z 6= z′ we imply that the wait-set of z′ has at least two elements,
which contradicts the class invariant of z′.

Thus the assumptions lead to a contradiction, which was to be shown.

7 Conclusion

Extending earlier work, this paper presents a sound and relatively complete
assertional proof method for a multithreaded sublanguage of Java including
its monitor discipline. We also provide conditions for deadlock freedom.

In [21] we develop a proof system for a concurrent Java subset without reen-

43

trant lock synchronization and without the wait and notify constructs. The
proof system was extended in [22] to deal with reentrant monitor synchroniza-
tion. The wait and notify constructs are incorporated in [23]. The extension of
the proof system to prove deadlock freedom can be found in [24]. Currently we
are working on the incorporation of Java’s exception handling mechanism [25].
We formalize the semantics of our programming language in a compositional
manner in [19]. The underlying theory, the proof rules, their soundness and
completeness, and tool support for the automatic generation of verification
conditions are presented in detail in [13].

Related work As far as proof systems and verification support for object-
oriented programs is concerned, research mostly concentrated on sequential
languages. Early examples of Hoare-style proof systems for sequential object-
oriented languages are [26] and [27,28]. America and de Boer [29] formulate
for the first time a cooperation test for an object-oriented language with syn-
chronous message passing.

With Java’s rise to prominence, research more concretely turned to (sublan-
guages of) Java, as opposed to object-oriented language features in the ab-
stract. In this direction, JML [30,31] has emerged as common ground for as-
serting Java programs. Another trend is to offer mechanized proof support.
For instance, Poetzsch-Heffter and Müller [7,32–34] develop a Hoare-style pro-
gramming logic presented in sequent formulation for a sequential kernel of
Java, featuring interfaces, subtyping, and inheritance. Translating the oper-
ational and the axiomatic semantics into the HOL theorem prover allows a
computer-assisted soundness proof. The work in the Loop-project (cf. e.g.
[35,36]) also concentrates on a sequential subpart of Java, translating the
proof-theory into PVS and Isabelle/HOL.

The work [37,38] use a modification of the object constraint language OCL as
assertional language to annotate UML class diagrams and to generate proof
conditions for Java programs. In [39] a large subset of JavaCard, including ex-
ception handling, is formalized in Isabelle/HOL, and its soundness and com-
pleteness is shown within the theorem prover. The work in [15] presents a
Hoare-style proof system for a sequential object-oriented calculus [40]. Their
language features heap-allocated objects (but no classes), side-effects and
aliasing, and its type system supports subtyping. Furthermore, their language
allows nested statically let-bound variables, which requires a more complex
semantical treatment for variables based on closures, and ultimately renders
their proof-system incomplete. Their assertion language is presented as an
extension of the object calculus’ language of type and analogously, the proof
system extends the type derivation system. The close connection of types and
specifications in the presentation is exploited in [41] for the generation of ver-
ification conditions.

44

Work on proof systems for parallel object-oriented languages or in particu-
lar the multithreading aspects of Java is more scarce. [42] presents a sound
and complete proof system in weakest precondition formulation for a paral-
lel object-based language, i.e., without inheritance and subtyping, and also
without reentrant method calls. Later work [43–45] includes more features,
especially catering for Hoare logic for inheritance and subtyping.

A survey about monitors in general, including proof-rules for various monitor
semantics, can be found in [46]. Besides deductive verification, there are several
other research areas for Java program analysis. For example, the paper [47]
presents a model checking algorithm and its implementation in Isabelle/HOL
to check type correctness of Java bytecode. See [48,49] for an overview.

Future work As to future work, we plan to extend Javasynch by further
constructs, like inheritance and subtyping. Dealing with subtyping on the
logical level requires a notion of behavioral subtyping [50].

Acknowledgments

We thank Cees Pierik for fruitful discussions and suggestions, and furthermore
Tim D’Avis for careful reading and commenting on an earlier version of this
document.

References

[1] J. Gosling, B. Joy, G. L. Steele, The Java Language Specification, Addison-
Wesley, 1996.

[2] J. Alves-Foss (Ed.), Formal Syntax and Semantics of Java, Vol. 1523 of Lecture
Notes in Computer Science State-of-the-Art-Survey, Springer-Verlag, 1999.

[3] R. Stärk, J. Schmid, E. Börger, Java and the Java Virtual Machine: Definition,
Verification, Validation, Springer-Verlag, 2001.

[4] P. Cenciarelli, A. Knapp, B. Reus, M. Wirsing, An event-based structural
operational semantics of multi-threaded Java, in: Alves-Foss [2], pp. 157–200.

[5] M. Huisman, Java program verification in higher-order logic with PVS and
Isabelle, Ph.D. thesis, University of Nijmegen (2001).

[6] D. von Oheimb, T. Nipkow, Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited, in: L.-H. Eriksson, P. A. Lindsay
(Eds.), Proceedings of FME’02, Vol. 2391 of Lecture Notes in Computer Science,
Springer-Verlag, 2002, pp. 89–105.

45

[7] A. Poetzsch-Heffter, P. Müller, A programming logic for sequential Java, in:
S. Swierstra (Ed.), Proceedings of ESOP’99, Vol. 1576 of Lecture Notes in
Computer Science, Springer, 1999, pp. 162–176.

[8] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs, Acta
Informatica 6 (4) (1976) 319–340.

[9] R. W. Floyd, Assigning meanings to programs, in: J. T. Schwartz (Ed.),
Proc. Symp. in Applied Mathematics, Vol. 19, 1967, pp. 19–32.

[10] C. A. R. Hoare, An axiomatic basis for computer programming,
Communications of the ACM 12 (1969) 576–580.

[11] G. Levin, D. Gries, A proof technique for communicating sequential processes,
Acta Informatica 15 (3) (1981) 281–302.

[12] K. R. Apt, N. Francez, W.-P. de Roever, A proof system for communicating
sequential processes, ACM Transactions on Programming Languages and
Systems 2 (1980) 359–385.

[13] E. Ábrahám, An assertional proof system for multithreaded Java — theory
and tool support, Ph.D. thesis, University of Leiden, to appear. A preliminary
version can be found at http://www.informatik.uni-freiburg.de/~eab/

phd.ps (2004).

[14] S. Owre, J. M. Rushby, N. Shankar, PVS: A prototype verification system, in:
D. Kapur (Ed.), Automated Deduction (CADE-11), Vol. 607 of Lecture Notes
in Computer Science, Springer-Verlag, 1992, pp. 748–752.

[15] M. Abadi, K. R. M. Leino, A logic of object-oriented programs, in: M. Bidoit,
M. Dauchet (Eds.), Proceedings of TAPSOFT ’97, Vol. 1214 of Lecture
Notes in Computer Science, Springer-Verlag, Lille, France, 1997, pp. 682–
696, an extended version of this paper appeared as SRC Research Report 161
(September 1998).

[16] B. Jacobs, J. Kiniry, M. Warnier, Java program verification challenges, in:
Bonsangue et al. [51], pp. 202–220.

[17] E. Ábrahám, F. S. de Boer, W.-P. de Roever, M. Steffen, A Hoare logic
for monitors in Java, Techical report TR-ST-03-1, Lehrstuhl für Software-
Technologie, Institut für Informatik und Praktische Mathematik, Christian-
Albrechts-Universität zu Kiel (Apr. 2003).
URL http://www.informatik.uni-kiel.de/inf/deRoever/techreports/

03/tr-st-03-1.pdf

[18] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming, Addison-Wesley, 2000.

[19] E. Ábrahám, F. S. de Boer, W.-P. de Roever, M. Steffen, A compositional
operational semantics for JavaMT , in: N. Derschowitz (Ed.), International
Symposium on Verification (Theory and Practice), Vol. 2772 of Lecture Notes
in Computer Science, Springer-Verlag, 2003, pp. 290–303, a preliminary version
appeared as Technical Report TR-ST-02-2, May 2002.

46

[20] J. V. Tucker, J. I. Zucker, Program Correctness over Abstract Data Types, with
Error-State Semantics, Vol. 6 of CWI Monograph Series, North-Holland, 1988.

[21] E. Ábrahám-Mumm, F. S. de Boer, Proof-outlines for threads in Java, in:
C. Palamidessi (Ed.), Proceedings of CONCUR’00, Vol. 1877 of Lecture Notes
in Computer Science, Springer-Verlag, 2000, pp. 229–242.

[22] E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, M. Steffen, Verification
for Java’s reentrant multithreading concept, in: M. Nielsen, U. H. Engberg
(Eds.), Proceedings of FoSSaCS’02, Vol. 2303 of Lecture Notes in Computer
Science, Springer-Verlag, 2002, pp. 4–20, a longer version, including the proofs
for soundness and completeness, appeared as Technical Report TR-ST-02-1,
March 2002.

[23] E. Ábrahám, F. S. de Boer, W.-P. de Roever, M. Steffen, Inductive
proof-outlines for monitors in Java, in: Najm et al. [52], pp. 155–
169, a longer version appeared as technical report TR-ST-03-1, April
2003 (http://www.informatik.uni-kiel.de/inf/deRoever/techreports/
03/tr-st-03-1.pdf).

[24] E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, M. Steffen, A tool-
supported proof system for monitors in Java, in: Bonsangue et al. [51], pp.
1–32.

[25] E. Ábrahám, F. S. de Boer, W.-P. de Roever, M. Steffen, Inductive proof
outlines for multithreaded Java with exceptions, Technical Report 0313, Institut
für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel (Dec. 2003).
URL http://www.informatik.uni-kiel.de/reports/2003/0313.html

[26] C. C. de Figueiredo, A proof system for a sequential object-oriented language,
Technical Report UMCS-95-1-1, University of Manchester (1995).

[27] G. T. Leavens, W. E. Wheil, Reasoning about object-oriented programs that use
subtypes, in: Proceedings of OOPSLA’90, ACM, 1990, pp. 212–223, extended
abstract.

[28] G. T. Leavens, W. E. Wheil, Specification and verification of object-oriented
programs using supertype abstraction, Acta Informatica 32 (8) (1995) 705–778,
an expanded version appeared as Iowa State University Report, 92-28d.

[29] P. America, F. S. de Boer, A sound and complete proof system for SPOOL,
Technical Report 505, Philips Research Laboratories (1990).

[30] G. T. Leavens, A. L. Baker, C. Ruby, Preliminary design of JML: A behavioral
interface specification language for Java, Tech. Rep. TR #98-06f, Iowa State
University, revised version from July 1999 (2000).

[31] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, D. R. Cok, How the design of
JML accommodates both runtime assertion checking and formal verification,
in: Bonsangue et al. [51], pp. 262–284.

47

[32] A. Poetzsch-Heffter, Specification and Verification of Object-Oriented
Programs, Technische Universität München, 1997, Habilitationsschrift.

[33] A. Poetzsch-Heffter, A logic for the verification of object-oriented programs,
in: R. Berghammer, F. Simon (Eds.), Proceedings of Programming Languages
and Fundamentals of Programming, Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität zu Kiel, 1997, pp. 31–42, Bericht
Nr. 9717.

[34] A. Poetzsch-Heffter, P. Müller, Logical foundations for typed object-oriented
languages, in: D. Gries, W.-P. de Roever (Eds.), Proceedings of PROCOMET
’98, International Federation for Information Processing (IFIP), Chapman &
Hall, 1998, pp. 404–423.

[35] The LOOP project: Formal methods for object-oriented systems, http://www.
cs.kun.nl/~bart/LOOP/ (2001).

[36] B. Jacobs, J. van den Berg, M. Huisman, M. van Barkum, U. Hensel, H. Tews,
Reasoning about classes in Java (preliminary report), in: Proceedings of
OOPSLA’98, ACM, 1998, pp. 329–340, in SIGPLAN Notices 30(10).

[37] B. Reus, M. Wirsing, A Hoare-logic for object-oriented programs, Technical
report, LMU München (2000).

[38] B. Reus, R. Hennicker, M. Wirsing, A Hoare calculus for verifying Java
realizations of OCL-constrained design models, in: H. Hussmann (Ed.),
Fundamental Approaches to Software Engineering, Vol. 2029 of Lecture Notes
in Computer Science, Springer-Verlag, 2001, pp. 300–316.

[39] D. von Oheimb, Hoare logic for Java in Isabelle/HOL, Concurrency and
Computation: Practice and Experience 13 (13) (2001) 1173–1214.

[40] M. Abadi, L. Cardelli, A Theory of Objects, Monographs in Computer Science,
Springer, 1996.

[41] F. Tang, M. Hofmann, Generation of verification conditions for Abadi and
Leino’s logic of objects (extended abstract), in: Proceedings of FOOL’02, 2002,
a longer version is available as LFCS technical report.

[42] F. S. de Boer, A WP-calculus for OO, in: W. Thomas (Ed.), Proceedings of
FoSSaCS’99, Vol. 1578 of Lecture Notes in Computer Science, Springer-Verlag,
1999, pp. 135–156.

[43] C. Pierik, F. S. de Boer, A syntax-directed Hoare logic for object-oriented
programming concepts, in: Najm et al. [52], pp. 64–78, an extended version
appeared as University of Utrecht Technical Report UU-CS-2003-010.

[44] F. S. de Boer, C. Pierik, Towards an environment for the verification
of annotated object-oriented programs, Technical report UU-CS-2003-002,
Institute of Information and Computing Sciences, University of Utrecht (Jan.
2003).

48

[45] F. S. de Boer, C. Pierik, Computer-aided specification and verification
of annotated object-oriented programs, in: B. Jacobs, A. Rensink (Eds.),
Proceedings of FMOODS’02, Vol. 209, Kluwer, 2002, pp. 163–177.

[46] P. A. Buhr, M. Fortier, M. H. Coffin, Monitor classification, ACM Computing
Surveys 27 (1) (1995) 63–107.

[47] D. Basin, S. Friedrich, M. Gawkowski, Verified bytecode model checkers, in:
V. A. Carreño, C. A. Muñoz, S. Tahar (Eds.), Proceedings of TPHOLs’02, Vol.
2410 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 47–66.

[48] X. Leroy, Java bytecode verification: An overview, in: G. Berry, H. Comon,
A. Finkel (Eds.), Proceedings of CAV’01, Vol. 2102 of Lecture Notes in
Computer Science, Springer-Verlag, 2001, pp. 265–285.

[49] P. H. Hartel, L. Moreau, Formalizing the safety of Java, the Java virtual
machine, and Java Card, ACM Computing Surveys 33 (4) (2001) 517–558.

[50] P. America, A behavioural approach to subtyping in object-oriented
programming languages, 443, Phillips Research Laboratories (January/April
1989).

[51] M. Bonsangue, F. S. de Boer, W.-P. de Roever, S. Graf (Eds.), Proceedings
of the First International Symposium on Formal Methods for Components and
Objects (FMCO’02), Leiden, Vol. 2852 of Lecture Notes in Computer Science,
Springer-Verlag, 2003.

[52] E. Najm, U. Nestmann, P. Stevens (Eds.), Proceedings of the 6th
IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’03), Paris, Vol. 2884 of Lecture Notes in
Computer Science, Springer-Verlag, 2003.

49

