
Behavioral interface description of an

object-oriented language with futures and promises ⋆

Erika Ábrahám a Immo Grabe b Andreas Grüner b Martin Steffen c,∗

aRWTH Aachen, Germany

bChristian-Albrechts-University Kiel, Germany

cUniversity of Oslo, Norway

Abstract

This paper formalizes the observable interface behavior of a concurrent, object-oriented

language with futures and promises. The calculus captures the core of Creol, a language,

featuring in particular asynchronous method calls and, since recently, first-class futures.

The focus of the paper are open systems and we formally characterize their behavior

in terms of interactions at the interface between the program and its environment. The

behavior is given by transitions between typing judgments, where the absent environment is

represented abstractly by an assumption context. A particular challenge is the safe treatment

of promises: The erroneous situation that a promise is fulfilled twice, i.e., bound to code

twice, is prevented by a resource aware type system, enforcing linear use of the write-

permission to a promise. We show subject reduction and the soundness of the abstract

interface description.

Keywords: concurrent object-oriented languages, Creol, formal semantics, concurrency,

futures and promises, open systems, observable behavior

1 Introduction

How to marry concurrency and object-orientation has been a long-standing issue;

see e.g., [11] for an early discussion of different design choices. The thread-based

model of concurrency, prominently represented by languages like Java and C♯, has

⋆ Part of this work has been supported by the NWO/DFG project Mobi-J (RO 1122/9-4),

the DAAD-NFR exchange project Avabi, and by the EU-project IST-33826 Credo: Model-

ing and analysis of evolutionary structures for distributed services. For more information,

see http://credo.cwi.nl.
∗ Corresponding author.

Email address: msteffen@ifi.uio.no (Martin Steffen).

Preprint submitted to Elsevier 30 September 2008

been recently criticized, especially in the context of component-based software de-

velopment. As the word indicates, components are (software) artifacts intended for

composition, i.e., open systems, interacting with a surrounding environment. To

compare different concurrency models for open systems on a solid mathematical

basis, a semantic description of the interface behavior is needed, and this is what

we provide in this work. We present an open semantics for the core of the Creol

language [25,45], an object-oriented, concurrent language, featuring in particular

asynchronous method calls and, since recently [27], first-class futures. An open

semantics means, it describes the interface behavior of a program or a part of a

program, interacting with its environment.

Futures and promises

A future, very generally, represents a result yet to be computed. It acts as a proxy

for, or reference to, the delayed result from some piece of code (e.g., a method or

a function body in an object-oriented, resp. a functional setting). As the consumer

of the result can proceed its own execution until it actually needs the result, fu-

tures provide a natural, lightweight, and (in a functional setting) transparent mech-

anism to introduce parallelism into a language. Since their introduction in Multil-

isp [38,13], futures have been used in various languages like Alice ML [47,9,61],

E [28], the ASP-calculus [18], Creol, and others. A promise is a generalization 1

insofar as the reference to the result on the one hand, and the code to calculate

the result on the other, are not created at the same time; instead, a promise can be

created and only later, after possibly passing it around, be bound to the code (the

promise is fulfilled).

The notion of futures goes back to functional programming languages. In that set-

ting, futures are annotations to side-effect-free expressions 2 , that can be computed

in parallel to the rest of the program. If some program code needs the result of a

future, its execution blocks until the future’s evaluation is completed and the re-

sult value is automatically fetched back (implicit futures). An important property

of future-based functional programs is, that future annotations do not change the

functionality: the observable behavior of an annotated program equals the observ-

able behavior of its non-annotated counterpart. This property no longer is assured

in the object-oriented setting.

1 The terminology concerning futures, promises, and related constructs is not too consis-

tent in the literature. Sometimes, the two words are used as synonyms. Interested in the

observable differences between futures and promises, we distinguish the concepts and thus

follow the terminology as used e.g., in λfut, Alice ML, and the definition given in Wikipedia.
2 Though in e.g. Multilisp also expressions with side-effects can be computed in parallel,

but still under the restriction that the observable behavior equals that of the sequential

counterpart.

2

Interface behavior

An open program, in this setting, interacts with its environment via message ex-

change. Besides message passing, of course, different communication and synchro-

nization mechanisms exists (shared variable concurrency, multi-cast, black-board

communication, publish-and-subscribe and many more). We concentrate here, how-

ever, on basic message passing using asynchronous method calls. In that setting, the

interface behavior of an open program C can be characterized by the set of all those

message sequences (traces) t, for which there exists an environment E such that C

and E exchange the messages recorded in t. Thereby we abstract away from any

concrete environment, but consider only environments that are compliant to the

language restrictions (syntax, type system, etc.). Consequently, interactions are not

arbitrary traces C
t

=⇒; instead we consider behaviors C ‖ E
t

=⇒
t̄

Ć ‖ É where E is

a realizable environment and trace t̄ is complementary to t, i.e., each input is re-

placed by a matching output and vice versa. The notation C ‖ E indicates that the

component C runs in parallel with its environment or observer E. To account for

the abstract environment (“there exists an E s.t. . . . ”), the open semantics is given

in an assumption-commitment way:

∆ ⊢C : Θ
t

=⇒ ∆́ ⊢ Ć : Θ́ ,

where ∆ (as an abstract version of E) contains the assumptions about the envi-

ronment, and dually Θ the commitments of the component. Abstracting away also

from C gives a language characterization by the set of all possible traces between

any component and any environment.

Such a behavioral interface description is relevant and useful for the following rea-

sons. 1) The set of possible traces given this way is more restricted (and realistic)

than the one obtained when ignoring the environments. When reasoning about the

trace-based behavior of a component, e.g., in compositional verification, with a

more precise characterization one can carry out stronger arguments. 2) When using

the trace description for black-box testing, one can describe test cases in terms of

the interface traces and then synthesize appropriate test drivers from it. Clearly, it

makes no sense to specify impossible interface behavior, as in this case one cannot

generate a corresponding tester. 3) A representation-independent behavior of open

programs paves the way for a compositional semantics, a two-level semantics for

the nested composition of program components. It allows furthermore optimiza-

tion of components: only if two components show the same external, observable

behavior, one can replace one for the other without changing the interaction with

any environment. 4) The formulation gives insight into the semantic nature of the

language, here, the externally observable consequences of futures and promises.

This helps to compare alternatives, e.g., the Creol concurrency model with Java-

like threading.

3

Results

The paper formalizes the abstract interface behavior for concurrent object-oriented

languages with futures and promises. The contributions are the following.

Concurrent object calculus with futures and promises We formalize a class-

based concurrent language featuring futures and promises. The formalization is

given as a typed, imperative object calculus in the style of [1] resp. one of its con-

current extensions. The operational semantics for components distinguishes unob-

servable component-internal steps from external steps which represent observable

component-environment interactions. We present the semantics in a way that fa-

cilitates comparison with Java’s multi-threading concurrency model, i.e., the op-

erational semantics is formulated so that the multi-threaded concurrency as (for

instance) in Java and the one here based on futures are represented similarly.

Linear type system for promises The calculus extends the semantic basis of

Creol as given for example in [27] with promises. Promises can refer to a com-

putation with code bound to it later, where the binding is done at most once. To

guarantee such a write-once policy when passing around promises, we refine the

type system introducing two type constructors

[T]+− and [T]+ .

The first one represents a reference to a promise that can still be written (and read)

with result type T , the second one where only a read-permission is available. The

write permission constitutes a resource which is consumed when the promise is

fulfilled. The resource-aware type system is therefore formulated in a linear man-

ner wrt. the write permissions. Linear type sytems [67] or linear logics [35] are,

roughly speaking, instances of so-called sub-structural logics resp. type systems.

In constrast to ordinary such derivation systems, where a hypothesis can be used

as many times as needed for carrying out a proof, derivation systems built upon

linear use of assumptions work differently: using an assumption in a proof step

“consumes” it. That feature allows in a natural way to reason about “resources”: In

our setting, the write-permission is such a resource, and using the corresponding

type to derive well-typedness of one part of the program consumes that right such

that it is not longer available for type-checking the rest of the program, assuring

the intended write-once discipline. The type system resembles in intention the one

in [55] for a functional calculus with references. Our work is more general, in that

it tackles the problem in an object-oriented setting (which, however, conceptually

does not pose much complications), and, more importantly, in that we do not con-

sider closed systems, but open components. Also this aspect of openness is not dealt

with in [27]. Additionally, the type system presented here is simpler than in [55],

as it avoids the representation of the promise-concept by so-called handled futures.

4

Soundness of the abstractions We show soundness of the abstractions, which

includes

• subject reduction, i.e., preservation of well-typedness under reduction. Subject

reduction is not just proven for a closed system (as usual), but for an open system

interacting with its environment. Subject reduction implies furthermore:

• absence of run-time errors like “message-not-understood”, also for open sys-

tems.

• soundness of the interface behavior characterization, i.e., all possible interaction

behavior is included in the abstract interface behavior description.

• for promises: absence of write-errors, i.e. the attempt to fulfill a promise twice.

The paper is organized as follows. Section 2 defines the syntax, the type system,

and the operational semantics, split into an internal one, and one for the interface

behaviour of open systems. Section 3 describes the interface behavior. Section 4

concludes with related and future work. For more details see [2]. There is a notation

index at the end of the paper.

2 Calculus

This section presents the calculus, based on a version of the Creol -language with

first-class futures [27] and extended with promises. It is a concurrent variant of an

imperative, object-calculus in the style of the calculi from [1]. Our calculus covers

first-class futures, which can be seen as a generalization of asynchronous method

calls and promises.

We start with the abstract syntax in Section 2.1. After discussing the type system in

Section 2.2, we present the operational semantics in Section 2.3.

2.1 Syntax

The abstract syntax is given in Table 1. It distinguishes between user syntax and

run-time syntax (the latter underlined). The user syntax contains the phrases in

which programs are written; the run-time syntax contains syntactic constituents

additionally needed to express the behavior of the executing program in the oper-

ational semantics. The latter are not found in a program written by the user, but

generated at run-time by the rules of the operational semantics.

The basic syntactic category of names n, which count among the values v, repre-

sents references to classes, to objects, and to futures/promises. To facilitate reading,

we allow ourselves to write o and its syntactic variants for names referring to ob-

jects, c for classes, and n when being unspecific. Technically, the disambiguation

5

C ::= 0 |C ‖C | ν(n:T).C | n[(O)] | n[n,F,L] | n〈t〉 | n〈•〉 component

O ::= F,M object

M ::= l = m, . . . , l = m method suite

F ::= l = f , . . . , l = f fields

m ::= ς(n:T).λ (x:T, . . . ,x:T).t method

f ::= ς(n:T).λ ().v | ς(n:T).λ ().⊥n′ field

t ::= v | stop | letx:T = e in t thread

e ::= t | if v = vtheneelsee | if undef (v.l())then eelsee expr.

| promise T | bindn.l(~v) : T →֒ n | v.l() | v.l := ς(s:n).λ ().v

| newn | claim@(n,n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values

L ::= ⊥ | ⊤ lock status

Table 1

Abstract syntax

between the different roles of the names is done by the type system and the abstract

syntax of Table 1 uses the non-specific n for names. The unit value is represented

by () and x stands for variables, i.e., local variables and formal parameters, but not

instance variables.

A component C is a collection of classes, objects, and (named) threads, with 0 rep-

resenting the empty component. The sub-entities of a component are composed us-

ing the parallel-construct ‖. The entities executing in parallel are the named threads

n〈t〉, where t is the code being executed and n the name of the thread. In the given

setting, threads are always promises (with the exception of initial threads, see Sec-

tion 2.3), with their name being the reference under which the result value of t,

if any 3 , will be available. A class c[(O)] carries a name c and defines its methods

and fields in O. An object o[c,F,L] with identity o keeps a reference to the class c

it instantiates, stores the current value F of its fields, and maintains a binary lock

L indicating whether any code is currently active inside the object (in which case

the lock is taken) or not (in which case the lock is free). The symbols ⊤, resp., ⊥,

indicate that the lock is taken, resp., free. From the three kinds of entities at com-

ponent level —threads n〈t〉, classes c[(O)], and objects o[c,F,L]— only the threads

are active, executing entities, being the target of the reduction rules. The objects, in

contrast, store the state in their fields or instance variables, whereas the classes are

constant entities specifying the methods.

3 There will be no result value in case of non-terminating methods.

6

The named threads n〈t〉 are incarnations of method bodies “in execution”. Incarna-

tions insofar, as the formal parameters have been replaced by actual ones, especially

the method’s self-parameter has been replaced by the identity of the target object

of the method call. The term t is basically a sequence of expressions, where the

let-construct is used for sequencing and for local declarations. 4 During execution,

n〈t〉 contains in t the currently running code of a method body. When evaluated, the

thread is of the form n〈v〉 and the value can be accessed via n, the future reference,

or future for short.

Each thread belongs to one specific object “inside” which it executes, i.e., whose

instance variables it has access to. Object locks are used to rule out unprotected

concurrent access to the object states: Though each object may have more than one

method body incarnation partially evaluated, at each time point at most one of those

bodies (the lock owner) can be active inside the object. In the terminology of Java,

all methods are implicitly considered “synchronized”. The crucial difference be-

tween Java’s multi-threading concurrency model and Creol’s active objects model

used here is the way method calls are issued at the caller site. In Java and similar

languages, method calls are synchronous in the sense that the calling activity blocks

to wait for the return of the result and thus the control is transferred to the callee.

Here, method calls are issued asynchronously, i.e., the calling thread continues ex-

ecuting and the code of the method being called is computed concurrently in a new

thread located in the callee object. In that way, a method call never transfers con-

trol from one object, the caller, to another one, the callee. In other words, no thread

ever crosses the boundaries of an object, which means, the boundaries of an object

are at the same time boundaries of the threads and thus, the objects are at the same

time units of concurrency. Thus, the objects are harnessing the activities and can be

considered as bearers of the activities. This is typical for object-oriented languages

based on active objects.

The final construct at the component level is the ν-operator for hiding and dynamic

scoping, as known from the π-calculus. In a component C = ν(n:T).C′, the scope

of the name n (of type T) is restricted to C′ and unknown outside C. ν-binders

are introduced when dynamically creating new named entities, i.e., when instanti-

ating new objects or new promises. The scope is dynamic, i.e., when the name is

communicated by message passing, it is enlarged.

Besides components, the grammar specifies the lower level syntactic constructs,

in particular, methods, expressions, and (unnamed) threads, which are basically

sequences of expressions. A method ς(s:T).λ (~x:~T).t provides the method body t

abstracted over the ς -bound “self” parameter s and the formal parameters ~x. For

uniformity, fields are represented as methods without parameters (with the excep-

tion of the standard self-parameter). The “body” of a field is either a value or yet

4 t1; t2 (sequential composition) abbreviates letx:T = t1 int2, where x does not occur free

in t2.

7

undefined. Note that the methods are stored in the classes but the fields are kept in

the objects, of course. In freshly created objects, the lock is free, and all fields carry

the undefined reference ⊥c, where class name c is the (return) type of the field.

We use f for instance variables or fields and l = ς(s:T).λ ().v, resp. l = ς(s:T).λ ().⊥c

for field variable definition. Field access is written as v.l() and field update as

v′.l := ς(s:T).λ ().v. By convention, we abbreviate the latter constructs by l = v,

l = ⊥c, v.l, and v′.l := v. Note that the construct v.l() is used for field access only,

but not for method invocation. We will also use v⊥ to denote either a value v or a

symbol ⊥c for being undefined. Note that the syntax does not allow to set a field

back to undefined. Direct access (read or write) to fields across object boundaries

is forbidden by convention, and we do not allow method update. Instantiation of a

new object from class c is denoted by newc.

Expressions especially include syntax to deal with promises and futures. The ex-

pression promiseT creates a new promise, i.e., a reference or name for a result yet

to come. At the point of creation, only the name exists, but no code has been de-

termined and attached to the reference to calculate the result. Binding code to the

promise is done by bindo.l(~v) : T →֒ n, stipulating that the eventual result is calcu-

lated using the method l of object o with actual parameters~v. Executing the binding

operation is also known as fulfilling the promise. Some languages do not allow to

independently create a name for the eventual result, i.e., creation and binding are

done inseparately by one single command. In that situation, one does not speak of

promises, but (just) of futures, even if in the literature, sometimes no distinction is

drawn between futures and promises. In a certain way, futures and promises can be

seen as two different roles of a reference n: the promise-role means, a client can

write to the name using the bind-operation, and the future-role represents the pos-

sibility to read back an eventual result using the reference. In this way, we will use

both the term future and promise when referring to the same reference, depending

on the role it is playing when used.

The expression bindo.l(~v) : T →֒ n binds a method body to the promise n. Thus,

there is a close connection to asynchronous method calls, central to Creol’s con-

currency model. Indeed, in comparison with [27], which introduces the concept of

futures (but not promises) into Creol, asynchronous calls are syntactic sugar for

creating a new promise and immediately binding o.l(~v) to it. This behaves as an

asynchronous method call, as the one creating the promise and executing the bind

can continue without being blocked waiting for the result.

The further expressions claim, get, suspend, grab, and release deal with commu-

nication and synchronization. As mentioned, objects come equipped with binary

locks, responsible for assuring mutual exclusion. The two basic, complementary

operations on a lock are grab and release. The first allows an activity to acquire

access in case the lock is free (⊥), thereby setting it to ⊤, and release(o) conversely

relinquishes the lock of the object o, giving other threads the chance to be exe-

8

cuted in its stead, when succeeding to grab the lock via grab(o). The user is not

allowed to directly manipulate the object locks. Thus, both expressions belong to

the run-time syntax, underlined in Table 1, and are only generated and handled

by the operational semantics as auxiliary expression at run-time. Instead of using

directly grab and release, the lock-handling is done automatically when executing

a method body: before starting to execute, the lock has to be acquired and upon

termination, the lock is released again. Besides that, lock-handling is involved also

when futures are claimed, i.e., when a client code executing in an object, say o,

intends to read the result of a future. The expression claim@(n,o) is the attempt

to obtain the result of a method call from the future n while in possession of the

lock of object o. There are two possibilities in that situation: either the value of

the future has already been determined, i.e., the method calculating the result has

terminated, in which case the client just obtains the value without loosing its own

lock. In the alternative case, where the value is not yet determined, the client trying

to read the value gives up its lock via release and continues executing only after

the requested value has been determined (using get to read it) and after it has re-

acquired the lock. Unlike claim, the get-operation is not part of the user-syntax.

Both expressions are used to read back the value from a future and the difference in

behavior is that get unconditionally attempts to get the value, i.e., blocks until the

value has arrived, whereas claim gives up the lock temporarily, if the value has not

yet arrived, as explained. This behavior is sketched in Figure 1. Note the order in

which get and grab are executed after releasing the lock: the value is read in via get

before the lock has actually been re-acquired! That this order is acceptable rests on

the fact that a future, once evaluated, does not change the value later and reading

the value in by itself has no side-effect. Reversing the order —first re-aquiring the

lock and afterwards checking for availability of the future’s value— would result

in equivalent behavior but amount to busy waiting. Finally, executing suspend(o)
causes the activity to relinquish and re-grab the lock of the object o. We assume by

convention, that when appearing in methods of classes, the claim- and the suspend-

command only refer to the self-parameter self , i.e., they are written claim@(n,self)
and suspend(self).

Before continuing with the type system, let us explain how and why we exclude a

specific potential deadlock situation in the semantics of the claim statement (though

the language does not generally exclude the presence of deadlocks, i.e., it is possi-

ble to write a deadlocking program in the language). Remember that if a thread is

about to execute a claim statement in an object, it always owns the object’s lock.

If the claimed result is not yet available, then the claiming thread blocks. During

blocking, if we would not release the lock previously, no other thread could ex-

ecute in the object, since it would require the object’s lock. Consequently, if the

computation of the claimed result needs execution in the object, the threads would

deadlock. Such deadlocks could not be easily excluded syntactically, since release

and grab are only auxiliary syntax, i.e., they cannot be used to write programs, and

we do not support checking if a thread already finished its computation. Thus we

release the lock before blocking, i.e., waiting for the claimed result, and re-grab the

9

// ?>=<89:;⊤
claim

fut. not evaluated
///o/o/o/o/o/o/o/o/o

claim
fut. evaluated

%%
?>=<89:;⊤

release

��

?>=<89:;⊤ //

?>=<89:;⊥
get

fut. evaluated
//?>=<89:;⊥

grab

OO

Fig. 1. Claiming a future

lock after the thread got the result.

2.2 Type system

The language is typed and the available types are given in the following grammar:

T ::= B | Unit | [T]+− | [T]+ | [l:U, . . . , l:U] | [(l:U, . . . , l:U)] | n

U ::= T × . . .×T → T

Besides base types B (left unspecified; typical examples are booleans, integers,

etc.), Unit is the type of the unit value (). Types [T]+− and [T]+ represent the

reference to a future which will return a value of type T , in case it eventually ter-

minates. [T]+− indicates that the promise has not yet been fulfilled, i.e., it repre-

sents the write-permission to a promise, which implies read-permission at the same

time. [T]+ represents read-only permission to a future. The read/write capability is

more specific than read-only, which is expressed by the (rather trivial) subtyping

relation generated by [T]+− ≤ [T]+, accompanied by the usual subsumption rule.

Furthermore, []+ acts monotonely, and []+− invariantly wrt. subtyping. When not

interested in the access permission, we just write [T].

The name of a class serves as the type for its instances. We need as auxiliary type

constructions (i.e., not as part of the user syntax, but to formulate the type system)

the type or interface of unnamed objects, written [l1:U1, . . . , lk:Uk] and the interface

type for classes, written [(l1:U1, . . . , lk:Uk)]. We allow ourselves to write ~T for T1 ×
. . .×Tk etc. where we assume that the number of arguments match in the rules, and

write Unit → T for T1 × . . .×Tk → T when k = 0.

We are interested in the behavior of well-typed programs, only, and the section

presents the type system to characterize those. As the operational rules later, the

derivation rules for typing are grouped into two sets: one for typing on the level of

10

components, i.e., global configurations, and secondly one for their syntactic sub-

constituents (cf. also the two different levels in the abstract syntax of Table 1).

Table 2 defines the typing on the level of global configurations, i.e., for “sets” of

objects, classes, and named threads. On this level, the typing judgments are of the

form

∆ ⊢C : Θ , (1)

where ∆ and Θ are name contexts, i.e., finite mappings from names (of classes,

objects, and threads) to types. In the judgment, ∆ plays the role of the typing as-

sumptions about the environment, and Θ of the commitments of the component, i.e.,

the names offered to the environment. Sometimes, the words required and provided

interface are used to describe their dual roles. ∆ must contain at least all external

names referenced by C and dually Θ mentions the names offered by C. Both con-

texts constitute the static interface information. A pair ∆ and Θ of assumption and

commitment context with disjoint domains is called well-formed.

The empty configuration 0 is well-typed in any context and exports no names (cf.

rule T-EMPTY). Two configurations in parallel can refer mutually to each other’s

commitments and together offer the (disjoint) union of their names (cf. rule T-PAR).

It will be an invariant of the operational semantics that the identities of parallel

entities are disjoint wrt. the mentioned names. Therefore, Θ1 and Θ2 in the rule

for parallel composition are merged disjointly, indicated by writing Θ1,Θ2 (analo-

gously for the assumption contexts). Also the treatment of the assumption context

requires care wrt. the write permissions. In general, C1 and C2 can rely on the same

assumptions that also C1 ‖ C2 in the conclusion uses, as it represents the environ-

ment common to C1 ‖ C2. This, however, does not apply to the write-permissions:

if C1 ‖ C2 do have write permission on a promise n, which resides in the environ-

ment of C1 ‖ C2, this is represented as n:[T]+− in the assumptions of that parallel

T-EMPTY

∆ ⊢ 0 : ()

∆1,Θ2 ⊢C1 : Θ1 ∆2,Θ1 ⊢C2 : Θ2
T-PAR

∆1 ⊕∆2 ⊢C1 ‖C2 : Θ1,Θ2

∆ ⊢C : Θ,n:T
T-NU

∆ ⊢ ν(n:T).C : Θ

;∆,c:T ⊢ [(O)] : T
T-NCLASS

∆ ⊢ c[(O)] : (c:T)

;∆ ⊢ c : [(TF ,TM)] ;∆,o:c ⊢ [F] : [TF]
T-NOBJ

∆ ⊢ o[c,F,L] : (o:c)

;∆,n:[T]+ ⊢ t : T
T-NTHREAD

∆ ⊢ n〈t〉 : (n:[T]+)
T-NTHREAD

′

∆ ⊢ n〈•〉 : (n:[T]+−)

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ⊢C : Θ
T-SUB

∆′ ⊢C : Θ′

Table 2

Typing (component level)

11

composition. Due to the linear nature of the write permission, however, the binding

n:[T]+− can occur only in the assumptions of either C1 or of C2 in the two premises

of T-PAR. In other words, the assumption context of C1 ‖ C2 must be split as far

as the write permissions to promises are concerned. To capture this intuition, we

define:

Definition 2.1 Let the symmetric operation ⊕ on well-formed name contexts be

defined as follows:

0⊕∆ = ∆

n:[T]+,∆1 ⊕n:[T]+−,∆2 = n:[T]+−,(∆1 ⊕∆2)

n:T,∆1⊕n:T,∆2 = n:T,(∆1⊕∆2) T 6= [T ′]+− for some T ′

∆1 ⊕∆2 = undefined else

We omit symmetric rules (e.g. for ∆⊕0). The contexts are considered as unordered,

i.e., n:T,∆ does not mean, the binding n:T occurs leftmost in a “list”.

In combination with the rest of the rules (in particular, rule T-BIND below in Ta-

ble 4), this assures that a promise cannot be fulfilled by the component and the

environment at the same time.

The ν-binder hides the bound object or the name of the future inside the component

(cf. rule T-NU). In the T-NU-rule, we assume that the bound name n is new to ∆

and Θ. Let-bound variables are stack allocated and checked in a stack-organized

variable context Γ (see Tables 3 and 4 below). Object names created by new and

future/promise names created by promise are heap allocated and thus checked in

a “parallel” context (cf. again the assumption-commitment rule T-PAR). The rules

for named classes introduce the name of the class and its type into the commitment

(cf. T-NCLASS). The code [(O)] of the class c[(O)] is checked in an assumption

context where the name of the class is available. Note also that the premise of

T-NCLASS (like those of T-NOBJ and T-NTHREAD) is not covered by the rules

for type checking at the component level, but by the rules for the lower level entities

(in this particular case, by rule T-OBJ from Table 3). The judgments there use as

assumption not just a name context, but additionally a stack-organized, variable

context Γ in order to handle the let-bound variables. So in general, the assumption

context at that level is of the form Γ;∆. The premise of T-NCLASS starts, however,

with Γ being empty, i.e., with no assumptions about the type of local variables. This

is written in the premise as ;∆,c:T ⊢ [(O)] : T ; similar for the premises of T-NOBJ

and T-NTHREAD . An instantiated object will be available in the exported context

Θ by rule T-NOBJ .

As we will see in the following section, promises, that are not yet fulfilled, are

present in the configuration as thread entities n〈•〉; their type [T]+− can be derived

by rule T-NTHREAD′ . Fulfilled promises n〈t〉 are treated by rule T-NTHREAD ,

12

where the type [T]+ of the future reference n is matched against the result type T of

thread t. As n is already fulfilled, its type exports read-permission, only. As t may

refer to n, it is checked in the premise by ∆ extended by the appropriate binding

n:[T]+. The last rule is a rule of subsumption, expressing a simple form of sub-

typing: we allow that an object respectively a class contains at least the members

which are required by the interface. This corresponds to width subtyping. Note,

however, that each named object has exactly one type, namely its class.

Definition 2.2 (Subtyping) The relation ≤ on types is defined as identity for all

types except for [T]+− ≤ [T]+ (mentioned above) and object interfaces, where we

have:

[(l1:U1, . . . , lk:Uk, lk+1:Uk+1, . . .)] ≤ [(l1:U1, . . . lk:Uk)] .

For well-formed name contexts ∆1 and ∆2 , we define in abuse of notation ∆1 ≤ ∆2,

if ∆1 and ∆2 have the same domain and additionally ∆1(n) ≤ ∆2(n) for all names

n.

The definition is applied, of course, also to name contexts Θ, used for the commit-

ments. The relations ≤ are obviously reflexive, transitive, and antisymmetric.

Next we formalize the typing for objects and threads and their syntactic sub-consti-

tuents. Again, the treatment of the write-permissions requires care: The capability

to write to a promise is consumed by the bind-operation as it should be done only

once. This is captured by a linear type system where the execution of a thread or

an expression may change the involved types. The judgments are of the form

Γ;∆ ⊢ e : T :: Γ́, ∆́, (2)

where the change from Γ and ∆ to Γ́ and ∆́ reflects the potential consumption of

write permissions when executing e. The consumption is only potential, as the type

system statically overapproximates the run-time behavior, of course. The typing is

given in Tables 3 and 4. For brevity, we write ∆;Γ ⊢ e : T for ∆;Γ ⊢ e : T :: Γ́, ∆́,

when Γ́ = Γ and ∆́ = ∆. Besides assumptions about the provided names of the envi-

ronment kept in ∆, the typing is done relative to assumptions about occurring free

variables. They are kept separately in a variable context Γ, a finite mapping from

variables to types. Apart from the technicalities, treating the write capabilities in a

linear fashion is straightforward: one must assure that the corresponding capability

is available at most once in the program and is not duplicated when passed around.

A promise is no longer available for writing when bound to a variable using the

let-construct, or when handed over as argument to a method call or a return.

Classes, objects, and methods resp. fields have no effect on ∆ (see rules T-CLASS ,

T-OBJ, T-MEMB, and T-UNDEF). Note that especially in T-MEMB, the name con-

text ∆ does not change. This does not mean, that a method cannot have a side-effect

by fulfilling promises, but they are not part of the check of the method declaration

here. Rule T-CLASS is the introduction rule for class types, the rule of instantiation

of a class T-NEWC requires reference to a class-typed name. In the rules T-MEMB

13

Γ;∆ ⊢ c : [(l1:U1, . . . , lk :Uk)] Γ;∆ ⊢ mi : Ui mi = ς(si:c).λ(~xi:~Ti).ti
T-CLASS

Γ;∆ ⊢ [(l1 = m1, . . . , lk = mk)] : c

Γ;∆ ⊢ c : [(l1:U1, . . . , lk :Uk)] Γ;∆ ⊢ fi : Ui fi = ς(si:c).λ().v⊥
T-OBJ

Γ;∆ ⊢ [l1 = f1, . . . , lk = fk] : c

Γ,~x:~T ;∆,s:c ⊢ t : T ′ :: Γ́; ∆́ Γ;∆ ⊢ c : T T = [(. . . , l:~T → T ′, . . .)]
T-MEMB

Γ;∆ ⊢ ς(s:c).λ(~x:~T).t : T.l

Γ;∆,s:c ⊢ c : [(. . . , l : Unit → c′, . . .)]
T-UNDEF

Γ;∆ ⊢ ς(s:c).λ().⊥c′ : c′

Γ;∆ ⊢ v : c Γ;∆ ⊢ c : T Γ;∆ ⊢ v′ : T.l
T-FUPDATE

Γ;∆ ⊢ v.l := v′ : c

Γ;∆ ⊢ c : [(T)]
T-NEWC

Γ;∆ ⊢ newc : c

Γ1;∆1 ⊢ e : T1 :: Γ2;∆2 Γ2,x:T1;∆2 ⊢ t : T2 :: Γ3;∆3

T-LET

Γ1;∆1 ⊢ letx:T1 = e in t : T2 :: Γ3;∆3

Γ1;∆1 ⊢ v1 : T1 Γ1;∆1 ⊢ v2 : T1 Γ1;∆1 ⊢ e1 : T2 :: Γ2;∆2 Γ1;∆1 ⊢ e2 : T2 :: Γ2;∆2

T-COND

Γ1;∆1 ⊢ if v1 = v2 thene1 elsee2 : T2 :: Γ2;∆2

Γ1;∆1 ⊢ v : c Γ1;∆1 ⊢ c : [(. . . , l:Unit → T, . . .)]

Γ1;∆1 ⊢ e1 : T2 :: Γ2;∆2 Γ1;∆1 ⊢ e2 : T2 :: Γ2;∆2
T-COND⊥

Γ1;∆1 ⊢ if undef(v.l())then e1 elsee2 : T2 :: Γ2;∆2

T-STOP

Γ;∆ ⊢ stop : T

T-UNIT

Γ;∆ ⊢ () : Unit

Table 3

Typing (objects and threads)

and T-FUPDATE we use the meta-mathematical notation T.l to pick the type in T

associated with label l, i.e., T.l denotes U , when T = [. . . , l:U, . . .] and analogously

for T = [(. . . , l:U, . . .)]. Rules T-CLASS and T-OBJ check the definition of classes

resp., of objects against the respective interface type [(l1:U1, . . . , lk:Uk)]. Note that

the type of the self-parameter must be identical to the name of the class, the method

resides in. The premises of rule T-MEMB checks the method body in the context Γ

appropriately extended with the formal parameters xi, resp. the context ∆ extended

by the ς -bound self-parameter (s in the rule). T-UNDEF works similarly, treating the

case of an uninitialized field. The terminated expression stop and the unit value do

not change the capabilities (cf. rules T-STOP and T-UNIT). Note that stop has any

type (cf. rule T-STOP) reflecting the fact that control never reaches the point after

stop. Further constructs without side effects are the three expressions to manipulate

the monitor locks (suspension, lock grabbing, and lock release), object instantia-

tion (T-NEWC), and field update. Wrt. field update in rule T-FUPDATE , the reason

why the update has no effect on the contexts is that we do not allow fields to carry

14

T-PROM

Γ;∆ ⊢ promise T : [T]+−

Γ;∆ ⊢ n : [T]+ Γ;∆ ⊢ o:c

T-CLAIM

Γ;∆ ⊢ claim@(n,o) : T

Γ;∆ ⊢ n : [T]+

T-GET

Γ;∆ ⊢ get@n : T

Γ(x) = T Γ́ = Γ\x : T

T-VAR

Γ;∆ ⊢ x : T :: Γ́;∆

∆(x) = T ∆́ = ∆\n : T

T-NAME

Γ;∆ ⊢ n : T :: Γ;∆′

Γ;∆,n:[T]+ ⊢ o : c Γ;∆,n:[T]+ ⊢ c : [(. . . , l:~T → T, . . .)] Γ;∆,n:[T]+ ⊢~v : ~T Γ́; ∆́ = Γ;∆\(~v : ~T)
T-BIND

Γ;∆,n : [T]+− ⊢ bindo.l(~v) : T →֒ n : [T]+ :: Γ́; ∆́,n:[T]+

∆ ⊢ o : c

T-SUSPEND

Γ;∆ ⊢ suspend(o) : Unit

∆ ⊢ o : c

T-GRAB

Γ;∆ ⊢ grab(o) : Unit

∆ ⊢ o : c

T-RELEASE

Γ;∆ ⊢ release(o) : Unit

Γ1;∆1 ⊢ t : T :: Γ2;∆2 T ≤ T ′

T-SUB

Γ1;∆1 ⊢ t : T ′ :: Γ2;∆2

Table 4

Typing (objects and threads)

a type of the form [T]+−. This effectively prevents the passing around of write-

permissions via fields. The rule T-LET for let-bindings introduces a local scope.

The change from ∆1 to ∆2 and further from ∆2 to ∆3 (and analogously for the Γs)

reflects the sequential evaluation strategy: first e is evaluated and afterwards t. For

conditionals, both branches must agree on their pre- and post ∆-contexts, which

typically means, over-approximating the effect by taking the upper bound on both

as combined effect. Note that the comparison of the values in T-COND resp. the

check for definedness in T-COND⊥ has no side-effect on the contexts. The rule for

testing for definedness using undef (not shown) works analogously.

Table 4 deals with futures, promises, and especially the linear aspect of consum-

ing and transmitting the write-permissions. The claim-command fetches the result

value from a future; hence, if the reference n is of type [T]+, the value itself carries

type T (cf. rule T-CLAIM). The rule T-GET for get works analogously.

The expression promiseT creates a new promise, which can be read or written and

is therefore of type [T]+−. Note, however, that the context ∆ does not change. The

reason is that the new name created by promise is hidden by a ν-binder immediately

after creation and thus does not immediately extend the ∆-context (see the reduction

rule PROM below). The binding of a thread t to a promise n is well-typed if the type

of n still allows the promise to be fulfilled, i.e., n is typed by [T]+− and not just

[T]+. The expression claim dereferences a future, i.e., it fetches a value of type

T from the reference of type [T]+. Otherwise, the expression has no effect on ∆,

as reading can be done arbitrarily many times. As an aside: in rule T-CLAIM, the

type of o is not checked, as by convention, the claim-statement must be used in

15

the form claim@(n,self) in the user syntax, where self is the self-parameter of

the surrounding methods. Reduction then preserves well-typedness so a re-check

here is not needed. Similar remarks apply to the remaining rules. The treatment

of get is analogous (cf. rules T-CLAIM and T-GET). For T-BIND, handing over

a promise with read/write permissions as an actual parameter of a method call,

the caller loses the right to fulfill the promise. Of course, the caller can only pass

the promise to a method which assumes read/write permissions, if itself has the

write permission. The loss of the write-permission is specified by setting ∆́ and

Γ́ to ∆\~v : ~T resp. to Γ\~v : ~T . The difference-operator ∆\n : [T]+− removes the

write-permission for n from the context ∆. In T-BIND, the premise Γ;∆,n:[T]+ ⊢
~v : ~T abbreviates the following: assume ~v = v1, . . .vn and ~T = T1 . . .Tn and let Ξ1

abbreviate Γ;∆,n:[T]+. Then Ξ ⊢~v : ~T means: Ξi ⊢ vi : Ti and Ξi+1 = Ξi \Ti, for

all 1 ≤ i ≤ n. Note that checking the type of the callee has no side-effect on the

bindings. Mentioning a variable or a name removes the write permission (if present)

from the respective binding context (cf. T-VAR and T-NAME). The next three rules

T-SUSPEND , T-GRAB, and T-RELEASE deal with the expressions for coordination

and lock handling; they are typed by Unit. The last rule T-SUB is the standard rule

of subsumption.

2.3 Operational semantics

The operational semantics is given in two stages, component internal steps and ex-

ternal ones, where the latter describe the interaction at the interface. Section 2.3.1

starts with component-internal steps, i.e., those definable without reference to the

environment. In particular, the steps have no externally observable effect. The ex-

ternal steps, presented afterwards in Section 2.3.2, define the interaction between

component and environment. They are defined in reference to assumption and com-

mitment contexts. The static part of the contexts corresponds to the static type sys-

tem from Section 2.2 on component level and takes care that, e.g., only well-typed

values are received from the environment.

2.3.1 Internal steps

The internal semantics describes the operational behavior of a closed system, not

interacting with its environment. The corresponding reduction steps are shown in

Table 5, distinguishing between confluent steps and other internal transitions
τ
−→, both invisible at the interface. The -steps, on the one hand, do not access

the instance state of the objects. They are free of imperative side effects and thus

confluent. The
τ
−→-steps, in contrast, access the instance state, either by reading or

by writing it, and may thus lead to race conditions. In other words, this part of the

reduction relation is in general not confluent.

16

The first seven rules deal with the basic sequential constructs, all as -steps. The

basic evaluation mechanism is substitution (cf. rule RED). Note that the rule re-

quires that the leading let-bound variable is replaced only by values v. The opera-

tional behavior of the two forms of conditionals are axiomatized by the four COND-

rules. Depending on the result of the comparison in the first pair of rules, resp., the

result of checking for definedness in the second pair, either the then- or the else-

branch is taken. In COND2, we assume that v1 does not equal v2, as side condition.

Evaluating stop terminates the future for good, i.e., the rest of the thread will never

be executed as there is no reduction rule for the future n〈stop〉 (cf. rule STOP). The

rule FLOOKUP deals with field look-up, where F ′.l(o)() stands for ⊥c[o/s] = ⊥c,

resp., for v[o/s], where [c,F ′,L] = [c, . . . , l = ς(s:c).λ ().⊥c, . . . ,L], if the field is yet

undefined, resp., [c,F ′,L] = [c, . . . , l = ς(s:c).λ ().v, . . . ,L]. In FUPDATE , the meta-

mathematical notation F.l := v stands for (. . . , l = v, . . .), when F = (. . . , l = v′, . . .).
There will be no external variant of the rule for field look-up later in the semantics

of open systems, as we do not allow field access across component boundaries. The

same restriction holds for field update in rule FUPDATE. A new object as instance

of a given class is created by rule NEWOi . Note that initially, the lock is free and

there is no activity associated with the object, i.e., the object is initially passive.

The expression promiseT creates a fresh promise n′. A new thread n′〈•〉 is allocated

with an “undefined” body, as so far nothing more than the name is known. The rule

PROM mentions the types T and T ′. The typing system assures that the type T is of

the form [S]+− for some type S. A promise is fulfilled by the bind-command (cf. rule

BINDi), in that the new thread n′ is put together with the code to be executed and

run in parallel with the rest. In the configuration after the reduction step, the meta-

mathematical notation M.l(o)(~v) stands for t[o/s][~v/~x], when the method suite [M]
equals [. . . , l = ς(s:T).λ (~x:~T).t, . . .].

Upon termination, the result is available via the claim- and the get-syntax (cf. the

CLAIM-rules and rule GETi), but not before the lock of the object is given back

again using release(o) (cf. rule RELEASE). If the thread is not yet terminated, the

requesting thread suspends itself, thereby giving up the lock. The behavior of claim

is sketched in Figure 1. Note the types of the involved let-bound variables: the

future reference is typed by [T], indicating that the value for x will not directly be

available, but must be dereferenced first via claim.

The two operations grab and release take, resp., give back an object’s lock. They

are not part of the user syntax, i.e., the programmer cannot directly manipulate

the monitor lock. The user can release the lock using the suspend-command or by

trying to get back the result from a call using claim.

The above reduction relations are used modulo structural congruence, which cap-

tures the algebraic properties of parallel composition and the hiding operator. The

basic axioms for ≡ are shown in Table 6 where in the fourth axiom, n does not

occur free in C1. The congruence relation is imported into the reduction relations

17

in Table 7. Note that all syntactic entities are always tacitly understood modulo

α-conversion.

For illustration of the operational semantics, we show the combination of creating

a promise and binding a method body to it. The steps in the reduction sequence

below are justified by PROM, LET, and BIND, in that order. In the sequence, we did

not write the definition of the object plus the class, needed to do the last reduction

step. I.e., the reduction sequence below runs in parallel with c[(F ′,M)] ‖ o[c,F,L],
where in particular the method suite M, stored in the class c of the object o, contains

the definition of the method body. That definition is needed for binding operation

n〈letx:T = v in t〉 n〈t[v/x]〉 RED

n〈letx2:T2 = (letx1:T1 = e1 ine) in t〉 n〈letx1:T1 = e1 in (letx2:T2 = e in t)〉 LET

n〈letx:T = (if v = vthene1 elsee2) in t〉 n〈letx:T = e1 in t〉 COND1

n〈letx:T = (if v1 = v2 thene1 elsee2) in t〉 n〈letx:T = e2 in t〉 where (v1 6= v2) Cond2

n〈letx:T = (if undef(⊥c′)thene1 elsee2) in t〉 n〈letx:T = e1 int〉 COND
⊥
1

n〈letx:T = (if undef(v)thene1 elsee2) in t〉 n〈letx:T = e2 in t〉 COND
⊥
2

n〈letx:T = stop int〉 n〈stop〉 STOP

o[c,F,L] ‖ n〈letx:T = o.l() in t〉
τ
−→ o[c,F,L] ‖ n〈letx:T = F.l(o)() in t〉 FLOOKUP

o[c,F,L] ‖ n〈letx:T = o.l := v in t〉
τ
−→ o[c,F.l := v,L] ‖ n〈letx:T = o in t〉 FUPDATE

c[(F,M)] ‖ n〈letx:c = newc in t〉

c[(F,M)] ‖ ν(o:c).(o[c,F,⊥] ‖ n〈letx:c = o in t〉) NEWOi

n〈letx:T ′ = promiseT in t〉 ν(n′:T ′).(n〈letx:T ′ = n′ int〉 ‖ n′〈•〉) PROM

c[(F ′,M)] ‖ o[c,F,L] ‖ n1〈letx:T = bindo.l(~v) : T2 →֒ n2 int1〉 ‖ n2〈•〉
τ
−→

c[(F ′,M)] ‖ o[c,F,L] ‖ n1〈letx:T = n2 in t1〉

‖ n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o);x〉

BINDi

n1〈v〉 ‖ n2〈letx : T = claim@(n1,o) in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 CLAIM
1
i

t2 6= v
CLAIM

2
i

n2〈t2〉 ‖ n1〈letx : T = claim@(n2,o) in t ′1〉

n2〈t2〉 ‖ n1〈letx : T = release(o);get@n2 ingrab(o); t ′1〉

n1〈v〉 ‖ n2〈letx : T = get@n1 in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 GETi

n〈suspend(o); t〉 n〈release(o);grab(o); t〉 SUSPEND

o[c,F,⊥] ‖ n〈grab(o); t〉
τ
−→ o[c,F,⊤] ‖ n〈t〉 GRAB

o[c,F,⊤] ‖ n〈release(o); t〉
τ
−→ o[c,F,⊥] ‖ n〈t〉 RELEASE

Table 5

Internal steps

18

0 ‖C ≡C C1 ‖C2 ≡C2 ‖C1 (C1 ‖C2) ‖C3 ≡C1 ‖ (C2 ‖C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 6

Structural congruence

in the last reduction step. In the rule corresponding rule BINDi, this is written as

M.l(o)(~v). In the final configuration, t ′ contains the result of looking up the method

body and is of the form grab(o);M.l(o)(~v). This, the overall behavior of the ful-

filled promise n2, i.e., after the binding step, is: first acquire the lock of the object,

afterwards executed the method body with the formal parameters including the

self-parameter appropriately substituted. With the return value computed and re-

membered in z, the lock is released and the result made available under the future

reference n2:

n1〈letx:[T]+− = promiseT in (lety : T2 = bindo.l(~v) : T →֒ x in t)〉

ν(n2:[T]+−).(n1〈letx:[T]+− = n2 in (lety:[T]+ = bindo.l(~v) : T →֒ x in t)〉 ‖ n2〈•〉)

ν(n2:[T]+−).(n1〈lety:[T]+ = bindo.l(~v) : T →֒ n2 in t[n2/x])〉 ‖ n2〈•〉)
τ
−→

ν(n2:[T]+−).(n1〈lety:[T]+ = n2 in t[n2/x])〉 ‖ n2〈letz:T = t ′ in release(o);z〉)

Note that the overall behavior of first creating a promise and, in a next step, bind-

ing a method body to it, corresponds exactly to the working of an asynchronous

method call. Asynchronous method calls can therefore be seen as syntactic sugar.

The introduction of promises as a separate datatype and binding as corresponding,

separate operation on promises therefore generalizes the setting with futures and

asynchronous method calls, only.

In the following, we show that the type system indeed assures what it is supposed

to, most importantly that a promise is indeed fulfilled only once. An important part

of it is a standard property, namely preservation of well-typedness under internal

C ≡ ≡C′

C C′

C C′

C ‖C′′
 C′ ‖C′′

C C′

ν(n:T).C ν(n:T).C′

C ≡
τ
−→ ≡C′

C
τ
−→C′

C
τ
−→C′

C ‖C′′ τ
−→C′ ‖C′′

C
τ
−→C′

ν(n:T).C
τ
−→ ν(n:T).C′

Table 7

Reduction modulo congruence

19

reduction (subject reduction). First we characterize as erroneous situations where

a promise is about to be written a second time: A configuration C contains a write

error if it is of the form C ≡ ν(Θ′).(C′ ‖ n′〈letx : T = bind t1 : T1 →֒ n in t2〉 ‖ n〈t〉).
Configurations without such write-errors are called write-error free, denoted ⊢C :

ok. In [55], an analogous condition is called handle error.

The necessary ancillary lemmas will in general proceed by induction on the typing

derivations for judgments of the form ∆⊢C : Θ. From a proof-theoretical (and algo-

rithmic) point of view, the type system as formalized in Tables 2, 3, and 4 has an un-

welcome property: it is too “non-deterministic” in that it allows the non-structural

subsumption rules T-SUB on the level of threads t and on the level of components C

at any point in the derivation. This liberality is unwelcome for proofs by induction

on the typing derivation as one loses knowledge about the structure of the premises

of an applied rule in the derivation. We write ∆ ⊢m C : Θ for derivations where sub-

sumption at the level of components (by rule T-SUB from Table 2) is not used, and

subsumption from Table 4 is only used “when needed”, i.e., for adaptation. Taking

for instance T-BIND and concentrating on the premises relevant for the illustration:

Given as the interface type of the class Γ;∆,n:[T]+ ⊢m c : [(. . . , l:~T → T, . . .)] and

furthermore Γ;∆,n:[T]+ ⊢m ~v : ~S, the minimal types ~S of the ~v may not directly

match the expected argument type ~T of the method labeled l (as is required in the

premise of the rule T-BIND). Restricting now the use of subsumption to “adapt”

the ~S to ~T gives the type system for minimal types (denoted by using ⊢m instead

of ⊢). This could be explicitly done my removing the freely applicable T-SUB and

distributing its effect into the premises of structural rules, where such adaptation is

needed. In the discussed rule T-BIND, by stipulating

. . . Γ;∆,n:[T]+ ⊢m c : [(. . . , l:~T → T, . . .)] Γ;∆,n:[T]+ ⊢m ~v : ~S ~S ≤ ~T
T-BINDm

Γ;∆,n : [T]+− ⊢m bindo.l(~v) : T →֒ n : [T]+ :: Γ́; ∆́,n:[T]+

where ~S ≤ ~T is interpreted pointwise Si ≤ Ti, for all i. As the formulation of that

type system is rather standard and straightforward, we omit its definition.

Lemma 2.3 (Minimal typing) (1) If ∆ ⊢m C : Θ and ∆′ ⊢C : Θ′, then ∆ ≤ ∆′ and

Θ′ ≤ Θ.

(2) If ∆ ⊢m C : Θ then ∆ ⊢C : Θ.

(3) If ∆′ ⊢C : Θ′, then ∆ ⊢m C : Θ with ∆ ≤ ∆′ and Θ′ ≤ Θ.

Proof: Straightforward.

First we show that a well-typed component does not contain a manifest write-error.

Lemma 2.4 If ∆ ⊢m C : Θ, then ⊢C : ok.

Proof: By induction on the typing derivations for judgments on the level of com-

ponents, i.e., for judgments of the form ∆ ⊢ C : Θ; the subordinate typing rules

from Tables 3 and 4 on the level of threads and expressions do not play a role for

20

the proof. The empty component in the base case of T-EMPTY is clearly write-

error free. The cases for the T-NU-rules by straightforward induction. The cases

for T-NCLASS , T-NOBJ, and T-NFUTURE are trivially satisfied, as they mention

a single, basic component, only.

Case: T-PAR

We are given ∆1,Θ2 ⊢C1 : Θ1 and ∆2,Θ1 ⊢C2 : Θ2 with ∆ = ∆1⊕∆2. By induction,

both C1 and C2 are write-error free. The non-trivial case (which we will lead to

a contradiction) is when one of the components attempts to write to a promise

and the partner already has fulfilled it. So, without loss of generality assume that

C1 = ν(Θ′
1).(C

′
1 ‖ n1〈letx : T = bindx : T →֒ n2 in t ′′〉 and C2 = ν(Θ′

2).(C
′
2 ‖ n2〈t2〉).

Assume that n2 occurs in neither Θ′
1 nor Θ′

2, otherwise no write error is present

(since in that case, the name n2 mentioned on both sides of the parallel refer to

different entities). For C1 to be well-typed, we have ∆1,Θ2 ⊢ n2 : [T2]
+− for some

type T2. For C2 to be well-typed, we have Θ2 ⊢ n : [T2]
+ for some type T2. Thus,

∆ ⊢C1 ‖C2 : Θ1,Θ2 cannot be derived, which contradicts the assumption.

Lemma 2.5 (Subject reduction: ≡) If ∆ ⊢m C1 : Θ and C1 ≡C2, then ∆ ⊢m C2 : Θ.

Proof: We show preservation of typing by the axioms of Table 6. Proceed by

induction on the derivation of ∆ ⊢m C1 : Θ.

Case: C ‖ 0 ≡C (idempotence)

We are given ∆ ⊢C ‖ 0 : Θ. Inverting T-PAR and by T-EMPTY we get as sub-goals

∆,Θ ⊢m 0 : () and ∆ ⊢m C : Θ, which concludes the case.

Case: C ≡C ‖ 0 (idempotence)

Immediate using T-PAR and T-EMPTY .

Case: C1 ‖C2 ≡C2 ‖C1 (commutativity)

Immediate.

Case: C1 ‖ (C2 ‖C3) ≡ (C1 ‖C2) ‖C2 and vice versa (associativity)

By straightforward induction.

Case: C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖C2)
where n does not occur free in C1. We are given ∆ ⊢C1 ‖ ν(n:T).C2 : Θ1,Θ2, where

n occurs in neither Θ1 nor Θ2. Inverting T-PAR and T-NU, we obtain as two sub-

goals ∆,Θ2 ⊢C1 : Θ1 and ∆,Θ1 ⊢C2 : Θ1,Θ2,n:T , and the result follows by T-PAR

and the T-NU-rule.

Case: ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C
Analogously.

21

The next lemma is another step towards subject reduction. Note that minimal types

are not preserved by reduction. Especially executing a bind-operation with rule

BINDi changes the type of the corresponding name from [T]+− to [T]+.

Lemma 2.6 (Subject reduction:
τ
−→ and) Assume ∆ ⊢m C : Θ.

(1) If C
τ
−→ Ć, then ∆ ⊢ Ć : Θ.

(2) If C Ć, then ∆ ⊢ Ć : Θ.

Proof: The reduction rules of Table 5 are all of the form C1 ‖ n〈t1〉
τ
−→ C2 ‖ n〈t2〉,

where often C1 =C2 or C1 and C2 missing. In the latter case, it suffices to show that

;∆,n:[T]+ ⊢m t1 : T implies ;∆,n:[T]+ ⊢ t2 : T .

Case: RED: n〈letx : T = v in t〉 n〈t[v/x]〉
By preservation of typing under substitution.

The 5 rules for let and for conditionals are straightforward. The case for stop fol-

lows from the fact that stop has every type (cf. rule T-STOP).

Case: PROM: n〈letx:T ′ = promiseT in t〉 ν(n′:T ′).(n〈letx : T ′ = n′ in t〉 ‖ n′〈•〉)
The type system (for minimal types) assures that T ′ = [T]+−, i.e., for the left-

hand side of the reduction step, we obtain as one subgoal (inverting T-NTHREAD′ ,

T-LET, and T-PROM) x:[T]+−;∆,n:[S]+ ⊢ t : S. The result follows from T-NU,

T-PAR, T-LET, and T-NTHREAD
′ (and weakening):

. . . x:[T]+−;∆,n′ :[T]+−,n:[S]+ ⊢ t : S

;∆,n′:[T]+−,n:[S]+ ⊢ letx : [T]+− = n′ in t : S

∆,n′:[T]+− ⊢ n〈letx : [T]+− = n′ in t〉 : n:[S]+ ∆,n:[S]+,n′:[T]+ ⊢ n′〈•〉 : n′:[T]+−

T-PAR

∆ ⊢ n〈letx : [T]+− = n′ int〉 ‖ n′〈•〉 : (n:[S]+,n′:[T]+−)

T-NU

∆ ⊢ ν(n′:[T]+−).(n〈letx : T ′ = n′ int〉 ‖ n′〈•〉) : (n:[S]+)

Case: BINDi n1〈t〉 ‖ n2〈•〉 = n1〈letx:T = bindo.l(~v) : T2 →֒ n2 in t1〉 ‖ n2〈•〉
τ
−→

n1〈letx:T = n2 in t1〉 ‖ n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o);x〉
The type system assures (cf. T-BIND) that T = [T2]

+. By assumption, we are given

∆ ⊢ n1〈t〉 : Θ, which implies Θ = n1:[T1]
+ for some type T1. Inverting rules T-PAR,

T-NTHREAD , T-LET, and T-BIND gives for the named thread n1:

;∆1,n2:[T2]
+,n1:[T1]

+ ⊢~v : ~T ∆′′ = ∆′ \(~v:~T) . . .

T-BIND

;∆1,n2:[T2]
+− ⊢ bindo.l(~v) : T2 →֒ n2 : T :: ;∆′′

1 ,n2:[T2]
+ x:[T2]

+;∆′′
1 ,n2:[T2]

+ ⊢ t1 : T1 :: x:[T2]
+; ∆́2,n2:[T2]

+

;∆1,n2:[T2]
+−,n1:[T1]

+ ⊢ letx:[T2]
+ = bindo.l(~v) : T2 →֒ n2 int1 : T1 :: ; ∆́1,n2:[T2]

+,n1:[T1]
+

∆1,n2 :[T2]
+− ⊢ n1〈letx:[T2]

+ = bindo.l(~v) : T2 →֒ n2 in t1〉 : n1:[T1]
+

22

Rule T-BIND (and T-NTHREAD) implies that the assumption context ∆ contains

especially the binding n2:[T]+−, i.e., the assumption ∆ in the last conclusion is of

the form ∆′,n2:[T2]
+−.

Now to the post-configuration after the
τ
−→-step. With T-PAR we obtain the follow-

ing two sub-goals:

∆,n2:[T2]
+− ⊢ n1〈letx:T = n2 in t1〉 : n1:[T1]

+ ∆,n1:[T1]
+ ⊢ n2〈letx:T2 = grab(o);M.l(o)(~v) inrelease(o);x〉 : n2:[T2]

+−

∆ ⊢ n1〈letx:T = n2 in t1〉 ‖ n2〈letx:T2 = grab(o);M.l(o)(~v) inrelease(o);x〉 : n1:[T1]
+,n2:[T2]

+−

The left one can be derived using T-NTHREAD , T-LET, and T-NAME, where there

second premise of T-LET is discharged by the corresponding assumption from

above and weakening.

T-NAME

∆,n2:[T2]
+,n1:[T2]

+ ⊢ n2 : [T2]
+ x:[T2]

+,∆;n2 :[T2]
+,n1:[T2]

+ ⊢ t1 : T1

T-LET

∆,n2:[T2]
+,n1 :[T2]

+ ⊢ letx:T = n2 in t1 : T1

∆,n2:[T2]
+ ⊢ n1〈letx:[T2]

+ = n2 in t1〉 : n1:[T1]
+

The second premise can be derived as follows:

. . .

;∆,n1 :[T1]
+,n2:[T2]

+ ⊢ M.l(o)(~v) : T2

T-VAR

y:T2;∆,n1:[T1]
+,n2:[T2]

+ ⊢ y : T2

y:T2;∆,n1:[T1]
+,n2:[T2]

+ ⊢ release(o);y : T2

T-LET

;∆,n1:[T1]
+,n2:[T2]

+ ⊢ lety:T2 = M.l(o)(~v) inrelease(o);y : T2

;∆,n1 :[T1]
+,n2:[T2]

+ ⊢ lety:T2 = grab(o);M.l(o)(~v) inrelease(o);y : T2

T-NTHREAD

∆,n1:[T1]
+ ⊢ n2〈lety:T2 = grab(o);M.l(o)(~v) inrelease(o);y〉 : n2:[T2]

+

T-SUB

∆,n1:[T1]
+ ⊢ n2〈lety:T2 = grab(o);M.l(o)(~v) inrelease(o);y〉 : n2:[T2]

+−

The premise ;∆,n1:[T1]
+,n2:[T2]

+ ⊢ M.l(o)(~v) : T2 follows by preservation of typ-

ing by substitution. Note the use of subsumption in the last step.

Lemma 2.7 (Subject reduction: ≡) If ∆ ⊢C1 : Θ and C1 ≡C2, then ∆ ⊢C2 : Θ.

Proof: Assume ∆ ⊢C1 : Θ and C1 ≡C2. By Lemma 2.3(3), ∆′ ⊢m C1 : Θ′ s.t. ∆ ≤
∆′ and Θ′ ≤ Θ. By Lemma 2.5, ∆′ ⊢m C2 : Θ′, and hence by Lemma 2.3(2), also

∆′ ⊢C2 : Θ′, and the result follows by subsumption (rule T-SUB).

Lemma 2.8 (Subject reduction:
τ
−→ and) Assume ∆ ⊢C : Θ.

(1) If C
τ
−→ Ć, then ∆ ⊢ Ć : Θ.

(2) If C Ć, then ∆ ⊢ Ć : Θ.

23

Proof: As consequence of the corresponding property for minimal typing from

Lemma 2.6, Lemma 2.3, and subsumption.

Lemma 2.9 (Subject reduction) If ∆ ⊢C : Θ and C =⇒ Ć, then ∆ ⊢ Ć : Θ.

Proof: A consequence of Lemma 2.7 and 2.8.

A direct consequence is that all reachable configurations are write-error free:

Corollary 2.10 If ∆ ⊢C : Θ and C =⇒ Ć, then ⊢ Ć : ok.

Proof: A consequence of Lemma 2.4 and subject reduction from Lemma 2.9.

2.3.2 External semantics

In this section we introduce the external semantics that defines the interaction be-

tween component and environment. We start by formalizing typing judgments and

transitions between typing judgments, being the basic form of the external steps.

We continue with static typing assumptions for well-formed and well-typed labels.

Context updates, given next, express the dynamic change of typing judgments for

incoming and outgoing communications. Making use of the above formalisms, we

give the steps of the external semantics.

The external semantics formalizes the interaction of an open component with its en-

vironment. The semantics is given as labeled transitions between typing judgments

on the level of components (cf. Table 2), i.e., judgments of the form

∆ ⊢C : Θ, (3)

where, as before, ∆ represents the assumptions about the environment of the com-

ponent C and Θ the commitments. The assumptions require the existence of named

entities in the environment (plus giving static typing information), and dually, the

commitment promises the existence of such entities in C. It is an invariant of the

semantics, that the assumption and commitment contexts are disjoint concerning

their name bindings. In addition, the interface keeps information about whether the

value of a future n is already known at the interface (this is a bit of information not

needed in the static type system of Table 2). If it is, we write n:T = v as binding of

the context. We write furthermore ∆ ⊢ n = v, if ∆ contains the corresponding value

information (and if not interested in the type) and write ∆ ⊢ n = ⊥, if that is not

the case. This extension makes the value of a future (once successfully claimed)

available at the interface. With these judgments, the external transitions are of the

form:

∆ ⊢C : Θ
a
−→ ∆́ ⊢ Ć : Θ́ . (4)

Notation 2.11 We abbreviate the tuple of name contexts ∆,Θ as Ξ. Furthermore

we understand ∆́, Θ́ as Ξ́, etc.

24

γ ::= n〈call o.l(~v)〉 | n〈get(v)〉 | ν(n:T).γ basic labels

a ::= γ? | γ! receive and send labels

Table 8

Labels

The labels of the external transitions represent single steps of the interface inter-

actions (cf. Table 8). A component exchanges information with the environment

via call and get labels (by convention, referred to as γc and γg, for short). Interac-

tion is either incoming or outgoing, indicated by ?, resp., !. In the labels, n is the

identifier of the thread (i.e., also future/promise) carrying out the call resp. of being

queried via claim or get. Besides that, object and future names (but no class names)

may appear as arguments in the communication. Scope extrusion of names across

the interface is indicated by the ν-binder. Given a basic label γ = ν(Ξ).γ ′ where

Ξ is a name context such that ν(Ξ) abbreviates a sequence of single n:T bindings

(whose names are assumed all disjoint, as usual) and where γ ′ does not contain any

binders, we call γ ′ the core of the label and refer to it by ⌊γ⌋. We define the core

analogously for receive and send labels. The free names fn(a) and the bound names

bn(a) of a label a are defined as usual, whereas names(a) refer to all names of a. In

addition, we distinguish between names occurring as arguments of a label, in pas-

sive position, and the name occurring as carrier of the activity, in active position.

Name n, for illustration, occurs actively and free in n〈call o.l.(~v)〉 and in n〈get(v)〉.
We write fna(a) for the free names occurring in active position, fnp(a) for the free

names in passive position, etc. All notations are used analogously for basic labels

γ . Note that for incoming labels, Ξ contains only bindings to environment objects

(besides future names), as the environment cannot create component objects; dually

for outgoing communication.

The steps of the operational semantics for open systems check the static assump-

tions, i.e., whether at most the names actually occurring in the core of the label are

mentioned in the ν-binders of the label, and whether the transmitted values are of

the correct types. This is covered in the following definition.

Definition 2.12 (Well-formedness and well-typedness) A label a = ν(Ξ).⌊a⌋ is

well-formed, written ⊢ a, if dom(Ξ)⊆ names(⌊a⌋) and if Ξ is a well-formed name-

context for object and future names, i.e., no name bound in Ξ occurs twice. The

assertion

Ξ́ ⊢ o.l? : ~T → T (5)

(“an incoming call of the method labeled l in object o expects arguments of type ~T
and results in a value of type T ”) is given by the following rule, i.e., implication:

;Θ́ ⊢ o : c ; Ξ́ ⊢ c : [(. . . , l:~T → T, . . .)]

Ξ́ ⊢ o.l? : ~T → T

(6)

For outgoing calls, Ξ́ ⊢ o.l! : ~T → T is defined dually. In particular, in the first

25

Ξ́ = Ξ́1,n:[T]+, Ξ́2 ; Ξ́ ⊢~v : ~T a = n〈call or .l(~v)〉?
LT-CALLI

Ξ́ ⊢ a : ~T →

; Ξ́ ⊢ v : T a = n〈get(v)〉?
LT-GETI

Ξ́ ⊢ a : → T

Table 9

Typechecking labels

premise, Θ́ is replaced by ∆́. Well-typedness of an incoming core label a with ex-

pected type ~T , resp., T , and relative to the name context Ξ́ is asserted by

Ξ́ ⊢ a : ~T → resp., Ξ́ ⊢ a : → T , (7)

as given by Table 9. Finally, let Ξ́0 abbreviate ; Ξ́. Then ; Ξ́ ⊢~v : ~T means: Ξ́i ⊢ vi : Ti

and Ξ́i+1 = Ξ́i \Ti, for all 0 ≤ i ≤ n−1.

Note that the receiver o of the call is checked using only the commitment context

Θ́, to assure that o is a component object. Note further that to check the interface

type of the class c, the full Ξ́ is consulted, since the argument types ~T or the result

type T may refer to both component and environment classes.

The premise ; Ξ́ ⊢ ~v : ~T in LT-CALLI is interpreted in such a way that checking

for write-permission consumes that permission (analogous to the corresponding

premise of T-BIND in Table 4). This is formalized in the definition of ;Ξ ⊢~v : ~T for

well-typedness of a sequence of values, given at the end of Definition 2.12, which

iterates through the sequence, potentially removing write-permission for a vi s.t.

the permission is no longer available for type cheking the rest of the sequence.

In a similar spirit: requiring that Ξ́ is of the form Ξ́1,n:[T]+, Ξ́2 assures that it is not

possible to transmit n with write-permissions if n is the active thread of the label.

Besides checking whether the assumptions are met before a transition, the contexts

are updated by a transition step, especially extended by the new names, whose

scope extrudes. For the binding part Ξ′ of a label ν(Ξ′).γ , the scope of the refer-

ences to existing objects and thread names ∆′ extrudes across the border. In the

step, ∆′ extends the assumption context ∆ and Θ′ the commitment context Θ. Be-

sides information about new names, the context information is potentially updated

wrt. the availability of a future value. This is done when a get-label is exchanged at

the interface for the first time, i.e., when a future value is claimed successfully for

the first time. For outgoing communication, the situation is dual.

Before we come to the corresponding Definition 2.13 below, we make clear (again)

the interpretation of judgments ∆ ⊢ C : Θ. Interesting is in particular the informa-

tion n:[T]+−, stipulating that name n is available with write-permission (and result

type T). In case of ∆ ⊢ n : [T]+−, the name n is assumed to be available in the en-

vironment as writable, and conversely Θ ⊢ n : [T]+− asserts write permission for

26

the component. Since read permissions, captured by types [T]+, are not treated lin-

early —one is allowed to read from a future reference as many times as wished—

the treatment of bindings n:[T]+ is simpler. Hence, we concentrate here on n:[T]+−

and the write permissions.

As the domains of ∆ and Θ are disjoint, bindings n:T ′ cannot be available in the

assumption context ∆ and the commitments Θ at the same time. The information

T ′ = [T]+− indicates which side, component or environment, has the write permis-

sion. If, e.g., ∆ ⊢ n : [T]+−, then the component is not allowed to execute a bind

on reference n. In the mentioned situation, the component can execute a claim-

operation on n. The same applies if ∆ ⊢ n : [T]+. In other words, a name n can be

accessed by reading by both the environment and the component once known at the

interface, independent from whether it is part of ∆ or of Θ. A difference between

bindings of the form n:[T]+− and n:[T]+ (and likewise n:[T]+ = v) is, that com-

munication can change ∆ ⊢ n : [T]+− to Θ ⊢ n : [T]+− and vice versa. For names n

of type [T]+, this change of side is impossible. The latter kind of information, for

instance Θ ⊢ n : [T]+, implies that the code has been bound to n and it is placed

in the component. Once fixed there, the reference to n may, of course, be passed

around, but the thread named n itself cannot change to the environment since the

language does not support mobile code.

Now, how do interface interactions update the contexts? We distinguish two ways,

the name n can be transmitted in a label: passively, when transported as the argu-

ment of a call or a get-interaction, and actively, when mentioned as the carrier of the

activity, as the n in n〈call o.l(~v)〉 and n〈get(v)〉. As usual, such references (actively

or passively) can be transmitted as fresh names, i.e., under a ν-binder, or alterna-

tively as an already known name. When transmitted passively and typed with [T]+−

for some type T , the write-permission to n is handed over to the receiving side and

at the same time, that permission is removed from the sender side.

Now, what about transmitting n actively? An incoming call n〈call o.l(~v)〉?, e.g.,

reveals at the interface that the promise indeed has been fulfilled. As, in that situa-

tion of an incoming call, the thread, executing the call, is located at the component,

the commitment context is updated to satisfy Θ ⊢ n : [T]+ = ⊥ (for an appropriate

type T) after the communication. Indeed, before the step it is checked, that the en-

vironment actually has write permission for n, i.e., that ∆ ⊢ n : [T]+−, or that the

name n is new. See the incoming call in Figure 2(a), where the n is fresh, resp. in

2(c), where the n has been transmitted passively and with write-permissions to the

environment before the call (in the dotted arrow).

Whereas call-labels make public, at which side the thread in question resides, get-

labels, on the other hand, reveal that the computation has terminated and fix the

result value (if the information about the result value had not been public inter-

face information before). There are two situations, where a, say, outgoing get-

communication is possible. In both cases, the named thread, representing the fu-

27

ture, resides in the component and after the get-communication, the value is de-

termined, i.e., Θ ⊢ n : [T]+ = v (if not already before the step). One scenario is

that ∆ ⊢ n : [T]+ = ⊥ before the step still. If, in that situation, the get is executed

by the environment, it is required that the component must have had write permis-

sion before, i.e., Θ ⊢ n : [T]+− (cf. Figure 2(b)). The only way, the value for n is

available for the environment now is that the promise had been fulfilled and the

corresponding thread already has terminated, and this could have been done by the

component, only. In that situation, the contexts are updated from Θ ⊢ n : [T]+− to

Θ ⊢ n : [T]+ = v by the get-interaction. Alternatively, the thread may be known to

be part of the component with the promise already fulfilled (Θ ⊢ n : [T]+ = ⊥, as

shown in Figure 2(a) and 2(c)). Finally, the value for n might already been known at

the interface, i.e., already before the step, Θ ⊢ n : [T]+ = v holds. In that situation,

v has been added as interface information previously by a prior get-interaction, and

the situation corresponds to the very last get in Figure 2(b) and 2(c).

∆Θ

call

claim

get

Ξ 6⊢ n

Θ ⊢ n : [T]+ = ⊥

Θ ⊢ n : [T]+ = v

(a)

∆Θ

get
get

Ξ 6⊢ n

Θ ⊢ n : [T]+−

Θ ⊢ n : [T]+ = v

(b)

∆Θ

call

claim

get

get

Ξ 6⊢ n

∆ ⊢ n:[T]+−

Θ ⊢ n : [T]+ = ⊥

Θ ⊢ n : [T]+ = v

(c)

Fig. 2. Scenarios

Definition 2.13 (Context update) Let Ξ be a name context and a = ν(Ξ′).⌊a⌋ an

incoming label. Let Ξ́ = Ξ+a be defined as follows.

We define the (intermediate) contexts Θ′′ = Θ and ∆′′ = ∆,Ξ′. Let furthermore

Σ′′ be the set of bindings defined as follows. In case of a call label, i.e., ⌊a⌋ =
n〈call o.l(~v)〉?, let the vector of types ~T be defined by Ξ ⊢ o.l? : ~T → T accord-

ing to Equation (5) of Definition 2.12. Then Σ′′ consists of bindings of the form

vi:[T
′

i]
+− for values vi from ~v such that Ti = [T ′

i]
+−. In case of a get label, i.e.,

⌊a⌋ = n〈get(v)〉?, the context Σ′′ is v:[T]+− if ∆′′ ⊢ n : [[T]+−]+, and empty other-

wise.

With Σ′′ given this way, the definitions of the post-contexts ∆́ and Θ́ distinguish

between calls and get-interaction: If a is a call label and n ∈ namesa(a), we define

∆́ = (∆′′\Σ′′)\n:[T]+− and Θ́ = Θ′′,Σ′′,n:[T]+ . (8)

If a is a get label a = ν(Ξ′).n〈get(v)〉? and n ∈ namesa(a), ∆́ and Θ́ are given by:

∆́ = (∆′′\Σ′′),n:[T]+ = v and Θ́ = Θ′′,Σ′′ . (9)

For outgoing communication, the definition is applied dually.

28

The definition proceeds in two stages. In a first step, the assumption context ∆ is

extended with the bindings Ξ′ carried with the incoming label a. The second step

deals with the write permissions, i.e., it transfers the write permission transmitted

from the sender to the receiver. The binding context Σ′′ deals with the permissions

carried by thread names transmitted passively, i.e., as arguments of the communi-

cation. It remains to take care also of the information carried by the active thread.

There, we distinguish calls and get-labels. An incoming call (Equation (8)) with

n as active thread is the sign that the thread is now located at the component side

and that the write permission has been consumed by the environment. Hence, in

Equation (8), the environment loses the write-permission and the component is ex-

tended by the binding n:[T]+. In case of an incoming get, the transmitted value v is

remembered as part of ∆ (cf. Equation (8)).

The previous definition deals with the change of context information by communi-

cation. Apart from that, unfulfilled promises of the form n〈•〉 also change side, if

their name is exchanged together with write-permission. As notation, we will use

C(Ξ) to denote the component n1〈•〉 ‖ . . . ‖ nk〈•〉, where the names ni correspond

to all names of the context Ξ mentioned as ni : [Ti]
+− for some type Ti.

Now to the interface behavior, given by the external steps of Table 10. Most rules

have some premises in common. In all cases of a labeled transition, the context

Ξ is updated to Ξ́ = Ξ + a using Definition 2.13. The rules for incoming com-

munication differ from the corresponding ones for outgoing communication in

that well-typedness and well-formedness of the label is checked by the premises

Ξ́ ⊢ ⌊a⌋ : ~T → , resp. Ξ́ ⊢ ⌊a⌋ : → ~T (for calls) resp., Ξ́ ⊢ ⌊a⌋ : → T (for get-

labels), using Definition 2.12. For outgoing communication, the check is unneces-

sary as starting with a well-typed component, there is no need in re-checking now,

as the operational steps preserve well-typedness (subject reduction).

When the component claims the value of a future, we distinguish two situations:

the future value is accessed for the first time across the interface or not. In the first

case (rules CLAIMI1 and CLAIMI2), the interface does not contain the value of the

future yet, stipulated by the premise ∆ ⊢ n′ = ⊥. In that situation it is unclear from

the perspective of the component, whether or not the value has already been com-

puted. Hence, it is possible that executing claim is immediately successful (cf. rule

CLAIM1) or that the thread n trying to obtain the value has to suspend itself and try

later (cf. rule CLAIM2). Rule CLAIM2 works exactly like the corresponding internal

rule CLAIM
2
i from Table 5, except that here it is required that the queried future n′

is part of the environment. If the future value is already known at the interface (cf.

rule CLAIM3 and especially premise ∆ ⊢ n′ = v), executing claim is always success-

ful and the value v is (re-)transmitted. get works analogously to claim, except that

get insists on obtaining the value, i.e., the alternative of relinquishing the lock and

trying again as in rule CLAIM2 , is not available for get. The last two rules deal with

the situation that the environment fetches the value.

29

a = ν(Ξ′). n〈call o.l(~v)〉? Ξ́ = Ξ+a (Ξ′ ⊢ n∨∆ ⊢ n : []+−) Ξ́ ⊢ o.l? : ~T → T Ξ́ ⊢ ⌊a⌋ : ~T →
CALLI

Ξ ⊢C
a
−→ Ξ́ ⊢C ‖C(Ξ′) ‖ n〈letx:T = grab(o);M.l(o)(~v) inrelease(o);x〉

a = ν(Ξ′). n〈call o.l(~v)〉! Ξ′ = fn(⌊a⌋)∩Ξ1 Ξ́1 = Ξ1 \Ξ′ ∆ ⊢ o Ξ́ = Ξ+a

CALLO

Ξ ⊢ ν(Ξ1).(C ‖C(Ξ′) ‖ n〈•〉 ‖ n′〈letx:T = bindo.l(~v) : T →֒ n int〉)
a
−→ Ξ́ ⊢ ν(Ξ́1).(C ‖ n′〈letx : T = n in t〉)

a = ν(Ξ′). n′〈get(v)〉? Ξ́ = Ξ+a ∆ ⊢ n′ = ⊥ Ξ́ ⊢ ⌊a⌋ : → T

CLAIMI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈letx:T = claim@(n′,) in t〉)
a
−→ Ξ́ ⊢ ν(Ξ1).(C ‖C(Ξ′) ‖ n〈letx:T = v in t〉)

∆ ⊢ n′ = ⊥
CLAIMI2

Ξ ⊢ ν(Ξ1).(C ‖ n〈letx:T = claim@(n′,o) in t〉) Ξ ⊢ ν(Ξ1).(C ‖ n〈letx : T = release(o);get@n′ ingrab(o);t〉)

a = n′〈get(v)〉? ∆ ⊢ n′ = v Ξ ⊢ ⌊a⌋ : → T

CLAIMI3

Ξ ⊢ ν(Ξ1).(C ‖ n〈letx:T = claim@(n′,) in t〉)
a
−→ Ξ ⊢ ν(Ξ1).(C ‖C(Ξ′) ‖ n〈letx:T = v in t〉)

a = ν(Ξ′). n′〈get(v)〉? Ξ́ = Ξ+a ∆ ⊢ n′ = ⊥ Ξ́ ⊢ ⌊a⌋ : → T

GETI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈letx:T = get@n′ int〉)
a
−→ Ξ́ ⊢ ν(Ξ1).(C ‖C(Ξ′) ‖ n〈letx:T = v in t〉)

a = n′〈get(v)〉? ∆ ⊢ n′ = v Ξ ⊢ ⌊a⌋ : → T

GETI2

Ξ ⊢ ν(Ξ1).(C ‖ n〈letx:T = get@n′ int〉)
a
−→ Ξ ⊢ ν(Ξ1).(C ‖C(Ξ′) ‖ n〈letx:T = v in t〉)

a = ν(Ξ′).n〈get(v)〉! Ξ′ = fn(⌊a⌋)∩Ξ1 Ξ́1 = Ξ1 \Ξ′ Ξ́ = Ξ+a

GETO1

Ξ ⊢ ν(Ξ1).(C ‖C(Ξ′) ‖ n〈v〉)
a
−→ Ξ́ ⊢ ν(Ξ́1).(C ‖ n〈v〉)

a = n〈get(v)〉! Θ ⊢ n = v

GETO2

Ξ ⊢C
a
−→ Ξ ⊢C

Table 10

External steps

Finally, we characterize the initial configuration. Initially, the component contains

at most one initial activity and no objects. More precisely, given that Ξ0 ⊢ C0 is

the initial judgment, then C0 contains no objects. Concerning the threads: initially

exactly one thread is executing, either at the component side or at the environment

side. The distinction is made at the interface that initially either Θ0 ⊢ n or ∆0 ⊢ n,

where n is the only thread name in the system.

3 Interface behavior

Next we characterize the possible (“legal”) interface behavior as interaction traces

between component and environment. Half of the work has been done already in

the definition of the external steps in Table 10: For incoming communication, for

which the environment is responsible, the assumption contexts are consulted to

check whether the communication originates from a realizable environment. Con-

cerning the reaction of the component, no such checks were necessary. To char-

30

Ξ ⊢ ε : trace L-EMPTY

a = ν(Ξ′). n〈call o.l(~v)〉? Ξ́ = Ξ+a (Ξ′ ⊢ n∨∆ ⊢ n : []+−)

Ξ́ ⊢ o.l? : ~T → Ξ́ ⊢ ⌊a⌋ : ~T → Ξ́ ⊢ s : trace
L-CALLI

Ξ ⊢ a s : trace

a = ν(Ξ′).n〈get(v)〉? Ξ́ = Ξ+a ∆ ⊢ n = ⊥ Ξ́ ⊢ ⌊a⌋ : → T Ξ́ ⊢ s : trace

L-GETI1

Ξ ⊢ a s : trace

a = n〈get(v)〉? ∆ ⊢ n = v Ξ ⊢ s : trace

L-GETI2

Ξ ⊢ a s : trace

Table 11

Legal traces (dual rules omitted)

acterize when a given trace is legal, the behavior of the component side, i.e., the

outgoing communication, must adhere to the dual discipline we imposed on the en-

vironment for the open semantics. This means, we analogously abstract away from

the program code, rendering the situation symmetric.

3.1 Legal traces system

The rules of Table 11 specify legality of traces. We use the same conventions and

notations as for the operational semantics (cf. Notation 2.11). The judgments in the

derivation system are of the form

Ξ ⊢ s : trace . (10)

We write Ξ ⊢ t : trace, if there exists a derivation according to the rules of Ta-

ble 11 with an instance of L-EMPTY as axiom. The empty trace is always legal

(cf. rule L-EMPTY), and distinguishing according to the first action a of the trace,

the rules check whether a is possible. Furthermore, the contexts are updated appro-

priately, and the rules recur checking the tail of the trace. The rules are symmet-

ric wrt. incoming and outgoing communication (the dual rules are omitted). Rule

L-CALLI for incoming calls works completely analogously to the CALLI-rule in

the semantics: the second premise updates the context Ξ appropriately with the in-

formation contained in a, premise Ξ′ ⊢ n of L-CALLI assures that the identity n

of the future, carrying out the call, is fresh and the two premises Ξ́ ⊢ o.l? : ~T →
and Ξ́ ⊢ ⌊a⌋ : ~T → together assure that the transmitted values are well-typed (cf.

Definition 2.12); the latter two checks correspond to the analogous premises for the

external semantics in rule CALLI, except that the return type of the method does

not play a role here. The L-GETI-rules for claiming a value work similarly. In par-

ticular the type checking of the transmitted value is done by the combination of

31

the premises ∆ ⊢ n : [T] and Ξ́ ⊢ ⌊a⌋ : → T . As in the external semantics, we dis-

tinguish two cases, namely whether the value of the future has been incorporated

in the interface already or not (rules L-GETI2 and L-GETI1). In both cases, the

thread must be executing on the side of the environment for an incoming get. This

is checked by the premise ∆ ⊢ n =⊥ resp. by ∆ ⊢ n = v. In case of L-GETI2 , where

the value of the future has been incorporated as v into the interface information,

the actual parameter of the get-label must, of course, be v. If not (for L-GETI1), the

transmitted argument value is arbitrary, apart from the fact that it must be consistent

with the static typing requirements.

It remains to show that the behavioral description, as given by Table 11, actually

does what it claims to do, to characterize the possible interface behavior of well-

typed components. We show the soundness of this abstraction plus the necessary

ancillary lemmas such as subject reduction. Subject reduction means, preserva-

tion of well-typedness under reduction. In the formulation of subject reduction, we

make sure that the write-permissions of the environment are not available for type-

checking the component. We use ⌊∆⌋ instead of ∆ as assumption, were ⌊ ⌋ replaces

each binding n:[T]+− in ∆ by n:[T]+.

Lemma 3.1 (Subject reduction) If ⌊∆⌋ ⊢C : Θ and ∆ ⊢C : Θ
s

=⇒ ∆́ ⊢ Ć : Θ́, then

⌊∆́⌋ ⊢ Ć : Θ́.

Proof: By induction on the number of reduction steps. That internal steps preserve

well-typedness, i.e., ⌊∆⌋ ⊢C : Θ =⇒ ⌊∆́⌋ ⊢ C : Θ, follows from the corresponding

Lemma 2.9 for internal steps. That leaves the external reduction steps of Table 10.

Case: CALLI

We are given ⌊∆⌋ ⊢C : Θ. The disjunctive premise of the rule distinguishes two sub-

cases: 1) Ξ′ ⊢ n (where Ξ′ are the bindings carried along with the call-label, i.e., the

thread name is transmitted freshly) or 2) ∆ ⊢ n : []+− (the thread is not transmitted

freshly and the environment has write-permission before the step). Both are treated

uniformly in the following argument. For the right-hand side of the transition, we

need to show ⌊∆́⌋ ⊢ C′ ‖ n〈letx:T = grab(o);M.l(o)(~v) in release(o);x〉 : Θ́, where

C′ corresponds to C extended by new n′〈•〉-promises. According to the definition

of context update (Definition 2.13), Ξ́ = ∆́, Θ́, where Θ́ = Θ,Σ′′,n:[T]+ and where

Σ′′ contains bindings n′:[T ′]+− for those references transmitted with read-write per-

mission as argument of the call (see the right-hand of equation (8)). The assumption

context ∆́ for Ć after the step (by the left-hand of the same equation) is of the form

(∆,Ξ′)\Σ′′\n:[T]+−. So for the new thread n at component side, we need to show

that

⌊(∆,Ξ′)\Σ′′\n:[T]+−⌋ ⊢C ‖C(Σ′′) ‖ n〈t ′〉 : Θ,Σ′′,n:[T]+ (11)

with t ′ given as letx:T = grab(o);M.l(o)(~v) in release(o);x. To derive (11), using a

number of instances of T-PAR in the last derivation steps, gives

32

∆̃,⌊Σ′′⌋,n:[T]+ ⊢C : Θ ∆̃,n:[T]+,⌊Θ⌋ ⊢C(Σ′′) : Σ′′

∆̃,⌊Θ⌋,Σ′′,n:[T]+ ⊢ t ′ : T

∆̃,⌊Θ⌋,Σ′′ ⊢ n〈t ′〉 : n:[T]+

.

.

.

⌊(∆,Ξ′)\Σ′′ \n:[T]+−⌋ ⊢C ‖C(Σ′′) ‖ n〈t ′〉 : Θ,Σ′′,n:[T]+

(12)

where ∆̃ abbreviates the assumption context ⌊(∆,Ξ′)\Σ′′\n:[T]+−⌋ from (11). Note,

how the write permissions from Σ′′ in commitment of the conclusion at the bottom

are split among the three subgoals. All write-permissions are given to the assump-

tions of n〈t ′〉, whereas C can assume only read-access (cf. T-PAR and the definition

of ⊕ from Definition 2.1). The context Θ is split similarly. The left open goal can

be rephrased as ⌊∆⌋,⌊Ξ′⌋,n:[T]+ ⊢ C : Θ and can be discharged using the given

⌊∆⌋ ⊢ C : Θ and weakening. The open goal in the middle follows directly from an

appropriate number of instances of T-NTHREAD′ .

Remains the right-upper subgoal ⌊(∆,Ξ′)\Σ′′ \n:[T]+−⌋,⌊Θ⌋,Σ′′,n:[T]+ ⊢ letx:T =
t ′ : T (with ∆̃ expanded). Note that, apart from the write-permissions, the compli-

cated type context corresponds to ∆,Ξ′,Θ, or more formally

⌊(⌊(∆,Ξ′)\Σ′′\n:[T]+−⌋,⌊Θ⌋,Σ′′,n:[T]+)⌋ = ⌊∆,Ξ′,Θ⌋ (13)

Intuitively, it means, t ′ must be checked with all name bindings available from ∆

and Θ plus the ones, which scope is exchanged in Ξ′ as part of the label. No write-

permissions, however, can be used to type-check t ′ except those being transmitted

by the argument of the call and which are kept in Σ′′ (the context Σ′′ is the only part

of t ′ typing context not being stripped off the write-permissions by ⌊ ⌋).

Note that the meta-mathematical notation M.l(o)(~v) in t ′ stands for tbody[o/s][~v/~x],
i.e., the method body with the self-parameter s substituted by the callee’s identity

and with the formal parameter replaced by the actual ones. Now, the well-typedness

of the pre-configuration ⌊∆⌋ ⊢C : Θ together with the premise Ξ́ ⊢ o.l :?~T → T of

CALLI (cf. Definition 2.12) implies that C is of the form C′ ‖ c[(. . . , l = ς(s:c).λ (~x :
~T).tbody, . . .)], and further that ⌊∆⌋ ⊢ C : Θ has ~x:~T ;⌊∆⌋,Θ ⊢ tbody : T as sub-goal.

From that, the remaining mentioned subgoal of derivation (12) follows by T-LET,

T-GRAB, preservation of typing under substitution, T-RELEASE , and the axiom

T-VAR.

Case: CALLO

We are given ∆ ⊢ ν(Ξ1).(C ‖ n〈•〉 ‖ n′〈letx:T = bindo.l(~v) : T →֒ n in t〉) : Θ before

the step and ∆́ ⊢ ν(Ξ́1).(C ‖ n′〈letx : T = n in t〉) : Θ́ afterwards, with C = C′ ‖
n1〈•〉 ‖ . . . ‖ nk〈•〉. By one of the premises of rule CALLO we know ∆ ⊢ o, i.e.,

object o is an environment object. 5 That the name o refers to an object is assured

5 We do not allow cross-border instantiation in this paper, i.e., the component is not al-

33

by the type system and the assumption that the pre-configuration is well-typed. By

inverting the rules T-NU, T-PAR, T-NTHREAD , T-LET, and T-BIND, we get:

. . . Ξ′ = ⌊∆⌋,Ξ1,Θ Ξ́′ = Ξ′ \(~v:~T ,n:[T]+−)

T-BIND

;⌊∆⌋,Ξ1,Θ ⊢ bindo.l(~v) : T →֒ n : T :: ∆́′ x:T ; Ξ́′ ⊢ t : T ′ :: . . .

;⌊∆⌋,Ξ1,Θ̃,n′:[T ′]+ ⊢ letx:T = bindo.l(~v) : T →֒ n in t : T ′

⌊∆⌋,Ξ1,Θ̃ ⊢ n′〈letx:T = bindo.l(~v) : T →֒ n in t〉 : n′:[T ′]+

T-PAR,T-NU . . .
.
.
.

⌊∆⌋ ⊢ ν(Ξ1).(C ‖ n′〈letx : T = bindo.l(~v) : T →֒ n in t〉 ‖ n〈•〉) : Θ

Note that t in the left-upper leaf is type-checked in the context Ξ′, which corre-

sponds to Ξ′ = ⌊∆⌋,Ξ1, Θ̃,n′:[T ′]+ with those write-permissions removed that are

transmitted via the arguments of the method l (cf. rule T-BIND).

To derive well-typedness of the post-configuration, we distinguish two sub-cases,

namely whether 1) the promise n is known at the interface before the step or 2) it

is hidden still. In the first case, we have Θ ⊢ n : T ′ with T ′ = [T]+− (as a conse-

quence of the fact that the configuration is well-typed), or more precisely, Θ =
Θ̃′,n:[T]+−,n′:[T ′]+. The derivation of well-typedness of the post-configuration

⌊∆́⌋ ⊢ ν(Ξ́1).(C
′ ‖ n′〈letx : T = n in t〉) : Θ́ works as follows:

;⌊∆́⌋, Ξ́1,Θ́ ⊢ n : T x:T ;⌊∆́⌋, Ξ́1,Θ́ ⊢ t : T ′

T-LET

;⌊∆́⌋, Ξ́1,Θ́ ⊢ letx:T = n in t : T ′

T-NTHREAD

⌊∆́⌋, Ξ́1,
˜́Θ ⊢ n′〈letx:T = n in t〉 : n′:[T ′]+

T-PAR,T-NU . . .
.
.
.

⌊∆́⌋ ⊢ ν(Ξ́1).(C
′ ‖ n′〈letx : T = n in t〉) : Θ́

where Θ́ = ˜́Θ,n′:[T ′]+. Using the premises of the reduction rule CALLO, that re-

lates the different binding contexts mentioned in the step (i.e., Ξ́1 = Ξ1 \Ξ′, where

Ξ′ are the bindings mentioned in the call labels), ∆′ = ∆,Ξ′,n:[T]+ (as stipulated

by rule CALLO’s premise Ξ́ = Ξ+a and given by Definition 2.13, especially equa-

tion (8)). Note that (8) is formulated for incoming communication, i.e., used dually

here, and that in the considered subcase, we assume that n is known at the interface

before the step, i.e., Θ ⊢ n:[T]+−, as agreed upon earlier. It is straightforward to

see that the combined context ∆,Ξ1,Θ equals Θ́, Ξ́1, ∆́, with the exception, that the

former contains n:[T]+− (as part of Θ) and the latter only n:[T]+ (as part of ∆́. Cf.

especially by (8)). Furthermore, considering ⌊∆⌋ and ⌊∆́⌋ instead of ∆ and ∆́:

⌊∆́⌋, Ξ́1, Θ́ = (⌊∆⌋,Ξ1,Θ)\(n:[T]+−,~v:~T) (14)

lowed to instantiate environment objects and vice versa.

34

where ~v:~T is given as mentioned in the left-upper leaf if the first derivation tree

and as defined by the premise of T-BIND (these bindings correspond to the Σ′′ used

in equation (8) and represent the write-permissions transmitted by the call-label

from the component to the environment). This discharges the top-left subgoal of

the derivation. The second sub-case with Ξ1 ⊢ n:[T]+− works analogously.

Case: CLAIM1

The core of the type preservation here is to assure that the claim-statement in the

pre-configuration and the transmitted value v in the post-configuration are of the

same appropriate type T . Well-typedness of the pre-configuration implies with

claim@(n′,o,) of type T , that the reference n′ is of type [T]+. The third premise

of CLAIMI1 states Ξ́ ⊢ ⌊a⌋ : → T , which implies with Definition 2.12, especially

rule LT-GETI of Table 9, that also v is of type T , as required.

Case: CLAIM2

By inverting the type rules T-NU, T-PAR, T-LET and T-CLAIM for the pre-configuration

of the step, and by using the same typing rules (except T-CLAIM) plus T-GET,

T-RELEASE , and T-GRAB.

The remaining rules work similarly.

Lemma 3.2 (Soundness of abstractions) If Ξ0 ⊢C and Ξ0 ⊢C
t

=⇒, then Ξ0 ⊢ t :

trace.

Proof: By induction on the number of steps in
t

=⇒. The base case of zero steps

(which implies t = ε) is immediate, using L-EMPTY . The induction for internal

steps of the form Ξ ⊢ C =⇒ Ξ ⊢ Ć follow by subject reduction for internal steps

from Lemma 2.9; in particular, internal steps do not change the context Ξ. Remain

the external steps of Table 10. First note the contexts Ξ are updated by each external

step to Ξ́ the same way as the contexts are updated in the legal trace system.

The cases for incoming communication are checked straightforwardly, as the oper-

ational rules check incoming communication for legality, already, i.e., the premises

of the operational rules have their counterparts in the rules for legal traces.

Case: CALLI

Immediate, as the premises of L-CALLI coincide with the ones of CALLI.

Case: CLAIM1 and GET1

The two cases are covered by rule L-GET1 , which has the same premises as the

operational rules.

Case: CLAIM2

Trivial, as the step is an internal one.

35

Case: CLAIM3 and GET2

The two cases are covered by L-GET2 .

The cases for outgoing communication are slightly more complex, as the label in

the operational rule is not type-checked or checked for well-formedness as for in-

coming communication and as is done in the rules for legality.

Case: CALLO

We need to check whether the premises of L-CALLO, the dual to L-CALLI of Table

11, are satisfied. By assumption, the pre-configuration

Ξ ⊢ ν(Ξ1).(C ‖ n′〈letx:T = bindo.l(~v) : T →֒ n in t〉) (15)

is well-typed. For thread name n this implies, it is bound either in Ξ or in Ξ1, more

precisely, either Θ ⊢ n : [T]+− (it is public interface information that the component

has write-permission for n) or Ξ1 ⊢ n : [T]+− (the name n is not yet known in the

environment before the communication). In the latter situation we obtain Ξ′ ⊢ n :

[]+− by the premise Ξ′ = fn(⌊a⌋)∩Ξ1 of CALLO. Thus, the third premise Ξ′ ⊢
n∨Θ ⊢ n : []+− of L-CALLO is satisfied. We furthermore need to check whether

the label is type-correct (checked by premises nr. 4 and 5 or L-CALLO). Its easy

to check that the label is well-formed (cf. the first part of Definition 2.12). The first

premise of the check of equation (6), that the receiving object o is an environment

object, is directly given by the premise ∆ ⊢ o of CALLO. That the object o supports

a method labeled l (of type ~T → T) follows from the fact that the pre-configuration

of the call-step is well-typed. So this gives L-CALLO’s premise Ξ́ ⊢ o.l! : ~T → T .

Remains the type check Ξ́ ⊢ ⌊a⌋ : ~T → (checking that the transmitted values~v are

of the expected type ~T), which again follows from well-typedness of equation (15)

(especially inverting T-BIND).

The remaining cases work similarly.

Remark 3.3 (Comparison with reentrant threading) In a multi-threaded setting

with synchronous method calls (see for instance [4] [62]), the definition of legal

traces is more complicated. Especially, to judge whether a trace s is possible re-

quires referring to the past. I.e., instead of judgments of the form of equation (10),

the check for legality with synchronous calls uses judgments of the form:

Ξ ⊢ r � s : trace ,

reading “after history r (and in the context Ξ), the trace s is possible”. This dif-

ference has once more to do with reentrance, resp. with the absence of this phe-

nomenon here. In the threaded case, where, e.g., an outgoing call can be followed

by a subsequent incoming call as a “call-back”. To check therefore, whether a call

or a return is possible as a next step involves checking the proper nesting of the

call- and return labels. This nesting requirement (also called the balance condi-

tion) degenerates here in the absence of call-backs to the given requirement that

36

each call uses a fresh (future) identity and that each get-label (taking the role of

the return label in the multithreaded setting) is preceded by exactly one matching

preceding call. This can be judged by ∆⊢ n : [] or Θ⊢ n : [] (depending on whether

we are dealing with incoming or outgoing get-labels) and especially, no reference

to the history of interface interactions is needed.

Remark 3.4 (Monitors) The objects of the calculus act as monitors as they al-

low only one activity at a time inside the object. For the operational semantics of

Section 2.3, the lock-taking is part of the internal steps. In other words, the handing-

over of the call at the interface and the actual entry into the synchronized method

body is non-atomic, and at the interface, objects are input-enabled.

This formalization therefore resembles the one used for the interface description

of Java-like reentrant monitors in [3]. To treat the interface interaction and actual

lock-grabbing as non-atomic leads to a clean separation of concerns of the compo-

nent and of the environment. In [3], this non-atomicity, however, gives rise to quite

complex conditions characterizing the legal interface behavior. In short, in the set-

ting of [3], it is non-trivial to characterize exactly those situations, when the lock

of the object is necessarily taken by one thread which makes certain interactions

of other threads impossible. This characterization is non-trivial especially as the

interface interaction is non-atomic.

Note, however, that these complications are not present in the current setting with

active objects, even if the objects act as monitors like in [3]. The reason is sim-

ple: there is no need to capture situations when the lock is taken. In Java, the

synchronization behavior of a method is part of the interface information. Con-

cretely, the synchronized-modifier of Java, specifies that the method’s body is ex-

ecuted atomically in that object without interference of other 6 threads, assuming

that all other methods of the callee are synchronized, as well. Here, in contrast,

there is no interface information that guarantees that a method body is executed

atomically. In particular, the method body can give up the lock temporarily via the

suspend-statement, but this fact is not reflected in the interface information here.

This absence of knowledge simplifies the interface description considerably.

4 Conclusion

We presented an open semantics describing the interface behavior of components in

a concurrent object-oriented language with futures and promises. The calculus cor-

responds to the core of the Creol language, including classes, asynchronous method

calls, the synchronization mechanism, and futures, and extended by promises. Con-

6 Note that a thread can “interfere” in that setting with itself due to recursion and reen-

trance.

37

centrating on the black-box interface behavior, however, the interface semantics

is, to a certain extent, independent of the concrete language and is characteristic

for the mentioned features; for instance, extending Java with futures (see also the

citations below) would lead to a quite similar formalization (of course, low level

details may be different). Concentrating on the concurrency model, certain aspects

of Creol have been omitted here, most notably inheritance and safe asynchronous

class upgrades.

Related work

The general concept of “delayed reference” to a result of a computation to be yet

completed is quite old. The notion of futures was introduced by Baker and He-

witt [13], where (future e) denotes an expression executed in a separate thread,

i.e., concurrently with the rest of the program. As the result of the e is not imme-

diately available, a future variable (or future) is introduced as placeholder, which

will eventually contain the result of e. In the meantime, the future can be passed

around, and when it is accessed for reading (“touched” or “claimed”), the execu-

tion suspends until the future value is available, namely when e is evaluated. The

principle has also been called wait-by-necessity [16][17]. Futures provide, at least

in a purely functional setting, an elegant means to introduce concurrency and trans-

parent synchronization simply by accessing the futures. They have been employed

for the parallel Multilisp programming language [38].

Indeed, quite a number of calculi and programming languages have been equipped

with concurrency using future-like mechanisms and asynchronous method calls.

Flanagan and Felleisen [31] [29] [30] present an operational semantics, based on

evaluation contexts, for a λ -calculus with futures. The formalization is used for

analysis and optimization to eliminate superfluous dereferencing (“touches”) of

future variables. The analysis is an application of a set-based analysis and the

resulting transformation is known as touch optimization. Moreau [53] presents a

semantics of Scheme equipped with futures and control operators. Promises is a

mechanism quite similar to futures and actually the two notions are sometimes

used synonymously. They have been proposed in [50]. A language featuring both

futures and promises as separate concepts, is Alice ML [9][47][61].

[55] presents a concurrent call-by-value λ -calculus with reference cells (i.e., a non-

purely functional calculus with an imperative part and a heap) and with futures

(λfut), which serves as the core of Alice ML [9] [60] [47]. Certain aspects of that

work are quite close to the material presented here. In particular, we were inspired

by using a type system to avoid fulfilling a promise twice (in [55] called handle er-

ror). There are some notable differences, as well. The calculus incorporates futures

and promises into a λ -calculus, such that functions can be executed in parallel.

In contrast, the notion of futures here, in an object-oriented setting, is coupled to

the asynchronous execution of methods. Furthermore, the object-oriented setting

38

here, inspired by Creol, is more high-level. In contrast, λfut relies on an atomic

test-and-set operation when accessing the heap to avoid atomicity problems. Be-

sides that, they formalize promises using the notion of handled futures, i.e., the

two roles of a promise, the writing- and the reading part, are represented by two

different references, where the handle to the futures represents the writing-end.

Apart from that, [55] are not concerned with giving an open semantics as here. On

the other hand, the paper investigates the role of the heap and the reference cells,

and gives a formal proof that the only source of non-determinism by race condi-

tions in their language actually are the reference cells and without those, the lan-

guage becomes (uniformly) confluent. 7 Recently, an observational semantics for

the (untyped) λfut-calculus has been developed in [54]. The observational equiva-

lence is based on may- and must-program equivalence, i.e., two program fragments

are considered equivalent, if, for all observing environments, they exhibit the same

necessary and potential convergence behavior.

Futures have also been investigated in the object-oriented paradigm. For instance,

the object-oriented language Scala [56] has recently been extended [37] by actor-

based concurrency, offering futures and promises as part of the standard library.

The futures and promises are inspired by their use in Alice ML. In Java 5, futures

have been introduced as part of the java.util.concurrent package. As Java

does not support futures as a core mechanism for parallelism, they are introduced

in a library. Dereferencing of a future is done explicitly via a get-method (simi-

larly to this paper). A recent paper [68] introduces safe futures for Java. The safe

concept is intended to make futures and the related parallelism transparent and

in this sense goes back to the origins of the concept: introducing parallelism via

futures does not change the program’s meaning. While straightforward and natu-

ral in a functional setting, safe futures in an object-oriented and thus state-based

language such as Java require more considerations. The paper introduces a seman-

tics which guarantees safe, i.e., transparent, futures by deriving restrictions on the

scheduling of parallel executions and uses object versioning. The futures are in-

troduced as an extension of Featherweight Java (FJ) [39], a core object calculus,

and is implemented on top of Jikes RVM [10,15]. Pratikakis et. al. [58] present a

constraint-based static analysis for (transparent) futures and proxies in Java , based

on type qualifiers and qualifier inference [32]. Also this analysis is formulated as

an extension of FJ by type qualifiers. Similarly, Caromel et. al. [20][19][18] tackle

the problem to provide confluent, i.e., effectively deterministic system behavior for

a concurrent object calculus with futures (asynchronous sequential processes, ASP,

7 Uniform confluence is a strengthening of the more well-known notion of (just ordinary)

confluence; it corresponds to the diamond property of the one-step reduction property. For

standard reduction strategies of a purely functional λ -calculus, only confluence holds, but

not uniform confluence. However, the non-trivial “diamonds” in the operational semantics

of λfut are caused not by different redexes within one λ -term (representing one thread),

but by redexes from different threads running in parallel, where the reduction strategy per

thread is deterministic (as in our setting, as well).

39

an extension of Abadi and Cardelli’s imperative, untyped object calculus impς [1])

and in the presence of imperative features. The ASP model is implemented in the

ProActive Java-library [21]. The fact, that ASP is derived from some (sequential,

imperative) object-calculus, as in the formalization here, is more a superficial or

formal similarity, in particular when being interested in the interface behavior of

concurrently running objects, where the inner workings are hidden anyway. Apart

from that there are some similarities and a number of differences between the work

presented here and ASP. First of all, both calculi are centered around the notion

of first-class futures, yielding active objects. The treatment, however, of getting

the value back, is done differently in [18]. Whereas here, the client must explic-

itly claim a return value of an asynchronous method, if interested in the result, the

treatment of the future references is done implicitly in ASP, i.e., the client blocks

if he performs a strict operation on the future (without explicit syntax to claim the

value). Apart from that, the object model is more sophisticated, in that the calcu-

lus distinguishes between active and passive objects. Here, we simple have objects,

which can behave actively or passively (reactively), depending on the way they are

used. In ASP, the units of concurrency are the explicitely activated active objects,

and each passive one is owned and belongs to exactly one active one. Especially,

passive objects do not directly communicate with each other across the boundaries

of concurrent activity, all such communication between concurrent activities is me-

diated and served by the active objects.

Related to that, a core feature of ASP, not present here, is the necessity to specify

(also) the receptive behavior of the active object, i.e., in which order it is willing

to process or serve incoming messages. The simplest serve strategy would be the

willingness to accept all messages and treat them in a first-come, first-serve manner,

i.e., a input-enabled FIFO strategy on the input message queue. The so-called serve-

method is the dedicated activity of an active object to accept and schedule incoming

method calls. Typically, as for instance in the FIFO case, it is given an an non-

terminating process, but it might also terminate, in which case the active object

together with the passive objects it governs, becomes superfluous: an active object

which does no service any longer does not become a passive data structure, but can

no longer react in any way.

As extension of the core ASP calculus, [18, Chapter 10] treats delegation that bears

some similarities with the promises here. By executing the construct delegate(o.l(~v))
(using our notational conventions), a thread n hands over the permission and obli-

gation to provide eventually a value for the future reference n to method l of object

o, thereby losing that permission itself. That corresponds to executing bindo.l(~v) :

T →֒ n. Whereas in our setting, we must use a yet-unfulfilled promise n for that

purpose, the delegation operator in ASP just (re-)uses the current future for that.

Consequently, ASP does not allow the creation of promises independently from

the implicit creation when asynchronously calling a method, as we do with the

promiseT construct. In this sense, the promises here are more general, as they al-

low to profit from delegation and have the promise as first-class entity, i.e., the

40

programmer can pass it around, for instance, as argument of methods. This, on the

other hand, requires a more elaborate type system to avoid write errors on promises.

This kind of error, fulfilling a promise twice, is avoided in the delegate-construct of

ASP not by a type system, but by construction, in that the delegate-construct must

be used only at the end of a method, so that the delegating activity cannot write to

the future/promise after it has delegated the permission to another activity.

Further uses of futures for Java are reported in [51] [46] [59] [65] [64]. Futures are

also integral part of Io [40] and Scoop (simple concurrent object-oriented program-

ming) [24] [12] [52], a concurrent extension of Eiffel. Both languages are based on

the active objects paradigm.

Benton et. al. [14] present polyphonic C♯, adding concurrency to C♯, featuring asyn-

chronous methods and based on the join calculus [33] [34]. Polyphonic C♯allows

methods to be declared as being asynchronous using the async keyword for the

method type declaration. Besides that, polyphonic C♯ supports so-called chords as

synchronization or join pattern. With similar goals, Java has been extended by join

patterns in [41] [42].

In the context of Creol, de Boer et. al. [27] present a formal, operational semantics

for the language and extend it by futures (but not promises). Besides the fact, that

both operational semantics ultimately formalize a comparable set of features, there

are, at a technical level, a number of differences. For once, here, we simplified the

language slightly mainly in two respects (apart from making it more expressive in

adding promises, of course). We left out the “interleaving” operators 9 and /// of

[27] which allows the user to express interleaving concurrency within one method

body. Being interested in the observable interface behavior, those operations are a

matter of internal, hidden behavior, namely leading to non-deterministic behavior

at the interface. Since objects react non-deterministically anyhow, namely due to

race conditions present independently of 9 and ///, those operators have no impact

on the possible traces at the interface. The operators might be useful as abstrac-

tions for the programmer, but without relevance for the interface traces, and so we

ignored them here. Another simplification, this time influencing the interface be-

havior, is how the programmer can claim the value of a future. This influences, as

said, the interface behavior, since the component may fetch the value of a future

being part of the environment, or vice versa. Now, the design of the Creol -calculus

in [27] is more liberal wrt. what the user is allowed to do with future references. In

this paper, the interaction is rather restricted: if the client requests the value using

the claim-operation, there are basically only two reactions. If the future compu-

tation has already been completed, the value is fetched and the client continues;

otherwise it blocks until, if ever, the value is available. The bottom line is, that the

client, being blocked, can never observe that the value is yet absent. The calculus of

[27], in contrast, permits the user to poll the future reference directly, which gives

the freedom to decide, not to wait for the value if not yet available. Incorporating

such a construct into the language makes the absence of the value for a future refer-

41

//��������

get

t2=v

""get

t2=v
//��������

susp./rel.��

�������� //

��������
grab

⊥
cc

Fig. 3. Claiming a future (busy wait)

ence observable and would complicate the behavioral interface semantics to some

extent. This is also corroborated by the circumstance that the expressive power of

explicit polling quite complicates the proof theory of [27] (see also the discussion

in the conclusion of [27]). This is not a coincidence, since one crux of the complete

Hoare-style proof systems such as in [27] is to internalize the (ideally observable)

behavior into the program state by so-called auxiliary variable. In particular record-

ing the past interaction behavior in so-called history variables is, of course, an in-

ternalization of the interface behavior, making it visible to the Hoare-assertions.

As a further indication that allowing to poll a future quite adds expressivity to the

language is the observation that adding a poll-operation to ASP, destroys a central

property of ASP, namely confluence, as is discussed in [18, Chapter 11].

Apart from that, the combination of claiming a futures, the possibility of polling

a future, and a general await-statement complicates the semantics of claiming a

future: in [27], this is done by busy-waiting, which in practice one intends to avoid.

So instead of the behavior described in Figure 1, the formalization in [27] behaves

as sketched in Figure 3.

After an unsuccessful try to obtain a value of future, the requesting thread is sus-

pended and loses the lock. In order to continue executing, the blocked thread needs

two resources: the value of the future, once it is there, plus the lock again. The

difference of the treatment in Figure 1 and the one of Figure 3 for [27] is the or-

der in which the requesting thread attempts to get hold of these two resources: our

formalization first check availability of the future and afterwards re-gains the lock

to continue, whereas [27] do it vice versa, leading to busy wait. The reason why it

is sound to copy the future value into the local state space without already having

the lock again (Figure 1) is , of course, that, once arrive, the future value remains

stable and available.

In addition, our work differs also technically in the way, the operational semantics

is represented. [27] formulated the (internal) operational semantics using evaluation

contexts (as do, e.g., [55] for λfut), whereas we rely on a “reduction-style” seman-

tics, making use of an appropriate notion of structural congruence. While largely a

matter of taste, it seems to us that, especially in the presence of complicated syn-

chronization mechanisms, for instance the ready queue representation of [27], the

evaluation contexts do not give rise to an immediately more elegant specification of

the reduction behavior. Admittedly, we ignored here the internal interleaving oper-

42

ators 9 and ///, which quite contribute to the complexity of the evaluation contexts.

Another technical difference, if you wish, concerns the way, the futures, threads,

and objects are represented in the operational semantics, i.e., in the run-time syn-

tax of the calculus. Different from our representation, their semantics makes the

active-objects paradigm of Creol more visible: The activities are modeled as part of

the object. More precisely, an object contains, besides the instance state, an explicit

representation of the current activity (there called “process”) executing “inside”

the object plus a representation of the ready-queue containing all the activities,

which have been suspended during their execution inside the object. The schedul-

ing between the different activities is then done by juggling them in and out of the

ready-queue at the processor release points. Here, in contrast, we base our seman-

tics on a separate representation of the involved semantics concepts: 1) classes as

generators of objects, 2) objects carrying in the instance variables the persistent

state of the program, thus basically forming the heap, and 3), the parallel activities

in the form of threads. While this representation makes arguably the active-object

paradigm less visible in the semantics, it on the other hand separates the concepts

in a clean way. Instead of an explicit local scheduler inside the objects, the access

to the shared instance states of the objects is regulated by a simple, binary lock per

object. So, instead of having two levels of parallelism —locally inside the objects

and inter-object parallelism— the formalization achieves the same with just one

conceptual level, namely: parallelism is between threads (and the necessary syn-

chronization is done via object-locks). Additionally, our semantics is rather close

to the object-calculi semantics for multi-threading as in Java (for instance as in

[43] [44] or [62]). This allows to see the differences and similarities between the

different models of concurrency, and the largely similar representation could allow

are more formal comparison between the interface behaviors in the two settings.

The language Cool [22] [23] (concurrent, object-oriented language) is defined as an

extension of C++ [63] for task-level parallelism on shared memory multi-processors.

Concurrent execution in Cool is expressed by the invocation of parallel functions

executing asynchronously. Unlike the work presented here, Cool contains future

types, which correspond to the types of the form [T] used here. Further languages

supporting futures include ACT-1 [48] [49], concurrent Smalltalk [69] [73], and

of course the influential actor model [8,36,7], ABCL/1 [70] [71] (in particular the

extension ABCL/f [66]).

We have characterized the behavioral semantics of open systems, similarly to the

one presented here for futures and promises, in earlier papers, especially for object-

oriented languages based on Java-like multi-threading and synchronous method

calls, as in Java or C♯. The work [5] deals with thread classes and [4] with re-entrant

monitors. In [62] the proofs of full abstraction for the sequential and multi-threaded

cases of a class-based object-calculus can be found. Poetzsch-Heffter and Schäfer

[57] present a behavioral interface semantics for a class-based object-oriented cal-

culus, however without concurrency. The language, on the other hand, features an

ownership-structured heap.

43

Future work

An obvious way to proceed is to consider more features of the Creol -language,

in particular inheritance and subtyping. Incorporating inheritance is challenging,

as it renders the system open wrt. a new form of interaction, namely the envi-

ronment inheriting behavior from a set of component classes or vice versa. Also

Creol ’s mechanisms for dynamic class upgrades should be considered from a be-

havioral point of view (that we expect to be quite more challenging than dealing

with inheritance). An observational, black-box description of the system behavior

is necessary for the compositional account of the system behavior. Indeed, the legal

interface description is only a first, but necessary, step in the direction of a com-

positional and ultimately fully-abstract semantics, for instance along the lines of

[62]. Based on the interaction trace, it will be useful to develop a logic better suited

for specifying the desired interface behavior of a component than enumerating al-

lowed traces. Another direction is to use the results in the design of a black-box

testing framework, as we started for Java in [26]. We expect that, with the theory at

hand, it should be straightforward to adapt the implementation to other frameworks

featuring futures, for instance, to the future libraries of Java 5.

Acknowledgements

We thank Einar Broch Johnsen, Marcel Kyas, Olaf Owe, and Gerardo Schneider for

stimulating discussions on the topic. Furthermore we are thankful for the detailed

comments and careful suggestions of the reviewers that helped improving the paper.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.

Springer-Verlag, 1996.

[2] E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen. Behavioral Interface Description

of an Object-Oriented Language with Futures and Promises. Technical Report 364,

University of Oslo, Dept. of Computer Science, Oct. 2007.

[3] E. Ábrahám, A. Grüner, and M. Steffen. Abstract interface behavior of object-oriented

languages with monitors. In R. Gorrieri and H. Wehrheim, editors, FMOODS ’06,

volume 4037 of Lecture Notes in Computer Science, pages 218–232. Springer-Verlag,

2006.

[4] E. Ábrahám, A. Grüner, and M. Steffen. Abstract interface behavior of object-oriented

languages with monitors. Theory of Computing Systems, 2007. Published online 3.

Oct. 2007.

[5] E. Ábrahám, A. Grüner, and M. Steffen. Heap-abstraction for open, object-oriented

systems with thread classes. Journal of Software and Systems Modelling (SoSyM),

44

2007. Published online first.

[6] ACM. Object Oriented Programming: Systems, Languages, and Applications

(OOPSLA) ’99, 1999. In SIGPLAN Notices.

[7] G. A. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, 1986.

[8] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. Towards a theory of actor

computation (extended abstract). In R. Cleaveland, editor, Proceedings of CONCUR

’92, volume 630 of Lecture Notes in Computer Science, pages 565–579. Springer-

Verlag, 1992.

[9] Alice project home page. www.ps-uni-sb.de/alice, 2006.

[10] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber, T. Ngo,

M. Mergen, J. C. Sheperd, and S. Smith. Implementing Jalapeno in Java. In

OOPSLA’99 [6], pages 313–324. In SIGPLAN Notices.

[11] P. America. Issues in the design of a parallel object-oriented language. Formal Aspects

of Computing, 1(4):366–411, 1989.

[12] V. Arslan, P. Eugster, P. Nienaltowski, and S. Vaucouleur. Scoop — concurrency

made easy. In J. Kohlas, B. Meyer, and A. Schiper, editors, Research Results of the

DICS Program, volume 4028 of Lecture Notes in Computer Science, pages 82–102.

Springer, 2006.

[13] H. Baker and C. Hewitt. The incremental garbage collection of processes. ACM

Sigplan Notices, 12:55–59, 1977.

[14] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstraction for C#. ACM

Transactions on Programming Languages and Systems. Special Issue with papers from

FOOL 9, 2003.

[15] M. G. Burke, J.-D. Choi, S. F. Fink, D. Grove, M. Hind, V. Sarkar, M. Serranon, V. C.

Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno dynamic optimizing compiler.

In Proceedings of the ACM Java Grande Conference, San Francisco, pages 129–141,

1999.

[16] D. Caromel. Service, asynchrony and wait-by-necessity. Journal of Object-Oriented

Programming, 2(4):12–22, Nov. 1990.

[17] D. Caromel. Towards a method of object-oriented concurrent programming.

Communications of the ACM, 36(9):90–102, Sept. 1993.

[18] D. Caromel and L. Henrio. A Theory of Distributed Objects. Asynchrony — Mobility

— Groups — Components. Springer-Verlag, 2005.

[19] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous sequential processes.

Research Report RR-4753 (version 2), INRIA Sophia-Antipolis, May 2003.

[20] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic objects.

In Proceedings of POPL ’04. ACM, Jan. 2004.

45

[21] D. Caromel, W. Klauser, and J. Vayssière. Towards seamless computing and

metacomputing in Java. Concurrency, Practice and Experience, 10(11-13):1043–

1061, 1998. ProActive available at www.infria.fr/oasis/proactive.

[22] R. Chandra. The COOL Parallel Programming Language: Design, Implementation,

and Performance. PhD thesis, Stanford University, Apr. 1995.

[23] R. Chandra, A. Gupta, and J. L. Hennessy. COOL: A languange for parallel

programming. In Proceedings of the 2nd Workshop on Programming Languanges

and Compilers for Parallel Computing. IEEE CS, 1989.

[24] M. J. Compton. SCOOP: An investigation of concurrency in Eiffel. Master’s thesis,

Department of Computer Science, The Australian National University, 2000.

[25] The Creol language. http:heim.ifi.uio.no/creol, 2007.

[26] F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen. Test driver generation

from object-oriented interaction traces (extended abstract). In Proceedings of the 19th

Nordic Workshop on Programming Theory (NWPT’07), 2007.

[27] F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In

R. de Nicola, editor, Proceedings of Programming Languages and Systems, 16th

European Symposium on Programming, ESOP 2007, Vienna, Austria., volume 4421

of Lecture Notes in Computer Science, pages 316–330. Springer-Verlag, 2007.

[28] The E language. www.erights.org, 2007.

[29] C. Flanagan and M. Felleisen. The semantics of future. Technical Report TR94-238,

Department of Computer Science, Rice University, 1994.

[30] C. Flanagan and M. Felleisen. Well-founded touch optimization of parallel scheme.

Technical Report TR94-239, Department of Computer Science, Rice University, 1994.

[31] C. Flanagan and M. Felleisen. The semantics of future and an application. Journal of

Functional Programming, 9(1):1–31, 1999.

[32] J. Foster, M. Fändrich, and A. Aiken. A theory of type qualifiers. In ACM Conference

on Programming Language Design and Implementation, pages 192–203. ACM, May

1999.

[33] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-

calculus. In Proceedings of POPL ’96, pages 372–385. ACM, Jan. 1996.

[34] C. Fournet and G. Gonthier. Th join calculus: A language for distributed mobile

programming. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, APPSEM

2000, volume 2395, 2002.

[35] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press,

1989.

[36] I. A. M. Gul A. Agha, S. F. Smith, and C. L. Talcott. A foundation for actor

computation. Journal of Functional Programming, 7(1), Jan. 1997.

46

http:heim.ifi.uio.no/creol

[37] P. Haller and M. Odersky. Actors that unify threads and events. In Proceedings of

COORDINATION ’07, volume 4467 of Lecture Notes in Computer Science, pages

171–190. Springer-Verlag, 2007. A longer version is available as EPFF Technical

Report.

[38] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM

Transactions on Programming Languages and Systems, 7(4):501–538, Oct. 1985.

[39] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus

for Java and GJ. In OOPSLA’99 [6], pages 132–146. In SIGPLAN Notices.

[40] Io: A small progamming language. www.iolanguage.com, 2007.

[41] G. S. Itzstein and D. Kearney. Join Java: An alternative concurrency semantics for

java. Technical Report ACRC-01-001, University of South Australia, 2001.

[42] G. S. Itzstein and D. Kearney. Applications of join Java. In Proceedings of the Seventh

Asia-Pacific Computer Systems Architectures Conference (ACSAC 2002), 2002.

[43] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects.

In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

[44] A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java

language. In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of Lecture

Notes in Computer Science, pages 423–438. Springer-Verlag, 2005.

[45] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for

distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66, Nov.

2006.

[46] JSR 166: Concurrency utilities. www.jcp.org/en/jsr/detail?id=166, 2007.

[47] L. Kornstaedt. Alice in the land of Oz – an interoperability-based implementation

of a functional language on top of a relational language. In Proceedings of the

First Workshop on Mulit-Language Infrastructure and Interoperability (BABEL’01),

Electronic Notes in Theoretical Computer Science, Sept. 2001.

[48] H. Liebermann. A preview of ACT-1. AI-Memo AIM-625, Artificial Intelligence

Laboratory, MIT, 1981.

[49] H. Liebermann. Concurrent object-oriented programming in ACT1. In Yonezawa and

Tokoro [72].

[50] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous

procedure calls in distributed systems. SIGPLAN Notices, 23(7):260–267, 1988.

[51] D. A. Manolescu. Workflow enactment with continuation and future objects. In

Object Oriented Programming: Systems, Languages, and Applications (OOPSLA) ’02

(Seattle, USA), pages 40–51. ACM, Nov. 2002. In SIGPLAN Notices.

[52] B. Meyer. Systematic concurrent object-oriented programming. Communications of

the ACM, 36(9):56–80, 1993.

47

[53] L. Moreau. The semantics of scheme with future. In International Conference on

Functional Programming, pages 146–156. ACM Press, 1996.

[54] J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Observational

semantics for a concurrent lambda calculus with reference cells and futures. Electronic

Notes in Theoretical Computer Science, 2007.

[55] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda-calculus with

futures. Theoretical Computer Science, 64(3):338–356, Nov. 2006.

[56] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. A comprehensive

step-by-step guide. Artima Developer, 2008.

[57] A. Poetzsch-Heffter and J. Schäfer. A representation-independent behavioral

semantics for object-oriented components. In M. M. Bonsangue and E. B. Johnsen,

editors, FMOODS ’07, volume 4468 of Lecture Notes in Computer Science. Springer-

Verlag, June 2007.

[58] P. Pratikakis, J. Spacco, and M. W. Hicks. Transparent proxies for Java futures.

In Ninetheeth Object Oriented Programming: Systems, Languages, and Applications

(OOPSLA) ’04, pages 206–233. ACM, 2004. In SIGPLAN Notices.

[59] R. R. Raje, J. I. William, and M. Boyles. An asynchronous method incocation (ARMI)

mechanism for Java. In Proceedings of the ACM Workshop on Java for Science and

Engineering Computation, 1997.

[60] A. Rossberg, D. L. Botland, G. Tack, T. Brunklaus, and G. Smolka. Alice through

the looking glass. In Vol. 5 of Trends in Functional Programming, chapter 6. Intellect

Books, Bristol, 2006.

[61] J. Schwinghammer. A concurrent λ -calculus with promises and futures. Diplomarbeit,

Universität des Saarlandes, Feb. 2002.

[62] M. Steffen. Object-Connectivity and Observability for Class-Based, Object-Oriented

Languages. Habilitation thesis, Technische Faktultät der Christian-Albrechts-

Universität zu Kiel, 2006. Submitted 4th. July, accepted 7. February 2007.

[63] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[64] T. Sysala and J. Janecek. Optimizing remote method invocation in Java. In DEXA,

pages 29–35, June 2001.

[65] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection: Spatial

and temporal reflection of reification. In Eighteenth Object Oriented Programming:

Systems, Languages, and Applications (OOPSLA) ’03, pages 27–46. ACM, 2003. In

SIGPLAN Notices.

[66] K. Taura, S. Matsuoka, and A. Yoneazawa. ABCL/f: A future-based polymorphic

typed concurrent object-oriented language — its design and implementation —. In

DIMACS workshop on Specification of Parallel Algorithms, 1991.

[67] P. L. Wadler. Linear types can change the world. In C. B. Jones and M. Broy, editors,

Proceedings of PROCOMET ’90, 1990.

48

[68] A. Welc, S. Jagannathan, and A. Hosking. Safe futures in Java. In Twentieth Object

Oriented Programming: Systems, Languages, and Applications (OOPSLA) ’05. ACM,

2005. In SIGPLAN Notices.

[69] Y. Yokote and M. Tokoro. Concurrent programming in concurrent SmallTalk. In

Yonezawa and Tokoro [72], pages 129–158.

[70] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

[71] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent programming

in ABCL/1. In Object Oriented Programming: Systems, Languages, and Applications

(OOPSLA) ’86 (Portland, Oregon), pages 258–268. ACM, 1986. In SIGPLAN Notices

21(11).

[72] A. Yonezawa and M. Tokoro, editors. Object-oriented Concurrent Programming. MIT

Press, 1987.

[73] Y. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modelling and programming

in an object-oriented concurrent language ABCL/1. In Yonezawa and Tokoro [72],

pages 55–89.

49

Notation index

2.1 Syntax

Notation Page Meaning

n 5 name (in general, or thread / future /

promise name in particular)

v 5 value

o 5 object name

c 5 class name

() 6 unit value

x 6 variable

C 6 component

0 6 empty component

‖ 6 parallel operator

n〈t〉 6 thread with name n and code t

c[(O)] 6 class with name c and methods and fields

defined in O

o[c,F,L] 6 instance o of class c with fields F and lock

L

⊤, resp., ⊥ 6 value of a taken, resp., free lock

ν 7 ν-operator for hiding

ς(s:T).λ (~x:~T).t 7 method of the abstracted object s with for-

mal parameters~x and body t

⊥c 8 undefined object reference

f 8 field name

l = ς(s:T).λ ().v (or l = v)

resp. l = ς(s:T).λ ().⊥c (or

l = ⊥c)

8 field definition

v.l() (or v.l) 8 field access

v′.l := ς(s:T).λ ().v (or

v′.l := v)

8 field update

v⊥ 8 either a value v or a symbol ⊥c

newc 8 object creation

promiseT 8 promise creation

bindo.l(~v) : T →֒ n 8 binding code to a promise

claim, get 8 get the result of a future

suspend, grab, and release 8 lock operations

2.2 Type system

Notation Page Meaning

B 10 base types (such as integers, etc. Left un-

specified)

Unit 10 type of the unit value ()

50

[T]+− 10 type of a reference to a future with write

permisson, where the future will return a

value of type T

[T]+ 10 type of a reference to a future with read-

only permisson, where the future will re-

turn a value of type T

[T] 10 type of a reference to a future with write

or read-only permisson, where the future

will return a value of type T

[l1:U1, . . . , lk:Uk] 10 interface type of unnamed objects

[(l1:U1, . . . , lk:Uk)] 10 interface type for classes
~T 10 T1 × . . .×Tk

Unit → T 10 T1 × . . .×Tk → T when k = 0

∆ 11 name context: typing assumptions about

the environment

Θ 11 name context: typing commitments of the

component

∆ ⊢C : Θ 11 typing judgment

⊕ 12 symmetric operation on well-formed

name contexts

Γ 12 stack-organized variable context

n〈•〉 12 not yet fulfilled promise

≤ 13 subtyping relation on types

Γ;∆ ⊢ e : T :: Γ́, ∆́ 13 judgment: type system

T.l 14 pick the type in T associated with label l

∆\n : T , Γ\n : T , . . . 16 difference operator

2.3 Operational semantics

Notation Page Meaning

 16 internal transition, confluent step
τ
−→ 16 internal transition, other (non-confluent)

step

≡ 17 structural congruence

⊢C : ok 20 write-error free component

∆ ⊢m C : Θ 20 minimal typing judgment

∆ ⊢ n = v 24 ∆ contains the corresponding value infor-

mation

∆ ⊢ n = ⊥ 24 ∆ does not contain the corresponding

value information

∆ ⊢C : Θ
a
−→ ∆́ ⊢ Ć : Θ́ 24 external transition

Ξ 24 the tuple of name contexts ∆,Θ
γc 25 call label

γg 25 get label

γ? 25 incoming interaction label

γ! 25 outgoing interaction label

51

⌊γ⌋ 25 core of the label γ
fn(a) 25 free names of label a

bn(a) 25 bound names of label a

names(a) 25 all names of label a

fna(a) 25 free names occurring in active position in

a

fnp(a) 25 the free names in passive position in a

⊢ a 25 a is well-formed

Ξ́ ⊢ o.l? : ~T → T 25 an incoming call of the method labeled l

in object o expects arguments of type ~T
and results in a value of type T

Ξ́ ⊢ a :~T → resp., Ξ́ ⊢ a : →
T

26 well-typedness of an incoming core label

a with expected type ~T , resp., T , and rel-

ative to the name context Ξ́

; Ξ́ ⊢~v : ~T 26 Ξ́0 abbreviate ; Ξ́, then Ξ́i ⊢ vi : Ti and

Ξ́i+1 = Ξ́i \Ti, for all 0 ≤ i ≤ n−1

Ξ́ = Ξ+a 28 context update

3 Interface behavior

Notation Page Meaning

Ξ ⊢ s : trace 31 judgment: legal trace

⌊∆⌋ 32 binding replacement

52

	Introduction
	Calculus
	Syntax
	Type system
	Operational semantics
	Internal steps
	External semantics

	Interface behavior
	Legal traces system

	Conclusion
	References

