
Observability, Connectivity, and Replay in a

Sequential Calculus of Classes⋆

April 10, 2005

Erika Ábrahám2 and Marcello M. Bonsangue3 and Frank S. de Boer4 and
Andreas Grüner1 and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 Albert-Ludwigs-University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. Object calculi have been investigated as semantical founda-
tion for object-oriented languages. Often, they are object-based, whereas
the mainstream of object-oriented languages is class-based.

Considering classes as part of a component makes instantiation a possible
interaction between component and environment. As a consequence, one
needs to take connectivity information into account.

We formulate an operational semantics that incorporates the connectiv-
ity information into the scoping mechanism of the calculus. Furthermore,
we formalize a notion of equivalence on traces which captures the uncer-
tainty of observation cause by the fact that the observer may fall into
separate groups of objects. We use a corresponding trace semantics for
full abstraction wrt. a simple notion of observability. This requires to
capture the notion of determinism for traces where classes may be in-
stantiated into more than one instance during a run and showing thus
twice an equivalent behavior (doing a “replay”), a problem absent in an
object-based setting.

Keywords: class-based object-oriented languages, formal semantics, de-
terminism, full abstraction

1 Introduction

Classes are a structuring concept for object-oriented languages such as Java or
C#. This raises the question what the semantics of a program is when considering
classes as composition units. A simple, elegant, and common semantical approach
is to take an observational point of view: two program fragments are equal, if,
when put in any possible context, no difference can be seen. Starting from a
simple notion of observation, [8] presented a fully abstract trace semantics for

⋆ Part of this work has been financially supported by the IST project Omega (IST-
2001-33522) and the NWO/DFG project Mobi-J (RO 1122/9-1/2).

http://www-omega.imag.fr/
http://www.informatik.uni-kiel.de/protect unhbox voidb@x penalty @M {}mobij/

2

a multithreaded object calculus, i.e., a language without classes; [2] generalized
the result by taking classes into account.

In this paper, we re-address the problem in a single-threaded setting. This
is interesting for two reasons. First, simplifying the language does not simplify
the problem per se. Certain complications in connection with concurrency cer-
tainly get simpler, e.g., by absence of race conditions. On the other hand, new
complications arise. In particular, with one thread only, the language becomes
deterministic which needs to be accounted for in the description of the semantics.
Secondly, concentrating on a single thread allows to understand the semantical
impact of classes more clearly and independently from the orthogonal aspects of
concurrency.

One key observation is that in the presence of classes one needs to take
connectivity information into account, i.e., the way objects may have knowledge
of each other, to characterize the observable behavior. In particular, unconnected
environment objects can neither determine the absolute order of interaction, nor
can they exchange information to compare object identities. Furthermore, with
a deterministic language, one needs to capture the notion of determinism for
traces where classes may be instantiated into more than one instance during a
run and showing thus twice an equivalent behavior (doing a “replay”), a problem
absent in an object-based setting.

Overview The paper is organized as follows. We start in Section 2 with an in-
formal account of the semantics and the underlying intuitions. Section 3 contains
the syntax of the calculus and a sketch of its semantics. In particular, the notions
of lazy instantiation and connectivity of objects are formalized. Afterwards, Sec-
tion 4 elaborates on the trace semantics and in particular an equivalence relation
on traces capturing the uncertainty of observation in a class-based setting. In
Section 5 we fix the notion of observation and state the full abstraction result.
Section 6 concludes with related and future work.

2 Observability and classes

This section presents on an intuitive level the consequences of incorporating
classes into the observational set-up.

2.1 Cross-border instantiation and connectivity

The observational set-up separates classes into component and environment
classes. Hence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well.

If, for instance, the component creates an instance of an environment class,
the interaction between the component and the newly created object can entail
observable effects in the future, as the code of the object is externally provided
and therefore this interaction belongs to the externally visible observer-program
behavior. Hence, instances of environment classes belong to the environment,

3

and dually those of internal classes to the component. However, in the above
situation, the reference to the new external object is kept at the creator for
the time being. So if the component instantiates two objects o2 and o3 of the
environment, the situation looks informally as in Figure 1, where the dotted
bubbles indicate the scope of o2, respectively of o3.

o1

o2

o3

c1 c2 c3

component environment

Fig. 1. Instances of external
classes

For an exact account of the semantics,
the inability of o2 and o3 to be in con-
tact must be accounted for. More gener-
ally, the semantics must contain a repre-
sentation of which object can possibly be
in contact with others, i.e., an overapprox-
imation of the heap’s connectivity. Sets of
objects which can possibly be in contact
with each other form therefore equivalence
classes of names —we call them cliques—
and the semantics must include a represen-
tation of them. New cliques can be created,
as new objects can be instantiated without
contact to others, and furthermore cliques
can merge, if the component leaks the iden-

tity of a member of one clique to a member of another.

2.2 Different observers and order of events

That the observer may fall into separate cliques of unconnected objects has im-
plications for what can be observed. First of all, the absolute order of events
cannot be determined, as the observer cliques cannot coordinate. Note that the
clique structure is dynamic, since communication can merge previously separate
observer cliques. After merging, the now joint clique can coordinate and thus ob-
serve the order of further interaction, but the order of past interaction cannot be
reconstructed. I.e., in Figure 2, the three components are observably equivalent.

2.3 Classes as generators of objects, replay, and determinism

Classes are generators for objects, and two instances of a class are “identical
up-to their identity” i.e., they have the same behavior up-to renaming. If the
trace of a component contains a certain behavior of an object (or more generally
of a clique of objects), then it is unavoidable that the component shows a trace
where the equivalent behavior is realized by a second instance of the object (or
object clique): each behavior can be “replayed” on a fresh instance. With the
possibility of cross-border instantiation, the component can create more than
one equivalent instances of its observer, which perform equivalently.

Consider Figures 3(a) and 3(b). The second one resembles Figure 2(a) before
the merge. This time, however, we assume, that the interaction s′ with the first
clique is a prefix of the longer s t up-to renaming. If s t is a possible behavior
of the system, then clearly also scenario 3(b). One can use the argument also

4

Comp. Env.

(a)

Comp. Env.

(b)

Comp. Env.

(c)

Fig. 2. Order of interaction and merging

in the reverse direction: if 3(b) is possible, then so is 3(a); in other words, both
behaviors are equivalent.

If afterwards the observers are merged (cf. Figure 3(c)), this scenario clearly
differs from the one where the interaction s′ with the formerly separate clique
is missing. Unlike in the situation of Figure 2, where the order of the previously
separate cliques could not be enforced in retrospect, the merging here allows to
compare the different identities (but of course still not the order).

The possibility to create more than one instance from a class has a further
impact when dealing with deterministic programs in the single-threaded setting.
If a class is instantiated twice, its instances must behave “the same” up-to re-
naming, i.e., when confronted with the same input, show the same reaction. For

Comp. Env.

s t

(a) Scenario s t

Comp. Env.

s′

s t

(b) Replay

Comp. Env.

s′

s t

(c) Merged

Fig. 3. Replay and merging

5

instance, the shorter trace s′ of Figure 3(b) is not only possible, given s t, but
the clique on the left of 3(b) can do nothing else than what does the one on
the right, when stimulated by the same input from the component. The sce-
nario used environment cliques for illustration, but the same arguments apply
to component cliques, as well.

3 A single-threaded calculus with classes

Concentrating on the semantical issues, we only sketch the syntax and ignore
typing issues as they are rather standard and similar to [2]. Indeed, the calculus
is a restriction to single threaded programs of the one used in [2], which in turn
is an extension of the concurrent object calculus from [6,8] namely by adding
classes.

A program is given by a collection of classes where a class c[(O)] carries a
name c and defines the implementation of its methods and fields.5 An object
o[c, F] stores the current value of the fields or instance variables and keeps a ref-
erence to the class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xk:Tk).t provides
the method body abstracted over the ς-bound “self” parameter and the formal
parameters of the method [1]. Besides named objects and classes, the dynamic
configuration of a program contains one single thread ♮〈t〉 as active entity. A
thread basically is either a value or a sequence of expressions, notably method
calls (written v.l(~v)) and the creation of new objects new c where c is a class
name. Furthermore we will use f specifically for instance variables or fields, we
use f = v for field variable declaration, field access is written as x.f , and field
update as x.f := v.

The operational semantics is given in two levels: internal steps whose effect
is confined within a component, and those with external effect. The external
behavior of a component is given in terms of labeled transitions describing the

5 For names, we will generally use o and its syntactic variants as names for objects, c
for classes, and n when being unspecific, for instance in Table 1.

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F] | ♮〈t〉 program
O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f field
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | b.l := e | new n
v ::= x | n value

Table 1. Abstract syntax

6

communication at the interface of an open program. For the completeness of
the semantics, it is crucial ultimately to consider only communication traces
realizable by an actual program context which, together with the component,
yields a well-typed closed program.

Being concerned with the dynamic connectivity among objects, we omit in
this paper most of the typing aspects, e.g., that transmitted values need to
adhere to the static typing assumptions, that only publicly known objects can
be called from the outside, and the like, since this part is rather standard and
also quite similar to the one in [8].

3.1 Internal steps

The internal steps are given in Table 2, where we distinguish between confluent
steps, written , and other internal transitions, written

τ
−→.6

♮〈let x:T = v in t〉 ♮〈t[v/x]〉 Red

♮〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 ♮〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

♮〈let x:T = (if v = v then e1 else e2) in t〉 ♮〈let x:T = e1 in t〉 Cond1

♮〈let x:T = (if v1 = v2 then e1 else e2) in t〉 ♮〈let x:T = e2 in t〉 Cond2

♮〈let x:T = stop in t〉 ♮〈stop〉 Stop

c[(F, M)] ‖ ♮〈let x:c = new c in t〉

c[(F, M)] ‖ ν(o:c).(o[c, F] ‖ ♮〈let x:c = o in t〉) NewOi

c[(F, M)] ‖ o[c, F ′] ‖ ♮〈let x:T = o.l(~v) in t〉
τ
−→

c[(F, M)] ‖ o[c, F ′] ‖ ♮〈let x:T = M.l(o)(~v) in t〉 Calli

o[c, F] ‖ ♮〈let x:T = o.f := v in t〉
τ
−→ o[c, F.f := v] ‖ ♮〈let x:T = o in t〉 FUpdate

Table 2. Internal steps

The reduction relations from above are used modulo structural congruence,
which captures the algebraic properties of parallel composition and the hiding
operator. The basic axioms for ≡ are shown in Table 3 where in the fourth axiom,
n does not occur free in C1.

6 In the single-threaded setting, the distinction is not too important, since at any time
at most one reduction step is enabled. It may nevertheless enhance understanding
to conceptually distinguish between side-effect free steps and those that may lead to
race conditions when executed in the presence of other threads.

7

0 ‖ C ≡ C

C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2)

ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 3. Structural congruence

3.2 Connectivity contexts and cliques

As discussed, in the presence of internal and external classes and cross-border
instantiation, the semantics must contain a representation of the object con-
nectivity. The external semantics is formalized as labeled transitions between
judgments of the form

∆; E∆ ⊢ C : Θ; EΘ , (1)

where ∆; E∆ are the assumptions about the environment of the component C

and Θ; EΘ the commitments . The assumptions consist of a part ∆ concerning the
existence (plus static typing information) of named entities in the environment.
For the book-keeping of which objects of the environment have been told which
identities, a well-typed component must take into account the relation of object
names from the assumption context ∆ amongst each other, and the knowledge
of objects from ∆ about those exported by the component, i.e., those from Θ.
In analogy to the name contexts ∆ and Θ, E∆ expresses assumptions about the
environment, and EΘ commitments of the component:

E∆ ⊆ ∆× (∆ + Θ) . (2)

and dually EΘ ⊆ Θ × (Θ + ∆). We write o1 →֒ o2 (“o1 may know o2”) for
pairs from these relations. Without full information about the complete system,
the component must make worst-case assumptions concerning the proliferation
of knowledge, which are represented as the reflexive, transitive, and symmetric
closure of the →֒-pairs of objects from ∆. Given ∆, Θ, and E∆, we write ⇌ for
this closure, i.e.,

⇌ , (→֒↓∆ ∪ ←֓↓∆)∗ ⊆ ∆×∆ . (3)

Note that we close →֒ only wrt. environment objects, but not wrt. objects at
the interface, i.e., the part of →֒ ⊆ ∆ × Θ. We also need the union ⇌ ∪ ⇌
; →֒ ⊆ ∆ × (∆ + Θ), where the semicolon denotes relational composition. We
write ⇌→֒ for that union. As judgment, we use ∆; E∆ ⊢ o1 ⇌ o2 : Θ, resp.
∆; E∆ ⊢ o1 ⇌→֒ o2 : Θ. For Θ, EΘ, and ∆, the definitions are applied dually.

The relation⇌ is an equivalence relation on the objects from ∆ and partitions
them into equivalence classes. We call a set of object names from ∆ (or dually
from Θ) such that for all objects o1 and o2 from that set, ∆; E∆ ⊢ o1 ⇌ o2 : Θ, a
clique, and if we speak of the clique of an object we mean the equivalence class.

8

3.3 External steps

The external semantics is given by transitions between ∆; E∆ ⊢ C : Θ; EΘ

judgments in Table 5. Besides internal steps a component exchanges information
with the environment via calls and returns (cf. Table 4).

γ ::= 〈call o.l(~v)〉 | 〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

Table 4. Labels

To formulate the external communication, we need to augment the syntax
by two additional expressions o1 blocks for o2 and o2 return to o1 v. The first one
denotes a method body in o1 waiting for a return from o2, and dually the second
expression returns v from o2 to o1. Furthermore, we augment the syntax of the
method definitions accordingly, such that each method call is preceded by an
annotation of the caller; i.e., instead of ς(self :c).λ(~x:~T).(. . . x.l(~y) . . .) we write

ς(self :c).λ(~x:~T).(. . . self x.l(~y) . . .).

Connectivity assumptions and commitments As for the relationship of
communicated values, incoming and outgoing communication play dual roles:
EΘ over-approximates the actual connectivity of the component, while the as-
sumption context E∆ is consulted to exclude impossible combinations of in-
coming values. Incoming calls update the commitment context EΘ in that it
remembers that the callee o2 now knows (or rather may know) the arguments
~v. For incoming communication (cf. rules CallI and RetI) we require that the
sender is acquainted with the transmitted arguments.

For the role of the caller identity o1: The antecedent of the call-rules requires,
that the caller o1 is acquainted with the callee o2 and with all of the arguments.
However, the caller is not transmitted in the label which means that it remains
anonymous to the callee.7 To gauge, whether an incoming call is possible and
to adjust the book-keeping about the connectivity appropriately. With the sole
exception of the initial (external) step, the scope of at least one object of the
calling clique must have escaped to the component, for otherwise there would
be now way of the caller to address o2 as callee. In other words, for at least one
object o1 from the clique of the actual caller (which remains anonymous), the
judgment ∆ ⊢ o1 : c holds prior to the call.

While E∆ imposes restrictions for incoming communication, the commitment
context EΘ is updated when receiving new information. For instance in CallI,
the commitment ÉΘ after reception marks that now the callee o2 is acquainted

7 Of course, the caller may transmit its identity to the callee as argument, but this
does not reveal to the callee who “actually” called. Indeed, the actual identity of the
caller is not needed; it suffices to know the clique of the caller. As representative for
the clique, an equivalence class of object identities, we simply pick one object.

9

a = ν(∆′, Θ′). 〈call o2.l(~v)〉? dom(∆′, Θ′) ⊆ fn(〈call o2.l(~v)〉) static(∆, Θ)

Θ́; ÉΘ = Θ; EΘ + Θ′; o2 →֒ ~v ∆́; É∆ = ∆; E∆ + ∆′;⊙ →֒ (∆′, Θ′) ∆ ⊢ ⊙

; Θ́ ⊢ o2 : c2 ; ∆; Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T ∆́; É∆ ⊢ ⊙⇌→֒ ~v, o2 : Θ́
CallIi

∆; E∆ ⊢ C : Θ; EΘ

a
−→ ∆́; É∆ ⊢ C ‖ C(Θ′) ‖ ♮〈let x:T = o2.l(~v) in o2 return to ⊙x〉 : Θ́; ÉΘ

a = ν(Θ′, ∆′). 〈call o2.l(~v)〉! (Θ′, ∆′) = fn(〈call o2.l(~v)〉 ∩ Φ Φ́ = Φ \(Θ′, ∆′)

∆́ ⊢ o2 : c2 static(∆, Θ)

∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ ~v Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′)
CallOi

∆; E∆ ⊢ ν(Φ).(C ‖ ♮〈let x:T = ⊙ o2.l(~v) in t〉) : Θ; EΘ

a
−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ ♮〈let x:T = ⊙ blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(∆′, Θ′). 〈call o2.l(~v)〉? dom(∆′, Θ′) ⊆ fn(〈call o2.l(~v)〉)

Θ́; ÉΘ = Θ; EΘ + Θ′; o2 →֒ ~v ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′)

; Θ́ ⊢ o2 : c2 ; ∆; Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T

∆́; É∆ ⊢ o1 ⇌→֒ ~v, o2 : Θ́ tblocked = let x′:T ′ = o′

2
blocks for o1 in t

CallI

∆; E∆ ⊢ C ‖ ♮〈tblocked〉 : Θ; EΘ

a
−→

∆́; É∆ ⊢ C ‖ C(Θ′) ‖ ♮〈let x:T = o2.l(~v) in o2 return to o1 x; tblocked〉 : Θ́; ÉΘ

a = ν(Θ′, ∆′). 〈return(v)〉! (Θ′, ∆′) = fn(v) ∩ Φ Φ́ = Φ \(Θ′, ∆′)

∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ v Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′)
RetO

∆; E∆ ⊢ ν(Φ).(C ‖ ♮〈let x:T = o2 return to o1 v in t〉) : Θ; EΘ

a
−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ ♮〈t〉) : Θ́; ÉΘ

a = ν(Θ′, ∆′). 〈call o2.l(~v)〉! (Θ′, ∆′) = fn(〈call o2.l(~v)〉 ∩ Φ Φ́ = Φ \(Θ′, ∆′)

∆́ ⊢ o2 : c2 ∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ ~v Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′)
CallO

∆; E∆ ⊢ ν(Φ).(C ‖ ♮〈let x:T = o1 o2.l(~v) in t〉) : Θ; EΘ

a
−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ ♮〈let x:T = o1 blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(∆′, Θ′). 〈return(v)〉? dom(∆′, Θ′) ⊆ fn(v)

Θ́; ÉΘ = Θ; EΘ + Θ′; o1 →֒ v ∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ (∆′, Θ′)

; ∆ ⊢ o2 : c2 ; ∆; Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ v : T ∆́; É∆ ⊢ o2 ⇌→֒ v : Θ́
RetI

∆; E∆ ⊢ C ‖ ♮〈let x:T = o1 blocks for o2 in t〉 : Θ; EΘ

a
−→ ∆́; É∆ ⊢ C ‖ ♮〈t[v/x]〉 : Θ́; ÉΘ

∆ ⊢ c : T
NewOlazy

∆; E∆ ⊢ ♮〈let x:c = new c in t〉 : Θ; EΘ ∆; E∆ ⊢ ν(o3:c).♮〈let x:c = o3 in t〉 : Θ; EΘ

Table 5. External steps

with the received arguments. For outgoing communication, the E∆ and EΘ play
dual roles. In the respective rules, E(Ć, Θ′) stands for the actual connectivity of
the component after the step, which needs to be made public in the commitment
context, in case new names escape to the environment.

10

In case of the very interaction, either an incoming or outgoing call, we take ⊙
as the source of the call, which is assumed to be resident either in the environment
or the component. Furthermore, at the beginning, no objects are visible yet
across the border which is asserted by static(∆, Θ). The remaining premises of
the form ; ∆ ⊢ n : T or similar deal with static typing issue, i.e., guaranteeing
subject reduction. We omit the formalization of the static typing system here,
as it is straightforward.

Scoping and lazy instantiation In the explanation so far, we omitted the
handling of bound names, in particular bound object references. In the presence
of classes, a possible interaction between component and environment is in-
stantiation. Without constructor methods and assuming an infinite heap space,
instantiation itself has no immediate, observable side-effect. An observable effect
is seen only at the point when the object is accessed.

Rule NewOlazy describes the local instantiation of an external class. Instead
of exporting the newly created name of the object plus the object itself immedi-
ately to the environment, the name is kept local until, if ever, it gets into contact
with the environment. When this happens, the new instance will not only be-
come known to the environment, but the object will also be instantiated in the
environment.

For incoming calls, for instance, the binding part is of the form (∆′, Θ′) where
we mean by convention, that ∆′ are the object name being added to ∆, and anal-
ogously for Θ′ and Θ. The distinction is based on the class types which are never
transmitted. For the object names in the incoming communication, ∆′ contains
the external references which are freshly introduced to the component by scope
extrusion. Θ′ on the other hand are the objects which are lazily instantiated as
side-effect of this step, and which are from then on part of the component. In
the rules, the newly instantiated objects are denoted as C(Θ′).

Note that whereas the acquaintance of the caller with the arguments trans-
mitted free is checked against the current assumption, acquaintance with the
ones transmitted bound is added to the assumption context.

4 Trace semantics and ordering on traces

Next we present the semantics for well-typed components, which takes the traces
of the program fragment as starting point. A trace t is a sequence of external
steps, i.e., given by ∆1; E∆1

⊢ C1 : Θ1; EΘ1

s
=⇒ ∆2; E∆2

⊢ C2 : Θ2; EΘ2
.

The clique structure of the environment influences what is observable and
the fact that the observer falls into a number of independent groups of objects
increases the “uncertainty of observation”. In Section 2, we informally discussed
two reasons responsible for this effect. One is that the clique of objects can only
observe the order of events projected to its own members but not the relative
order among separate cliques. Secondly, separate observers cannot cooperate to
compare identities.

11

For the definition, we need to connect the labels of a trace to the clique they
belong to. With the exception of the callee of a call, the communication labels
do not carry information about the identity of the communication partners (cf.
Table 4). Given a trace of past interaction, which adheres to a strict call-return
discipline and which is strictly alternating between input and output, it contains
enough information to determine the communication partners.

4.1 Balance conditions

We start with auxiliary definitions concerning the parenthetic nature of calls and
returns of a legal trace. The definition is similar to the one from [8]. It is easy to
see that, starting from an initial configuration, the operational semantics from
Section 3.3 assures strict alternation of incoming and outgoing communication
and additionally that there is no return without a preceding matching call. Later,
we will need this property of traces for the characterization of legal traces.

Definition 1 (Balance). The balance of a sequence s is given by the rules of
Table 6, where the dual rules for balanced− are omitted. We write ⊢ s : balanced
if ⊢ s : balanced+ or ⊢ s : balanced−. We call a (not necessarily proper) prefix

B-Empty
+

⊢ ǫ : balanced+

⊢ s1 : balanced+ ⊢ s2 : balanced+ s1, s2 6= ǫ
B-II

⊢ s1 s2 : balanced+

⊢ s : balanced−

B-OI

⊢ ν(Φ).〈call o2.l(~v)〉! s ν(Φ′).〈return(v)〉? : balanced+

Table 6. Balance

of a balanced trace weakly balanced. We write ⊢ s : wbalanced+ if the trace is
weakly balanced and if the last label is an incoming communication or if s is
empty; dually for ⊢ s : wbalanced−.

The function pop on traces is defined as follows:

1. pop s = ⊥, if s is balanced.

2. pop (s1as2) = s1a if a = ν(∆, Θ). 〈call o2.l(~v)〉? and s2 is balanced+.

3. pop (s1as2) = s1a if a = ν(∆, Θ). 〈call o2.l(~v)〉! and s2 is balanced−.

Based on a balanced past, the following definition formalizes the notion of
source and target of a communication event at the end of a trace with the help
of the function pop.

12

Definition 2 (Sender and receiver). Let r a be a balanced trace. Sender
and receiver of a after history r are defined by mutual recursion and pattern
matching over the following cases:

sender(ν(Φ).〈call o2.l(~v)〉!) = ⊙
sender(r′ a′ ν(Φ).〈call o2.l(~v)〉!) = receiver(r′ a′)

sender (r′ a′ ν(Φ).〈return(l(~v))〉!) = receiver(pop(r′ a′))

receiver (r ν(Φ).〈call o2.l(~v)〉!) = o2

receiver (r ν(Φ).〈return(~v)〉!) = sender(pop(r))

For a = ν(Φ)〈call o2.l(~v)〉? resp. a = ν(Φ).〈return(~v)〉?, the definition is dual.

4.2 Equivalences

Now given a global trace, its projection onto one particular clique of objects as
given at the end of the trace is defined straightforwardly by induction on the
length of the trace. We write [o]/E∆

for the equivalence class of objects according

to E∆, i.e., the clique in connection with o, or in general just shorter [o] when
E∆ is clear from the context.

Definition 3 (Projection). Assume as trace ∆; E∆ ⊢ C : Θ; EΘ
s

=⇒ ∆́; É∆ ⊢
Ć : Θ́; ÉΘ and let ∆́ contain at least one object reference, then the projection
of s onto a clique [o] of environment objects according to ∆́; É∆ is written as
s ↓[o] and defined by induction on the length of s: s ↓[o] is defined as the first
component of (s, Φ) ↓[o], where Φ = ∆, Θ, and the projection of (s, Φ) ↓[o] is
given by Table 7. The definition of the projection onto a component clique is
defined dually.

The projection of the empty trace surely is empty (rule P-Empty). For
output actions in P-Out1 and P-Out2 we distinguish according to the receiver,
i.e., the callee in case of a call resp. the caller in case of a return. If the receiver
is not involved in the communication, the label is “projected out”; dually for
incoming communication. More interesting is P-Out2: fresh names are not only
the globally fresh ones Φ′

1, but also the locally fresh ones Φ′
2. The situation for

incoming new names is not symmetric! It is simpler as we need not distinguish
between locally and globally new names: Everything that the clique has created
in isolation is globally new as well as locally new.

Besides “local freshness” we have to cater for the fact that the order of
events cannot be determined by separate observers, i.e., we need to formalize
the ideas illustrated in Section 2.2. We do this by a notion of swappability,
where sub-sequences can be reordered when indistinguishable by the environ-
ment. This means the definition takes into account the worst-case estimations
from E∆ about the clique structure of the environment, which we indicate by the

13

P-Empty

(ǫ, Φ) ↓[o]= (ǫ, Φ)

(t, Φ) ↓[o]= (t′, Φ′) receiver (tγ!) /∈ [o]
P-Out1

(tγ!, Φ) ↓[o]= (t′, Φ′)

Φ′

2 = fn(ν(Φ′

1).γ) \Φ′

(t, Φ) ↓[o]= (t′, Φ′) receiver(tγ!) ∈ [o]
P-Out2

(t ν(Φ′

1).γ!, Φ) ↓[o]= (t′ ν(Φ′

1, Φ
′

2).γ!, (Φ′, Φ′

1, Φ
′

2))

(t, Φ) ↓[o]= (t′, Φ′) sender (tγ?) /∈ [o]
P-In1

(tγ?, Φ) ↓[o]= (t′, Φ′)

(t, Φ) ↓[o]= (t′, Φ′) sender (tγ?) ∈ [o]
P-In2

(t ν(Φ′′).γ?, Φ) ↓[o]= (t′ ν(Φ′′).γ?, (Φ′, Φ′′))

Table 7. Projection to an environment clique

subscript8 ∆. The dual version of the relation, written ≍Θ, takes into account
the clique structure of the component. It captures the possible reorderings of a
given behavior of the component.

Whether or not the order of two actions in a trace is indistinguishable depends
on clique situation of the environment at the point where the actions occur.
Therefore we generalize the judgment ∆; E∆ ⊢ o1 ⇌ o2 : Θ from Section 3 to
express acquaintance after executing some trace.

Definition 4 (Dynamic acquaintance). Assume ∆; E∆ ⊢ C : Θ; EΘ. We

write ∆; E∆ ⊢ s ⊲ o1 ⇌ o2 : Θ; EΘ, if ∆; E∆ ⊢ C : Θ; EΘ
s

=⇒ ∆́; É∆ ⊢ Ć :
Θ́; ÉΘ and ∆́; É∆ ⊢ o1 ⇌ o2 : Θ́. The notation is used analogously for ⇌→֒.

We use the definition analogously for subsequences of a trace, i.e., given ∆; E∆ ⊢

C : Θ; EΘ
st1t2u
=⇒ ∆́; É∆ ⊢ Ć : Θ; EΘ, we write ∆; E∆ ⊢ s ⊲ t1 ⇌ t2 : Θ if there

exists a communication partner9 o1 of the environment mentioned in t1 and a
communication partner o2 from t2 acquainted according to Definition 4.

Definition 5 (Swapping). The relation ≍∆ on traces is given as the reflexive,
symmetric, and transitive closure of the rules of Table 8. The two rules silently
assume that the traces involved are weakly balanced. The relation ≍Θ is defined
dually.

The definition of ≍∆ distinguishes between swapping of two neighboring
subsequences in the middle of a trace (rule E-SwapB∆) and at the end (rule

8 The ∆ is meant just as indication, that swappability is interpreted from the per-
spective of the environment, not as a concrete argument of the definition of ≍.

9 Sender or receiver depending on whether the action is incoming or outgoing.

14

∆; E∆ ⊢ s ⊲ t1 6⇌ t2 : Θ ⊢ t1 : balanced
E-SwapB∆

∆; E∆ ⊢ s ν(Φ).t1t2u ≍∆ sν(Φ).t2t1u : Θ; EΘ

∆; E∆ ⊢ s ⊲ t1 6⇌ t2 : Θ ⊢ t1 : wbalanced ⊢ t2 : wbalanced
E-SwapW∆

∆; E∆ ⊢ s ν(Φ).t1t2 ≍∆ sν(Φ).t2t1 : Θ; EΘ

Table 8. Swapping

E-SwapW∆). In case of E-SwapB∆, we require that one of the subsequences, in
the rule t1, is in itself balanced, i.e., without the preceding and trailing “contexts”
s resp. t2u. Note that t2 is not required to be balanced, as well (but the rule
can be applied symmetrically); the swapping, however, must preserve overall
weak balance. That balance requirement for t1 is needed illustrates the following
consideration: Take for instance the right-hand side st2t1u, then moving t2 after
an unbalanced (for instance only weakly balanced) t1 may (re-)connect returns
in t2 to unanswered calls in t1. Similarly, returns in u may be reconnected, which
means that they belong to a different environment cliques when comparing st1t2u

and st2t1u. This may lead to observably different behavior. Requiring that one of
the sub-sequences is balanced avoids this effect. Similar considerations imply that
for swapping sub-sequences at the end, we must require weak balance (cf. rule
E-SwapW∆). Note that it is not sufficient that only one of the sub-sequences
involved is weakly balanced.

Remains the formalization of the fact that different instances of the same
class, or more generally different cliques identical up-to their identities, do not
count as adding new behavior to the system, i.e., next we formalize the intuition
from Section 2.3. The equivalence relation ≍ from above is extended to consider
two behaviors as equivalent if one clique is just a “replay” (up-to renaming of
behavior) already witnessed in the trace. In other words: a trace can be equiv-
alently extended by an additional action, if the behavior of the extended clique
is contained as behavior of another clique already, i.e., in the form of a prefix,
for which we write 4. Note that the prefix is understood up-to α-renaming.

Definition 6 (Swapping and replay). The relation ≍−∆ on traces is given by
the reflexive, transitive, and symmetric closure of the relation given in Table 9.
The relation ≍−Θ is defined dually.

We can now define the order on traces as follows.

Definition 7. ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 : Θ; EΘ, if the following

holds. If ∆; E∆ ⊢ C1 : Θ; EΘ
s

=⇒ ∆′; E′
∆, then ∆; E∆ ⊢ C2 : Θ; EΘ

t
=⇒ such

that ∆; E∆ ⊢ t : det∆Θ; EΘ.

15

receiver (sγ!) = o

sγ! ↓[o]4 s ↓[o′]
E-ReO∆

∆; E∆ ⊢ sγ! ≍−∆ s : trace Θ; EΘ

sender (sγ?) = o

sγ? ↓[o]4 s ↓[o′]
E-ReI∆

∆; E∆ ⊢ sγ? ≍−∆ s : trace Θ; EΘ

∆; E∆ ⊢ s ≍∆ t : Θ; EΘ

E-Swap∆

∆; E∆ ⊢ s ≍−∆ t : Θ; EΘ

Table 9. Swapping and replay

5 Full abstraction

After fixing the notion of observation, we address one core problem for estab-
lishing the connection between the trace preorder and the contextual preorder,
namely the characterization of legal traces, i.e., the traces which are realizable
by a component together with an arbitrary (but well-formed, well-typed . . .)
context. Especially in the single-threaded setting this requires to capture deter-
ministic traces.

5.1 Notion of observation

Full abstraction is a comparison between two semantics, where the reference
semantics to start from is traditionally contextually defined and based on a
some notion of observability.

As starting point we choose, as [8], a (standard) notion of semantic equiva-
lence or rather semantic implication —one program allows at least the observa-
tions of the other— based on a particular, simple form of contextual observation:
being put into a context, the component, together with the context, reaches a
defined point, which is counted as the successful observation. Being determinis-
tic, there is no need to distinguish whether the program “may” reach the point
of observation or “must” reach it. A context C[] is a program “with a hole”. In
our setting, the hole is filled with a program fragment consisting of a component
C in the syntactical sense, i.e., consisting of the parallel composition of (named)
classes, named objects, and named threads, and the context is the rest of the
programs such that C[C] gives a well-typed closed program ∆; E∆ ⊢ C′ : Θ; EΘ,
where closed means that it can be typed in the empty contexts, i.e., ⊢ C′ : ().

To report success, we assume an external class with a particular success re-
porting method. So assume a class cb of type [(succ : ()→ none)], abbreviated as

barb. A component C strongly barbs on cb, written C ↓cb
, if C ≡ ν(~n:~T , b:cb).C

′ ‖
♮〈let x:none = b.succ() in t〉, i.e., the call to the success-method of an instance of
cb is enabled. Furthermore, C barbs on cb, written C ⇓cb

, if it can reach a point
which strongly barbs on cb, i.e., C =⇒ C′ ↓cb

. We can now define observable pre-
order [7] similar as in [8]. Since the programs are deterministic, the distinction
between a “may” and a “must” success disappears.

16

Definition 8 (Observable preorder). Assume ∆; E∆ ⊢ C1 : Θ; EΘ and
∆; E∆ ⊢ C2 : Θ; EΘ. Then ∆; E∆ ⊢ C1 ⊑obs C2 : Θ; EΘ, if (C1 ‖ C) ⇓cb

implies (C2 ‖ C) ⇓cb
for all Θ, cb:barb; EΘ ⊢ C : ∆; E∆.

5.2 Legal traces

As mentioned, we must characterize which traces, the “legal” ones. can occur
at all, and again the crucial difference to the object-based case is to take con-
nectivity into account to exclude impossible combinations of transmitted object
names and threads. Furthermore, we need to filter out non-deterministic ones in
the single-threaded setting.

The legal traces are specified by a system for judgments of the form ∆; E∆ ⊢
r ⊲ s : trace Θ; EΘ stipulating that under the type and relational assumptions
∆ and E∆ and with the commitments Θ and EΘ, the trace s is legal. The rules
are shown in Table 10. The premises of the form ; Θ́ ⊢ o2 : c2, ; ∆, Θ ⊢ c2 :
[(. . . , l:~T → T, . . .)], and ; ∆́, Θ́ ⊢ ~v : ~T , e.g., as mentioned in rule L-CallI, check
that message exchange respects the static typing assumptions.

The premise ∆ ⊢ r ⊲ a : Θ asserts that after r, the action a is enabled.

Definition 9 (Enabledness). Given a method call γ = ν(Φ).〈call o2.l(~v)〉.
Then call-enabledness of γ after the history r and in the contexts ∆ and Θ is
defined as:

∆; E∆ ⊢ r ⊲ γ? : Θ; EΘ if pop r = ⊥ and ∆ ⊢ ⊙ or
pop r = r′γ′!

(4)

∆; E∆ ⊢ r ⊲ γ! : Θ; EΘ if pop r = ⊥ and ∆ ⊢ ⊙ or
pop r = r′γ′?

(5)

For return labels γ = ν(Φ).〈return(v)〉, ∆; E∆ ⊢ r ⊲ γ! : Θ; EΘ abbreviates
pop r = r′ν(Φ′).〈call o2.l(~v)〉?, and dually for incoming returns γ?.

We also say, the thread is input-call enabled after r if ∆ ⊢ r ⊲ γ? : Θ for some
incoming call label, respectively input-return enabled in case of an incoming
return label. The definitions are used dually for output-call enabledness and
output-return enabledness. When leaving the kind of communication unspecified
we just speak of input-enabledness or output-enabledness. Note that return-
enabledness implies call-enabledness, but not vice versa.

Being single-threaded, the language is deterministic, i.e., given a configura-
tion, the next operational step is determined (up-to possible renamings). This
is not only a fact about the global system behavior, but also —and more in-
terestingly in our context— tells us that two instances of the same class, when
stimulated by the same input history must react identically, up-to renaming (cf.
also the discussion in Section 2.3). We thus need a characterization of determin-
istic traces to define when a trace is legal or not.

The issue has various aspects. That we can speak of a single trace being
deterministic or not is a consequence of having classes with the possibility of

17

E∆; ∆ ⊢ r ⊲ ǫ : trace Θ; EΘ L-Empty

a = ν(∆′, Θ′). 〈call o2.l(~v)〉? ⊙, o2 = src(r a), targ(r a) ∆ ⊢ ǫ ⊲ a : Θ static(∆, Θ)

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v) ∆́; É∆ = ∆; E∆ + ∆′;⊙ →֒ (∆′, Θ′)

; Θ́ ⊢ o2 : c2 ; ∆, Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T

dom(∆′, Θ′) ⊆ fn(〈call o2.l(~v)〉) ∆ ⊢ ⊙ ∆́; É∆ ⊢ a ⊲ s : Θ́; ÉΘ

L-CallIi

∆; E∆ ⊢ ǫ ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). 〈call o2.l(~v)〉! ⊙, o2 = src(r a), targ(r a) ∆ ⊢ ǫ ⊲ a : Θ static(Θ, ∆)

∆́; É∆ = ∆; E∆ + (∆′; o2 →֒ ~v) Θ́; ÉΘ = Θ; EΘ + Θ′;⊙ →֒ (Θ′, ∆′)

; ∆́ ⊢ o2 : c2 ; ∆, Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T

dom(Θ′, ∆′) ⊆ fn(〈call o2.l(~v)〉) Θ ⊢ ⊙ ∆́; É∆ ⊢ a ⊲ s : Θ́; ÉΘ

L-CallOi

∆; E∆ ⊢ ǫ ⊲ a s : trace Θ; EΘ

a = ν(∆′, Θ′). 〈call o2.l(~v)〉? o1, o2 = src(r a), targ(r a) ∆ ⊢ r ⊲ a : det∆Θ

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v) ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′)

∆́; É∆ ⊢ o1 ⇌→֒ ~v, o2 : Θ́

; Θ́ ⊢ o2 : c2 ; ∆, Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T

dom(∆′, Θ′) ⊆ fn(〈call o2.l(~v)〉) ∆́; É∆ ⊢ r a ⊲ s : trace Θ́; ÉΘ

L-CallI

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). 〈return(v)〉! o2, o1 = src(r a), targ(r a) ∆ ⊢ r ⊲ a : detΘΘ

∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ v Θ́; ÉΘ = Θ; EΘ + Θ′; o2 →֒ (Θ′, ∆′)

dom(Θ′, ∆′) ⊆ fn(v) ; Θ ⊢ o2 : c2 ; ∆, Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ v : T

Θ́; ÉΘ ⊢ o2 ⇌→֒ v : ∆́ É∆; ∆́ ⊢ r a ⊲ s : trace Θ́; ÉΘ

L-RetO

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). 〈call o2.l(~v)〉! o1, o2 = src(r a), targ(r a) ∆ ⊢ r ⊲ a : detΘΘ

∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ ~v Θ́; ÉΘ = Θ; EΘ + Θ′; o1 →֒ (Θ′, ∆′)

Θ́; ÉΘ ⊢ o1 ⇌→֒ ~v, o2 : ∆́

; ∆́ ⊢ o2 : c2 ; ∆, Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T

dom(Θ′, ∆′) ⊆ fn(〈call o2.l(~v)〉) ∆́; É∆ ⊢ r a ⊲ s : trace Θ́; ÉΘ

L-CallO

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(∆′, Θ′). 〈return(v)〉? o2, o1 = src(r a), targ(r a) ∆ ⊢ r ⊲ a : det∆Θ

Θ́; ÉΘ = Θ; EΘ + Θ′; o1 →֒ v ∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ (∆′, Θ′)

dom(∆′, Θ′) ⊆ fn(v) ; ∆ ⊢ o2 : c2 ; ∆, Θ ⊢ c2 : [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ v : T

∆́; É∆ ⊢ o2 ⇌→֒ v : Θ́ ∆́; É∆ ⊢ r a ⊲ s : trace Θ́; ÉΘ

L-RetI

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

Table 10. Legal traces

cross-border instantiation and thus the possible presence of separate cliques of
objects. Only then, different behaviors of “the same” object or more generally
“the same” clique can show up in the trace, where the non-deterministic ones
need to be filtered out to obtain an adequate characterization of the legal traces.
Furthermore, the intuition “determinism means the same reaction to the same
stimulus” needs some fleshing out. The past of a clique is the projection of

18

the global trace onto the clique, which is, as usual, considered only up-to α-
renaming. Furthermore, the dynamic nature of the clique structure has to be
taken into account; for instance, the histories corresponding to Figure 2(a) –
2(c) are to be considered equivalent because the order of events of previously
separate sub-cliques of a given clique cannot be reconstructed in retrospect.

The mentioned ideas are captured in the ≍− relation, which we can use in the
following definition.

Definition 10 (Deterministic trace). Given the label a = γ! and a trace ra

with ∆ ⊢ r ⊲ a : Θ. The trace r can be extended deterministically by a, written
∆ ⊢ r ⊲ a : detΘ Θ, if the following holds:

∆; E∆ ⊢ ra ≍−Θ r : Θ; EΘ or
there does not exist a label b with ∆; E∆ ⊢ rb ≍−Θ r : Θ; EΘ

(6)

The definition for incoming communications a is dual, and especially refers to
≍−∆ instead of ≍−Θ.

Note that the condition from Equation (6) does not in itself guarantee determin-
ism for the trace; if the shorter r is deterministic, it preserves determinism when
extending the trace, which is the way, the check is used in the legal trace system.
We use the judgment ∆; E∆ ⊢ r ⊲ a : detΘ Θ; EΘ to combine enabledness and
the output determinism requirement for the next action in a single assertion. Du-
ally we use det∆ for input determinism for incoming communication. We write
also ∆; E∆ ⊢ s : det∆Θ; EΘ resp. ∆; E∆ ⊢ t : detΘΘ; EΘ, when the whole trace
is deterministic wrt. the environment, resp. wrt. component.

5.3 Soundness and completeness

The proof that the observational order coincides with the order on traces given in
Definition 7 has two directions: compared to ⊑obs , the relation ⊑trace is neither
too abstract (soundness) nor too concrete (completeness). For lack of space, we
simply state the soundness result here.

For correspondence of the two notions is guaranteed only when assuming
that the environment behaves deterministic. Therefore we refine the definition
of ⊑trace from Definition 7, in that we explicitly require that the traces com-
pared by ⊑trace are deterministic wrt. the environment; we write ⊑det

trace for that
relation. The reason is that the external operational semantics of Table 5 results
in deterministic behavior as far as the component is concerned —one cannot
program non-deterministic behavior with the given syntax— but not for the en-
vironment. One could have checked deterministic environment behavior in the
assumptions of the operational rule; the price for this more exact representation
of possible behavior would have been to augment the semantics to contain the
history of past interaction concerning the environment behavior, in a similar way
as we have done when formalizing the legal traces.

Proposition 1 (Soundness). If ∆; E∆ ⊢ C1 : Θ; EΘ ⊑
det
trace ∆; E∆ ⊢ C2 :

Θ; EΘ, then ∆; E∆ ⊢ C1 ⊑obs C2 : Θ; EΘ.

19

Completeness asserts the reverse direction:

Proposition 2 (Completeness). If ∆; E∆ |= C1 ⊑obs C2 : Θ; EΘ, then ∆; E∆ ⊢
C1 : Θ; EΘ ⊑

det
trace ∆; E∆ ⊢ C2 : Θ; EΘ.

At the heart, completeness is a constructive argument: given a trace s, con-
struct a component Cs that exhibits the trace s and moreover realize it exactly.
Restricted to deterministic traces, the proof is rather similar to the one for the
multi-threaded case and rests on the ability to compose a component and an
environment, performing complementary traces, into one global program (plus
the dual property of decomposition). Indeed, the very same construction could
be used in the single-threaded setting as in the multi-threaded setting. However,
the absence of concurrency allows to simplify the construction, in particular, one
can leave out the code that assures mutual exclusion, when accessing objects,
resp. cliques of objects.

6 Conclusion

Related work Smith [11] presents a fully abstract model for Object-Z, an
object-oriented extension of the Z specification language. called the complete-
readiness model, related to the readiness model of Olderog and Hoare. [12] in-
vestigates full abstraction in an object calculus with subtyping. The setting is
a bit different from the one as used here as the paper does not compare a con-
textual semantics with a denotational one, but a semantics by translation with
a direct one. The paper considers neither concurrency nor aliasing. Recently,
Jeffrey and Rathke [9] extended their work on trace-based semantics from an
object-based setting to a core of Java, called JavaJr, including classes and sub-
typing. However, their semantics avoids the issue of object connectivity by using
a notion of package. Cf. also [10]. [5] tackles the problem of full abstraction and
observable component behavior and connectivity in a UML-setting. Unlike this
contribution, [5] features concurrency

Future work The trace semantics together with the equivalence relation cap-
turing the undefinednes of order of interacting with separe cliques is a “tree”
semantics. As illustrated also by the informal examples of Section 2, the seman-
tics more precisely can be understood as a forest of interactions, where each
tree represents one current clique of objects. As shown in this paper, the cliques
can be dynamically created and the branching structure is cause by merging of
cliques. We are currently working on a direct tree representation of the semantics.
The resulting semantic is is simpler as it can do without the secondary notion of
equivalence relation on traces, and furthermore one can avoid an explicit repre-
sentation of object connectivity as. However, e.g., the derivation system for legal
traces gets more involved in that it must reflect the branching structure.

Game theory has in recent years been successfully employed for (fully ab-
stract) semantics of open system (“game semantics”). Cf. for instance [3] for an
introduction. It seems interesting to capture our set-up especially the connectiv-
ity contexts in a game semantical framework.

20

Acknowledgements We thank Harald Fecher and Marcel Kyas for stimulating
discussions on various aspects of this topic.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. In Z. Li, editor, ICTAC’04,
volume 3407 of Lecture Notes in Computer Science, pages 38–52. Springer-Verlag,
July 2004.

3. S. Abramsky. Algorithmic game semantics: A tutorial introduction. In H. Schicht-
enberg and R. Steinbruggen, editors, Proof and System Reliability, Summer School
(Marktoberdorf, Germany, 2001), Series F: Computer and System Sciences, pages
21–47. Kluwer Academic Publishers, 2001.

4. M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors. Proceedings
of the Third International Symposium on Formal Methods for Components and
Objects (FMCO 2004), Lecture Notes in Computer Science. Springer-Verlag, 2005.
To appear.

5. F. S. de Boer, M. Bonsangue, M. Steffen, and E. Ábrahám. Full abstraction of
UML components. In Bosangue et al. [4]. To appear.

6. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

7. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
8. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent

objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.
9. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java

language. 2005. Submitted for publication.
10. J. Rathke. A fully abstract trace semantics for a core Java language (preliminary

title). In Bosangue et al. [4]. To appear.
11. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,

Department of Computer Science, University of Queensland, Oct. 1992.
12. R. Viswanathan. Full abstraction for first-order objects with recursive types and

subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

	Observability, Connectivity, and Replay in a Sequential Calculus of Classes [1em] April 10, 2005
	 Erika Ábrahám and Marcello M. Bonsangue and Frank S. de Boer and Andreas Grüner and Martin Steffen
	Introduction
	Observability and classes
	Cross-border instantiation and connectivity
	Different observers and order of events
	Classes as generators of objects, replay, and determinism

	A single-threaded calculus with classes
	Internal steps
	Connectivity contexts and cliques
	External steps

	Trace semantics and ordering on traces
	Balance conditions
	Equivalences

	Full abstraction
	Notion of observation
	Legal traces
	Soundness and completeness

	Conclusion
	References

