
Inductive Proof Outlines for
Exceptions in Multithreaded Java 1

Erika Ábrahám 2

Albert-Ludwigs-University Freiburg, Germany

Frank S. de Boer 4

CWI Amsterdam, The Netherlands

Willem-Paul de Roever and Martin Steffen 3

Institute for Computer Science and Applied Mathematics,
Christian-Albrechts-Universität zu Kiel, Germany

Abstract

In this paper we give an operational semantics and introduce an assertional proof
system for exceptions in a multithreaded Java sublanguage.

Key words: Java, multi-threading, exceptions, proof systems

1 Introduction

In this work we present an assertional proof system for a multithreaded sub-
language of Java, including object and thread creation, aliasing, method call,
recursion, Java’s synchronization mechanism, and especially exception han-
dling, but ignoring the issues of inheritance and subtyping. The proof system
is sound and relatively complete, and allows also to prove deadlock freedom [3].

Verification proceeds in three phases: First the program is augmented by
fresh auxiliary variables and annotated with assertions in the style of Floyd
[8,9] intended to hold during program execution when the control flow reaches

1 Part of this work has been financially supported by IST project Omega (IST-2001-33522),
see http://www-omega.imag.fr, and NWO/DFG project Mobi-J (RO 1122/9-{1,2,4}.
2 mailto:eab@informatik.uni-freiburg.de
3 mailto:{wpr,ms}@informatik.uni-kiel.de
4 mailto:frb@cwi.nl

Preprint submitted to Elsevier Preprint 12 September 2005

the annotated point. Afterwards, the proof system, applied to the augmented
and annotated program, also called proof outline [18], yields a number of
verification conditions which assure that each program execution conforms to
the annotation. Finally, the verification conditions must be proven. We use
the theorem prover PVS [19] for this purpose.

With augmentation and annotation provided by the user, the Verger tool
takes care of verification condition generation in the second phase. The actual
verification within the theorem prover is interactive. For the examples we did
most of the conditions could be discharged automatically using the built-in
proof strategies of PVS. Human interaction was needed mostly for the proof
of properties whose formulation required quantifiers.

To support a clean interface between internal and external object behav-
ior, we exclude qualified references to instance variables. As a consequence,
shared-variable concurrency is caused by simultaneous execution within a sin-
gle object, only, but not across object boundaries. To mirror this modularity
of the program behavior, the assertion logic and the proof system are for-
mulated at two levels, a local one for internal object behavior, and a global
one to describe the global behavior, including the communication topology of
objects.

Correctness of the program is guaranteed by the verification conditions of
the proof system. These are grouped —besides initial correctness— as fol-
lows. The execution of a single method body in isolation is captured by local
correctness conditions, using the local language. Interference between con-
current method executions is covered by the interference freedom test [13,18],
formulated also in the local language. It especially has to accommodate reen-
trant code and the synchronization mechanism. Possibly affecting more than
one object, communication and object creation is covered by the cooperation
test, using the global language. Communication can take place within a single
object or between different objects. As these cases cannot be distinguished
syntactically, our cooperation test combines elements from similar rules in [5]
and in [13] for CSP.

This work extends earlier results [2] by exception handling. To our knowl-
edge this is the first sound and relatively complete assertional proof method
for a concurrent Java sublanguage including synchronization and exception
handling. Research in the field of verification for object-oriented programs
mostly focused on sequential languages. In particular, there are several works
dealing with exceptions and the corresponding proof theory. However, while
the concepts of concurrency and exceptions can be understood independently,
the combination of both, requires a careful examination of the interaction: the
proof system must additionally accomodate the interleaving aspects during ex-
ception handling. In particular, we need refined specifications (augmentation
and annotation) allowing to describe all interleaving points during exception

2

handling. Furthermore, besides local correctness for the control structure
of exceptions, we need to extend the verification conditions to cover interfer-
ence during exception handling, and communication due to exceptional return.
While the presentation of this paper concentrates on exceptions, the rules are
also representative for the whole proof system concerning concurrency.

The Loop-project [10,14], for instance, develops methods and tools for
the verification of sequential object-oriented languages using PVS and Is-
abelle/HOL. Especially [12,11] formalize the exception mechanism of Java.
Poetzsch-Heffter and Müller [21] present a Hoare-style programming logic for
a sequential kernel of Java. Translating the operational and the axiomatic
semantics into the HOL theorem prover allows a computer-assisted soundness
proof. In [22] a large subset of JavaCard, including exception handling, is for-
malized in Isabelle/HOL, and its soundness and completeness is shown within
the theorem prover. In [16] an executable formalization of a simplified version
of JVM within the theorem prover ACL2 is given. Early formal accounts of
exception mechanisms have been given e.g., in [6] or [15].

The rest of the paper is organized as follows: After introducing the pro-
gramming language and the assertion language in Sections 2 and 3, the main
Section 4 defines the proof system. Section 5 contains some concluding re-
marks.

2 The programming language

2.1 Syntax

Though we use the abstract syntax for the theoretical part of this work (see
Figure 1), our tool supports Java syntax. The language is strongly typed;
besides class types c, we use booleans and integers as primitive types, and
pairs and lists as composite types. We omit the types when this causes no
confusion.

Programs are collections of classes containing method declarations. We
syntactically distinguish between instance variables x of classes and local vari-
ables u of methods; y denotes arbitrary variables. We omit syntactical variable
declarations in the abstract syntax, and assume that each variable is appro-
priately typed. The set of instance variables of a class is implicitly given by
the instance variables occurring in that class, and similarly for local variables
of methods.

Note that we do not allow qualified references e.x in expressions e. The
syntax includes statements for the usual control constructs, especially for
throwing and handling exceptions. We use bodym,c to denote the body of
method m of class c, which must be terminated by a single return statement.
Methods can be declared as non-synchronized or synchronized, using the mod-

3

e ::= x | u | this | null | f(e, . . ., e)

eret ::= ǫ | e

stm ::= x := e | u := e | u := newc | u := e.m(e, . . ., e) | e.m(e, . . ., e)

| throw e | try stm catch (c u) stm . . . catch (c u) stm finally stm yrt

| ǫ | stm; stm | if e then stm else stm fi | while e do stm od . . .

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm ; return eret}

methrun ::= nsync run(){ stm; return }

methpredef ::= meth start methwait methnotify methnotifyAll

class ::= class c{meth. . .meth methrun methpredef }

classmain ::= class

prog ::= 〈class . . .class classmain〉

Fig. 1. Abstract syntax of the programming language

ifiers nsync and sync, respectively. 5 Each class contains the predefined start

method, the predefined monitor methods wait, notify, and notifyAll, and a user-
defined method run. For the syntactical definition of the predefined methods
see [2]. The run method of the main class specifies the entry point of the
program.

We require that the local variable u in blocks catch (c u) stm does not occur
in the same method outside the catch block. Furthermore, object creation
and method call statements may not contain instance variables, and formal
parameters may not be assigned to. 6 The run methods cannot be invoked
directly.

2.2 Semantics

2.2.1 States and configurations

In the semantics we add the type Object as the supertype of all classes. Note
that no objects of type Object can be created, thus preserving monomorphism.
Let Val t be the disjoint domains of the various types t. For class names c, we
use α, β, . . . ∈ Val c as typical elements for object identifiers. The value of null

5 Java does not have a non-synchronized modifier; methods are declared non-synchronized
by default.
6 These restrictions could be relaxed but it would increase the complexity of the proof
system.

4

in type c is null c /∈ Val c.

A local state τm,c (or short τ) of method m of class c holds the values of
the method’s local variables. The initial local state is denoted by τ init . A
local configuration (α, τ, stm) of a method of an object α 6= null specifies its
local state τ and its control point represented by the statement stm. A thread
configuration ξ is a stack (α0, τ0, stm0) . . . (αn, τn, stmn) representing the call
chain of a thread. We write ξ◦(α, τ, stm) for pushing a new local configuration
onto stack ξ.

An object is characterized by its instance state σinst , assigning values to
the self-reference and to the instance variables. The initial instance state is
denoted by σinit

inst . A global state σ stores for each currently existing object α its
instance state σ(α) with the invariant property σ(α)(this) = α. A global con-
figuration 〈T, σ〉 describes the currently existing objects by the global state σ,
where the set T contains the configurations of all currently executing threads.
Expressions are evaluated in the context of an instance state and a local state
with main cases [[x]]

σ
inst

,τ

E = σinst(x) and [[u]]
σ
inst

,τ

E = τ(u).

The local state τ [u 7→ v] results from τ by assigning the value v to the
variable u; σinst [x 7→ v] is similar, and σ[α.x 7→ v] results from σ by assigning v
to the instance variable x of the object α. We also use τ [y 7→v], where instance
variables occurring in y are untouched; σinst [y 7→v] and σ[α.y 7→v] are similar,
where instance variables are untouched. For global states, σ[α 7→σinst] equals
σ except on α; note that if α is not in the domain dom(σ) of σ, the operation
extends the set of existing objects by α with initial state σinst .

2.2.2 Operational semantics

In this section we present the operational semantics of exception handling (cf.
Figure 3). Additionally, we list in Figure 2 some rules for the normal flow of

m /∈ {start, run,wait, notify, notifyAll} nsync m(u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E

∈ Val c(σ) τ ′ = τ init [u 7→[[e]]
σ(α),τ
E

]
Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(e); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret 7→[[eret]]
σ(β),τ ′

E
]

Return

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

β = [[e]]
σ(α),τ
E

∈ Val c(σ) ¬started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)
Callstart

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ init
run,c, body run,c)}, σ〉

Returnrun
〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ǫ)}, σ〉

Fig. 2. Operational semantics (1)

5

control; for the remaining transition rules we refer to [2].

〈T ∪̇ {ξ ◦ (α, τ, try stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉 Try

〈T ∪̇ {ξ ◦ (α, τ, yrt; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉 Finallyout

〈T ∪̇ {ξ ◦ (α, τ, yrtβ ; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, throw β; stm)}, σ〉 Finallyexc
out

n ≥ 0
Finallyin

〈T ∪̇ {ξ ◦ (α, τ, catch (c1 u1) stm1 . . . catch (cn un) stmn finally stm yrt; stm ′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm yrt; stm ′)}, σ〉

stm is try-closed stm ′ = catch (c1 u1) stm1 . . . catch (cn un) stmn finally stmn+1 yrt

1 ≤ i ≤ n [[e]]
σ(α),τ
E

∈ Val ci ∀1 ≤ j < i. [[e]]
σ(α),τ
E

/∈ Valcj

τ ′ = τ [ui 7→[[e]]
σ(α),τ
E

]
Catch

〈T ∪̇ {ξ ◦ (α, τ, throw e; stmstm ′; stm ′′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′, stm i finally stmn+1 yrt; stm ′′)}, σ〉

stm is try-closed stm ′ = catch (c1 u1) stm1 . . . catch (cn un) stmn finally stmn+1 yrt

[[e]]
σ(α),τ
E

= β 6= null 0 ≤ n ∀1 ≤ i ≤ n. [[e]]
σ(α),τ
E

/∈ Val ci

Finallyexc
in

〈T ∪̇ {ξ ◦ (α, τ, throw e; stmstm ′; stm ′′)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stmn+1yrtβ; stm ′′)}, σ〉

stm is try-closed [[e]]
σ(α),τ
E

= β 6= null
ThrowFinally

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm yrtβ′ ; stm ′)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, yrtβ; stm ′)}, σ〉

stm ′ is try-closed [[e]]
σ(β),τ ′

E
= γ 6= null

Returnexc

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, throw e; stm ′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, throw γ; stm)}, σ〉

stm is try-closed [[e]]
σ(α),τ
E

= β 6= null
Terminateexc

〈T ∪̇ {(α, τ, throw e; stm ; return)}, σ〉 −→ 〈T ∪̇ {(α, τ, returnβ)}, σ〉

Fig. 3. Operational semantics (2)

The initial configuration 〈T0, σ0〉 of a program satisfies dom(σ0) = {α},
σ0(α) = σinit

inst [this 7→α], and T0 = {(α, τ init , body run,c)}, where c is the main
class, and α ∈ Val c. We call a configuration 〈T, σ〉 of a program reachable iff
there exists a computation 〈T0, σ0〉−→

∗〈T, σ〉 such that 〈T0, σ0〉 is an initial
configuration and −→∗ the reflexive transitive closure of −→.

Exceptions allow a special form of error handling: If something unex-
pected or unallowed happens, the executing thread may throw an exception

6

object. 7 A thrown exception interrupts the normal control flow which moves
to the “nearest” exception handler handling exceptions of the given type, as
explained below.

Generally, a try-catch-finally block is executed from left to right. An excep-
tion raised in the try part transfers control to the first matching catch-clause,
if any, which may raise an exception of its own. The finally part is executed
independently of whether an exception is raised at all or whether it has been
caught or “fallen through”. If the finally-clause throws an exception, it over-
rides the uncaught exception of previous parts, if any.

During the execution of a try-catch-finally block try stm0 catch . . . yrt, the
executing local configuration contains an “open” block like, e.g., stm ′

0 catch . . . yrt.
We also call such blocks statements, even if they are not statements in the
original syntax. Statements in which no such open blocks occur are called
try-closed.

After entering a try-catch-finally statement (cf. rule Try) the try clause
is executed until it terminates or an exception is thrown. A thrown exception
is caught by the first catch clause handling exceptions of the given type, if
any (cf. rule Catch); afterwards, execution continues with the finally clause
(Finallyin). If uncaught (cf. rule Finallyexc

in), control moves directly into
the finally clause. The local configuration remembers the uncaught exception
β by the notation yrtβ. The same rule takes care of exceptions thrown in some
catch-clause. Throwing an exception in the finally-clause replaces uncaught
exceptions thrown in the try- or catch-clauses (cf. rule ThrowFinally). An
analogous rule where β ′ is not present covers the case without an uncaught
exception. With no exceptions thrown in the try clause, only the finally clause
gets executed (cf. rule Finallyin).

With no pending exception at the end (cf. rule Finallyout), the finally-
clause continues with the normal control flow. Otherwise, the uncaught ex-
ception β gets rethrown (cf. rule Finallyexc

out) using the auxiliary statement
throw β. For all rules defining the semantics of throw statements throw e
we have an analogous rule for rethrowing throw α. Throwing an exception
outside try-catch-finally blocks causes the control to return to the caller,
and to rethrow the exception there. As threads start their execution in run

methods, throwing an exception outside try-catch-finally blocks in run meth-
ods terminates the executing thread abnormally (cf. rules Returnexc and
Terminate

exc).

7 In contrast to Java, in our language all objects may serve as exceptions.

7

3 The assertion language

The assertion logic consists of a local and a global sublanguage. Local asser-
tions p, q, . . . are used to annotate methods in terms of their local variables
and of the instance variables of the class to which they belong, and are eval-
uated in the context of some states (ω, σinst , τ). Global assertions P, Q, . . .,
evaluated in the context of some (ω, σ), describe a whole system of objects
and their communication structure and will be used in the cooperation test.

Assertions are built using the usual predicate logic constructs. Logical
variables z ∈ LVar , different from all program variables, are used for quantifi-
cation and as free variables to represent local variables in the global language.
Logical environments ω assign values to logical variables. By hastype(e, c) we
state that the value of e is of type c; we use this construct to express the type
of exceptions. Since the programming language is monomorphically typed,
the association is unique. Qualified references E.x may be used in the global
language only.

For class types, quantification in the global language ranges over the set
of existing objects and null . In contrast, one can quantify over objects on
the local level only if the domain of quantification is explicit: ∃z∈e.p states
that there is a value in the sequence e, for which p holds; ∃z⊑e.p states the
existence of a subsequence.

e ::= z | x | u | this | null | f(e, . . . , e)

p ::= e | ¬p | p ∧ p | hastype(e, c) | ∃z. p | ∃z ∈ e. p | ∃z ⊑ e. p

E ::= z | null | f(E, . . . , E) | E.x

P ::= E | ¬P | P ∧ P | hastype(E, c) | ∃z. P

We write [[]] , ,
L and [[]] ,

G for the semantic functions evaluating local and
global assertions, ω, σinst , τ |=L p for [[p]]

ω,σ
inst

,τ

L = true, and |=L p if p holds in
all contexts; we use analogously |=G for global assertions.

To express a local property in the global language, we define the lifting
substitution p[z/this] by simultaneously replacing in p all occurrences of this

by z, and all occurrences of instance variables x by qualified references z.x,
where z is assumed not to occur in p. For notational convenience we view the
local variables occurring in p[z/this] as logical variables. Formally, these local
variables are replaced by fresh logical variables. We write P (z) for p[z/this].

8

4 The proof system

Next we introduce proof outlines and present the proof method. We formulate
verification conditions as Hoare triples. The formal semantics is given in [3]
by means of a weakest precondition calculus [7].

4.1 Proof outlines

For a complete proof system the transition semantics must be expressible in
the assertion language. As the assertion language reasons about the local
and global states, we have to augment the program with assignments to fresh
auxiliary variables which we call observations to represent information about
the control points and stack structures within the local and global states.
Auxiliary variables are variables not occurring in the program and may be
added to the program to observe certain aspects of the flow of control without
affecting it. In general, the observations record information about the intra-
object interleaving of threads, which gives rise to shared-variable concurrency,
or the inter-object communication via method calls and returns. As exception
throwing is side-effect free, it does not affect the interleaving of threads but
only the communication behavior between objects: Exception throwing inside
try-catch-finally blocks influences the control flow, but without modifying the
instance states. As such, those statements do not need to be observed. Ex-
ceptions escaping the method body, i.e., thrown outside any try-catch-finally
block, cause the control to return to the caller. I.e., the execution of such
statements affect the communication structure and must be observed.

Invariant program properties are specified by an annotation, associating
assertions with the control points of the augmented program. In contrast to
the pre- and post-specifications for methods in a sequential context, in our
concurrent setting each control point needs to be annotated to capture the
effect of interleaving. An augmented and annotated program is called a proof
outline or an asserted program.

4.1.1 Augmentation

Syntactically, an augmentation extends a program by atomically executed
multiple assignments y := e to distinct auxiliary variables. Furthermore, the
observations have, in general, to be “attached” to statements they observe in
an atomic manner. For assignments and object creation, this is represented
by the augmentations y := e 〈y := e〉ass and u := newc 〈y := e〉new . Aug-
mentations of exception throwing outside try-catch-finally blocks respectively
of top-level try-catch-finally blocks, i.e., those not nested inside further such
blocks, are of the form

throw e 〈y1 := e1〉
throw resp. try . . . yrt 〈y2 := e2〉

rethrow .

9

The second augmentation y2 := e2 observes the rethrowing of exceptions
which are thrown but not caught in the block, if any. Nested blocks are not
augmented by such an observation. In the augmentation

u := e0.m(e) 〈y1 := e1〉
!call 〈y4 := e4〉

?ret 〈y := e〉rethrow

of a top-level method call, y1 := e1 observes the call, y4 := e4 observes both
normal and exceptional returning, and y := e the rethrowing of an exception
in case control returns due to an exception. 8 Augmentations of method calls
inside try-catch-finally blocks do not observe rethrowing. For method bodies,
the augmentation

〈y2 := e2〉
?call stm ; return eret 〈y3 := e3〉

!ret

observes by y2 := e2 the reception of the call and y3 := e3 observes normal
returning. Abnormal return is observed by the augmentation of top-level
exception (re)throwing in the method body. A stand-alone observation 〈y :=
e〉 can be inserted at any point in the program.

For assignment, object creation, exception throwing, and exceptions han-
dling, first the statement and then its observation are executed in a single
computation step. For communication, where two observations can be in-
volved, the observation of the sender precedes the receiver observation. In the
following we call assignments together with their observations also multiple
assignments. Points between a statement and its observation are no control
points, since they are executed in a single computation step; we call them
auxiliary points.

Besides user-definable auxiliary variables, our proof system is formulated
in terms of built-in auxiliary variables, automatically included into all aug-
mentations. These auxiliary variables record information needed to identify
threads and local configurations, and to describe monitor synchronization. In
general, updates of the built-in auxiliary variables are described explicitly in
the augmentations or implicitly in the verification conditions. The latter in
particular is needed to reason about inter-object communication, where the
update cannot be determined locally; such an example is given in the cooper-
ation test for abnormal return.

For exception handling, one unique local variable associated with each fi-
nally clause stores the exception α associated with the yrtα in the semantics.
Mimicking the operational semantics, entering a finally-clause sets the associ-
ated local variable to the last uncaught exception, if any, and to null otherwise.
Furthermore, we introduce for each method an additional local variable exc to
store the value of the exception to be rethrown.

8 We syntactically exclude the simultaneous execution of two observations in a single com-
putation step in the same object [2].

10

4.1.2 Annotation

We use the Hoare-triple notation {p} stm {q} and write pre(stm) and post(stm)
to refer to the pre- and the post-condition of a statement. The annotation

{p0} throw e {p1}
throw 〈y := e〉throw {p2}

of exception throwing at the top-level specifies p0 and p2 as pre- and postcon-
ditions, whereas p1 at the auxiliary point should hold directly after throwing
but before its observation; the case for object creation is similar. Note that
the control point at p2 is not reachable. Non-top-level throw-statements are
not observed and therefore do not involve a corresponding annotation p1. In
the annotation

{p0} u := e0.m(e) {p1}
!call 〈y1 := e1〉

!call {p2}
wait

{p3}
?ret 〈y4 := e4〉

?ret {p4}
exc {p5}

rethrow 〈y := e〉rethrow {p6}

the control points are annotated by p0 as the precondition of the call, p2 at
the point waiting for return, p4 describes the state after an exceptional return,
and p6 is the postcondition of the method after normal return. The assertions
p1, p3, and p5 at the auxiliary points are the preconditions of the correspond-
ing observations. Non-top-level method calls do not observe rethrowing and
therefore do not involve a corresponding annotation p5. The annotation of
method bodies is of the form

{p1}
?call 〈y2 := e2〉

?call {p2} stm ; {p3} return eret{p4}
!ret 〈y3 := e3〉

!ret {p5} ,

where p2, p3, and p5 annotate the corresponding control points, and p1 and p4

are the preconditions of the given observations. The annotation of a top-level
try-catch-finally block has the form

{p0} try . . . yrt {p1}
exc {p2}

rethrow 〈y := e〉rethrow {p3} .

The assertion p0 is the precondition of the try-catch-finally block. If an ex-
ception is to be rethrown, the assertion p1 is required to hold after exiting the
whole try-catch-finally block, p2 must hold after rethrowing and prior to its
observation y := e. Note that this observation does not have a postcondition,
as the control point after the observation is not reachable. If no exception
needs to be rethrown, the assertion p3 should hold after exiting the finally-
block. Inner try-catch-finally blocks do not observe rethrowing and therefore
do not involve a corresponding annotation p2.

Besides pre- and postconditions, the annotation defines for each class c
a local assertion Ic called class invariant, specifying invariant properties of
instances of c in terms of its instance variables. Finally, a global assertion
GI called the global invariant specifies properties of communication between

11

objects. As such, it should be invariant under object-internal computation.
For that reason, we require that for all qualified references E.x in GI with E
of type c, all assignments to x in class c occur in the observations of communi-
cation due to method calls and returns, object creation, or exception throwing
or rethrowing outside try-catch-finally blocks in methods different from run.
The annotation must not contain free logical variables. In partially annotated
statements, assertions which are not explicitly specified are by definition true.

4.2 Verification Conditions

4.2.1 Local correctness

A proof outline is locally correct, if the annotation of a method is invariant
under its own sequential execution [4]. Below we define local correctness for
exception handling; for the remaining rules with a detailed explanation and
for the initial conditions see [3].

Definition 1 (Local correctness: Exception handling) A proof outline
is locally correct under exception handling, if for all statements stm of the
form

{p} try {p0} stm0 {p′0}

catch(c1 u1) {p1} stm1 {p′1} · · ·

catch(cn un) {pn} stmn {p′n}

finally {pfin} stmfin {p′fin} yrt {pexc}
exc {p′} ,

where u is the built-in auxiliary local variable associated with the finally clause,
and for all 0 ≤ i ≤ n,

|=L p → p0 , (1)

|=L {p
′
i}u := null{pfin} , (2)

|=L p′fin ∧ u = null → p′ (3)

|=L {p
′
fin ∧ u 6= null} exc := u {pexc} , (4)

and for all statements {q0} throw e in stm0 which is not in a try-catch-finally
block inside stm0, and for all 1 ≤ i ≤ n,

|=L {q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)} (5)

ui := e; {pi} ,

|=L {q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)} u := e; {pfin} . (6)

For statements {q0} throw e in catch blocks, (6) must hold without the an-
tecedent ∀1 ≤ j ≤ n.¬ hastype(e, cj). For throw statements in finally blocks,
(6) must hold without the above antecedent and with pfin replaced by p′fin. The
above conditions must hold also for assertions {q0}

exc inside try-catch-finally
blocks. In this case e in the conditions is replaced by exc.

12

4.2.2 The interference freedom test

Invariance of local assertions under computation steps in which they are not
involved is assured by the proof obligations of the interference freedom test.
Its definition covers also invariance of the class invariants. Without qualified
references to instance variables in the programming language, we only have to
deal with invariance under execution within the same object. Affecting only
local variables, exception throwing, communication, and object creation do
not change the instance states of the executing objects. Thus we only have
to cover invariance of assertions at control points over assignments, including
observations. Assertions at auxiliary points, which are not interleaving points,
do not have to be shown invariant.

Let q be an assertion at a control point and y := e a multiple assignment
in the same class. To distinguish local variables of the different local config-
urations, we replace all local variables u of the assertion q by fresh ones u′,
resulting in q′. When does q have to be invariant under the execution of the
assignment? If the assertion and the assignment belong to the same thread,
the only assertions endangered are those at control points waiting for return
earlier in the thread’s stack. However, invariance of a local configuration un-
der its own execution, and interference with the matching return statement in
a self-call need not be considered.

If the assertion and the assignment belong to different threads, interference
freedom must be shown in any case except for the self-invocation of the start

method: The precondition of such a method invocation cannot interfere with
the corresponding observation of the callee.

The above situations are formalized by an assertion interleavable, using
built-in auxiliary variables for the identification of threads and local configu-
rations.

Definition 2 (Interference freedom) A proof outline is interference free,
if for all classes c, multiple assignments y := e with precondition p in c, and
assertions q at control points in c the following holds:

|=L {p ∧ Ic} y := e {Ic} (7)

|=L {p ∧ q′ ∧ interleavable(q, y := e)} y := e {q′} . (8)

4.2.3 The cooperation test

Whereas the interference freedom test assures invariance of assertions under
steps in which they are not involved, the cooperation test deals with induc-
tivity for communication and object creation. For the case of returning, the
cooperation test defines two sets of verification conditions, one for normal re-
turn and the other for abnormal return. We restrict here to the verification
conditions for abnormal return.

The cooperation test for exception handling covers the (re)throwing of

13

exceptions outside any try-catch-finally block, i.e., if it causes the control to
return to the caller configuration. Assume a method call and a throw statement
outside any try-catch-finally block in the invoked method:

caller: uret := e0.m(e) . . . {p1}
wait {p2}

?ret 〈y4 := e4〉
?ret {p3}

exc . . .

callee: . . . {q1} throw e {q2}
throw 〈y3 := e3〉

throw . . .

We assume that the global invariant, the precondition q1 of the throw state-
ment, and the assertion p1 of the caller at the control point waiting for re-
turn hold prior to exception throwing. Exception throwing communicates the
identity of the thrown exception. Directly after exception throwing, the pre-
conditions p2 and q2 of the corresponding observations must hold, as required
by Condition (9) of the cooperation test below. After the throw statement,
its observation, and the observation of the caller have been executed, the
global invariant and the postcondition p3 of the caller observation is required
to hold, as formalized in Condition (10) below. Note that the control point
after the callee observation is not reachable, thus the assertion at this point
is not required to hold.

Let the fresh logical variables z and z′ denote the caller respectively the
callee object. Since these objects are in general different, the cooperation test
is formulated in the global language. Local assertions are expressed in the
global language using the lifting substitution. To distinguish local variables
of caller and callee, we rename those of the callee; the result we denote by
primed variables, expressions, and assertions.

That the identity of the thrown exception is stored in the local variable exc

of the caller is represented by exc := E ′(z′). The callee and the caller observa-
tions are represented by the assignments z′.y′

3 := E ′
3(z

′) and z.y4 := E4(z),
respectively.

We use the assertion comm to express that the local configurations de-
scribed by p1 and q1 are indeed communication partners: By E0(z) = z′ we
require that the value of z′ is indeed the callee object of the invocation e0.m(e).
Remember that method call statements must not contain instance variables,
and that formal parameters must not be assigned to. That means, the val-
ues of e0, and the values of the formal and actual parameters do not change
during method evaluation. The assertion u′ = E(z) states that the values of
the formal and of the actual parameters agree. The built-in augmentation
defines an auxiliary formal parameter for each method which stores the ”re-
turn address”, i.e., which identifies the caller local configuration. Using this
variable, the assertion E0(z) = z′ ∧ u′ = E(z) assures that the local configu-
rations are in caller-callee relationship. Furthermore, E ′(z′) 6= null expresses
that the exception to be thrown is not the null reference.

Similarly to exception throwing using statements throw e outside try-catch-

14

finally blocks, the cooperation test defines analogous conditions for rethrowing
exceptions outside try-catch-finally blocks: Also in these cases, which can
occur after method calls or after non-nested try-catch-finally blocks, control
returns to the caller.

Definition 3 (Cooperation test: Exception handling) A proof outline
satisfies the cooperation test for exception handling, if for all statements

uret := e0.m(e) 〈stm〉!call {p1}
wait {p2}

?ret 〈y4 := e4〉
?ret {p3}

exc

(or those without receiving a value) in class c with e0 of type c′, and for all
statements {q1} throw e {q2}

throw 〈y3 := e3〉
throw in m(u) of c′ outside any

try-catch-finally statement,

|=G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm} (9)

exc := E ′(z′) {P2(z) ∧ Q′
2(z

′)} and

|=G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm} (10)

exc := E ′(z′); z′.y′
3 := E′

3(z
′); z.y4 := E4(z) {GI ∧ P3(z)}

hold with distinct fresh logical variables z of type c and z′ of type c′, and with
comm given by E0(z) = z′ ∧ u′ = E(z) ∧ E ′(z′) 6= null ∧ z 6= null ∧ z′ 6=
null. The same conditions must hold also for top-level rethrowing, i.e., for
annotated fragments of the form {q1}

exc {q2}
rethrow 〈y3 := e3〉

rethrow under the
same requirements, where e in the conditions is replaced by exc.

For exception (re)throwing in run methods Conditions (9) and (10) simplify
in that there is no caller; see [3] for the corresponding conditions.

5 Conclusion

In this work we presented an assertional proof system for a Java sublanguage
including concurrency, synchronization, and exception handling, but no in-
heritance. The proof system is sound and complete, and allows also to prove
deadlock freedom [3]. Computer support is given by the tool Verger [1]. The
tool takes an augmented and annotated Java program, i.e., a proof outline,
as input and generates the verification conditions, which assure invariance of
the annotation. We use the theorem prover PVS to verify the conditions.

For future work, we plan to extend the programming language by further
constructs, like inheritance and subtyping along the lines of [20].

References

[1] Ábrahám, E., “An Assertional Proof System for Multithreaded Java — Theory
and Tool Support,” Ph.D. thesis, University of Leiden (2004), defended
20.1.2005.

15

[2] Ábrahám, E., F. S. de Boer, W.-P. de Roever and M. Steffen, Inductive proof-
outlines for monitors in Java, in: Najm et al. [17], pp. 155–169, a longer version
appeared as technical report TR-ST-03-1, April 2003

[3] Ábrahám, E., F. S. de Boer, W.-P. de Roever and M. Steffen, Inductive proof
outlines for multithreaded Java with exceptions, Technical Report 0313, Institut
für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel (2003).
URL http://www.informatik.uni-kiel.de/reports/2003/0313.html

[4] Apt, K. R., Ten years of Hoare’s logic: A survey – part I, ACM Transactions
on Programming Languages and Systems 3 (1981), pp. 431–483.

[5] Apt, K. R., N. Francez and W.-P. de Roever, A proof system for communicating
sequential processes, ACM Transactions on Programming Languages and
Systems 2 (1980), pp. 359–385.

[6] Christian, F., Correct and robust programs, ACM Transactions on Programming
Languages and Systems 10 (1984), pp. 163–174.

[7] de Boer, F. S., A WP-calculus for OO, in: W. Thomas, editor, Proceedings of
FoSSaCS ’99, Lecture Notes in Computer Science 1578 (1999), pp. 135–156.

[8] Floyd, R. W., Assigning meanings to programs, , 19, 1967, pp. 19–32.

[9] Hoare, C. A. R., An axiomatic basis for computer programming,
Communications of the ACM 12 (1969), pp. 576–580.

[10] Huisman, M., “Java Program Verification in Higher-Order Logic with PVS and
Isabelle,” Ph.D. thesis, University of Nijmegen (2001).

[11] Huisman, M. and B. Jacobs, Java program verification via a Hoare logic with
abrupt termination, in: T. Maibaum, editor, Proceedings of FASE’00, Lecture
Notes in Computer Science 1783 (2000), pp. 284–303.

[12] Jacobs, B., A formalisation of Java’s exception mechanism, in: D. Sands, editor,
Proceedings of ESOP 2001, Lecture Notes in Computer Science 2028 (2001),
pp. 284–301.

[13] Levin, G. and D. Gries, A proof technique for communicating sequential
processes, Acta Informatica 15 (1981), pp. 281–302.

[14] The LOOP project: Formal methods for object-oriented systems,
http://www.cs.kun.nl/~bart/LOOP/ (2001).
URL http://www.cs.kun.nl/~bart/LOOP/

[15] Manasse, M. S. and C. G. Nelson, Correct compilation of control structures,
Technical memo, Bell Laboratories (1984).

[16] Moore, J. S. and G. M. Porter, An executable formal Java Virtual Machine
thread model, in: Proceedings of the 2001 JVM Usenix Symposium in Monterey,
California, 2001.

16

http://www.informatik.uni-kiel.de/reports/2003/0313.html
http://www.cs.kun.nl/~bart/LOOP/
http://www.cs.kun.nl/~bart/LOOP/

[17] Najm, E., U. Nestmann and P. Stevens, editors, “Proceedings of the 6th
IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS ’03), Paris,” Lecture Notes in Computer
Science 2884, Springer-Verlag, 2003.

[18] Owicki, S. and D. Gries, An axiomatic proof technique for parallel programs,
Acta Informatica 6 (1976), pp. 319–340.

[19] Owre, S., J. M. Rushby and N. Shankar, PVS: A prototype verification system,
in: D. Kapur, editor, Automated Deduction (CADE-11), Lecture Notes in
Computer Science 607 (1992), pp. 748–752.

[20] Pierik, C. and F. S. de Boer, A syntax-directed Hoare logic for object-oriented
programming concepts, in: Najm et al. [17], pp. 64–78, an extended version
appeared as University of Utrecht Technical Report UU-CS-2003-010.

[21] Poetzsch-Heffter, A. and P. Müller, A programming logic for sequential Java,
in: S. Swierstra, editor, Programming Languages and Systems, Lecture Notes in
Computer Science 1576 (1999), pp. 162–176.

[22] von Oheimb, D. and T. Nipkow, Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited, in: L.-H. Eriksson and P. A. Lindsay,
editors, Proceedings of Formal Methods Europe: Formal Methods – Getting IT
Right (FME’02), Lecture Notes in Computer Science 2391 (2002), pp. 89–105.

17

	Introduction
	The programming language
	Syntax
	Semantics

	The assertion language
	The proof system
	Proof outlines
	Verification Conditions

	Conclusion
	References

