Deductive Verification for Multithreaded Java

Erika Abrahdm-Mumm!, Frank S. de Boer?,
Willem-Paul de Roever!, and Martin Steffen!

! Christian-Albrechts-University Kiel, Germany
2 Utrecht University, The Netherlands

Zusammenfassung The semantical foundations of Java [9] have been
thoroughly studied ever since the language gained widespread popularity
(see e.g. [2,19,6]). The research concerning Java’s proof theory main-
ly concentrated on various aspects of sequential sublanguages (see e.g.
[14,21,18]). This paper presents a proof system for multithreaded Ja-
va programs. Concentrating on the issues of concurrency, we introduce
an abstract programming language Javamr, a subset of Java featuring
object creation, method invocation, object references with aliasing, and
specifically concurrency.

The assertional proof system for verifying safety properties of Javaur is
formulated in terms of proof outlines [17], i.e., of annotated programs
where Hoare-style assertions [8,12] are associated with every control
point.

1 The programming language Javayr

Javayr is a multithreaded well-typed sublanguage of Java. Programs, as in Java,
are given by a collection of classes containing instance variable and method
declarations. Instances of the classes, i.e., objects, are dynamically created, and
communicate via method invocation, i.e., synchronous message passing. As we
focus on a proof system for the concurrency aspects of Java, all classes in Javayr
are thread classes in the sense of Java: Each class contains a start-method that
can be invoked only once for each object, resulting in a new thread of execution.
The new thread starts to execute the run-method of the given object while the
initiating thread continues its own execution.

For variables, we notationally distinguish between instance and temporary
variables, where instance variables are always private in Javayr. Instance va-
riables x hold the state of an object and exist throughout the object’s lifetime.
Temporary variables u play the role of formal parameters and local variables of
method definitions and only exist during the execution of the method to which
they belong. Therefore these temporary variables represent the local state of a
thread of execution. Table 1 contains the abstract syntax of Javapr.

For the semantics, we only highlight a few salient aspects. The formalization
as structural operational semantics is given in [1].

The behaviour of a program results from the concurrent execution of threads,
each described by the call-chain of its method invocations, given as a stack of

2 E. Abrahdm-Mumm et.al

ezp = z | u | this | nil | f(ezp, .. .,ezp) e € Ezp? expressions
sexp = new® | exp.m(exp, ... ,exp) | exp.start() sezp € SExp’ side-effect exp.
stm = sexp | x := exp | u := exp | u := sexp
| €| stm; stm | if exp then stm else stm
| whileezpdostm... stm € Stm. statements
modif ::= nsync | sync modifiers
rexp ::= return | return ezp
meth = modif m(u, ... ,u){ stm; rexp} meth € Meth. methods
methwn == modif run(){ stm;return } methwun € Meth. run-method
methmain ::= nsync main(){ stm; return } methmain € Meth, main-method
class := c{meth ... meth methen} class € Class class defn’s
classmain ::= c{meth ... meth methrn methmain} classmain € Class main-class
prog = {class ... class classmain) programs

Tabelle 1. Javayr abstract syntax

local configurations. Threads can be created via new and started by (the first)
invocation of the start-method. The invocation of a method extends the call
chain by creating a new local configuration. It is removed from the stack when
returning from the method. Java offers a synchronization mechanism for the
mutually exclusive execution of methods: Synchronized methods of an object
can be invoked only if no other threads are currently executing any synchronized
methods of the same object.

2 The proof system

This section sketches the assertional proof system formulated in terms of proof
outlines [17,7], i.e., where Hoare-style pre- and postconditions [8,12] are asso-
ciated with each program statement. The proof system has to accommodate for
shared-variable concurrency, aliasing, method invocation, and dynamic object
creation.

2.1 The assertion language

The underlying assertion language consists of two different levels: The local as-
sertion language specifies the behaviour on the level of method execution, and
is used to annotate programs. The global behaviour, including the communi-
cation topology of the objects, is expressed in the global language used in the
cooperation test.

In the language of assertions, we introduce as usual a countably infinite set of
logical variables with typical element 2z disjoint from the instance and the local
variables occurring in programs. Logical variables are used as bound variables in
quantifications and, on the global level, to represent the values of local variables.

Deductive Verification for Multithreaded Java 3

Table 2 defines the syntax of the assertion language. Local expressions are
expressions of the programming language possibly containing logical variables.
Local assertions are standard logical formulas over local expressions, where un-
restricted quantification is allowed for integer and boolean domains only. Quan-
tification over objects is only allowed in a restricted form asserting the existence
of an element or a subsequence of a given sequence. Restricted quantification
involving objects ensures that the evaluation of a local assertion indeed only
depends on the values of the instance and temporary variables. In deference to
the local assertion language, quantification on the global level is allowed for all
types. Quantifications over objects range over the set of ezxisting objects only.

exp, := z | = | w | this | nil | f(ezp,, ..., ezp,) e € LEzp! local expressions
ass; == exp, | Dass; | ass; A ass;
| Jz(ass;) | Az € exp;(assi) | Iz € exp,(ass;) p € LAss. local assertions

exp, =z | nil | f(ezp,,... ,exp,) | ezp,.x E € GEzp® global expressions
assg = ezp, | massq | assg A assg | Iz(assg) P € GAss global assertions

Tabelle 2. Syntax of assertions

2.2 Proof outlines

To be able to reason about the communication mechanism of method invocati-
ons, we split each method invocation statement into the sequential composition
of an output and an input statement representing the invocation of the method
and the reception of the return value.

Next, we augment the program by fresh auxiliary variables. Assignments can
be extended to multiple assignments, and additional multiple assignments to
auxiliary variables can be inserted at any point. We introduce three specific au-
xiliary variables id, lock, and started to represent information about the global
configuration at the proof-theoretical level. The temporary variable id of type
Object x Int stores the identity of the object in which the corresponding thread
has begun its execution, together with the current depth of its stack. The au-
xiliary instance variable lock of the same type is used to reason about thread
synchronization: The value L states that no threads are currently executing any
synchronized methods of the given object; otherwise, the value (a,n) identifies
the thread which acquired the lock, together with the stack depth n, at which
it has gotten the lock. The boolean instance variable started states whether the
object’s start-method has already been invoked.

Finally, we extend programs by critical sections, a conceptual notion, which
is introduced for the purpose of proof and, therefore, does not influence the
control flow. Semantically, a critical section expresses that the statements inside
are executed without interleaving with other threads.

4 E. Abrahdm-Mumm et.al

To specify invariant properties of the system, the transformed programs are
annotated by attaching pre- and postconditions, formulated in the local asserti-
on language, to all occurrences of statements. Besides that, for each class ¢, the
annotation defines a local assertion I. called class invariant, which refers only
to instance variables, and expresses invariant properties of the instances of the
class. Finally, the global invariant GI € GAss specifies properties of communi-
cation between objects. We require that for all qualified references E.x in GI,
all assignments to z in class ¢ are enclosed in critical sections.

2.3 Proof system

The global behaviour of a Java program results from the concurrent execution
of method bodies, that can interact by

— shared-variable concurrency,
— synchronous message passing for method calls, and
— object creation.

Apart from the initial correctness, meaning that the annotation is correct
with respect to the initial configuration, the proof system is split into three
parts. The execution of a single method body in isolation is captured by local
correctness conditions that show the inductiveness of the annotated method
bodies and which are standard.

Interaction via synchronous message passing and via object creation cannot
be established locally but only relative to assumptions about the communicated
values. These assumptions are verified in the cooperation test. The communica-
tion can take place within a single object or between different objects. As these
two cases cannot be distinguished syntactically, our cooperation test combines
elements from similar rules used in [5] and in [15] for CSP.

Finally, the effect of shared-variable concurrency is handled, as usual, by the
interference freedom test, which is modeled after the corresponding tests in the
proof systems for shared-variable concurrency in [17] and in [15]. In the case
of Java it additionally has to accommodate for reentrant code and the specific
synchronization mechanism.

Local correctness A proof outline is locally correct, if the usual verification
conditions [4] for standard sequential constructs hold: The precondition of a
multiple assignment to instance and local variables must imply the postcondition
after execution of the assignment. As output and return statements do not affect
the state of the executing thread, their preconditions must directly imply their
postconditions. Finally, the pre- and postconditions of all statements of a class
are required to imply the class invariant.

The interference freedom test The conditions of the interference freedom
test ensure the invariance of local properties of a thread under the activities of

Deductive Verification for Multithreaded Java 5

other threads. Since we disallow public instance variables in Javayr, we only
have to deal with the invariance of properties under the execution of statements
within the same object. Containing only temporary variables, communication
and object creation statements do not change the state of the executing object.
Thus we only have to take assignments ¢ := € into account.

Satisfaction of a local property of a thread may clearly be affected by the
execution of assignments by a different thread in the same object. If, otherwise,
the property describes the same thread that executes the assignment, the only
control points endangered are those waiting for a return value earlier in the
current execution stack, i.e., we have to show the invariance of preconditions of
receive statements. Especially, the interference freedom test has to take care of
reentrant method calls.

The cooperation test Whereas the verification conditions associated with lo-
cal correctness and interference freedom cover the effects of assigning side-effect-
free expressions to variables, the cooperation test deals with method invocation
and object creation. Since different objects may be involved, it is formulated in
the global assertion language. Besides defining verification conditions that ensure
the invariance of the global invariant, it specifies conditions under which pro-
perties, whose evaluation depend on communicated values, are satisfied. Those
properties are given by the preconditions of method bodies, and by the postcon-
ditions of receive and object creation statements.

3 Conclusion

In this extended abstract we sketched an assertional proof method for a mul-
tithreaded sublanguage of Java. The soundness of our method is shown by a
standard albeit tedious induction on the length of the computation. Proving its
completeness involves the introduction of appropriate assertions expressing re-
achability and auxiliary history variables. The details of the proofs can be found
in [1].

Currently we are developing in the context of the European Fifth Framework
RTD project Omega and the bilateral NWO /DFG project MobilJ a front-end tool
for the computer-aided specification and verification of Java programs based on
our proof method. Such a front-end tool consists of an editor and a parser for
annotating Java programs, and of a compiler which translates these annota-
ted Java programs into corresponding verification conditions. A theorem prover
(HOL or PVS) is used for verifying the validity of these verifications conditions.
Of particular interest in this context is an integration of our method with related
approaches like the LOOP project [11,16].

More in general, our future work focusses on the formalization of full-featured
multithreading, inheritance, and polymorphic extensions involving behavioral
subtyping [3].

Acknowledgements We thank Ulrich Hannemann for discussions and comments
on an earlier version of the paper.

6 E. Abrahdm-Mumm et.al

Literatur

1. E. Abrahdm-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept: Soundness and completeness. Techni-
cal Report TR-ST-01-2, Lehrstuhl fiir Software-Technologie, Christian-Albrechts-
Universitit Kiel, 2001.

2. J. Alves-Foss, editor. Formal Syntaz and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer, 1999.

3. P. America. A behavioural approach to subtyping in object-oriented programming
languages. Technical report 443, Phillips Research Laboratories, 1989.

4. K. R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transactions on
Programming Languages and Systemns, 3(4):431-483, Oct. 1981.

5. K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359-385, 1980.

6. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [2].

7. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Po-
el, and J. Zwiers. Concurrency Verification: Introduction to Compositional and
Noncompositional Proof Methods. Cambridge University Press, 2001.

8. R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19-32, 1967.

9. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

10. C. Hankin, editor. Programming Languages and Systems: Proceedings of the Tth
European Symposium on Programming (ESOP ’98), Held as Part of the Joint
European Conferences on Theory and Practice of Software (ETAPS’98), (Lisbon,
Portugal, March/April 1998), LNCS 1381. Springer, 1998.

11. J. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In Hankin [10].

12. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576-580, 1969. Also in [13].

13. C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

14. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

15. G. M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informatica, 15(3):281-302, 1981.

16. The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/~bart/LOOP/, 2001.

17. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319-340, 1976.

18. A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
Swierstra [20], pages 162-176.

19. R. Stérk, J. Schmid, and E. Borger. Java and the Java Virtual Machine. Springer,
2001.

20. S. Swierstra, editor. Proceedings of the 8th European Symposium on Programming
(ESOP ’99), LNCS 1576. Springer, 1999.

21. D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side

effects and virtual methods revisited. submitted for publication, 2002.

