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Abstract. Hybrid systems are a well-established mathematical model for em-
bedded systems. Such systems, which combine discrete and continuous behavior,
are increasingly used in safety-critical applications. To guarantee safe function-
ing, formal verification techniques are crucial. While research in this area con-
centrates on model checking, deductive techniques attracted less attention.

In this paper we use the general purpose theorem prover PVS for the rigorous for-
malization and analysis of hybrid systems. To allow for machine-assisted proofs,
we implement a deductive assertional proof method within PVS. The sound and
complete proof system allows modular proofs in that it comprises a proof rule for
the parallel composition. Besides hybrid systems and the proof system, a number
of examples are formalized within PVS.

Keywords: hybrid systems, deductive methods, machine-assisted verification.

1 Introduction

Embedded systems interacting with the physical environment pervade everyday’s life
and are increasingly used in safety-critical applications, for instance for automotive
control, avionics, telematics, chemical process control systems, etc. To guarantee safe
functioning, rigorous, i.e., formal arguments are crucial. Their formal analysis is chal-
lenging, as well, since such systems are notoriously complex. Capturing the discrete
finite-state behavior of the digital device as well as the continuous, infinite-state behav-
ior of the physical environment, hybrid systems [2] provide an appropriate and well-
studied formal model. To deal with the complexity of the verification task and to en-
sure the necessary rigor for fail-safe arguments, computer support is in demand, where
two major approaches —enumerative and deductive— of complementary strengths and
weaknesses can be distinguished.

Enumerative techniques like model checking promise fully automatic system veri-
fication. Based on state-exploration, however, they are limited by the size of the model,
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especially when dealing with the parallel composition of systems. This phenomenon
is known as the notorious state-explosion problem. Furthermore, for hybrid systems as
a priori infinite-state models, one has to face the fact that they cannot be dealt with
automatically in their full generality. Already the computational properties of timed-
automata [3], an important subclass of hybrid systems, are undecidable. Therefore, in
the field of model checking, research concentrates on identifying tractable subclasses,
for instance linear hybrid systems [2] as the most prominent subclass (cf. for instance
[21, 16, 28]). Instead of restricting the class of models, one can also resort to approxi-
mative techniques at the expense of information loss (cf. for instance [15, 14]).

In contrast, deductive methods do not support fully automatic verification, but are
applicable to the full model of hybrid systems. While there are some theoretical in-
vestigations on deductive proof methods for hybrid systems (cf. for instance [22] for
an overview), work on computer assistance is scarce. See the concluding section for
further discussion of related work in this field.

Classical deductive verification techniques use induction over the system’s compu-
tation steps to prove invariance of properties. First introduced for sequential programs,
these assertional methods have been extended for more complex models of computa-
tion, especially for various forms of parallel and communicating programs (cf. [9] for
an extensive monograph on the topic).

In this paper we describe an assertion-based deductive proof method for hybrid
systems. To assure rigorous formal reasoning, we employ the interactive theorem prover
PVS [25]. PVS is based on higher-order logic, includes extensive libraries of data-
structures and theories, offers powerful strategies to assist in routine verification tasks,
as well as modularization facilities. We furthermore use PVS to rigorously reason about
different examples.

The remainder of the paper is organized as follows. We start in Section 2 briefly
surveying the pertinent features of PVS and highlighting the use of the tool for our
formalization. In Section 3, we review the definition of hybrid systems, their transi-
tion semantics, and their parallel composition. Section 4 describes the proof method for
verifying safety properties of hybrid systems, based on assertion networks: After intro-
ducing the basic definitions in Section 4.1, we extend them in Section 4.2 to deal with
the parallel composition of hybrid systems. After describing in more detail the PVS
formalization of hybrid systems including one of the treated examples in Section 5, we
conclude in Section 6 with a discussion of related and future work. The library of PVS-
theories formalizing the hybrid system model, together with the proof methods and the
examples is available via http://www.informatik.uni-kiel.de/˜eab.

2 The PVS Theorem Prover

Theorem provers offer mechanized support for logical reasoning in general and for
program verification in particular. Unlike verification systems for fully automated rea-
soning such as model checkers [6], theorem provers provide machine-assistance, i.e.,
an interactive proof environment. Interactive means that the user is requested to orga-
nize the proof, for instance to come up with an induction hypothesis, to split the proof
in appropriate lemmas, etc. While doing so, the verification environment takes care of
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tedious details like matching and unifying lemmas with the proof goals and assists in
the proof organization by keeping track of open proof goals, the collected lemmas and
properties. Last but not least it offers a range of automatic decision or semi-decision
procedures in special cases. Well-known examples of theorem provers are Isabelle [27],
Coq [7], PVS [25, 26] and HOL [11].

To formalize hybrid systems and their theories, we use the theorem prover PVS
(Prototype Verification System) developed at SRI International Computer Science Lab-
oratory. PVS is written in Common Lisp and has been used for a wide range of appli-
cations; cf. [29] for an extensive bibliography.

PVS’s built-in specification language is a typed higher-order logic. Type declara-
tions, their operations and properties are bundled together into so-called theories which
can be organized hierarchically using the IMPORTING-construct. Theories may contain
declarations, definitions, axioms, lemmas, and theorems, and can be parameterized with
type or value parameters. PVS has a extensive prelude with many predefined types such
as lists, sets, natural numbers, integers, reals, relations, functions, etc., and associated
lemmas about their properties. Type construction mechanisms are available for build-
ing complex types, e.g., lists, function types, records, and recursively defined abstract
data types. Being based on a typed logic, PVS automatically performs type-checking
to ensure consistency of the specification and the proof-in-progress. Furthermore, the
type checking mechanism generates new proof obligations, so-called Type-Correctness
Conditions, which are often very useful for an early detection of inconsistencies.

Besides the typed internal logic, the PVS-environment supports the interactive ver-
ification by predefined and user-definable proof strategies. It offers facilities for proof
maintenance, such as editing and rerunning (partial) proofs, easy reuse of already ex-
isting proofs, and the like. PVS notation will be introduced when used in the examples;
for a complete description of PVS we refer to the PVS manual [26]. In the sequel, the
typewriter-font indicates formalization in the PVS language.

3 Hybrid Systems

3.1 Basic definitions

Hybrid systems [2] are a well-known formal model for discrete systems acting in a con-
tinuous environment. The system’s discrete part is represented as a finite set of locations
or modes

�����
, connected by discrete transitions or edges. The continuous part is given

by a finite set ���	��
����	�	 of variables ranging over the real numbers � , where ���	�	
is a countably-infinite variable set. A mapping �������	����� of variables to real values
is called a valuation; the set of all valuations is denoted by � . A location-valuation pair��������� �! #" �����%$ � constitutes a state of a hybrid system. Let & � �����%$ � denote
the set of all states. A state set ')(�*+
,& characterizes the initial states of the system.

As states consist of a discrete and a continuous part, so do the transitions of a hybrid
system. A discrete state change is captured by the edges of the graph: leading from one
location to another, a transition changes the discrete part of the state; besides that, in
going from one location to the next, it may alter non-deterministically the values of the
variables. To cater for synchronization between parallel components, the edges come
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decorated with a synchronization label from a finite label set
� � � . The set of labels con-

tains a specific stutter label � denoting internal moves, not eligible for synchronization.
Each location � is assumed to be able to perform a stutter transition labeled by � . Such
a transition stands, as usual, for a “do-nothing” step and denotes that other hybrid sys-
tems involved in the parallel composition take some discrete transitions. To distinguish
between variables the component has under its control in a stutter transition and those
it cannot actively influence, the variable set is split into control and non-control vari-
ables. The distinction is drawn per location by a function � � ( � ��� � �������
	 . Stutter
transitions leave the valuations for control variables of the given location unchanged,
while putting no restriction on the effect concerning the non-control variables, as they
are considered as being influenced solely by the outside.

For the continuous part, the values of the variables may evolve over time, where
the corresponding behavior is described, per location, by a set of activities. An activity
is a continuous function, describing the variables’ change starting from the moment
the location is entered. Since the specific entrance point in time should not influence
the behavior relative to that moment, the set of activities for a location is required to be
insensitive against shift in time, or time-invariant. Let � denote the set of all continuous
functions in ���� � � . A set � 
�� of activities is called time-invariant, if for all� "�� and �%" ����� , also

��� �%"�� , where
��� � denotes the function which assigns

to each ��� "������ the value
� � � � ���  . An invariant finally is attributed to each location,

i.e., a predicate over the set of valuations � , where the system is allowed to enter or
stay in a location only as long as the invariant evaluates to true.

Before giving the formal definition of a hybrid system, let us fix some notations.
We write

��� � � �"!#���%$ for the restriction of a function
� �&! �'$ to a sub-domain

!(� 
)! ; the same notation is used for the extension of the restriction operator to sets of
functions, as well. For

� " ������ � and * " ���	� , we denote by
� +

the function in
�,��� � � such that

� + � �� � � � �� � *  for all �#" ����� . We call a function
� "����� � �

continuous, if for all * " ���	� , � + is continuous. The following definition corresponds
to the one encoded in PVS; to avoid overly baroque notation, we allowed ourselves to
elide type declarations present in PVS within the definitions in the paper, in case the
type can unambiguously be inferred from the context. This convention applies to all the
following definitions.

Definition 1 (Hybrid system). A hybrid system - is a tuple � � � � � ���	� � � � ( � ')( * �� � � �/.1032 �54 �76 � ')("8  , where
� � �

is a finite, non-empty set of locations and ���	� a finite,
non-empty set of variables. The function � � (,� � � � �9�����
	 defines the control vari-
ables in each state, the set ' ( * 
 & � � � � $ � the initial states. The transitions are
given by .:032 
 � � � $ � � � $ � �;� $ � � �'�<�+  $ ��� � , where

� � � denotes a finite
set of labels containing the stutter label � . For all � " ����� there is a stutter transition��� � � ���>=��@?  � �  " .10A2 such that = � � and ?�� �! �CB �&� � � �ED�F
G&HJILK � �&� �ED�F
GMHLIJK@N . The
activities are given by 4 �36 � � � � �O�QP such that 4 �76 � �  is time-invariant for each
location � " ��� � . The function ' ("8�� ����� �R�;� specifies the invariants.

For a discrete transition � � � �@S � �T=��@?  � � �  " .10A2 , = 
 � is called the guard and? � � �U�;� its effect. Depending on various restrictions on the form of the invari-
ants, the guards, the activities etc., a score of variants and simplifications of this model
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have been investigated, especially to obtain decidable and automatically checkable sub-
classes of the general definition (cf. for instance [2, 3, 21, 16, 28]). As in this paper we
are concerned with formulating a proof method within a deductive framework, we will
stick to the general definition.

Representing the above definition in PVS is straightforward. The hybrid system
tuple is represented by the type hys, a record type, i.e., a product type with named fields
written as [# ����� #] (the record value is denoted by (# ����� #)). The PVS theory of
the same name hys, partly shown below, contains the type definition of hybrid systems.

PVS

hys: THEORY
BEGIN

...
IMPORTING invariant_func

hys: TYPE = [#
Loc: location_set,
Vari: variable_set,
Lab: label_set,
Cont: control_variable_func[Loc,Vari],
Ini: state_set[Loc,Vari],
Edg: edge_set[Loc,Vari,Lab],
Act: activity_func[Loc,Vari],
Inv: invariant_func[Loc,Vari] #]

END hys

The component types of the above PVS-definition are implemented and grouped
into separate theories and imported into hys by the IMPORTING-construct. For exam-
ple, the type of an invariant function, which assigns to each location an invariant (i.e., a
valuation set), is implemented as a parameterized theory, since its type depends on the
location and the variable sets:

PVS

invariant_func[(IMPORTING location) Loc :location_set,
(IMPORTING variable) Vari:variable_set]: THEORY

BEGIN
IMPORTING valuation[Vari]
invariant_func : TYPE = [(Loc)->valuation_set]

END invariant_func

3.2 Semantics

As mentioned before, a system’s state can change in two ways: either by discrete tran-
sitions or by time delay. Hence there are two kinds of transitions between states: an
instantaneous, discrete step, written � �

, follows an edge � � � � S����>=��@?  � � �  of the sys-
tem, thereby moving from location � � to � � and possibly changing the values of the
variables according to �T=��@?  :
����� �
	��������� � ����� ��� ��	 � ��������� �� ��	 � �!�"����� �� �#	 �� �%$'&($ ��� $
�)	�$  �#	*�,+�-/.

�� � $ � � 	1032 �� � $ � � 	
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Time steps, written � ��� �
, describe the evolution of the values of the variables in a given

location and according to an activity in that location:

� ��� 	1� � � � ��� 	 � � �
	 ����������� � ����� 	(�,����� �� 	 � ������� � �����% �� 	
�� $ � � 	 0�� � ! �� $ � � 	

For both relations, control may stay in a location (i.e., time can progress in a location),
resp. enter a location through a discrete state change, only if the invariant is not violated.

The one-step relation � is defined by � �#" � ��� �
. A run of the hybrid system -

is a (finite or infinite) sequence $ ��� � � � � � � � �&%'%'% , with � � � � � � � � �  %" ' ( *
and � � " ' ("8 � � �  . We denote the set of runs of - by ( ( -*) ) . A state � " & is reachable
in - , if there exists a run $ � � � � � � � � � �+%'%�% � �-, of - with �., � � . We
write / � -  for the set of all reachable states of - .

We use � ,
, �10 , and �32 to denote respectively the 4 -step relation, the reflexive-

transitive closure, and the transitive closure of the one-step relation.
The semantics of hybrid systems is defined in PVS as a parameterized theory se-

mantics. We list the core of this theory containing the definition of initial states, and
discrete and time step relations, but elide ancillary definitions which should be clear
from the context (for the full definitions we have to refer to the web resources):

PVS

semantics[(IMPORTING hys) H:hys]: THEORY
BEGIN

ini_step(sigma:state[Loc(H),Vari(H)]): bool =
Ini(H)(sigma) AND Inv(H)(loc(sigma))(val(sigma))

disc_step(sigma1,sigma2:state[Loc(H),Vari(H)],
e:edge[Loc(H),Vari(H),Lab(H)]): bool =

trrel(e)((# pre := val(sigma1),
post := val(sigma2) #)) AND

Inv(H)(sourceloc(e))(val(sigma1)) AND
Inv(H)(targetloc(e))(val(sigma2)) AND
Edg(H)(e) AND
sourceloc(e) = loc(sigma1) AND
targetloc(e) = loc(sigma2)

time_step(sigma1,sigma2:state[Loc(H),Vari(H)],
f:activity[Vari(H)], t:nonneg_real): bool =

f(0) = val(sigma1) AND
f(t) = val(sigma2) AND
(FORALL (t1: {t1:nonneg_real|t1<=t}):

Inv(H)(loc(sigma1))(f(t1))) AND
Inv(H)(loc(sigma1))(val(sigma2)) AND
Act(H)(loc(sigma1))(f) AND
loc(sigma2) = loc(sigma1)

...
END semantics

Before giving an example, let us fix some conventions to specify the components
of the hybrid system. The standard way to describe the activities is as solutions of
differential equations 56 �87 � 6  resp. differential inclusions 56 " 7 � 6  , where 6 �
� * � � ����� � * ,  is a vector of variables from ��� � and 7 a function from � to � , resp.
from � to �;� . We will write subsets of valuations, like the invariants of the locations,
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Fig. 1. Thermostat

in form of boolean predicates ) � � � * ���,+ . In such formulas we write short *
for the evaluation � � *  . In a transition relation �T=��@?  , the effect ? will be written in
the form of a simultaneous, non-deterministic assignment * � � ����� � * , � � 7 � � ����� � 7 , ,
where * � � ����� � * , " ���	� , and 7 � � ����� � 7 , are set-valued functions from � to �$- . The
relation ? is then defined as the set of all valuation pairs � � � � �  " � �

such that � � � */.  "7 . � �  for all 0 �21 � ����� � 4 , and � �43  � �&� �53  for all 3 " ���	�76 B * � � ����� � * , N .
Let’s illustrate the definitions so far on a simple, well-tried example, the thermostat.

Example 2 (Thermostat). The temperature * of a room is controlled by a thermostat,
which continuously senses the temperature and turns a heater on and off if the threshold
values *98�:

G
and *&8 �<; are reached, where *&8�:

G>=
*98 �<; and *&8?:

G � *&8 �<; "��A@�� . When
the heater is off, the temperature decreases according to the function * � �� � * �CB�D

E �
,

where * � is the initial temperature, � the time, and F "��G@�� a room constant. With the
heater turned on, the temperature follows the function * � �� � � * �IH ?  B�D

E � � ? , where?�J *&8?:
G � *98 �<; is a real-valued constant which depends on the power of the heater.

The initial temperature is *&81�<; degrees and the heater is off initially. Two variables 3
and K serve to record the duration of time spent in the heating and the non-heating mode.
The resulting hybrid system is shown in Fig. 1. By convention, trivial components of
an edge ����� S����>= �5?  � � �  , i.e., S,� � , = � 6 �ML	N , or

� � ' 0 are not shown, and neither
are stutter transitions. The same simplification is done for trivial invariants in locations.

The thermostat example is implemented by the theory thermostat:

PVS

thermostat: THEORY
BEGIN

...
Loc: setof[location] =

LAMBDA (l:location): l = l_off OR l = l_on
Vari: setof[variable] =

LAMBDA (k:variable): k=x OR k=y OR k=z
Lab: setof[label] = LAMBDA (la:label): la=tau
...
Inv : invariant_func[Loc,Vari] =

LAMBDA (l:(Loc)): LAMBDA (nu:valuation[Vari]):
IF l=l_off THEN x_min <= nu(x) ELSE nu(x) <= x_max ENDIF

H: complete_hys =
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(# Loc:=Loc, Vari:=Vari, Cont:=Cont,
Ini:=Ini, Lab:=Lab, Edg:=Edg, Act:=Act, Inv:=Inv #)

...
END thermostat

3.3 The parallel composition of hybrid systems

Complex systems are often built from smaller components working in parallel. The
parallel composition of two hybrid systems - � and - � is given by a standard product
construction and written as - � $ - � . Locations are paired and the set of variables com-
bined. The two partners can take a common discrete step, either by synchronizing on
the same label, or in that one of the contributors performs a discrete non-synchronizing
transition while its partner stutters. Besides synchronizing on the label in a common dis-
crete step, the conjunction of the actions on the variables is taken, i.e., a common step is
possible only if both guards are true and if the outcome on the variables coincides. On
variables it does not control, a component cannot block non-synchronizing transitions
of its partner, since stutter transitions, available at each location, don’t restrict the be-
havior of non-controlled variables. On control variables, on the other hand, stuttering is
allowed only without changing the variables’ values. Time transitions of the composed
systems are time transitions in both systems, i.e., the activities of the composed system,
restricted to the local variable sets, are activities of the component systems. Invariants
of the composition finally are conjunctions of the component invariants.

Definition 3 (Parallel composition). Let - � and - � be two hybrid systems of the
forms � � � � . � ���	� . � � � ( . � ')(�* . � � � � . �/.1032 . �/4 �36 . � ')(�8 .  . The product - � $ - � is the
hybrid system - � � ����� � $ ����� � � ���	� � " ���	� � � � � ( � ')(�* � � � � � " � � � � �5.10A2 �54 �76 �
')("8  such that for all � � � � �� " ����� � , � � � � �� " ����� � , S " � � � , = 
 � , ? ��� � �;� and� " � :

1. ����� � � � �  � �! "�')(�* iff. ��� . � � � ���
	 �  " ' ( * . , for 0 � 1 � � ;
2. � � ( ����� � � � �  � � � � ( � � � �  " � � ( � ��� �  ;
3. ��� � � � �  H � � H�� � � K ��� �� � � ��  " .10A2 , iff. there exist � . H �

� �H�� � � � � K � �. " .1032 . , such that
(a) S � S � � S � , or S � � S��" � � � � and S � � � , or S � � � and S � S � �" � � � � ,
(b) = � �! � = � � � � ���
	��  	� = � � � � ���
	�
  , and
(c) �M� " ?�� �! , iff. �M� � ���
	�� " ? � � � � ���
	��  and �&� � ���
	
 " ? � � � � ���
	�
  ;

4.
� " 4 �36 ����� � � � �  � , iff. for both 0 � 1 and 0 � � , there exist

� . " 4 �76 . ��� .  , such that� � � � � �� � ���
	 � �
� . ;

5. ')("8 ��� � � � � �  � � ���
	 � � ')(�8�. ��� .  for 0 �21 � � .

Note that by construction the set of activities 4 �36 ��� � � � � �  � for a composed location
is time invariant, since 4 �76 � ��� �  and 4 �76 � � � �  are. It is routine albeit tedious to show
that parallel composition is associative and commutative. For a parallel composition
- � $ ����� $ - , with 4 J�� and ��" B 1 � ����� � 4 N , we call the composition system
without -�� the context of -�� . Let &�� denote the state space of - . For the product
system - � - � $ - � , and a state ��� ����� � � � �  � �! of - , we write ��� � � � ��� � � � � ���
	 �  



9

and � � � 
 ��� � � � � � ���
	 
  for the projections on the respective components; we will use
the same notation for sets of states, and analogously for runs. A basic property of the
product system is that all runs of the product projected to one of the component systems
are runs of that component system:

Lemma 4. Let - � - � $ - � be the parallel composition of two hybrid systems - �
and - � . Then ( ( -*) ) � � � 
 ( ( -�. ) ) and / � -  � � � 
 / � -�.  , for 0 � 1 � � .

4 Proof System

Our approach and formalization to analyze the behavior of hybrid systems is based
on Floyd’s inductive assertion method [10]. In this classical state-based verification
method one associates an assertion, i.e., a predicate over the current values of variables,
with each control location of the underlying program. This gives a finite number of
verification conditions to check for proving the given correctness criteria of that pro-
gram. While originally developed in the context of sequential programs, the inductive
assertion method serves also as fundamental technique in the analysis of concurrent
programs [9]. We extend the inductive assertion method to hybrid systems.

4.1 Inductive assertional method

Let � ����� � ���	� � � � ( � ' ( * � � � � �5.10A2 �54 �36 � ')(�8  be a hybrid system. An assertion on a
location � is a boolean predicate over � , and an assertion network a predicate over & .
For a given assertion network

�
of - and a location � , let the assertion

� I 
 � be
defined by

� I ��B � � ����� �! " � N
, i.e., � " � I

iff. ��� � �! " �
. Considering subsets of

states as predicates on or properties of the states, we say
� I

holds for a valuation � , in
case � " � I

, and correspondingly for states and assertion networks. By the same token,
we will speak of an assertion network implying a property etc. In connection with the
system’s transition semantics, an assertion network

�
is invariant, if it holds for all

reachable states, it is called inductive, if it holds for all initial states and is preserved
under the transition relation, i.e., if for all states � and � � from & :

B ����� �! #"�')(�* � � " ')(�8 ���  N 
 �
(1)

if � " �
and � � � � � � then � � " � � and (2)

if � " �
and � � ��� � � � , then � � " � � (3)

Obviously, each inductive network is invariant, while the converse will, in general,
not hold. The definitions of inductiveness and invariance and their connection are rep-
resented as follows:

PVS

verification[(IMPORTING hys) H:hys]: THEORY
BEGIN

IMPORTING semantics[H]

assertion: TYPE = valuation_set[Vari(H)]
assertion_network: TYPE = [(Loc(H))->assertion]
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invariant(phi:assertion_network): bool =
FORALL (sigma:state[Loc(H),Vari(H)]):
reachable(sigma) IMPLIES phi(loc(sigma))(val(sigma))

...
induct(Q:assertion_network): bool =

induct_ini(Q) AND induct_edge(Q) AND induct_time(Q)

inv_rule: LEMMA
FORALL (Q:assertion_network):
induct(Q) IMPLIES invariant(Q)

END verification

To verify a property ) for all reachable states, one can do so by finding a stronger
invariant, i.e., an inductive assertion network

�
which implies ) . This proof principle,

known as inductive assertion method, is summarized in the following rule:
� 0�� �

inductive for �
IND� � � 	�0��

In PVS, the proof method looks as follows:

PVS

verification_methods : THEORY
BEGIN

IMPORTING ...
simple_method: LEMMA
FORALL (H:hys,Q,phi:assertion_network[H]):

induct[H](Q) AND
(FORALL (l:location): Loc(H)(l) IMPLIES
(FORALL (nu:valuation[Vari(H)]): Q(l)(nu) IMPLIES phi(l)(nu)))

IMPLIES invariant[H](phi)
...

END verification_methods

It is standard to show that the rule IND is sound and complete. Note that its PVS
representation contains the corresponding soundness proof as the proof of the LEMMA
simple method. We have to refer to the technical report [1] for the soundness and
completeness proofs.

4.2 Inductive assertional proofs for parallel composition

When analyzing the parallel composition of hybrid systems, it is always possible to
apply the inductive assertion method of the previous section directly on the composed
system. Neglecting the structure of the composed system, however, often leads to a
proliferation of the verification conditions, which reflects the state-explosion problem.

The basic idea for an improvement over the plain product of assertions for the clas-
sical programming concepts is a two-level approach, where first local assertion net-
works are checked for local consistency, and then some global consistency test (the
interference freedom and the cooperation test) relates these local networks, reducing
the amount of verification conditions (cf. to [9] for an exhaustive treatment).
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In contrast to most applications of assertional methods, which are based on an dis-
crete, interleaving model of concurrency, our method has to capture the continuous
system evolution as well as the synchronous nature of hybrid systems’ composition:
the context of a single component cannot act independently from that component in the
synchronous model, local assertions need not be shown invariant under context actions
(i.e., an interference freedom test is redundant). As hybrid systems do not communicate
via message passing, no cooperation test is needed, either.

An important technique, commonly called augmentation, which allows to speak
about the peer processes of a component, is the extension of the system by fresh, oth-
erwise unused auxiliary variables. As auxiliary variables are added for the sole purpose
of verification, their addition must not influence the system’s behavior in any way.

In the following, we will write -�� � - , when - � is an augmentation of - (see
[1] for detailed description). For a state set

� � of the augmented system we define the
projection

� � � � � B ����� �! #" &�� ��� ��� � �M�  #" � � � � � �&� � ���
	
N
.

As the control flow and the activities for variables of - are not influenced by the
auxiliary variables, the set of reachable states of -�� restricted to the original variable
set ���	� in the valuation component equals the reachable states of the original system,
i.e., / � - �  � � � / � -  . Thus, a property whose satisfaction does not depend on the
values for the auxiliary variables, holds for all reachable states of - � , iff. it holds for all
reachable states of - .

Let - � and - � be hybrid systems, - � - � $ - � with variable set ��� � their parallel
composition, and

� � and
� � assertion networks for - � and - � , respectively. We define

the composition of the local assertion networks as
� � $ � � � B � " &�� � � � � � "� � � � � � 
 "

� � N . Note that
� � $ � � is an assertion network of - . Now let ) 
,& �

a predicate on the set of - ’s states. Then ) is an invariant of - if and only if there exists
an auxiliary variable set ���	� ��� ; , hybrid systems - �� and - �� , such that - � � - �� $ - ��
is an augmentation of - with ���	� ����; , and inductive assertion networks

� � � and
� �� of

- �� and - �� , respectively, such that � � � � $ � ��  � � 
�) . With these conventions, we can
formulate the proof rule to deal with the parallel composition of systems.

�
���� � �� � � � � � �

� � ��� � -�� �% � ���	��
�� � �� � � ��� � -�� �% � ���	��
�� � ��� � � ��� � � � 	��� ��� � 
 0 � COMP� � � 	�0 �

Proposition 5. The proof rule (COMP) is sound and complete.

For the proof of soundness and completeness we refer to the technical report [1].

5 Verification in PVS

Next we sketch the hierarchical structure of the main theories in the PVS implementa-
tion of our proof methods and give an overview of the examples verified within PVS.
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semantics

verification

hybrid system composition

Fig. 2. Structure of the proof system in PVS

5.1 Structure of the proof system in PVS

In general, the dependencies of the modules mirror the order of definitions and lemmas
as presented in the previous sections (or rather the paper follows the structure of the
PVS-theories). Fig. 2 gives a overview of the main components.

The basis of the formalization are the theories containing the definition of hybrid
systems and their parallel composition. These modules are imported into the definition
for the semantics, both for hybrid systems and their parallel composition. The semantics
of one instance of a hybrid system is defined as a separate theory parameterized in this
instance (cf. the code fragment in Section 3). The theories defining the proof rules for
hybrid systems and their parallel composition import the above basic definitions.

5.2 Example

Besides formalizing the proof rules in PVS, we applied the method to a number of
examples, e.g., non-linear variations of the water level monitor [2], or a modified clock
synchronization of the MPEG4 standard. The PVS formalization of these examples and
the verified properties are available on the web-site and in [1]. In the following, we
describe in more detail a simple example of a non-linear, composed hybrid system,
which computes a linear approximation of a non-linear function.

The approximator is the parallel composition of two hybrid systems, - :
G
�
�
� and

- � ��� 	
F
; . The first one changes the value of a variable * according to activities with

derivation in ( H S �@S ) , where S J � . The second one reads the value of * periodically
after each time interval

���
and approximates the value of * linearly, based on the last

two received values. The approximated value is represented by the variable 3 . Variables
* � and 3 � store the value of * and 3 respectively at the time instance of the last synchro-
nization point. For measuring the time we introduce the clock variable K . Fig. 3 shows
the resulting hybrid system.

The property we are interested in is that the approximation error does not exceed a
certain margin, i.e., for each state the invariant

� * H 3 ��� S % ��� holds.
In order to verify this property we define an assertion (network) for - :

G
�
�
� , which

expresses some boundaries for the value of * :
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 ��� � � ��&($ &���� � � ��� � �� �����

GF ED

@A BC
//

���"��� �	��� �
��

� �
	��� ����� �"�7��� � �
 ��� � � ��� � ����� ���
	���� � � ��� ���
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//
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��

��� � � ����� �"�7����� �"�

Fig. 3. Linear approximation

� :
G
�
�
� ��� �  � * � H S K � * � * �

� S K �
With - � ��� 	

F
; , we associate a predicate which expresses that the invariant was valid

for the last synchronization point and defines an upper boundary for the actual approx-
imation error:

�

� ��� 	
F
; ��� �  � 3 � 3 � �

+ � D � ���� K �� * � H 3 � � � S % � � �
� * H 3 � ��� + � D � � ���� � � � H K  � S K �

6 Conclusion

As the main line of research on hybrid systems focuses on model checking techniques
for appropriately restricted subclasses, there are less investigations on deductive meth-
ods for their verification. In this paper we present an assertional deductive proof method
for the verification of hybrid systems. Especially for the verification of composed sys-
tems, we give a complete proof rule to reduce the complexity introduced by the parallel
composition. To facilitate the tedious verification of those system without restricting the
model artificially, we embedded the proof system into the PVS theorem prover. Beside
offering the full power of higher-order logic, a further advantage of such a deductive
verification environment is that it allows a straightforward rigorous formalization of the
mathematical definitions, without the need to resort to any specific logic. Furthermore,
PVS comes equipped with a wide range of automated proof-strategies and heuristics.

Related Work Closest in spirit to our work is [5], which embed timed automata into PVS
and apply their approach to the steam boiler example. The same example is treated in
[33], with the goal of deriving an implementation of a real-time program in a number
of refinement steps [19]. The PVS theorem prover is also used in [17] in combination
with model checking using HYTECH [4] for the reachability analysis for various classes
of linear hybrid automata. For the verification of safety properties of hybrid systems,
[20] employ hybrid temporal logic HTL, an extension of interval temporal logic. They
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give a number of proof-rules which they prove sound. Likewise building upon temporal
logic, [24] use the Stanford theorem prover STeP as proof environment. Besides the
verification of safety and liveness properties, [31] contains a deeper discussion of the
connection of hybrid systems and the field of control theory and presents proof con-
cepts for stability and attraction properties of hybrid systems (cf. also the contribution
[32] in this volume). [22] surveys various deductive and algorithmic approaches for the
verification of hybrid systems.

Future Work As for future work, we intend to apply our method to larger case studies,
especially to extend the control example based on MPEG4 of [8], and further a laser
steering system for mass spectroscopy. To improve the specification structure of hybrid
systems, the interface information can be extended, for instance separating the variable
set into input and output variables like in [23]. Such a cleaner separation is a neces-
sary prerequisite for the development of an assume-guarantee reasoning scheme [30].
Furthermore, we expect that the verification will benefit from an alternative semantics
allowing for compositional proofs [13].
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