
SMT-RAT: An SMT-Compliant
Nonlinear Real Arithmetic Toolbox

(Tool Presentation)?

Florian Corzilius, Ulrich Loup, Sebastian Junges and Erika Ábrahám

RWTH Aachen University, Germany

Abstract. We present SMT-RAT, a C++ toolbox offering theory solver
modules for the development of SMT solvers for nonlinear real arith-
metic (NRA). NRA is an important but hard-to-solve theory and only
fragments of it can be handled by some of the currently available SMT
solvers. Our toolbox contains modules implementing the virtual substitu-
tion method, the cylindrical algebraic decomposition method, a Gröbner
bases simplifier and a general simplifier. These modules can be combined
according to a user-defined strategy in order to exploit their advantages.

1 Introduction

The Satisfiability-Modulo-Theories (SMT) problem is the problem of checking
SMT formulas, i.e. Boolean combinations of constraints of one or more theories,
for satisfiability. SMT solvers use a SAT solver to find satisfying solutions for
the Boolean skeleton of an input SMT formula, which are in turn checked for
consistency with other decision procedures for the underlying theories.

The last decade brought great achievements in the field of SMT solving. For
instance, the SMT-LIB standard defines a common input format for SMT solvers
and provides the community with benchmarks for different theories. In addition,
SMT competitions motivate the development and improvement of SMT solvers.
Nowadays, different efficient SMT solvers are available for several theories, e.g.,
for linear real arithmetic. However, only a few solvers support nonlinear real
arithmetic (NRA), the theory of the reals with addition and multiplication.

Nonlinear real arithmetic was shown to be decidable by Tarski [16]. Though
the worst-case time complexity of solving real-arithmetic formulas is doubly
exponential in the number of variables [18], its existential fragment, which is
addressed by SMT solving, can be solved in exponential time [13]. One of the
most widely used decision procedures for NRA is the cylindrical algebraic de-
composition (CAD) method [6]. Other well-known methods use, e.g., Gröbner
bases [17] or the realization of sign conditions [2]. Some incomplete methods
based on, e.g., interval constraint propagation (ICP) [12] and virtual substitu-
tion (VS) [19], can handle significant fragments and, even though they have the
same worst-case complexity as the complete methods, they are more efficient in
? The original publication is available at http://www.springerlink.com.

practice. Moreover, they are well-suited for a combination with complete meth-
ods, to which they pass reduced sub-problems.

The methods mentioned above are implemented in different tools. For ex-
ample, QEPCAD [4] implements the CAD method, the Redlog package [11] of the
computer algebra system Reduce offers an optimized combination of the VS, the
CAD, and Gröbner bases methods, and RAHD [15] combines different methods by
a user-defined strategy. The strength of these tools lies in solving conjunctions
of real-arithmetic constraints, but they are not designed for formulas with ar-
bitrary Boolean structures. A natural way to join the advantages of these tools
with those of SAT solving suggests their embedding in an SMT solver.

There are some SMT solvers available which support fragments of NRA.
Z3 [20] applies an optimized combination of linear arithmetic decision procedures,
ICP and the VS method. MiniSmt tries to reduce NRA problems to linear real
arithmetic and HySAT/iSAT uses ICP. All these SMT solvers are incomplete for
NRA, i.e., they can not check satisfiability for all real-arithmetic SMT formulas.

The development of a complete SMT solver for NRA is problematic because
the aforementioned algebraic decision procedures are not SMT-compliant, i.e.,
they do not fulfill the requirements for the embedding into an efficient SMT
solver. Firstly, in less lazy SMT solving, theory solvers should be able to work
incrementally, i.e., if they determine the satisfiability of a set of constraints, they
should be able to check an extended set of constraints on the basis of the previous
result. Secondly, in case a constraint set is unsatisfiable, theory solvers should
be able to compute an infeasible subset as explanation. Thirdly, they must be
able to backtrack according to the search of the SAT solver.

In this paper, we present the open-source C++ toolbox SMT-RAT, which imple-
ments real-arithmetic constraint simplifier and theory solver modules suited for
the embedding into an SMT solver. Besides standard libraries, SMT-RAT invokes
only the libraries GiNaC and GiNaCRA [14]. The source code with all modules
and a manual with examples can be found at http://smtrat.sourceforge.net/.
Our toolbox SMT-RAT offers an incremental implementation of the VS method
[1,7], which can generate infeasible subsets and supports backtracking. It also
provides two incremental implementations of the CAD method. One can handle
the multivariate case, whereas the other one is specialized on univariate instances
only and can generate infeasible subsets. Furthermore, two simplifier modules
are available based on smart simplifications [10] and Gröbner bases, respectively.

This is the first release of our toolbox. At this stage, we do not aim at com-
peting with state-of-the-art solvers in all categories. For example, we do not yet
offer extensive simplifiers, ICP, or theory solver modules for linear arithmetic.
The main advantages of our toolbox lie in offering (1) complete SMT-compliant
decision procedures, (2) the possibility to combine theory solvers according to a
user-defined strategy, and (3) a modular and extendable open-source implemen-
tation. Syntactically, our strategies are more simple than those proposed in [9].
However, we choose a procedure depending on not only the formula but also on
the history of solving, offering a very flexible approach.

2

We use SMT-RAT to extend the open-source SMT solver OpenSMT [5] by the
theory NRA. First experimental results comparing this tool with Z3 and CVC3
[8] indicate that for some highly nonlinear benchmark sets we are able to solve
a much larger number of instances, but for some other benchmark sets we still
need further improvements.

In the following, we first give some preliminaries in Section 2 and a short
introduction to the toolbox design in Section 3. We give some experimental
results in Section 4 and conclude the paper in Section 5.

2 Satisfiability modulo real arithmetic

SMT solving denotes an algorithmic framework for solving Boolean combinations
of constraints from some theories. SMT solvers combine a SAT solver comput-
ing satisfying assignments for the Boolean structure of the SMT formula with
procedures to check the consistency of theory constraints. For more details on
SMT related topics we refer to [3, Ch. 26].

We consider NRA formulas ϕ, which are Boolean combinations of constraints
c comparing polynomials p to 0. A polynomial p can be a constant, a variable x,
or a composition of polynomials by addition, subtraction or multiplication:

p ::= 0 | 1 | x | (p+ p) | (p− p) | (p · p)
c ::= p = 0 | p < 0 | p > 0
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

The semantics of NRA formulas is defined as usual.
Given a polynomial p = a1x

e1,1
1 · · ·xen,1

n + · · · + akx
e1,k
1 · · ·xen,k

n in mono-
mial normal form, by deg(p) := max1≤j≤k(

∑n
i=1 ei,j) we denote the degree of

p. We call an NRA formula ϕ linear if deg(p) ≤ 1 for all polynomials p in ϕ,
and nonlinear otherwise. Linear real arithmetic (LRA) formulas are linear NRA
formulas.

3 Toolbox design

Our toolbox has a modular C++ class design which can be used to compose
NRA theory solvers for an SMT embedding in a dynamic and hierarchic fash-
ion. Our NRA theory solvers are instances of Manager, which offers an inter-
face to communicate with the environment and which coordinates the satisfi-
ability check according to a user-defined Strategy. Such a strategy combines
basic NRA theory solver modules, derived from Module. Figure 1 shows an ex-
ample configuration. Moreover, a Java-based graphical user interface can be
used for an intuitive and user-friendly specification of strategies (and the au-
tomatic generation of a corresponding Strategy class). Next, we briefly de-
scribe these concepts. For more details we refer to the manual of SMT-RAT at
http://smtrat.sourceforge.net/manual/manual.pdf.

3

SMT solver

SAT
solver

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Fig. 1: A snapshot of an SMT-RAT composition embedded in an SMT solver.

The Formula class. Formula instances contain, besides a sequence of NRA
constraints, a bitvector storing some information about the problem and the
history of its check. E.g., there is a bit which is 1 if some of the constraints
are equations. Also for each module there is a bit which is 1 if the module was
already invoked on the given problem. Such information can be used to specify
conditions under which a procedure should be invoked for a certain problem.

The Module class. A module is an SMT-compliant implementation of a proce-
dure (e.g., constraint simplifier, an incomplete procedure or a complete decision
procedure) which can be used for the satisfiability check of NRA formulas. A
module’s interface allows to add constraints, to push and pop backtrack points,
to check the so far added constraints for consistency and to obtain an infeasible
subset of these constraints if they are detected to be inconsistent.

Modules have the opportunity to call other modules (backends) on sub-
problems. A novel achievement of our toolbox is that this call hierarchy is dy-
namic and guided by a user-defined strategy. Currently, we only support sequen-
tial execution, parallel solving is planned for later releases.

Inheritance can be used to extend existing modules. Besides the basic type
Module, our toolbox offers five sub-classes. SimplifierModule (SIM) imple-
ments smart simplifications [10], while GroebnerModule (GSM) simplifies equa-
tion systems using Gröbner bases and probably detects inconsistency. The CAD
method is implemented in UnivariateCADModule (UCM) for the univariate case
and in CADModule (MCM) for the general multivariate case. The last module class
VSModule (VSM) implements a version of the VS method as published in [7].

The Strategy class. SMT-RAT offers a framework to integrate single modules
to powerful and efficient composed theory solvers. The composition relies on a
user-defined Strategy that specifies for each Formula instance which module
should be used for its check. A strategy is basically a sequence of condition-
module pairs. For each Formula instance, it determines the first module whose
condition evaluates to true on the bitvector of the formula. E.g., the strategy
“c1 ? (m1) : (c2 ? (m2) : (m3))” determines m1 as module type for ϕ if the
bitvector of ϕ fulfills the condition c1. If ϕ does not fulfill c1 but c2, then an
instance of m2 is called, otherwise of m3.

4

Table 1 Running times [sec] of Rat1, Rat2, Z3 and CVC3 on four benchmarks.
Rat1 Rat2 Z3 CVC3

solved acc. time solved acc. time solved acc. time solved acc. time
bouncing ball 43/52 4226.24 43/52 424.63 0/52 0.00 0/52 0.00
etcs 2/5 136.15 2/5 135.05 1/5 42.00 1/5 0.11
rectangular pos. 16/22 305.54 16/22 299.54 22/22 27.29 0/22 0.00
zankl 22/166 26.30 22/166 25.81 62/166 1138.96 9/166 2.86

The Manager class. The Manager contains references to the available module
instances and to the user-defined strategy. It manages, on the one hand, the
creation and linking of the modules, and, on the other hand, the communication
between them and the environment, e.g., the frontend of an SMT solver.

4 Experimental results

All experiments were performed on an Intel® Core™ i7 CPU at 2.80 GHz with
4 GB RAM with Gentoo Linux. We defined two strategies

c1 ? (MCM) : (c2 ? (UCM) : (c4 ? (VSM) : (SIM)))

and c1 ? (MCM) : (c2 ? (UCM) : (c3 ? (VSM) : (c4 ? (GSM) : (SIM))))

where c1, c2, c3 and c4 hold if the UCM , the VSM , the GSM and SIM was invoked
and could not solve the given formula, respectively. We embedded two theory
solver components using these strategies into OpenSMT, yielding the SMT solvers
Rat1 and Rat2, respectively, which we compared to CVC3 2.4 and Z3 3.1, the
latter being the winner of last year’s SMT competition for NRA.

Table 1 shows the running times in seconds on four benchmark sets with
the timeout of 150 seconds. The first one models the nonlinear movement of a
bouncing ball which may drop into a hole. The second one is a nonlinear version
of the European Train Control System benchmark set. The third one contains
problems to checks whether a given set of rectangles fits in a given area. The
last benchmark set stems from the SMT competition in 2011.

The results show, that we can solve many examples which Z3 and CVC3
cannot solve. However, Z3 does a better job in the last two benchmark sets,
where the major part of the formula is linear. Here it can benefit from its ICP
and Simplex solver checking the linear fragment. Nevertheless, the results point
out that we can build efficient SMT solvers for NRA using OpenSMT and SMT-RAT.
Furthermore, it indicates that extending SMT-RAT by modules, e.g. implementing
Simplex or ICP, would lead to significant improvements.

5 Conclusion and future work

SMT-RAT is a toolbox contributing several SMT-compliant simplifier and theory
solver modules and a framework to combine them according to a user-defined

5

strategy. Experimental results show that an SMT solver enriched by SMT-RAT
for solving NRA can compete with state-of-the-art SMT solvers and even solve
instances, which they cannot solve.

The design of SMT-RAT aims at modularity, extensibility, and the easy adding
of new modules. Moreover, we plan to improve the performance of SMT-RAT
compositions by modules implementing, e.g., Simplex and ICP. Furthermore,
we want to extend the framework to allow parallel calls of modules, theory
propagation, and shared heuristics.

References

1. Ábrahám, E., et al.: A lazy SMT-solver for a non-linear subset of real algebra. In:
Proc. of SMT’10 (2010)

2. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer
(2010)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets
using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

5. Bruttomesso, R., et al.: The OpenSMT solver. In: Proc. of TACAS’10. LNCS, vol.
6015, pp. 150–153. Springer (2010)

6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. LNCS, vol. 33, pp.
134–183. Springer (1975)

7. Corzilius, F., Ábrahám, E.: Virtual substitution for SMT solving. In: Proc. of
FCT’11. Springer (2011)

8. http://cs.nyu.edu/acsys/cvc3/
9. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving.

http://research.microsoft.com/en-us/um/people/leonardo/mp-smt-strategy.pdf
10. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulas over ordered

fields. Journal of Symbolic Computation 24, 209–231 (1995)
11. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic.

SIGSAM Bulletin 31(2), 2–9 (Jun 1997)
12. Fränzle, M., et al.: Efficient solving of large non-linear arithmetic constraint sys-

tems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling
and Computation 1(3-4), 209–236 (2007)

13. Heintz, J., Roy, M.F., Solernó, P.: On the theoretical and practical complexity of
the existential theory of the reals. The Computer Journal 36(5), 427–431 (1993)

14. Loup, U., Ábrahám, E.: GiNaCRA: A C++ library for real algebraic computations.
In: Proc. of NFM’11. LNCS, vol. 6617, pp. 512–517. Springer (2011)

15. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential
theory of the reals. In: Proc. of Calculemus’09. LNCS, vol. 5625, pp. 122–137.
Springer (2009)

16. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1948)

17. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Quantifier Elimination and Cylindrical Algebraic Decomposition. pp. 376–392.
Texts and Monographs in Symbolic Computation, Springer (1998)

6

18. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1-2), 3–27 (1988)

19. Weispfenning, V.: Quantifier elimination for real algebra – The quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8(2),
85–101 (1997)

20. http://research.microsoft.com/en-us/um/redmond/projects/z3/

7

