
Efficient Bounded Reachability Computation for
Rectangular Automata
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Abstract. We present a new approach to compute the reachable set
with a bounded number of jumps for a rectangular automaton. The
reachable set under a flow transition is computed as a polyhedron which
is represented by a conjunction of finitely many linear constraints. If the
bound is viewed as a constant, the computation time is polynomial in
the number of variables.

1 Introduction

Hybrid systems are systems equipped with both continuous dynamics and dis-
crete behavior. A popular modeling formalism for hybrid systems are hybrid
automata. In this paper, we consider a special class of hybrid automata, called
rectangular automata [1]. The main restriction is that the derivatives, invariants
and guards are defined by lower and upper bounds in each dimension, form-
ing rectangles or boxes in the value domain. Rectangular automata can be used
to model not only simple timed systems but also asymptotically approximate
hybrid systems with nonlinear behaviors [2–5].

Since hybrid automata often model safety-critical systems, their reachability
analysis builds an active research area. The reachability problem is decidable
only for initialized rectangular automata [1], which can be reduced to timed
automata [6]. The main merit of rectangular automata is that the reachable set
under a flow is always a (convex) polyhedron. It means that the reachable set
in a bounded number of jumps can be exactly computed as a set of polyhedra,
unlike for general hybrid automata which need approximative methods such as
[7–9]. In the past, some geometric methods are proposed for exactly or approx-
imately computing the reachable sets in a bounded number of jumps (see, e.g.,
[4, 3]). There are also tools like HyTech [10] and PHAVer[11] which can compute
bounded reachability for rectangular automata in a geometric way.

However, nearly all of the proposed methods compute the exact reachable set
under a flow based on the vertices of the initial set and the derivative rectangle.
Since a d-dimensional rectangle has 2d many vertices, those methods are not able
to handle high-dimensional cases. In [3], an approximative method is proposed
to over-approximate the reachable set by polyhedra which are represented by
conjunctions of linear constraints. Since only 2d linear constraints are needed to



define a d-dimensional rectangle, the computation time of the method is poly-
nomial in d. However, the accuracy degenerates dramatically when d increases.

In this paper, we compute the reachable set as polyhedra which are repre-
sented by finite linear constraint sets [12], where we need only 2d linear con-
straints to define a d-dimensional rectangle. We show that when the number of
jumps is bounded by a constant, the computational complexity of our approach
is polynomial in d. We also include the cases that some of the rectangles in the
definition of a rectangular automaton are not full-dimensional.

The paper is organized as follows. After introducing some basic definitions in
Section 2, we describe our efficient approach for computing the bounded reach-
able set in Section 3. In Section 4, we compare our approach and PHAVer based
on a scalable example. Missing proofs can be found in [13].

2 Preliminaries

2.1 Polyhedra and their computation

For a point (or column vector) v ∈ Rd in the d-dimensional Euclidean space Rd
we use v[i] to denote its ith component, 1 ≤ i ≤ d, and vT for the row vector
being its transpose.

In the following we call linear inequalities cTx ≤ z for some c ∈ Rd, z ∈ R
and x a variable, also constraints. Given a finite set L of linear equalities and
linear inequalities, we write S : L for S = {x ∈ Rd | x satisfies

∧
L∈L L}, and

also write S : L instead of S : {L}. We say that L ∈ L is redundant in L if
S : L = S′ : L\{L}. Redundant (in)equalities can be detected using linear
programming [14].

A finite set {v1, . . . , vd′} ⊆ Rd of linearly independent vectors span an (d′−1)-
dimensional affine subspace Π of Rd by the affine combinations of v1, . . . , vd′ :

Π = {
∑

1≤i≤d′
λivi |

∑
1≤i≤n

λi = 1, λi ∈ R}

The affine hull aff(S) of a set S ⊆ Rd is the smallest affine subspace Π ⊆ Rd
containing S, and we have that dim(S) = dim(aff(S)). We call a subset of a
vector space full-dimensional if its affine hull is the whole space.

A ((d−1)-dimensional) hyperplane in Rd is a (d−1)-dimensional affine sub-
space of Rd. Each hyperplane H can be defined as H : cTx = z for some c ∈ Rd
and z ∈ R. For d′ < d−1, a d′-dimensional affine subspace H ′ of Rd is called
a lower- or d′-dimensional hyperplane and can be defined as an intersection of
d−d′ many hyperplanes (see [12]), i.e., as H ′ :

∧
1≤i≤d−d′ c

T
i x = zi. Since every

linear equation cTx = z can be expressed by cTx ≤ z ∧ −cTx ≤ −z, for d′′ ≤ d,
a d′′-dimensional hyperplane can be defined by a set of 2(d−d′′) constraints.

A (d-dimensional) halfspace S in Rd is a d-dimensional set S : cTx ≤ z for
some c ∈ Rd and z ∈ R. For d′ < d, a d′-dimensional set S′ ⊆ Rd is a lower- or
d′-dimensional halfspace if it is the intersection of a (d-dimensional) halfspace S



and a d′-dimensional hyperplane H ′ 6⊆ S. Note that for d′′ ≤ d, a d′′-dimensional
halfspace can be defined by a set of 2(d−d′′)+1 constraints.

Given a constraint cTx ≤ z, its corresponding equation is cTx = z. The
corresponding hyperplane of a d′-dimensional halfspace S with d′ ≤ d is the
(d′−1)-dimensional hyperplane defined by the set of the corresponding equations
of the constraints that define S.

For a finite set L of constraints we call P : L a polyhedron. Polyhedra can
also be understood as the intersection of finitely many halfspaces. Polytopes are
bounded polyhedra.

A constraint cTx ≤ z is valid for a polyhedron P if all x ∈ P satisfy it.
For cTx ≤ z valid for P and for HF : cTx = z, the set F : P ∩ HF is a face
of P . If F 6= ∅ then we call HF a support hyperplane of P , and the vectors
λc for λ > 0 are the normal vectors of HF . The hyperplane H : cTx = z is a
support hyperplane of a polyhedron P if and only if for the support function
ρP : Rd → R ∪ {∞}, ρP (v) = sup vTx s.t. x ∈ P , we have that ρP (c) = z.
We call a face F of a polyhedron P facet if dim(F ) = dim(P )−1, and vertex if
dim(F ) = 0. For d′-dimensional faces we simply write d′-faces. We use NF(P )
to denote the number of P ’s facets. Given a face F of P , the outer normals of
F are the vectors vF ∈ Rd such that ρP (vF ) = sup vTFx for any x ∈ F . We also
define N (F, P ) as the set of the outer normals of F in P .

For a d′-dimensional polyhedron P : LP , every facet FP of P can be deter-
mined by some LFP

⊆ LP , that is LFP
defines a d′-dimensional halfspace which

contains P and the corresponding hyperplane is the affine hull of FP (see [12]).

Lemma 1. If a constraint set L defines a d′-dimensional polyhedron P⊆Rd and
there is no redundant constraint in L, then the set L contains NF(P )+2(d−d′)
constraints.

Proof. We need a set L′ of 2(d−d′) constraints to define aff(P ). For every facet
FP of P , we need a constraint LFP

such that L′ ∪ {LFP
} determines FP .

For a polyhedron P :
⋃

1≤i≤n{cTi x ≤ zi} and a scalar λ ≥ 0, the scaled
polyhedron λP can be computed by λP :

⋃
1≤i≤n{cTi x ≤ λzi}. The conical hull

of P is the polyhedral cone cone(P ) =
⋃
λ≥0 λP . If the conical hull of P is

d′-dimensional, then P is at least (d′−1)-dimensional (see [12]).

Example 1. Figure 1(a) shows a polyhedron P : x2 ≤ 3∧−x1 ≤ −1∧x1−2x2 ≤
−3 with three irredundant constraints. The support hyperplanes H1, H2, H3 in-
tersect P at its facets. The fourth hyperplane H4 is also a support hyperplane
of P , but it only intersects P at a vertex, and the related constraint −x2 ≤ −2
is redundant. The conical hull of P is shown in Figure 1(b).

Given two polyhedra P : LP and Q : LQ, their intersection P ∩ Q can be
defined by the union of their constraints P ∩Q : LP ∪ LQ. The Minkowski sum
P ⊕ Q of P and Q is defined by P ⊕ Q = {p+q | p ∈ P, q ∈ Q}. It is still a
polyhedron, as illustrated in Figure 2. We have the following important theorem
for the faces of P ⊕Q.
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Fig. 1. A 2-dimensional polytope and its conical hull
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Fig. 2. An example of P ⊕Q

Theorem 1 ([15, 16]). For any polytopes P and Q, each face F of P⊕Q can be
decomposed by F = FP ⊕FQ for some faces FP and FQ of P and Q respectively.
Moreover, this decomposition is unique.

2.2 Rectangular automata

A box B ⊆ Rd is an axis-aligned rectangle which can be defined by a set of
constraints of the form x ≤ a or −x ≤ −a where x is a variable, and a, a are
rationals. A box B : LB is bounded if for every variable x there are constraints
x ≤ a and −x ≤ −a in LB for some rationals a, a, otherwise B is unbounded.
Let Bd be the set of all boxes in Rd.

Rectangular automata [1] are a special class of hybrid automata [17].

Definition 1. A d-dimensional rectangular automaton is a tuple
A = (Loc,Var,Flow, Jump, Inv, Init,Guard,ResetVar,Reset) where

– Loc is a finite set of locations, also called discrete states.
– Var = {x1, . . . , xd} is a set of d ordered real-valued variables. We denote the

variables as a column vector x = (x1, . . . , xd)T .
– Flow : Loc→ Bd assigns each location a flow condition which is a box in Rd.
– Jump : Loc× Loc is a set of jumps (or discrete transitions).
– Inv : Loc→ Bd maps to each location an invariant which is a bounded box.
– Init :Loc→Bd maps to each location a bounded box as initial variable values.
– Guard : Jump→ Bd assigns to each jump a guard which is a box.
– ResetVar : Jump→ 2Var assigns to each jump a set of reset variables.



l0
ẋ1 ∈ [1, 2]
ẋ2 ∈ [2, 3]
x1 ∈ [−5, 5]
x2 ∈ [0, 10]

l1
ẋ1 ∈ [−1, 1]
ẋ2 ∈ [2, 3]
x1 ∈ [−5, 5]
x2 ∈ [0, 15]

e1 : x1 = 5→
x1 := 0

e2 : x2 ≤ 15→
x2 := [0, 1]

x1 := 0
x2 := 0

Fig. 3. A rectangular hybrid automaton A
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Fig. 4. A 3D example of R

– Reset : Jump→ Bd maps to each jump a reset box such that for all e ∈ Jump
and xi ∈ ResetVar(e) the box Reset(e) is bounded in dimension i.

Example 2. Figure 3 shows an example rectangular automaton. For brevity, we
specify boxes by their defining intervals. The location set is Loc = {l0, l1}. The
initial states are Init(l0) = [0, 0] × [0, 0] and Init(l1) = ∅. The flows are defined
by Flow(l0) = [1, 2]× [2, 3] and Flow(l1) = [−1, 1]× [2, 3], and the invariants by
Inv(l0) = [−5, 5] × [0, 10] and Inv(l1) = [−5, 5] × [0, 15]. There are two jumps
Jump = {e1, e2} with e1 = (l0, l1) and e2 = (l1, l0). The guards are Guard(e1) =
[5, 5]×(−∞,+∞) and Guard(e2) = (−∞,+∞)×(−∞, 15], the reset variable sets
ResetVar(e1) = {x1} and ResetVar(e2) = {x2}, and the reset boxes Reset(e1) =
[0, 0]× (−∞,+∞) and Reset(e2) = (−∞,+∞)× [0, 1].

A configuration of A is a pair (l, u) such that l ∈ Loc is a location and
u ∈ Inv(l) a vector assigning the value u[i] to xi for i = 1, . . . , d. There are two
kinds of transitions between configurations:

– Flow: A transition (l, u) t→ (l, u′) where t ≥ 0, such that there exists b ∈
Flow(l) such that u′ = u+tb and for all 0 ≤ t′ ≤ t we have u+t′b ∈ Inv(l).

– Jump: A transition (l, u) e→ (l′, u′) such that e=(l, l′) ∈ Jump, u ∈ Guard(e),
u′ ∈ Inv(l′) ∩ Reset(e), and u[i]=u′[i] for all xi ∈ Var\ResetVar(e).

An execution of A is a sequence (l0, u0) α0→ (l1, u1) α1→ · · · where αi→ is either a
flow or a jump for all i. A configuration is reachable if it can be visited by some
execution. The reachability computation is the task to compute the set of the
reachable configurations. In this paper we consider bounded reachability with
the number of jumps in the considered executions bounded by a positive integer.

3 A New Approach for Reachability Computation

In this section, we present a new approach to compute the reachable set for a
rectangular automaton where the number of jumps is bounded.



3.1 Facets of the reachable set under flow transitions

For a location l of a rectangular automaton with Flow(l) = Q and Init(l) = P ,
the states reachable from P via the flow can be computed in a geometric way:

Rl(P ) = (P ⊕ cone(Q)) ∩ Inv(l). (1)

As already mentioned, previously proposed methods compute Rl(P ) by consid-
ering the evolutions of all vertices of P under the flow condition Q. That means,
also all vertices of Q must be considered. Since Q is a bounded box, it has
2d vertices which make the computation intractable for large d. We present an
approach to compute Rl(P ) exactly based on three constraint sets which define
P,Q and Inv(l) respectively. We show that if we are able to compute a constraint
set that defines P ⊕Q in PTIME, then a constraint set which defines Rl(P ) can
also be computed in PTIME.

We firstly investigate the faces of the set R = P ⊕ cone(Q) in the general
case that P and Q are polytopes in Rd. From the following two lemmata we
derive that the number of R’s facets is bounded by (nP +nP⊕Q) where nP is the
number of the facets of P and nP⊕Q is the number of the faces from dimension
(dim(R)−2) to (dim(R)−1) in P ⊕Q.

Lemma 2. Given a polytope Q ⊆ Rd and a positive integer d′, a d′-face Fcone(Q)

of the polyhedron cone(Q) can be expressed by cone(FQ) where FQ is a nonempty
face of Q and it is at least (d′−1)-dimensional.

Proof. The polyhedron cone(Q) can be expressed by cone(VQ) where VQ is the
vertex set of Q. Then a nonempty face Fcone(Q) of cone(Q) can be expressed
by cone(V ′Q) where V ′Q ⊆ VQ is nonempty. Assume S is the halfspace whose
corresponding hyperplane is H = aff(Fcone(Q)). Since cone(Q) ⊆ S, we also have
that Q ⊆ S, moreover, we can infer that H is a support hyperplane of Q and
FQ = H ∩Q is a nonempty face of Q whose vertex set is V ′Q. Therefore, the face
Fcone(Q) can be expressed by cone(FQ). From the definition of conical hull, if
Fcone(Q) is d′-dimensional then FQ is at least (d′ − 1)-dimensional. ut

Lemma 3. Given two polytopes P,Q ⊆ Rd, any d′-face FR of the polytope R =
P⊕cone(Q) is either a d′-face of P , or the decomposition FR =

⋃
λ≥0(FP⊕λFQ)

where FP , FQ are some nonempty faces of P,Q respectively and FP ⊕ FQ is a
face of P ⊕Q which is at least (d′−1)-dimensional.

Proof. We have two cases for a face FR of R, (1) FR is a face of P ; (2) FR can be
expressed by FP ⊕ cone(FQ) where FQ is a nonempty face of Q (from Theorem
1 and Lemma 2). In the case (2), we rewrite R and FR by

R = P ⊕ cone(Q) =
⋃
λ≥0

(P ⊕ λQ) and FR = FP ⊕ cone(FQ) =
⋃
λ≥0

(FP ⊕ λFQ)

Since FR is a face of R, i.e., it is on the boundary of R, we infer that for all
λ ≥ 0 the set FP ⊕ λFQ is a face of P ⊕ λQ. Thus FP ⊕ FQ is a face of P ⊕Q.
Since FR is d′-dimensional, the set FP ⊕FQ is at least (d′− 1)-dimensional. ut



Example 3. In Figure 4 on page 5, the set F is a facet of both P and R. In
contrast, the facet F ′ can be expressed by

⋃
λ≥0(FP ⊕ λFQ).

The facets of R can be found by enumerating all the facets of P , and all the
faces from dimension (dim(R)−2) to (dim(R)−1) in P ⊕Q.

Lemma 4. Let P : LP and P ⊕ Q : LP⊕Q be some polytopes with LP⊕Q =
{gTj x ≤ hj | 1 ≤ j ≤ m} irredundant. We define the constraint set L =⋃

1≤i<j≤m Li,j such that for each 1 ≤ i < j ≤ m, Li,j = {Li,j} if the inter-
section of Hi : gTi x = hi, Hj : gTj x = hj and P ⊕Q is nonempty, and Li,j is a
constraint whose corresponding hyperplane Hi,j satisfies (1) Hi,j is a support hy-
perplane of P , (2) Hi,j is a support hyperplane of P ⊕Q and (3) Hi∩Hj ⊆ Hi,j.
Otherwise Li,j = ∅.

Suppose that L′ is the set of all constraints in LP and LP⊕Q that are valid
for R. Then the polytope R can be defined by L ∪ L′.

Note that Li,j is not unique for each 1 ≤ i < j ≤ m, but we only need one
of them. Intuitively, for any facet FR of R, if FR is also a facet of P then it can
be determined by a subset L′P of LP . Since the constraints in L′P are also valid
for R, we also have that L′P ⊆ L′. Otherwise FR =

⋃
λ≥0(FP ⊕ λFQ) for some

nonempty faces FP , FQ of P,Q respectively. There are two cases, (a) if FP ⊕FQ
is (dim(R)−1)-dimensional, then FR can be determined by a subset L′P⊕Q of
LP⊕Q, it is also included by L′; (b) if FP ⊕ FQ is (dim(R)−2)-dimensional, the
facet FR is determined by a subset of L. Hence, L ∪ L′ defines R.

3.2 Compute the reachable set under flow transitions

In order to compute the constraint set that defines R, we need to find the
hyperplanes Hi,j stated in Lemma 4. We determine the Hi,j : cTx = z by
solving a feasibility problem for the normal vector c ∈ Rd and the value z ∈ R as
follows. Assume dim(R) = dR, P : LP and P ⊕Q is defined by the irredundant
set LP⊕Q = {gTj x ≤ hj | 1 ≤ j ≤ m}. Firstly, we check if the set Hi∩Hj∩(P⊕Q)
with Hi : gTi x = hi and Hj : gTj x = hj is nonempty by solving the following
linear program:

Find xI ∈ Rd s.t. gTi xI = hi ∧ gTj xI = hj ∧ xI ∈ P ⊕Q.

If such an xI is found, then the intersection is nonempty, and there must be
a (dR−2)-face FP⊕Q of P ⊕ Q contained in it since LP⊕Q is irredundant. We
require that Hi,j is a support hyperplane of P ⊕Q and contains FP⊕Q. This can
be ensured by finding c in the set Ci,j = {αgi+βgj | α, β ≥ 0, α+β > 0} and
demanding cTxI = z. An example is shown in Figure 5.

We also require that Hi,j is a support hyperplane of P . This can be guaran-
teed by demanding ρP (c) = z and c = αgi+βgj . In order to replace ρP (αgi+βgj)
by αρP (gi) +βρP (gj), we need to ensure their equivalence. This can be done by
finding at least one point p ∈ P such that gTi p = ρP (gi) and gTj p = ρP (gj). Since
the (dR−2)-face FP⊕Q is contained in Hi ∩ Hj , we have that gTi x = ρP⊕Q(gi)
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Fig. 5. A 3-dimensional example of the vector c
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and gTj x = ρP⊕Q(gj) for all x ∈ FP⊕Q. From Theorem 1, FP⊕Q can be decom-
posed by FP ⊕ FQ for some faces FP , FQ of P,Q respectively, and we can infer
that for all x ∈ FP it holds that gTi x = ρP (gi) and gTj x = ρP (gj). Hence we can
replace ρP (αgi+βgj) by αρP (gi) + βρP (gj).

Then the vector c can be computed by solving the following problem:

Find c ∈ Rd s.t.
{
c = αgi+βgj ∧ α+β > 0 ∧ α ≥ 0 ∧ β ≥ 0
cTxI = αρP (gi)+βρP (gj)

(2)

We set z = ρP (c). An example of Hi,j is given in Figure 6.
We also need to find the valid constraints for R in LP and LP⊕Q. Given a

constraint L : cTx ≤ z, L is valid for R if and only if ρR(c) ≤ z. Since

ρR(c) = ρP (c)+λρQ(c) = sup cTx+λ sup cT y s.t. x ∈ P, y ∈ Q,λ ≥ 0,

we compute ρP (c) and ρQ(c) by linear programming. If ρQ(c) ≤ 0 then ρR(c) =
ρP (c), otherwise ρR(c) =∞.

If we have the constraints for P ⊕Q then Problem (2) is linear. Algorithm 1
shows the computation of the irredundant constraints of R. Finally, the polytope
LRl(X) can be defined by the set LR ∪ LInv(l) where LInv(l) defines Inv(l).

3.3 Compute the reachable set after a jump

A jump e = (l, l′) of a rectangular automaton can update a variable by a value in
an interval [a, a]. If the set of the reachable states in l is computed as (l, Rl(X)),
then the set of states at which e is enabled can be computed by (l, Rl(X) ∩
Guard(e)). Thus the reachable set after the jump e is (l′, Re(Rl(X))) where

Re(Rl(X)) ={u′ ∈ Inv(l′) ∩ Reset(e) | ∃u ∈ Rl(X) ∩Guard(e).
∀xi ∈ Var\ResetVar(e).u′[i] = u[i]}

(3)

The set Re(Rl(X)) can also be computed in a geometric way. The guard can
be considered by defining Rl(X) ∩Guard(e) : LRl(X) ∪ LGuard(e). The polytope
Re(Rl(X)) can be defined by Le∪LReset(e) where Le is the set of the constraints
computed from LRl(X) ∪ LGuard(e) by eliminating all reset variables by Fourier-
Motzkin elimination [12], and LReset(e) defines the box Reset(e).



Algorithm 1 Algorithm to compute R
Input: P : LP , Q : LQ

Output: An irredundant constraint set LR of R
1: Compute an irredundant constraint set LP⊕Q of P ⊕Q; LR := ∅;
2: for all constraints cT x ≤ z in LP ∪ LP⊕Q do
3: if cT x ≤ z is valid to R then
4: Add the constraint cT x ≤ z into LR;
5: end if
6: end for
7: for all constraints gT

i x = hi and gT
j x = hj in LP⊕Q do

8: Find a hyperplane Hi,j : cT x = z by solving Problem (2);
9: if Hi,j exists then

10: Add the constraint cT x ≤ z to LR;
11: end if
12: end for
13: Remove the redundant constraints from LR;
14: return LR
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Fig. 7. A 2-dimensional example of resetting x1 to [1, 3]

Example 4. We show an example in Figure 7, where Rl(X) ∩Guard(e) is given
by the polytope P : −2x1+x2 ≤ 0∧x1−2x2 ≤ 0∧x1 ≤ 2∧−x1 ≤ −1. The reset
box is Reset(e) : x1 ≤ 3∧−x1 ≤ −1, and Inv(l′) is the box [0, 5]× [0, 5]. Firstly,
we compute the maximum and minimum value of the variable x1, and we obtain
x1 ≤ 2 and −x1 ≤ −1. By using the constraint x1 ≤ 2, we eliminate the variable
x1 from −2x1+x2 ≤ 0 and obtain a new constraint x2 ≤ 4. Similarly, we use
−x1 ≤ −1 to eliminate the variable x1 from x1 − 2x2 ≤ 0 and get −x2 ≤ −0.5.
At last, the set Re(Rl(X)) is the polytope

Re(Rl(X)) : x2 ≤ 4 ∧ −x2 ≤ −0.5 ∧ x1 ≤ 3 ∧ −x1 ≤ −1

Algorithm 2 shows the computation of the reachable set after a jump. Al-
though the Fourier-Motzkin elimination is double-exponential in general, in the
next section we show that it is efficient on the reachable sets.

3.4 Complexity of the reachability computation



Algorithm 2 Algorithm to compute the constraints of Re(Rl(X))
Input: The jump e = (l, l′), the constraints of Rl(X) : L
Output: The constraints of Re(Rl(X))
1: Compute the constraint set LP of P = Rl(X) ∩Guard(e); S ← LP ;
2: for all xi ∈ ResetVar(e) do
3: Eliminate xi from the constraints in S by Fourier-Motzkin elimination;
4: end for
5: return S ∪ LReset(e)

Algorithm 3 Reachability computation for a rectangular automaton
Input: A rectangular hybrid automaton A
Output: The reachable set of A
1: RA ← {(l, Init(l)) | l ∈ Loc};
2: Define a queue Q with elements (l, X) ∈ RA;
3: while Q is not empty do
4: Get (l, X) from Q; Y ← Rl(X); RA ← RA ∪ {(l, Y )};
5: for all e = (l, l′) ∈ Jump do
6: Z ← Re(Y );
7: if (l′, Z) /∈ RA then
8: Insert (l′, Z) into Q; RA ← RA ∪ {(l′, Z)};
9: end if

10: end for
11: end while
12: return RA

The reachable set of a rectangular automaton A can be computed by Algo-
rithm 3. Any reachable set Rl(X) in Algorithm 3 is computed by a sequence

X0 → Rl0(X0)→ X1 → Rl1(X1)→ · · · → Xk → Rlk(Xk)

where Xj = Rej
(Rlj−1(Xj−1)) for 1 ≤ j ≤ k, and X0 = Init(l0). Although the

termination of Algorithm 3 is not guaranteed, if we lay an upper bound k on
k then it always stops. We prove that if k is viewed as a constant, then the
computation is polynomial in the number of the variables of A.

We prove it by showing that an irredundant constraint set of Xj can be
computed from an irredundant constraint set of Xj−1 in PTIME. Notice that
this property is not possessed by any of the methods proposed in the past.

Lemma 5. For 1≤j≤k, both NF(Xj) and NF(Xj−1⊕Bj−1) are polynomial in
NF(Xj−1).

Proof. By Lemma 1, the size of the irredundant constraint set of Xj is propor-
tional to NF(Xj), then we consider the facets of Xj . We define Gj = Inv(lj) ∩
Guard(ej+1) and Bj = Flow(lj). If the whole space is Rd, in order to maximize
the number of Xj ’s facets, we assume Bi, Gi for 0 ≤ i ≤ j−1 are full-dimensional



boxes, and Xj is also full-dimensional. Since Xj can be expressed by⋃
aj−1≤λj−1≤bj−1

· · ·
⋃

a0≤λ0≤b0

Rej
((· · ·Re1((X0⊕λ0B0)∩G0) · · ·⊕λj−1Bj−1)∩Gj−1)

a facet FXj of it can be uniquely expressed by⋃
a′j−1≤λj−1≤b′j−1

· · ·
⋃

a′0≤λ0≤b′0

F (λ0, . . . , λj−1) (4)

where ai ≤ a′i and b′i ≤ bi for 0 ≤ i ≤ j − 1, such that

(i) F (λ0, . . . , λj−1) is a face of the box Φ(λ0, . . . , λj−1) = Rej ((· · ·Re1((X0 ⊕
λ0B0)∩G0) · · ·⊕λj−1Bj−1)∩Gj−1) and there is no higher dimensional face
of Φ(λ0, . . . , λj−1) can be used to express FXj

;
(ii) if the maximum dimension of all those faces F (λ0, . . . , λj−1) is d′ where

d−d′−1 ≤ j, then there are exactly (d−d′−1) many λi where 0 ≤ i ≤ j−1
such that these parameters help to determine N (FXj

, Xj);
(iii) for any 0 ≤ i ≤ j − 1, if λi helps to determine N (FXj , Xj), then the box Gi

could also help to determine N (FXj , Xj);
(iv) for any 0 ≤ i ≤ j − 1, any γi, γ′i where{

a′i < γi, γ
′
i < b′i, if a′i < b′i

γi = γ′i = a′i, otherwise

we have that F (γ0, . . . , γj−1), F (γ′0, . . . , γ
′
j−1) have the maximum dimension

among all the faces F (λ0, . . . , λj−1), andN (F (γ0, . . . , γj−1), Φ(γ0, . . . , γj−1))
= N (F (γ′0, . . . , γ

′
j−1), Φ(γ′0, . . . , γ

′
j−1)).

In brief, the above properties tell that N (FXj
, Xj) depends on (a) the set

N (F (γ0, . . . , γj−1), Φ(γ0, . . . , γj−1)) in the property (iv), i.e., the outer normals
of a bounded box face (we call those faces related), (b) the (d− d′ − 1) parame-
ters in the property (ii), and (c) the dependence of N (FXj , Xj) and Gi for every
0 ≤ i ≤ j − 1 such that λi helps to determine N (FXj , Xj). Thereby if FB is a
d′-face of a bounded box, it has at most 2d−d

′−1
(

j
d−d′−1

)
related facets in Xj .

Given a dimension d′ where d − d′ − 1 ≤ j, as we said, if a d′-face FB of a
bounded box B is related to some facet FXj

then there are exactly (d− d′ − 1)
many λi’s help to determine the outer normals of FXj

. Thus there are (d−d′−1)
steps to determine N (FXj

, Xj). We define Pi as the set of the d′-faces in B which
possibly have related facets in Xj after the ith step. Obviously, P0 contains all
the d′-faces in B. In every (i+ 1)th step, at least half of the faces in Pi lose the
possibility to have related facets in Xj since Xi is a union of boxes and every
box is centrally symmetric. Hence, there are at most

2−(d−d′−1)Fdd′ = 2−(d−d′−1)

(
2d−d

′
(
d

d′

))
= 2
(
d

d′

)
d′-faces of B could have related facets in Xj , where Fdd′ is the number of the d′-
faces in B. Therefore, there are at most 2d−d

′( j
d−d′−1

)(
d
d′

)
facets in Xj which are



related to some d′-faces of B. By considering all max(d− j − 1, 0) ≤ d′ ≤ d− 1,
we can conclude that NF(Xj) is polynomial in NF(Xj−1) for j ≥ 1. Similarly,
we can also prove that NF(Xj−1 ⊕Bj−1) is polynomial in NF(Xj−1) for j ≥ 1.

ut

Now we give our method to compute Xj from Xj−1. The most expensive part
in the computation is computing Xj−1 ⊕Bj−1. We decompose Bj−1 by Bj−1 =
[a1, a1]1⊕ [a2, a2]2⊕· · ·⊕ [ad, ad]d, such that for 1 ≤ i ≤ d, x[i] ≤ ai,−x[i] ≤ −ai
are irredundant constraints for Bj−1 and [ai, ai]i is a line segment (1-dimensional
box) defined by the following constraint set:

{x[i] ≤ ai,−x[i] ≤ −ai}∪{x[i′] ≤ 0 | i′ 6= i}∪{−x[i′] ≤ 0 | i′ 6=i}

We denote the polytope resulting from adding the first m line segments onto
Xj−1 by Xm

j−1, then for all 1 ≤ m ≤ d, NF(Xm
j−1) is polynomial in NF(Xj−1).

Since an irredundant constraint set for Xm
j−1 can be computed in PTIME based

on an irredundant constraint set of Xm−1
j−1 , we conclude that an irredundant

constraint set which defines Xj−1⊕Bj−1 can be computed in a time polynomial
in d if j is viewed as a constant.

Next we consider the complexity of the Fourier-Motzkin elimination on the
set Rlj (Xj). Since NF(Xj+1) is polynomial in NF(Xj), the polyhedron resulting
from the elimination of each reset variable has a number of facets which is
polynomial in NF(Xj). Since eliminating one variable is PTIME, we conclude
that the Fourier-Motzkin elimination on Rlj (Xj) is polynomial in d if j is viewed
as a constant. If we use interior point methods [14] to solve linear programs then
the bounded reachability computation is polynomial in d.

Theorem 2. The computational complexity of Rlj (Xj) is polynomial in d if j
is viewed as a constant.

Theorem 3. The computational complexity of the reachable set with a bounded
number of jumps is polynomial in d if the bound is viewed as a constant.

Unfortunately, the worst-case complexity is exponential in j. However, it only
happens in extreme cases. The exact complexity of our approach mainly depends
on the complexity of solving linear programs.

4 Experimental Results

We implemented our method in MATLAB using the CDD tool [18] for linear
programming. We compared our implementation with PHAVer (embedded in
SpaceEx [19]) on a scalable artificial example. Since there are rare high dimen-
sional examples published, we design a scalable example which is given in Figure
8, where d is the (user-defined) dimension of the automaton and i denotes all
the integers from 1 to d. The automaton Ad helps to generate reachable sets
with large numbers of vertices and facets, and for each jump, nearly half of the
variables are reset.



`0

ẋi ∈ [i− 1, 2i− 1]

xi ∈ [−10d, 10d]

`1

ẋi ∈ [−i,−i + 1]

xi ∈ [−10d, 10d]

xi ∈ [0, 1]

xd ≥ 5d →

xd ≤ −8d →

xj := [−2,−1] where

dd/2e+ 1 ≤ j ≤ d

xj := [0, 1] where 1 ≤ j ≤ dd/2e

Fig. 8. Rectangular automaton Ad

Dimension MaxJmp
PHAVer Our method

Memory Time Memory Time ToLP LPs Constraints

5 2 9.9 0.81 < 10 2.36 2.20 1837 81

6 2 48.1 21.69 < 10 4.96 4.68 3127 112

7 2 235.7 529.01 < 10 15.95 15.28 7214 163

8 2 n.a. t.o. < 10 27.42 26.48 10517 209

9 2 n.a. t.o. < 10 107.99 105.59 23639 287

10 2 n.a. t.o. < 10 218.66 215.45 32252 354

5 4 10.2 1.51 < 10 4.82 4.50 3734 167

6 4 51.1 35.52 < 10 11.25 10.64 7307 240

7 4 248.1 1191.64 < 10 32.93 31.60 16101 352

8 4 n.a. t.o. < 10 72.04 69.81 27375 466

9 4 n.a. t.o. < 10 240.51 235.61 64863 641

10 4 n.a. t.o. < 10 543.05 535.77 86633 816

Table 1. Experimental results. Time is in seconds, memory in MBs. “MaxJmp” is
the bound on the number of jumps, “ToLP” is the total linear programming time,
“LPs” is the number of linear programs solved (including the detection of redundant
constraints), “Constraints” is the number of irredundant constraints computed, “n.a.”
means not available, “t.o.” means that the running time was greater than one hour.

The experiments were run on a computer with a 2.8 GHz CPU and 4GB
memory, the operating system is Linux. The experimental results are given by
Table 1. Since MATLAB does not provide a build-in function to monitor the
memory usage of its programs on Linux, the listed memory usage is the to-
tal memory usage minus MATLAB memory usage before the experiment. Our
method can handle A10 efficiently, however PHAVer stops at A7. Our implemen-
tation is a prototype and the running times can even be improved by a C++
implementation and a faster LP solver.

5 Conclusion

We introduced our efficient approach for the bounded reachability computation
of rectangular automata. However, the method of computing the reachable set
under a flow transition can also be applied to linear hybrid automata. With some



more effort this approach can also be adapted for the approximative analysis of
hybrid systems with nonlinear behavior.
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Appendix

Lemma 6. Given a finite set of vectors {g1, . . . , gm} ⊆ Rd which contains at
least n linearly independent vectors where n ≤ d and n ≤ m. For any set V =
{gi,j | 1 ≤ i < j ≤ n} such that gi,j is a nontrivial linear combination of gi and
gj, we have that there are at least (n− 1) linearly independent vectors in V .

Proof. Without loss of generality, the first n vectors in g1, . . . , gm are assumed
to be linearly independent, and we define Gn = (Gn−1, An) where

Gn−1 = (g1,2, . . . , g1,n−1, g2,3, g2,n−1, . . . , gn−2,n−1) and An = (g1,n, . . . , gn−1,n).

We prove by induction on n that the rank of Gn is at least (n− 1), i.e., r(Gn) ≥
n−1. The base case where n = 1 is trivial. When n > 1, by induction, there are at
least (n−2) linearly independent vectors in the set V ′ = {gi,j | 1 ≤ i < j ≤ n−1},
in other words, r(Gn−1) ≥ n−2. We investigate the matrix An. It can be written
by

An = (α1,ng1 + β1,ngn , . . . , αn−1,ngn−1 + βn−1,ngn).

We assume that at least one of β1,n, . . . , βn−1,n is not zero, otherwise r(An) = n−
1 and then r(Gn) ≥ n− 1. Without loss of generality, we assume β1,n 6= 0. Since
gn is linearly independent of the vectors g1, . . . , gn−1, we infer that the vector
α1,ng1 + β1,ngn is linearly independent of the vectors gi,j for 1 ≤ i < j ≤ n− 1.
Therefore, the rank of (Gn−1, An) is at least (n−1). Since all the columns of Gn
are vectors in V , we conclude that there are at least (n−1) linearly independent
vectors in V . ut

Proof of Lemma 4

Proof. We show that for any facet FR of R there is a subset of L ∪ L′ which
determines FR. We assume that the whole space is Rd and dim(R) = dR. For
any facet FR of R, we have two cases.

– Case 1: The set FR is also a facet of P , i.e., FR = FP where FP is a facet
of P . Then the constraint set LFP

⊆ LP which determines FP can also be
used to determine FR, and therefore the constraints in LFP

are also valid for
R. So they are included by L′.

– Case 2: The set FR can be expressed by FR =
⋃
λ≥0(FP ⊕ λFQ) where FP

and FQ are some nonempty faces of P and Q respectively. By Lemma 3,
FP ⊕ FQ is a face of P ⊕Q and it is at least (dR − 2)-dimensional.
(∗) If FP⊕Q = FP ⊕FQ is (dR−1)-dimensional, then FP⊕Q and FR are con-
tained in the same (dR− 1)-dimensional affine subspace of Rd, i.e., aff(FP ⊕
FQ) = aff(FR). Assume the set LFP⊕FQ

⊆ LP⊕Q determines FP⊕Q. For
any L ∈ LFP⊕FQ

, the halfspace SL : L contains P ⊕Q and FR is contained
in its corresponding hyperplane HL, thereafter HL is a support hyperplane
of R and L is a valid constraint for R. Hence we infer that LFP⊕FQ

also
determines FR.



(∗∗) If FP⊕Q = FP ⊕FQ is (dR−2)-dimensional, we assume it is determined
by some LFP⊕FQ

⊆ LP⊕Q. We define

K = {k | Lk : gTk x ≤ hk is contained in LFP⊕FQ
},

then aff(FP⊕Q) can be defined by the intersection IK =
⋂
k∈K Hk. Note that

for any i, j ∈ K∧i < j, there always exists a hyperplane Hi,j which intersects
P ⊕Q at FP⊕Q and intersects P at FP , since Hi ∩Hj contains FP⊕Q. From
the properties (1)-(3), we have that the unit normal vector of Hi,j can be
expressed by αgi + βgj where α, β ≥ 0, at least one of α, β is not zero, and
gi, gj are the unit normal vectors of Hi, Hj respectively. We define UK as the
set of the unit normal vectors of Hi,j for i, j ∈ K∧i < j. Since IK is (dR−2)-
dimensional, if VK is the set of the unit normal vectors of Hk for k ∈ K,
then there are at least (d− dR + 2) linearly independent vectors in VK . By
Lemma 6, there are at least (d−dR+ 1) linearly independent vectors in UK .
Therefore, the intersection

⋂
i,j∈K∧i<j Hi,j is at most (dR − 1)-dimensional.

From the properties (1)-(3), if Hi,j : cTx = z exists for some 1 ≤ i < j ≤ m,
then

ρP (c) = ρP⊕Q(c) = ρP (c) + ρQ(c) = z

thus ρR(c) = z, which means Hi,j is a support hyperplane of R and Li,j is
valid for R. For i, j ∈ K∧ i < j we can further derive that FR is contained in
Hi,j . Therefore we can conclude that the constraint set {Li,j | i, j ∈ K ∧ i 6=
j} determines FR.

The constraints for the facets in Case 1 and Case 2 (∗) can be found by searching
the valid constraints in LP and LP⊕Q for R. For the facets in Case 2 (∗∗), the
constraint set can be found by enumerating the hyperplanes Hi,j for 1 ≤ i <
j ≤ m. Therefore, the set L ∪ L′ defines R. ut


