
I-RiSC:
An SMT-Compliant Solver for the Existential

Fragment of Real Algebra?

Ulrich Loup and Erika Ábrahám

RWTH Aachen University, Germany
{loup,abraham}@cs.rwth-aachen.de

Abstract. This paper connects research in computer science in the field
of SAT-modulo-theories (SMT) solving and research in mathematics on
decision procedures for real algebra. We consider a real algebraic decision
procedure computing all realizable sign conditions of a set of polynomials.
We modify this procedure so that it satisfies certain requirements needed
for the embedding into an SMT-solver.

Key words: SMT Solving, Real Algebra, I-RiSC, FO Logic, DPLL(T)

1 Introduction

Though the propositional satisfiability problem (SAT), where the variables range
over the values 1 (true) and 0 (false), is NP-complete, SAT-solvers are quite
efficient in practice due to a vast progress in SAT-solving over the last years. In
particular, the DPLL algorithm [12] and its recent improvements such as clause
learning or sophisticated decision heuristics made SAT-solving highly efficient for
practical problems, what led to a break-through of SAT-solving also in industry.

SAT-modulo-theories (SMT) solving aims at embedding decision procedures
for various first-order theories into the SAT-solving context [1,15] This combina-
tion yields highly efficient solvers, which are frequently applied, for example, in
the formal analysis, verification, and synthesis of systems, even over a continuous
domain. For the domain of the real numbers, research in the area of SMT solving
concentrates on linear real arithmetic. Prominent examples of SMT-solvers for
this logic are Z3 [14], Yices [9], MathSAT [7] and OpenSMT [6]. Less emphasis is
put on real algebra, the first-order logic with addition and multiplication over
the reals, which we address in this paper. However, there is a growing interest
in SMT-solving for real algebra. This drift is reflected, for instance, by 2010’s
SMT-competition [16], where the non-linear real arithmetic (NRA) division was
introduced for the first time. The few existing SMT-solvers supporting non-linear
real algebraic constraints are incomplete. For example, Z3, CVC3 [2], MiniSMT [18]
and ABsolver [4] can handle only fragments of real algebra, whereas the solver
iSAT [10], based on interval arithmetic, allows even trigonometrical expressions
but may terminate with the answer “unknown”.
? The original publication is available at http://www.springerlink.com.

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://yices.csl.sri.com/
http://mathsat4.disi.unitn.it/
http://verify.inf.unisi.ch/opensmt
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.cs.nyu.edu/acsys/cvc3/
http://cl-informatik.uibk.ac.at/software/minismt/
http://absolver.sourceforge.net/
http://isat.gforge.avacs.org/

2 I-RiSC: SMT-Compliant Solving for Real Algebra

Several decision procedures were developed for real algebra since the 1940s,
which are currently operational in some computer algebra systems. The most
well-known approaches are the CAD method [8] and Gröbner bases computa-
tions. The textbook [3] comprises the state of the art for algorithms in real
algebraic geometry. This book is also available online at

http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.pdf.

However, the employment of these procedures in an SMT-solver is not straight-
forward, because SMT-solvers impose some requirements on the embedded de-
cision procedures for the approach to be feasible in practice [1, 26.4.1]:

– First of all, for efficient SMT-solving we need decision procedures that work
incrementally. That is, after the consistency check of a set of real algebraic
constraints the procedure should be able to extend the set by adding new
constraints, and reuse the previous computations for the check of the ex-
tended set.

– For an unsatisfiable set of constraints the decision procedure should be able
to determine a minimal infeasible subset, i.e., an unsatisfiable subset which
is minimal in the sense that removing any constraint makes it satisfiable.

– The ability to backtrack should allow to remove previously added constraints.

Unfortunately, current decision procedures for real algebra do not support
the above functionalities. In this paper we describe how a method from [3],
based on computing realizable sign conditions, can be modified to satisfy the
requirements for SMT-solving. We call the modified new method I-RiSC(Incre-
mental Realization of Sign Conditions).

2 Preliminaries

2.1 SMT-Solving

DPLL-based decision procedures [12] are also applicable to logics richer than
propositional logic, by abstracting all non-propositional atomic constraints by
propositional variables. This approach is called lazy SAT-modulo-theories (SMT)
solving (cf. Fig. 1).

Full lazy (off-line) SMT-solvers first create a Boolean skeleton of the input
formula, replacing all theory constraints by fresh Boolean variables. The result-
ing Boolean formula is passed to a SAT-solver, which searches for a satisfying
assignment. If it does not succeed, the formula is unsatisfiable. Otherwise, the
assignment found corresponds to certain truth values for the theory constraints
and has to be verified by the theory solver. If the constraints are satisfiable,
then the original formula is satisfiable. Otherwise, if the theory solver detects
that the conjunction of the corresponding theory constraints is unsatisfiable,
it then hands over a reason for the unsatisfiability, a minimal infeasible subset
of the theory constraints, to the SAT-solver. The SAT-solver uses this piece of
information to exclude the detected conflict from further search. Afterwards,

http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.pdf

I-RiSC: SMT-Compliant Solving for Real Algebra 3

ϕ

SAT-solver UNSAT

Constraint set Reason

Theory solver SAT

Boolean abstraction

satisfiable
unsatisfiable

unsatisfiable

satisfiable

Fig. 1: The basic scheme of DPLL(T)-based SMT-solving

the SAT-solver computes again an assignment for the refined Boolean problem,
which in turn has to be verified by the theory solver. Continuing this iteration
in the end decides the satisfiability of the input formula.

Such full lazy check is often disadvantageous, since the SAT-solver may do a
lot of needless work by extending an already (in the theory domain) contradictory
partial assignment. Less lazy (on-line) DPLL(T) variants of the procedure call
the theory solver more often, handing over constraints corresponding to partial
assignments. To do so efficiently, the theory solver should accept constraints
in an incremental fashion, where computation results of previous steps can be
reused. In case of a conflict the theory solver should also be able to backtrack,
i.e., remove the last asserted constraints.

Note that we strictly separate the satisfiability checks in the Boolean and in
the theory domains, that means, we do not consider theory propagation embed-
ded in the DPLL search like, e.g., Yices [9] does.

2.2 Real Algebra

In SMT-solving we consider only a fragment of real algebra, containing exis-
tentially quantified conjunctions of real algebraic constraints c, which compare
polynomials p to zero:

p ::= 0 | 1 | x | (p+ p) | (p · p)
c ::= p = 0 | p < 0 | p > 0

The operators + and · have the standard semantics of addition and multiplica-
tion. We stick to a more algebraic point of view and refer to [13] or [3] for basic
notions on real algebra.

Let n ∈ N with n ≥ 1 and Z[x1, . . . , xn] be the set of all polynomials in
the real-valued variables x1, . . . ,xn, called the polynomial ring of multivariate
polynomials with integer coefficients. For a polynomial p ∈ Z[x1, . . . , xn] the xi-
degree of p, written degxi(p), is the highest exponent at xi in p, and [xdi]p denotes
the coefficient of xdi in p, which is a polynomial in x1, . . . , xi−1, xi+1, . . . , xn. A
polynomial p is called a monomial if p =

∏n
i=1 x

ei
i with ei ∈ N; and in this case

4 I-RiSC: SMT-Compliant Solving for Real Algebra

we define its degree as deg(p) :=
∑n
i=1 ei. For arbitrary multivariate polynomials

p we set deg(p) := max{deg(q) | q monomial of p}. The power set of S is denoted
by 2S , and

(
S
k

)
:= {S′ ∈ 2S | |S′| = k}.

A system of m real algebraic constraints is a sequence p1 ∼1 0, . . . , pm ∼m 0
of real algebraic constraints with m ≥ 1 and pi ∈ Z[x1, . . . , xn], ∼i∈ {=, <,>}
for 1 ≤ i ≤ m. We define the signs σ = (σ1, . . . , σm) ∈ {−1, 0, 1}m of the
polynomials P = (p1, . . . , pm) by sgn(pi) = σi for all 1 ≤ i ≤ m. We call (P, σ)
a sign condition on P . The set

<ealiσ(P) = {(a1, . . . , an) ∈ Rn | sgn(pi(a1, . . . , an)) = σi, 1 ≤ i ≤ m}

of real solutions to the sign condition (P, σ) is called the realization of (P, σ).
Note that <ealiσ(P) is also a special semi-algebraic set. A sign condition (P, σ) is
called realizable if <ealiσ(P) 6= ∅ (cf. [3, Def. 2.25]). The sign condition (P, {0}m)
is said to be algebraic.

The satisfiability problem for conjunctions of real algebraic constraints, which
we address in this paper, can be formulated in an algebraic context as follows:

Problem 1 Satisfiability problem of real algebraic conjunctions
Input: n,m ∈ N, m,n ≥ 1, P ∈ Z[x1, . . . , xn]m, σ ∈ {−1, 0, 1}m.
Problem: Determine whether <ealiσ(P) = ∅ and compute an a ∈ <ealiσ(P)

in case the set is not empty.

A realization of a sign condition can be composed of several sign-invariant
subsets which do not have to be connected among each other. The connected
sign-invariant sets are defined as follows.

Definition 1 (Sign-invariance, region)
Let n,m ∈ N, m,n ≥ 1, R ⊆ Rn, P ∈ Z[x1, . . . , xn]m, and σ ∈ {−1, 0, 1}m.

– R is said to be σ-invariant over P if R ⊆ <ealiσ(P).
– R is said to be sign-invariant over P or P -sign invariant if there is a σ ∈
{−1, 0, 1}m such that R ⊆ <ealiσ(P).

– R is called a region if R 6= ∅ and R is connected, i.e., R 6= (A∩R)∪ (B∩R)
with A∩R 6= ∅ and B ∩R 6= ∅ for any open, nonempty sets A,B ⊆ Rn with
A ∩B = ∅.

Considering the real line, the maximal sign-invariant regions have a simple
structure: The P -sign invariant regions are confined by the roots and intersec-
tion points of the polynomials of P . This results in a decomposition of R into
these points and the open intervals between the points. All points which can be
solutions to a sign condition are called samples.

Definition 2 (Sample)
A set S ⊆ Rn is called set of samples for the sign condition (P, σ) if S ∩R 6= ∅
for each maximal σ-invariant region R ⊆ Rn.

I-RiSC: SMT-Compliant Solving for Real Algebra 5

A natural approach to determine a real-valued point which satisfies a given
semi-algebraic system of polynomials is to construct sample points for each max-
imal sign-invariant region and to search in the set of sample points for a solution
point. The crucial part is the construction of the sample points. The CAD-
method (partial-CAD), for example, tackles this problem by iteratively project-
ing the input set of polynomials until only univariate polynomials are left. Their
roots, computed as algebraic numbers, and all points between the roots as well
as one point below the smallest and one point above the largest root are the pos-
sible values for the current component of the sample points for the sign-invariant
regions in a CAD.

If the set of samples for a given sign condition (P, σ) is empty, the sign
condition is not realizable. In terms of SMT-solving, (P, σ) is then called an
infeasible subset, which the SAT-solver gets back as a reason of unsatisfiability.
We now define the notion of minimal infeasible subset precisely.

Definition 3 (Minimal infeasible subset)
Let n,m ∈ N, m,n ≥ 1, P ∈ Z[x1, . . . , xn]m and σ ∈ {−1, 0, 1}m. The sign
condition

((Pi1 , σi1), . . . , (Pik , σik)), {i1, . . . , ik} ⊆ {1, . . . ,m}, 1 ≤ k ≤ m

is called infeasible subset if ((Pi1 , σi1), . . . , (Pik , σik)) is not realizable. If in this
case

((Pj1 , σj1), . . . , (Pjk−1
, σjk−1

))

is realizable for all {j1, . . . , jk−1} $ {i1, . . . , ik} with {j1, . . . , jk−1} 6= ∅, then
((Pj1 , σj1), . . . , (Pjk , σjk)) is said to be minimal.

For the explanation of a recent approach for the sample construction in Sec-
tion 3, we introduce algebraic computations with infinitesimal values. These are
needed for several transformations of the input polynomials in order to obtain a
set of polynomials whose realizable sign conditions can be computed much more
efficiently than with the CAD-method.

Puiseux series. Since the abstraction to general fields is not needed in this
paper, we introduce the notion of Puiseux series over the real field R. Let ε be
an infinitesimal element and j, k ∈ Z with j > 0. We call a series

a =
∑

i∈Z,i≥k
aiε

i
j

with ai ∈ R a Puiseux series in ε. Puiseux series are Laurent series in ε
1
j . If,

for example, j = 1 and k = 0 then the Puiseux series a is nothing else than a
Taylor series in ε. The additional parameters in a Puiseux series allow for the
representation of elements algebraic over the field of rational functions R(ε),
i.e. the representation of roots of polynomials in R(ε)[x]. We denote the field of
algebraic Puiseux series R〈ε〉. Given several infinitesimal elements ε1 < . . . < εl,
we identify R〈ε1, . . . , εl〉 with R〈ε1〉 · · · 〈εl〉. For a ∈ R〈ε1, . . . , εl〉 we denote
limε1,...,εl a = [ε01 · · · ε0l]a, i.e. the part of a which is constant in ε1, . . . , εl.

6 I-RiSC: SMT-Compliant Solving for Real Algebra

3 Computing Realizable Sign Conditions

Let m,n ∈ N with n ≥ 1 and P ∈ Z[x1, . . . , xn]m throughout this section.
We describe a method from [3] for determining all realizable sign conditions

over P by computing samples for them. After presenting a first approach to
solve this problem, in a second step we give an improved variant utilizing some
state-of-the-art optimizations. Apart from these, both algorithms have a similar
structure: They compute all or possibly a bounded number of subsets of the
possibly modified input polynomials, and for each of these subsets they construct
the samples for a specific algebraic sign condition. The union of all of these
samples builds the samples for the original sign condition. The different subsets
of polynomials need to be considered in order to transform strict sign conditions
to just equations (see [3, Prop. 13.1]).

In this paper, we solely concentrate on the search structure of the procedure.
Therefore, we decouple the subset computation from the construction of samples.
Moreover, we make the sample construction a black box represented by the sub-
procedure samples(Q,(x1 . . . xn)) where Q is a tuple of k ≥ 1 polynomials with
coefficients possibly using infinitesimal elements δ and γ.

The method samples(Q,(x1 . . . xn)) combines [3, Alg. 12.17] and [3, Alg. 13.2].
For readers familiar with real algebra, we give an intuitive description of how
samples(Q,(x1 . . . xn)) works in Table 1. We use the term samples(Q,(x1 . . . xn))
to refer to both, the method and its output. samples(Q, (x1, . . . , xn)) has the
time complexity dO(n) where d = max{deg(Qi) | 1 ≤ i ≤ k} (cf. [3, p. 512]).

Listing 1.1 shows the first variant of the algorithm for determining all realiz-
able sign conditions over P suggested in [3, Rem. 13.3], combined with [3, Alg.
13.2].

Notation for lists. Empty lists are denoted by () and list concatenations by ⊕.
We use Li to refer to the ith element of a list L; the same notation is used for
tuples.

Listing 1.1. First algorithm for computing realizable sign conditions.
1 Input: m,n ∈ N, n ≥ 1, P ∈ Z[x1, . . . , xn]m
2 Output: samples S ⊆ Rn for every sign condition (P, σ)
3

4 S := ∅;
5 for 1 ≤ i ≤ m:
6 for {j1, . . . , ji} ∈

({1,...,m}
i

)
:

7 S := S ∪ samples((Pj1 , . . . , Pji), (x1, . . . , xn));
8 return S;

The correctness of this algorithm follows from [3, Prop. 13.2].
Taking the complexity of the samples computation into account, the number

of steps performed by Listing 1.1 is 2mdO(n), because lines 5 and 6 define a
search through every subset of the given m polynomials.

An optimized version of Listing 1.1 needs mn+1dO(n) steps to compute all
realizable sign conditions. This method is given by [3, Alg. 13.1] combined

I-RiSC: SMT-Compliant Solving for Real Algebra 7

Table 1 Description of the method samples(Q,(x1 . . . xn)).
Input: k, n ∈ N, k, n ≥ 1, Q ∈ R[x1, . . . , xn]k with R ∈ {Z,Z[δ, γ]}
Output: set of samples in Rk for (Q2

1 + · · ·+Q2
k + (ε(x1, . . . , xn, y)− 1)2, {0}k)

(1) Define q := Q2
1 + · · ·+Q2

k + (ε(x1, . . . , xn, y)− 1)2. In Listing 1.1, the polynomials
Q1, . . . , Qk are a selection of the input polynomials P1, . . . , Pm. However in the
improved Listing 1.2, Q1, . . . , Qk comprise a subset of perturbed versions of the
input polynomials. We will give some more details on the perturbation below.
Squaring the polynomials Q1, . . . , Qk and adding the term (ε(x1, . . . , xn, y) − 1)2

applies a perturbation of the given set of polynomials. The common roots of the
transformed set of polynomials are bounded. This is achieved by intersecting the
cylinders based on the extension of sign-invariant regions of Q to R〈ε〉 with the
k-dimensional sphere with center 0 and radius 1

ε
, as given by (ε(x1, . . . , xn, y)−1)2

and an appropriate projection eliminating y (see [3, 12.6]).
(2) Generate, based on q, a special Gröbner basis G containing n elements, by applying

additional perturbations to q utilizing a fresh infinitesimal element ζ (see [3, Not.
12.46]). The special structure of this Gröbner basis assures a finite number of
common roots with multiplicity 1 of the polynomials in G (see [3, Lem. 12.45]).
In particular, the remainders modulo the ideal generated by G can be computed
using a finite multiplication table; and, in addition to it, each of them represents
exactly one common root of G.

(3) Apply [3, Alg. 12.9] on the input G to obtain the finite, special multiplication
tables mentioned in the previous step.

(4) Apply [3, Alg. 12.14] (performing limζ or limγ,ζ) using the special multiplication
tables to compute univariate representations (see [3, p. 465]) for the roots of q.
Note that this representation can still contain infinitesimal elements.

(5) Apply [3, Alg. 11.20] (performing limε or limδ,ε) to remove the remaining infinites-
imal elements. Multiplication with the main denominator results in univariate rep-
resentations for the roots of q in R.

8 I-RiSC: SMT-Compliant Solving for Real Algebra

with [3, Alg. 13.2]. We now describe some details on this optimization and
give the improved algorithm in Listing 1.2 by making use of the black box
samples(Q, (x1, . . . , xn)) as introduced above.

Let ε, δ, γ be infinitesimal elements with ε > δ > γ > 0.
Definition 4 (Perturbed general position polynomial)
Let d, i, n ∈ N with n ≥ 1 and 1 ≤ i ≤ n, p ∈ Z[x1, . . . , xn], and µ ∈
{−1, 1,−γ, γ} be a perturbation value, then

PGµn,i,d(p) := (1− δ)p+ δµ(1 +
∑

1≤j≤n

ijxdj)

denotes the perturbed general position polynomial of p w.r.t. n, i, d, and µ.

This perturbation of P enables that not more than n polynomials need to
be combined in order to compute the realizable sign conditions over P . More
precisely, let d = max{deg(pi) | 1 ≤ i ≤ m} and for 1 ≤ i ≤ m

Γi := {PG1
n,i,d(pi),PG

−1
n,i,d(pi),PG

γ
n,i,d(pi),PG

−γ
n,i,d(pi)},

then any n polynomials from different Γi have at most a finite number of common
roots; in particular, no n+1 polynomials from different Γi have a common root
(see [3, Prop. 13.6]).

Note that there are only
∑n
j=0

(
m
j

)
4j = mn+1 combinations to consider, in

contrast to 2m of the first approach.

Listing 1.2. Improved algorithm for computing realizable sign conditions.
1 Input: m,n ∈ N, n ≥ 1, P ∈ Z[x1, . . . , xn]m
2 Output: samples S ⊆ Rn for every sign condition (P, σ)
3

4 S := ∅;
5 Γ := ();
6 for 1 ≤ i ≤ m:
7 Γ := Γ ⊕ (∅);
8 d := max{deg(pi) | 1 ≤ i ≤ m};
9 for 1 ≤ i ≤ m:

10 Γi := {PG1
n,i,d(pi),PG

−1
n,i,d(pi),PG

γ
n,i,d(pi),PG

−γ
n,i,d(pi)};

11 for 1 ≤ i ≤ n:
12 for {j1, . . . , ji} ∈

({1,...,m}
i

)
:

13 for (pj1 , . . . , pji) ∈ Γj1 × · · · × Γji :
14 S := S ∪ samples((pj1 , . . . , pji), (x1, . . . , xn));
15 return S;

Observe that Listing 1.2 is similar to Listing 1.1, only the perturbation per-
formed in lines 8 to 10 and the additional loop over the combinations of perturbed
general position polynomials in line 13 are new.

The correctness of the improved algorithm follows from the correctness of
the algorithm presented in 1.1 as well as [3, Cor. 13.8], which states that the
sample computation also works for the perturbed general position polynomials.

Both algorithms can be implemented using only a polynomial amount of
space [3, Rem. 13.10].

I-RiSC: SMT-Compliant Solving for Real Algebra 9

4 The I-RiSCSolver

In this section, we present an SMT-compliant solver for the satisfiability problem
of real algebraic conjunctions, which especially supports adding sign conditions
incrementally, providing minimal infeasible subsets as reason for unsatisfiabil-
ity or an assignment as proof of satisfiability, and the possibility to backtrack
the search by a given number of steps. We call this solver I-RiSCreferring to
Incremental computation of Realizable Sign Conditions.

We pursue a class-based design of I-RiSCas it will be implemented in C++
using GiNaCRA, which is a library providing real algebraic data structures [11].

4.1 Data Structure

Let m,n ∈ N with n ≥ 1, P ∈ Z[x1, . . . , xn]m, and σ ∈ {−1, 0, 1}m. When
adding a sign condition, the I-RiSCsolver first chooses at most n of the sets of
perturbed general position polynomials Γ1, . . . , Γm. The search tree for these
selections can be represented as a binary tree of depth n where each inner node
characterizes one decision whether to take a specific Γk or not. The left edge
of an inner node labeled by 0 indicates that a specific Γk was not selected, the
right edge labeled by 1 indicates that it was. The leaves of the tree are labeled
with the bit words w ∈ {0, 1}n representing the path to the leaf, as shown in
Fig. 2 for n = 2. A w ∈ {0, 1}n induces a choice of polynomials, denoted by

Γ2?

Γ1? Γ1?

00 01 10 11

0 1

0 1 0 1

Fig. 2: I-RiSCsearch tree for two sets of polynomials Γ1 and Γ2.

Pw = (Pi | wi = 1), a choice of sets of perturbed general position polynomials,
denoted by Γw = (Γi | wi = 1), and a choice of corresponding sign conditions,
denoted by σw = (σi | wi = 1). The samples are generated only at the leafs
of the search tree. The mapping α : {0, 1}n → 2R

n

assigns a set of samples
α(w) to each leaf w ∈ {0, 1}n. We use the notation |w|1 for the number of 1s in
w ∈ {0, 1}n; the empty word is denoted by ε. In order to traverse the search tree
we use an order ≺ on bit words, defined as

w1 ≺ w2 :⇔ |w1|1 < |w2|1 or (|w1|1 = |w2|1 and w1 <lex w2)

where w1 <lex w2 compares the words lexicographically. For example, 00 <lex

01 <lex 10 <lex 11. Note that ≺ defines a strict total ordering on {0, 1}n. This
enables the definition of the next≺ operator providing the next element next≺(w)

http://ginacra.sourceforge.net/

10 I-RiSC: SMT-Compliant Solving for Real Algebra

of w. Moreover, we write
∏
(Q1, . . . , Qk) for the product Q1 × · · · × Qk of the

sets Q1, . . . , Qk.
We now define a notion useful for the analysis of the I-RiSCmethods, espe-

cially the method for adding a new sign condition.

Definition 5 (Admissible and inadmissible leaves)
Let w ∈ {0, 1}n be a leaf of the I-RiSCsearch tree. Let

S(w) := {a ∈
⋃

Q∈
∏
Γw

samples(Q,(x1 . . . xn)) | a is a sample for (Pw, σw)},

then w is called admissible if S(w) 6= ∅, and inadmissible if S(w) = ∅.

If a leaf w ∈ {0, 1}n is admissible, then the set S(w) can be reused in a
later stage of the search. If, for example, the search is backtracked and the last
i sign conditions, which did not contribute to the sample construction in w, are
deleted, then S(w) = S(wn−i+1 . . . wn). Thus, we do not need to recompute the
samples for wn−i+1 . . . wn.

In the same fashion, we can reuse the result that S(w) is empty. In particular,
S(w) = ∅ entails that (Pw, σw) is an infeasible subset.

Lemma 1 (Minimal infeasible subset characterization)
Let w ∈ {0, 1}n be a leaf of the I-RiSCsearch tree.
Then (Pw, σw) is a minimal infeasible subset iff w is inadmissible and for all
v ∈ {0, 1}n with 0 < |v|1 < |w|1 it holds that v is admissible.

Proof. By Definition 3, (Pw, σw) is a minimal infeasible subset iff (Pv, σv) is
realizable where v = v1 . . . v|w| with vi ∈ {wi, 0} for 1 ≤ i ≤ |w| such that not
all vi are 0 and not all vi are wi. Because of Definition 5, this is equivalent to v
being admissible with 0 < |v|1 < |w|1. 2

Note that if all leaves of the I-RiSCsearch tree are traversed in order of
≺, then the first leaf w which proves to be inadmissible represents a minimal
infeasible subset (Pw, σw), because only leaves with at least |w|1 1s would follow.
The method IRiSC.add proceeds in this manner.

4.2 Class Design

In the following listing we specify the class containing the I-RiSCdata structure
and methods for the interaction with the DPLL-based SAT-solver.

Table 2 contains annotations to the variables defined in Listing 1.3. Note that
the type of the variables sometimes depends on m or n, which are instantiated
at runtime. But this does not affect the realizability of the class in C++ because
the type can be implemented by means of dynamic data structures.

The methods in Listing 1.3 are described in Table 3.

I-RiSC: SMT-Compliant Solving for Real Algebra 11

Table 2 Annotations to the variables in Listing 1.3.
Variable Initial value Description
d fixed d ≥ max{deg(q) | q ∈ P} (preselected large enough)
m 0 current number of polynomials
n fixed dimension, i.e., the number of variables
P () current list of polynomials
σ () current list of signs
Γ () current list of sets of perturbed general position polynomials
W () list of search tree leafs such that Wk is the leaf where the

search for the first k polynomials stopped
w ε current leaf of the search tree
α (ε 7→ ∅) set of samples not yet considered at the leaves of the search

tree
S () list of m samples where the kth sample satisfies the first k

sign conditions, in case they were satisfiable
r 1 flag determining the current state of w being a candidate for

representing the reason of unsatisfiability (r = 1 means that
w is still a candidate)

R () list of reasons for the unsatisfiability results where each rea-
son represents a conjunction of constraints (() in case of
satisfiability)

K () list of satisfiability results such that Wk is the state of satis-
fiability (1 means satisfiable, 0 not) when the search for the
first k polynomials stopped

Table 3 Annotations to the methods in Listing 1.3.
IRiSC Constructor fixing the dimension, the maximal degree of input polyno-

mials, and the initial values for the variables as given in Table 2.
add Adds a constraint in the form of a sign condition (p, σ) to the system

of polynomial equations and inequalities.
backjump Jumps back to a previous state of the search, by undoing the last j

additions of sign conditions.
satisfiable Asks whether the current sign condition is satisfiable.
reason Returns a reason of unsatisfiability as list of sign conditions if

appropriate.
assignment Returns a satisfying assignment if appropriate.

12 I-RiSC: SMT-Compliant Solving for Real Algebra

Listing 1.3. The class IRiSC.
1 class IRiSC
2 {
3 const VAR δ, γ, ε;
4 d,m, n ∈ N;
5 P ∈ Z[x1, . . . , xn]m;
6 σ ∈ {−1, 0, 1}m;
7 Γ ∈ (2Z[x1, . . . , xn])

m;
8 W ∈ ({0, 1}m)m;
9 w ∈ {0, 1}n;

10 α : {0, 1}n → 2R
n

;
11 S ∈ (Rn)m;
12 bool r;
13 R ∈ 2Z[x1,...,xn];
14 K ∈ {0, 1}m;
15

16 IRiSC(d, n ∈ N);
17

18 void add(p ∈ Z[x1, . . . , xn], ς ∈ {−1, 0, 1});
19 void backjump(i ∈ N : 1 ≤ i ≤ m);
20 bool satisfiable (){ return Km; };
21 2Z[x1,...,xn] reason (){ return {(Rm)j | 1 ≤ j ≤ |Rm|}; };
22 {x1, . . . , xn} → R assignment () { return (xj 7→ (Sm)j | 1 ≤ j ≤ n); };
23 }

4.3 Methods

The methods IRiSC.add and IRiSC.backjump are presented in Listings 1.4 and
1.5.

IRiSC.add. In lines 3 to 12, the new sign condition (p, ς) is stored in P and σ,
the corresponding set of perturbed general position polynomials is attached to
Γ , and w and α are adapted to the new search tree. In particular, the arriving
sign condition is the new root of the search tree, and the old search tree is the
new left successor of the root. This is illustrated in Fig. 3.

In case the sign conditions added so far are not realizable, the arriving sign
condition does not change that result. Thus, the solver does not have to construct
new samples and may abort the search immediately, copying the previous entries
of W , S, R, and K. This case is captured by lines 13 to 16.

If the previously added sign conditions are realizable, the search for a sample
satisfying all sign conditions continues at the currently smallest leaf w.r.t. ≺
which has an empty sample set. Since only those leaves w matter, which choose
at least one polynomial for the sample construction (|w|1 > 0), we must exclude
the cases where |w|1 = 0 (lines 17 and 18). Lines 19 to 45 comprise the outer
loop, enumerating all leaves w ∈ {0, 1}n with |w|1 > 0 in order of ≺.

I-RiSC: SMT-Compliant Solving for Real Algebra 13

Listing 1.4. IRiSC.add.
1 void IRiSC.add(p ∈ Z[x1, . . . , xn], ς ∈ {−1, 0, 1})
2 {
3 m := m+ 1;
4 P := P ⊕ (p); σ := σ ⊕ (ς);
5 Γ := Γ ⊕ ({PG1

n,k,d(p),PG
−1
n,k,d(p),PG

γ
n,k,d(p),PG

−γ
n,k,d(p)});

6 α̃ : {0, 1}n → 2R
n

;
7 for v ∈ {0, 1}m−1: {
8 α̃(0v) := α(v);
9 α̃(1v) := ∅;

10 }
11 α := α̃;
12 w := min≺(w, min≺{v ∈ {0, 1}n | α(v) = ∅});
13 if Km−1 = 0: {
14 W := W ⊕ (w); S := S ⊕ (1); R := R⊕ (Rm−1); K := K ⊕ (0);
15 return;
16 }
17 if |w|1 = 0:
18 w := next≺(w);
19 while true: {
20 if α(w) = ∅: {
21 α(w) :=

⋃
Q∈

∏
Γw

samples(Q, (x1, . . . , xn));
22 r := true;
23 }
24 else:
25 r := false;
26 S′ := ∅;
27 for a ∈ α(w): {
28 if a ∈ <ealiσw (Pw): {
29 r := false;
30 S′ := S′ ∪ {a};
31 if a ∈ <ealiσ(P): {
32 W := W ⊕ (w); S := S ⊕ (a); R := R⊕ (());
33 K := K ⊕ (1); α(w) := α(w) ∪ S′;
34 return;
35 }
36 }
37 α(w) := α(w) \ {a};
38 }
39 if r = true: {
40 W := W ⊕ (w);S := S ⊕ (1);R := R⊕ ((Pw, σw));K := K ⊕ (0);
41 return;
42 }
43 α(w) := S′;
44 w := next≺(w);
45 }
46 }

14 I-RiSC: SMT-Compliant Solving for Real Algebra

Γ1?

0 1

0 1

Γ2?

Γ1? Γ1?

00 01 10 11

0 1

0 1 0 1

Fig. 3: Evolution of the I-RiSCsearch tree when adding a new sign condition
with its corresponding set of perturbed general position polynomials Γ2.

This loop can be exited in two cases, each of which also terminates: firstly, in
case a sample satisfying all sign conditions was found; secondly, if w is inadmis-
sible. The samples are constructed for all combinations polynomials of different
sets of perturbed general position polynomials in line 21. This construction is
only performed if no samples were constructed for this node beforehand. The
inner loop in lines 27 to 38 then iterates over all samples for the current leaf w.
The test of satisfiability is two-fold: first, the current sample is checked for satis-
fying (Pw, σw) in line 28; second, it is tested against the complete sign condition
(P, σ) in line 31. This proceeding enables on the one hand the storage of the
set S(w), by the variable S′ which later is assigned to α(w) in line 43. On the
other hand, it allows for recognizing an inadmissible leaf, by using the variable
r: r is only set to true in line 22 where w’s samples are constructed newly, and
r is switched to false immediately in case one sample satisfies the current local
sign condition (Pw, σw), i.e., if w proves to be admissible. If otherwise all checks
against (Pw, σw) fail, then w must be inadmissible; and by Lemma 1, (Pw, σw)
is a minimal infeasible subset, which is stored as such in line 40. Note that r is
set to false in line 25, where w is identified to be admissible.

IRiSC.backjump. The method IRiSC.backjump(i ∈ N : 1 ≤ i ≤ m) removes the last
i entries from P , σ, Γ , W , S, R, and K. It also updates the mapping α.

Listing 1.5. IRiSC.backjump.
1 void IRiSC.backjump(i ∈ N : 1 ≤ i ≤ m)
2 {
3 α̃ : {0, 1}m−i → 2R

n

;
4 for w ∈ {0, 1}m:
5 if w = 0 . . . 0wi+1 . . . wm:
6 α̃(wi+1 . . . wm) := α(w);
7 α := α̃; P̃ := (); σ̃ := ε; Γ̃ := ();
8 W̃ := (); S̃ := (); R̃ := (); K̃ := ();
9 for 1 ≤ k ≤ m− i: {

10 P̃ := P̃ ⊕ (Pk); σ̃ := σ̃ ⊕ (σk); Γ̃ := Γ̃ ⊕ (Γk);
11 W̃ := W̃ ⊕ (Wk); S̃ := S̃ ⊕ (Sk); R̃ := R̃⊕ (Rk); K̃ := K̃ ⊕ (Kk);
12 }
13 P := P̃ ; σ := σ̃; Γ := Γ̃ ;
14 W := W̃ ; S := S̃; R := R̃; K := K̃; m := m− i; w := Wm;

I-RiSC: SMT-Compliant Solving for Real Algebra 15

15 }

Fig. 4 shows the execution of IRiSC.backjump(1) using the example search
tree of Fig. 3.

Γ2?

Γ1? Γ1?

00 01 10 11

0 1

0 1 0 1
Γ1?

0 1

0 1

Fig. 4: Evolution of the I-RiSCsearch tree when backtracking, undoing the last
step.

4.4 Example

We explain the functioning of I-RiSCby an example, illustrating how the I-
RiSCsearch tree evolves when adding the sign conditions ((p1), (σ1)), ((p2), (σ2)),
((p3), (σ3)) one by one, then backtracking 2 steps, and finally add a last sign
condition ((p4), (σ4)).

We assume ((p1, p2), (σ1, σ2)) and ((p1, p3), (σ1, σ3)) being satisfiable, but
((p2, p3), (σ2, σ3)) is not. We depict sample points constructed for one combina-
tion of a leaf by •, and circle the sample satisfying the current sign condition.

1. Search tree after adding (p1, σ1): 2. Search tree after adding (p2, σ2):

Γ1?

0 1

•••

0 1

Γ2?

Γ1? Γ1?

00 01

••

10

••••

11

••••••

0 1

0 1 0 1

3. Search tree after adding (p3, σ3):

Γ3?

Γ2? Γ2?

Γ1? Γ1? Γ1? Γ1?

000 001

••

010

••••

011

••••••· · ·

100

••••••· · ·

101

••••••· · ·

110

•••••• · · ·
/∈ <ealiσ110 (P110)

0 1

0 1

0 1 0 1

0 1

10 0

16 I-RiSC: SMT-Compliant Solving for Real Algebra

In the first step, I-RiSCconstructs the set Γ1 of perturbed general position poly-
nomials for p1 and, using Γ1, constructs three samples for the given sign con-
dition, where the third sample satisfies it. The second condition is added by
first constructing the node “Γ2”, which represents the choice of Γ2, and second,
appending the previous search tree as left successor of the new root node “Γ2”.
The samples of Γ1 are discarded, except for two of the two of them, which satisfy
(p1, σ1) but not ((p1, p2), (σ1, σ2)). I-RiSCproceeds by trying samples for Γ2 and
for (Γ1, Γ2). The latter yields a satisfying sample after computing 6 of the pos-
sible 16 choices of sets of general position polynomials. In the last step, (p3, σ3)
is added. Now, following ≺ back to the next leaf without samples, Γ3 is used
for sample construction. In this example, the samples generated at the leaves
100, 011, or 101 satisfy their respective sign conditions (P100, σ100), (P011, σ011),
or (P101, σ101), but not all sign conditions. The next condition (P110, σ110) is
satisfied by none of its respective samples. This allows I-RiSCto stop the search
process and store the sign condition (P110, σ110) as reason of unsatisfiability.

This reason is now removed by performing IRiSC.backjump(2). Thereby, the
search tree of the very first step is restored, still containing some of the samples
computed for Γ1. The final step of this example shows the adding of ((p4), (σ4)),
which here is satisfied already by the next sample, computed for Γ1.

The resulting search trees may look as follows.

1. Search tree after backtracking 2 steps: 2. Search tree after adding (p4, σ4):

Γ1?

0 1

••

0 1

Γ4?

Γ1? Γ1?

00 01

••

10 11

0 1

0 1 0 1

4.5 Optimizations

There are several ways to optimize the implementation of I-RiSC. Here, we list
three of them.

– The method IRiSC.add does not have to compute all the complete set
∏
Γw

and all samples for a given w in advance, but could store the current position
in the

∏
Γw and the corresponding sample computation. This would at best

avoid 4|w|1−1 calls of the method IRiSC.samples as well as save the memory
consumed by the samples and the tuples of

∏
Γw.

– I-RiSCdoes not yet support theory propagation. As discussed in [15], theory
propagation can considerably speed-up the solving procedure. We plan first
to implement the I-RiSCsolver as proposed in this paper, before further
improving it by adding theory propagation.

– Last but not least, since good search heuristics are very important for the
practical applicability of I-RiSC, we will investigate them in the near future.

I-RiSC: SMT-Compliant Solving for Real Algebra 17

5 Conclusion

In this paper we introduced a modification of an existing decision procedure for
real algebra from [3]. Our modified algorithm I-RiSCsatisfies the requirement to
be embedded into an efficient SMT-solver.

Currently, we work on the implementation of the I-RiSCmethod. The im-
plementation, based on the C++ library GiNaCRA [11], will allow to develop a
complete SMT-solver for real algebra.

There are several points for further optimization of the proposed algorithm.
In addition, I-RiSCcan be combined with techniques applied in other decision
procedures for real algebra. One example is the reduction of the dimension of the
input polynomials by variable elimination techniques. E.g., if the multivariate
input polynomials are at most quadratic in one variable, then solution formulas
can be used for variable elimination, as done by the virtual substitution [17].

References

1. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories,
chap. 26, pp. 825–885. Vol. 185 of Frontiers in Artificial Intelligence and Applica-
tions [5] (2009)

2. Barrett, C., Tinelli, C.: CVC3. In: CAV’07. LNCS, vol. 4590, pp. 298–302. Springer-
Verlag (2007)

3. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer-
Verlag (2010)

4. Bauer, A., Pister, M., Tautschnig, M.: Tool-support for the analysis of hybrid sys-
tems and models. In: DATE 2007. pp. 924–929. European Design and Automation
Association (2007)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

6. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer-Verlag (2010)

7. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The math-
SAT 4SMT solver. In: CAV 2008. LNCS, vol. 5123, pp. 299–303. Springer-Verlag
(2008)

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages 1975. LNCS, vol. 33,
pp. 134–183. Springer-Verlag, Berlin (1975)

9. Dutertre, B., Moura, L.D.: A fast linear-arithmetic solver for DPLL(T). In: CAV
2006. LNCS, vol. 4144, pp. 81–94. Springer-Verlag (2006)

10. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex boolean struc-
ture. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209–236
(2007)

11. Loup, U., Ábrahám, E.: GiNaCRA: A C++ library for real algebraic computations.
In: NFM 2011. LNCS, vol. 6617, pp. 512–517. Springer-Verlag (2011)

12. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT
Solvers, chap. 4, pp. 131–153. Vol. 185 of Frontiers in Artificial Intelligence and
Applications [5] (2009)

http://ginacra.sourceforge.net/

18 I-RiSC: SMT-Compliant Solving for Real Algebra

13. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science,
Springer-Verlag (1993)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008. LNCS,
vol. 4963, pp. 337–340. Springer-Verlag (2008)

15. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53, 937–977 (2006)

16. SMT competition 2010. http://www.smtcomp.org/2010/
17. Weispfenning, V.: Quantifier elimination for real algebra – The quadratic case and

beyond. Applicable Algebra in Engineering, Communication and Computing 8(2),
85–101 (1997)

18. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In:
LPAR-16. LNCS, vol. 6355, pp. 481–500. Springer-Verlag (2010)

http://www.smtcomp.org/2010/

	I-RiSC: An SMT-Compliant Solver for the Existential Fragment of Real Algebra
	Ulrich Loup and Erika Ábrahám
	Introduction
	Preliminaries
	SMT-Solving
	Real Algebra

	Computing Realizable Sign Conditions
	The I-RiSCSolver
	Data Structure
	Class Design
	Methods
	Example
	Optimizations

	Conclusion

