
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Adaptive-Step-Size Numerical Methods in

Rewriting-Logic-Based Formal Analysis of

Interacting Hybrid Systems ?

Muhammad Fadlisyah Peter Csaba Ölveczky

Department of Informatics, University of Oslo, Norway

Erika Ábrahám

Computer Science Department, RWTH Aachen University, Germany

Abstract

This paper focuses on the formal modeling, simulation, and analysis of interacting hybrid systems
that influence each other’s continuous behaviors. We define in the rewriting-logic-based Real-Time
Maude tool a method for the numerical approximation of the continuous dynamics specified by
ordinary differential equations. We adapt the Runge-Kutta-Fehlberg 4/5 method to define an
adaptive-step-size technique that allows a more accurate approximation with less computational
effort than fixed-step-size techniques. We also present experimental results for two thermal systems
using different error tolerances.

Keywords: formal modeling, interacting physical systems, simulation, formal analysis, rewriting
logic, Runge-Kutta-Fehlberg method

1 Introduction

Real-Time Maude [15] is a high-performance tool that extends the rewriting-
logic-based Maude system [4] to support the formal modeling, simulation,
and analysis of object-based real-time systems. Real-Time Maude empha-
sizes ease and expressiveness of specification, and has proved to be useful for
analyzing a wide range of advanced applications that are beyond the scope
of timed automata, such as communication protocols [16,13], wireless sensor

? This work was partially supported by the Research Council of Norway through the
Rhythm project and the DAAD ppp project HySmart.

c©2011 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Fadlisyah, Ábrahám, Ölveczky

network algorithms [11,17], and scheduling algorithms that need unbounded
data structures [14].

This paper is part of an investigation into how Real-Time Maude can be
used to formally model, simulate, and analyze hybrid systems with both dis-
crete and continuous behavior. In particular, we consider interacting physical
entities, whose continuous behavior can be described by ordinary differen-
tial equations (ODEs). The physical entities interact and may influence each
other’s continuous behavior. For example, a hot cup of coffee in a room inter-
acts with the room through different kinds of heat transfer.

Our goal is to develop a technique to generate executable models of such
systems in Real-Time Maude. For the continuous behavior of physical systems,
which is described by ODEs, in our previous work [7] the execution was based
on fixed-step-size numerical methods giving approximate solutions to ordinary
differential equations. That is, to approximate a system’s behavior for a given
time duration we approximate the behavior for a series a small time steps, each
of them having a fixed duration. We used the Euler and the Runge-Kutta 2nd
and 4th order methods for the small-step approximation.

In this paper we describe the integration of adaptive-step-size numerical
methods, where the duration of the small time steps is chosen dynamically.
Adaptive-step-size approximations have the advantages of: (i) making the
analysis more precise by making the time step smaller when needed either
to come close to a time instant when a discrete transition must be taken or
when it is needed to maintain a desired precision of the approximation, and
(ii) making the analysis more efficient by increasing the step size whenever
the approximation allows it. In particular, adaptive step-size gives the user
to possibility to define his/her own error tolerance to balance between desired
precision and computational efficiency.

We develop an adaptation of the Runge-Kutta-Fehlberg 4/5 method (see
e.g. [8]) that allows us to approximate the continuous behavior of our models
with dynamic step-size, based on the error tolerance provided by the user.
We describe the implementation of the adapted method in Real-Time Maude.
Furthermore, we compare the results and execution times of both simulation
and model checking using different error tolerances on two thermal systems
with realistic parameters.

There are several simulation tools for hybrid systems based on numerical
methods. MATLAB/Simulink [20] offers a wide range of numerical methods
for simulation. HyVisual [12] considers linear multi-step and Runge-Kutta
methods. CHARON [6] also uses linear multi-step methods with adaptive step
size. In contrast to these tools, our approach supports, besides modeling and
simulation, also the formal analysis, such as temporal logic model checking,
of hybrid systems. Our approach also differs from model checkers for hybrid
systems, such as CheckMate [3], PHAVer [9], d/dt [5], and HYPERTECH [10]

2

Fadlisyah, Ábrahám, Ölveczky

in that we do not use abstraction or over-approximation, but still support the
modeling, reachability analysis, and LTL model checking of the full class of
hybrid systems, describing the continuous dynamics by (possibly non-linear)
ODEs. Whereas other formal tools use hybrid automata, chart or block mod-
els, or formulas for modeling, we use rewriting logic as the underlying modeling
formalism. The models of our approach are compositional, where the continu-
ous dynamics of a component may depend on explicitly modeled interactions
with other components. Since the logic also supports classes and objects as
well as the definition of any computable data type, physical systems controlled
by some programs can be intuitively modeled and analyzed.

The paper is structured as follows: Section 2 gives an overview of Real-
Time Maude. Section 3 briefly explains our approach for modeling hybrid
systems in rewriting logic. Section 4 presents the adaptation of the Runge-
Kutta-Fehlberg 4/5 method for our purposes, and Section 5 describes its imple-
mentation in Real-Time Maude. The case studies are summarized in Section 6
and concluding remarks are given in Section 7.

2 Real-Time Maude

A Real-Time Maude timed module specifies a real-time rewrite theory
(Σ, E, IR,TR), where:

• (Σ, E) is a membership equational logic [4] theory with Σ a signature 1 and
E a set of confluent and terminating conditional equations. (Σ, E) specifies
the state space as an algebraic data type, and contains a specification of a
sort Time modeling the time domain.

• IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) one-step transitions. The
rules are applied modulo the equations E. 2

• TR is a set of (possibly conditional) tick rewrite rules that model time
elapse, written with syntax
rl [l] : {t} => {t′} in time τ
crl [l] : {t} => {t′} in time τ if cond

where τ is a term of sort Time denoting the duration of the rewrite.

The global states of a system are terms of the form {t}; the form of the tick
rules then ensures that time advances uniformly in a system. The Real-Time
Maude syntax is fairly intuitive (see [4]). For example, a function f with
arguments of sorts s1 . . . sn and value of sort s is declared op f : s1 . . . sn

1 i.e., declarations of sorts, subsorts, and function symbols
2 E is a union E′ ∪A, where A is a set of equational axioms (associativity, commutativity,
identity, etc.). Deduction is performed modulo A. A term is reduced to its E′-normal form
modulo A before any rewrite rule is applied.

3

Fadlisyah, Ábrahám, Ölveczky

Coffee Room

solid melting evaporatingliquid

flow

Physical
Interaction
attributes

continuous
dynamics

Physical
Entity

effort

attributes

continuous
dynamics

Conduction
through the cup

Convection through
the surface

C
on

tin
uo

us
be

ha
vi

or
s

D
is

cr
et

e
be

ha
vi

or
s

Fig. 1. Physical system components and their interaction in a simple thermal system.

-> s. Equations are written eq t = t′, and ceq t = t′ if cond for conditional
equations. Variables are declared with the keywords var and vars.

A class declaration class C | att1 : s1, . . . , attn : sn . declares a class C
with attributes att1 to attn of sorts s1 to sn. A subclass inherits all attributes
and rules of its superclasses. An object of class C is represented as a term
< O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort Oid, is
the object’s identifier, and val1 to valn are the current values of the attributes
att1 to attn. In a concurrent object-oriented system, a state is a term of the
sort Configuration. It has the structure of a multiset made up of objects and
possibly messages. Multiset union for configurations is denoted by a juxtapo-
sition operator (empty syntax) that is declared associative and commutative,
so that rewriting is multiset rewriting supported directly in Real-Time Maude.

Real-Time Maude specifications are executable under reasonable conditi-
ons, and the tool offers a variety of formal analysis methods. The rewrite
command (trew t in time <= τ .) simulates one fair behavior of the system
up to duration τ , where t is the initial state and τ is a term of sort Time. The
search command uses breadth-first search to analyze all possible behaviors of
the system and checks whether a state matching a pattern can be reached from
the initial state such that a given condition is satisfied. Real-Time Maude also
extends Maude’s linear temporal logic model checker to check whether each
behavior, possibly up to a certain time bound, satisfies a linear temporal logic
formula. Finally, the find earliest command determines the shortest time
needed to reach a desired state.

3 Modeling Physical Systems

In [7] we present a framework for the modeling and analysis of physical systems
based on the effort and flow approach [21]. One key difference between our
work and most other formal approaches to hybrid systems is that, instead of
considering the continuous behavior of a component in isolation, we consider a

4

Fadlisyah, Ábrahám, Ölveczky

hybrid system to consist of a set of physical components, where the continuous
dynamics of a component may depend on the continuous dynamics of other
components. The physical interactions between physical entities are therefore
considered as first-class citizens, and a physical system is modeled as a network
of physical entities and physical interactions, as shown in Figure 1.

A physical entity consists of a set of attributes, a real-valued effort vari-
able, and a continuous dynamics. The attribute values can only be changed
by discrete events. For example, the phase of a material (solid, liquid, gas,
plasma) changes via discrete phase transitions. The effort variable represents a
physical quantity, such as temperature, evolving over time. Its continuous dy-
namics is given as an ordinary differential equation (ODE). A physical entity
can have one or more physical interactions with one or more physical entities.
A physical interaction represents an interaction between two physical entities.
It consists of a set of attributes, a real-valued flow variable, and a continuous
dynamics. The flow variable represents a quantity describing the interaction
between two entities, e.g., the heat flow rate in a thermal interaction. Its value
is determined by the continuous dynamics in the form of an equation.

The continuous dynamics of a physical entity is an ODE with the time
derivative of its effort on the left-hand side and an expression possibly referring
to the entity’s attributes and to the flows of connected interactions on the
right-hand side. Dually, the continuous dynamics of a physical interaction is
an equation with the flow variable on the left-hand side and an expression
possibly referring to the interaction’s local attributes and the efforts of the
connected entities on the right-hand side. This way the direct coupling of the
ODEs of physical entities [2] can be avoided.

Fig. 1 shows a thermal system representing a cup of of coffee in a room. In
thermal systems, a physical entity is a thermal entity, whose effort variable (T)
denotes the temperature of the entity and whose continuous dynamics defines
the heat gained or lost by the entity as time evolves and its temperature
changes. Likewise, a physical interaction is a thermal interaction whose flow
variable (Q̇) denotes the heat flow rate. Examples of thermal interactions are
conduction, convection, and radiation. Their continuous dynamics are given
by equations for the heat transfer rates.

The basic behavior of physical system components is their continuous be-
havior. We use single-step, initial-value-problem numerical methods [2] to
approximate the continuous behaviors of physical system components by ad-
vancing time in small discrete time steps, and computing the values of the
continuous variables at each “visited” point in time. In previous work, we
have integrated the Euler, Runge-Kutta 2nd order, and Runge-Kutta 4th or-
der methods to our modeling technique. However, in these methods, the size
of the small time steps in the execution is constant.

5

Fadlisyah, Ábrahám, Ölveczky

exact solution

global error
atlocal solution

local error
at

local error
at

global error
at

local solution

Fig. 2. The local and global errors in a numerical approximation.

4 Adaptive-Step-Size Numerical Methods

To approximate some continuous behavior with rapid variations or abrupt
changes, for fixed step-size methods we have to choose a small step-size to
get satisfactory results. However, small step-sizes come at a very high com-
putational cost. For example, approximating the coffee system in Fig. 1 with
our implementation of the Runge-Kutta 4th order method for 1000 time units
took 38 minutes using step size 1, but took 285 minutes using step size 0.5.
For systems with more stable dynamics, larger step-size can be used to get
an adequate approximation more efficiently. The idea of adaptive step-size
techniques is to adapt the trajectory of the approximation by estimating and
controlling the error at each step. Such error estimates are used as a basis for
dynamically increasing or decreasing the step size.

4.1 Approximation Errors

Assume a continuous variable y with time derivative y′(t) = f(t, y(t)) and an
initial value y(0) = y0. To approximate y(T) for some T > 0, small-step nu-
merical methods compute a sequence of values y1, y2, ..., yN that approximate
the exact values y(t1), y(t2), ..., y(tN) for some time points t1 < t2 < ... < tN ,
tN = T . Computing yn+1 is based on the value of yn, and can be seen as
taking a small time step with the step size hn = tn+1 − tn. For the methods
with fixed step-size, all hn, n = 0, . . . , N − 1, are equal. This is not the case
for methods with adaptive step size.

There are two sources of errors in the above approach. Round-off errors
are due to the limitations of computers in representing numbers. Discrete-
time approximation errors originate from the fact that the approximations
y1, y2, ..., yN deviate from the exact values y(t1), y(t2), ..., y(tN). If we assume
that an exact arithmetic is used and thus there are no round-off errors, the
deviation εgn = y(tn)−yn is called the global error at time point tn (see Fig. 2).

The global error εgn+1 sums up from the global error at tn and its propa-

6

Fadlisyah, Ábrahám, Ölveczky

gation, and an additional error due to the last approximation. Let the local
solution u be the solution of u′(t) = f(t, u(t)) for the initial value u(tn) = yn.
Then the global error at tn+1 is εgn+1 = (y(tn+1)− u(tn+1)) + (u(tn+1)− yn+1).
The first summand is the global error εgn = y(tn) − u(tn) propagated during
the time step from tn to tn+1 yielding the error y(tn+1)− u(tn+1). With other
words, it is the difference at time point tn+1 of two solutions of the ODE that
differ by y(tn)− yn at time point tn. The second summand, which we call the
local error εln+1 = u(tn+1)− yn+1, is the approximation error of the last step.

4.2 Adjusting the Step Size

We cannot control the global error directly. However, we can control it indi-
rectly by controlling the local error in each time step [19]. 3 We need to make
the step size adaptive such that the local error in each step is bound by some
error tolerance. The error tolerance is determined by a user-given value τ .
Two commonly used definitions [18] are error per step requiring |εln+1| ≤ τ ,
and error per unit step defining |εln+1| ≤ τ · hn as condition for each n ≥ 0.

To check if these conditions are fulfilled we need to measure the local error,
which depends on the order of the method used. The order of a numerical
method corresponds to how fast a sequence of approximations generated by
a method converges toward the expected solution. The higher the order, the
better the approximation. One way to estimate the local error εln+1 for the ap-
proximation yn+1 by a method of order p ≥ 1 is to compute the approximation
ŷn+1 also with a higher order p̂ > p method. 4 The local error of the method of
order p can be estimated by comparing the results εln+1 ≈ εn+1 = ŷn+1− yn+1.
It can be shown that it is a correct asymptotic result when h→ 0 [19].

If the local error passes the test, this error is accepted, and the step size
will be increased for the next step. For the error per step condition we define

hn+1 = α · hn with α =
(

τ
|εn+1|

) 1
p+1

. Note that |εn+1| ≤ τ implies α ≥ 1. If

the local error does not pass the test, this step size is rejected and will be
decreased. For the error per step condition we define h′n = α · hn. Note that,
since the condition was not satisfied, we have α < 1.

4.3 The Runge-Kutta-Fehlberg Order 4/5 Method

Given a numerical method of a certain order, any other numerical method of
a higher order can be used to obtain an estimate of the local error. However,
computing a second approximation using a second methods in each time step

3 Note that the global error cannot be controlled by the numerical methods. If the solutions
of the ODEs are unstable, the global error can grow fast even for small local errors.
4 Note that the computation for p̂ can re-use most of the computations for p, see Section 4.3.

7

Fadlisyah, Ábrahám, Ölveczky

Time advances

Execute
Continuous Behaviors

Continuous
Behaviors

Execute
Discrete Behaviors

Discrete
Behaviors

Time can
advance

Time cannot
advance

step size

Estimate
Error

error
tolerance

Increase
Step Size

Decrease
Step Size

Compute Step Size

error

error out of tolerance,
reject step size

error in tolerance,
accept step size

Effort/Flow
Numerical Method

Computation

E/F-NM

E/F-NM

E/F-NM

Fig. 3. The execution of a physical system model with adaptive step size.

may be computationally expensive [1]. This problem can be avoided by using
methods that share function values which are known as embedded pairs.

The Runge-Kutta-Fehlberg order 4/5 method (RKF45) [8] makes use of
such embedded pairs. It uses a 5th order method to estimate the local error
of a 4th order method. In each step, for the approximation with the 4th order
method 5 values (slopes) must be calculated that are used to compute yn+1 as
a weighted sum. The 5th order method, used for the error estimation, needs
6 slope values. However, 5 of them are already computed by the 4th order
method, thus only one slope must additionally be determined.

The 5th order approximation ŷn+1 is computed to estimate the local error
of the 4th order approximation yn+1. However, since higher order methods
yield more exact results than lower order ones, we use ŷn+1 instead of yn+1 as
approximation result. This technique is called local extrapolation.

5 Integrating the Adaptive-Step-Size Method for Mod-
eling Thermal Systems

This section gives an overview on the integration of the adaptive-step-size
technique based on the RKF45 method into our modeling framework to sup-
port the formal modeling and analysis of hybrid systems with interacting
components in Real-Time Maude. Fig. 3 shows the global framework.

5.1 Modeling Thermal Systems in Real-Time Maude

We illustrate our approach thermal systems as the one shown in Fig. 1. Phys-
ical entities in thermal systems are thermal entities, and physical interactions
are thermal interactions. The temperature of a thermal entity changes accord-

ing to Ṫ = ΣQ̇
m·c , where ΣQ̇ is the sum of the heat flow rates of the connected

thermal interactions, m is the entity’s mass, and c is its heat capacity. Like-

8

Fadlisyah, Ábrahám, Ölveczky

wise, the heat flow rate Q̇ between two entities through conduction is defined
by Q̇ = k·A

L
· (T1−T2), where T1 and T2 are the current temperatures of the in-

teracting entities, and k, L, and A are, respectively, the thermal conductivity,
the thickness, and the area of the entity from which heat flows by conductivity.

We model thermal entities in Real-Time Maude as objects of the following
class ThermalEntity:
class ThermalEntity | temperature : Rat, mode : CompMode, mass : PosRat, heatCap : PosRat,

temp-p : Rat, temp-o1 : Rat, temp-o2 : Rat .

The effort variable temperature represents the entity’s temperature. The at-
tribute mode is used to distinguish between different modes for the continuous
dynamics (see below). The attributes mass and heatCap denote the mass and
the heat capacity of the entity, respectively. temp-p, temp-o1, temp-o2 are
auxiliary attributes used for the computation by the RKF45 method. The
entity’s continuous dynamics, described below, specifies the evolution of the
temperature, depending on the heat transfer from or to the object.

We can define more specific types of thermal entities as subclasses of the
base class ThermalEntity. For example, the following class WaterEntity

represents water substance:
class WaterEntity | phase : MatterState, heatTrans : Rat, heatTrans-p : Rat,

heatTrans-o1 : Rat, heatTrans-o2 : Rat .

subclass WaterEntity < ThermalEntity .

sort MatterState .

ops liquid solid gas melting evaporating condensing freezing : -> MatterState .

ops default phaseTrans : -> CompMode .

The attribute phase represents the phase of the water substance, which can be
one of the main phases solid, liquid, gas, or one of the phase transitions melt-
ing, freezing, evaporating, or condensing. The change from a main phase to a
phase transition occurs when the temperature reaches a given value, whereas a
change from a phase transition to a main phase happens when the value of the
heat accumulated during the phase transition divided by the mass of the entity
reaches a given value called the latent heat. The attribute heatTrans stores
the accumulated heat of the water in the phase transitions. The remaining
attributes are needed for the computation of the approximations.

The mode determines the computation mode for the continuous dynamics.
For water, the continuous dynamics of the temperature is the same in all three
main phases, whereas the temperature does not change during phase transi-
tions. In addition to the default computation mode for the main phases, we
add the mode phaseTrans for phase transitions.

Each phase change is modeled by an instantaneous rewrite rule. We show
two of the eight such rules for water: 5

5 We do not show the variable declarations; instead we follow the Maude convention that
variables are written in capital letters, and that function symbols (including constants) start
with a lower-case letter.

9

Fadlisyah, Ábrahám, Ölveczky

crl [solid-to-melting] :

< E : WaterEntity | temp : T, phase : solid >

=> < E : WaterEntity | phase : melting, mode : phaseTrans, heatTrans : 0 > if T >= 0 .

crl [melting-to-liquid] :

< E : WaterEntity | phase : melting, heatTrans : QT, mass : M >

=> < E : WaterEntity | phase : liquid, mode : default > if QT / M >= latentHeatFusion .

Thermal Interactions model the heat transfer between thermal entities. Ex-
amples are conduction, convection, and radiation. We define a class for general
thermal interactions and subclasses for the three heat transfer mechanisms:
class ThermalInteraction | entity1 : Oid, entity2 : Oid, hfr : Rat, area : PosRat,

hfr-p1 : Rat, hfr-p2 : Rat, hfr-p3 : Rat, hfr-p4 : Rat, hfr-p5 : Rat .

class Conduction | thermCond : PosRat, thickness : PosRat .

class Convection | convCoeff : PosRat .

class Radiation | emissive : PosRat .

subclass Conduction Convection Radiation < ThermalInteraction .

The ThermalInteraction class contains common attributes of thermal inter-
actions: entity1 and entity2 are the object identifiers of the two interacting
thermal entities; the flow variable hfr specifies the heat flow rate Q̇ of the
thermal interaction; area is the area of the interaction; hfr-p1 to hfr-p5 are
auxiliary attributes used for the computation by the RKF45 method. The
subclasses have additional interaction-specific attributes. For conductivity,
thermCond is the thermal conductivity of the material and the thickness is
the thickness of the material through which the conduction occurs.

5.2 Computing the Step Size

We define the following class to manage the numerical method computation:
ops euler mp rk4 rkf45 : -> NumMethod [ctor] .

ops adj1 adj2 : -> CompStepSize [ctor] .

ops static dynamic : -> StepSizeType [ctor] .

ops eps epus : -> ErrorControlType [ctor] .

class SysMan | numMethod : NumMethod, stepSizeDef : Rat, stepSizeCur : Rat,

stepSizeType : StepSizeType, errorTol : Rat, compStepSize : CompStepSize,

safetyFactor : Rat, limitStepSize : Bool, stepSizeMin : Rat, stepSizeMax : Rat,

limitAdjustRate : Bool, adjustRateMin : Rat, adjustRateMax : Rat,

errorControl : ErrorControlType, localExtrapolation : Bool .

The attribute numMethod specifies which numerical method is used. The at-
tribute stepSizeDef stores the initial step-size, and stepSizeCur the current
step-size. The stepSizeType determines if fixed or adaptive step-size is used.
The errorTol defines the error tolerance in adaptive-step-size computation
(assuming that we use a single tolerance value). The compStepSize defines
which step-size computation technique is used. The safetyFactor defines
a fraction of the locally optimal step size which may be used to reduce the
approximation error. The limitStepSize, stepSizeMin, and stepSizeMax

limit the value of the step size. The limitAdjustRate, adjustRateMin, and
adjustRateMax are used to limit increasing or decreasing rate of the step size.
The errorControl chooses either error per step or error per unit step for

10

Fadlisyah, Ábrahám, Ölveczky

controlling the step size. The localExtrapolation specifies whether to use
the extrapolation technique in the numerical computation.

The RKF45 method stores the approximations for the temperature values
by the 4th and 5th order methods in the attributes temp-o1 and temp-o2

of the thermal entities. The function maxError computes the maximal local
error estimate over all thermal entities in the system:
op maxError : Configuration -> Rat .

eq maxError(

< E : ThermalEntity | temp-o1 : TEMP-O1, temp-o2 : TEMP-O2, mode : default >

< SM : SysMan | errorControl : eps > REST) =

max(abs(TEMP-O1 - TEMP-O2), maxError(< SM : SysMan | > REST)) .

eq maxError(CONFIG) = 0 [owise] .

The adjustRate function computes the factor of the step size adjustment
using error per step (we have a similar function for error per unit step):
op adjustRate : CompStepSize Rat Rat Rat ErrorControlType -> Rat .

eq adjustRate(adj1, ERR, ERRTOL, SAF, eps) = SAF * root5(ERRTOL / ERR) .

The function root5(X) computes X
1
5 as exp(1/5 · ln(X)).

The function stepSizeRKF computes the step size based on the RKF45
method. If the maximal local error is below the tolerance value, it returns
a pair of values, consisting of the current step size and the step size for the
next time step. If not, the function is recursively called after computing new
approximations with a smaller step-size. The following equation defines this
function when putting no limitations on the step-size modifications:
op stepSizeRKF : Configuration -> ErrorStepSize .

ceq stepSizeRKF(

< SM : SysMan | compStepSize : ADJ, stepSizeCur : SSCUR, errorTol : ERRTOL, safetyFactor : SAF,

limitStepSize : false, limitAdjustRate : false, errorControl : ERRCTR > REST) =

if ERR <= ERRTOL then SSCUR ; SSRKF

else stepSizeRKF(compute-EF-RKF45(< SM : SysMan | stepSizeCur : SSRKF > REST)) fi

if ERR := maxError(< SM : SysMan | > REST) /\ SSRKF := adjustRate(ADJ, ERR, ERRTOL, SAF, ERRCTR) * SSCUR .

We also implemented a similar function that limits the rate of step-size change.

The following tick rule advances time in the system by the step size com-
puted by stepSizeRKF, and computes the new values of the effort variables
for all thermal entities. These values are the 5th order approximations if the
extrapolation is used, and the 4th order approximations otherwise.
crl [tick-adaptive-stepsize] :

< SM : SysMan | stepSizeDef : SS, stepSizeType : dynamic, errorTol : ERRTOL > REST

=>

delta(< SM : SysMan | stepSizeCur : firstES(SSPAIR), stepSizeDef : secondES(SSPAIR)>

REST) in time firstES(SSPAIR)

if TimeCanAdvance(< SM : SysMan | > REST)

/\ SSPAIR := stepSizeRKF(compute-EF-RKF45(< SM : SysMan | stepSizeCur : SS > REST)) .

eq delta(< SM : SysMan | numMethod : rkf45, localExtrapolation : true > REST) =

compute-EF-RKF45-Order5(< SM : SysMan | > REST) .

eq delta(< SM : SysMan | numMethod : rkf45, localExtrapolation : false > REST) =

compute-EF-RKF45-Order4(< SM : SysMan | > REST) .

11

Fadlisyah, Ábrahám, Ölveczky

Effort

Physical
Entity 1

 Physical
Interaction

Physical
Entity 2

EffortFlow

Flow value
at initial point

Flow value
at some point

Effort value
at initial point

Effort value
at initial point

Effort value
at some point

Effort value
at some point

The layer for
the trial point(s)
between intial point
and endpoint

E/F-NM
Effort/Flow

Numerical Method
Computation

Effort value
at end point

Effort value
at end point

Fig. 4. The general model of the adaptation of numerical methods in effort/flow computation.

5.3 Integrating the RKF45 Method

The general model for adapting numerical methods in our effort/flow frame-
work is depicted in Fig. 4. We use time discretization, and compute ap-
proximations for each small time-step. To compute the approximations by a
numerical method, some slopes k1 to kn must be computed. 6 For the RKF45
method we need six slopes k1 to k6, as explained in Section 4. For each ki we
need to compute a linear approximation of the behavior for a small time-step,
starting from some initial point. This is done by (1) first calculating the heat
flow rates of all thermal interactions at the initial point, (2) summing up the
heat flow rates for all connected interactions for each entity, and (3) linearly
approximate the effort, i.e. the temperature, after a small time-step, assuming
that the computed heat flow rates are constant. Due to lack of space, in the
following we restrict ourselves to explain these computation steps for k1 (up
to kn, the other cases are similar but use different auxiliary attributes).

The function computeFlow-IP computes the heat flow rate of each thermal
interaction for the initial point according to the laws of physics as described
in [7]. We only show the case for thermal conductions:
op computeFlow-IP : Configuration -> Configuration .

ceq computeFlow-IP(

< E1 : ThermalEntity | temperature : T1 >

< E2 : ThermalEntity | temperature : T2 >

< TI : Conduction | entity1 : E1, entity2 : E2, area : A, thermCond : K, thickness : L > REST) =

< TI : Conduction | hfr : QDOT-T >

computeFlow-IP(< E1 : ThermalEntity | > < E2 : ThermalEntity | > REST)

if QDOT-T := Qdot-Conduction(K, L, A, T1, T2) .

eq computeFlow-IP(CONFIG) = CONFIG [owise] .

The equation above computes the initial heat flow rate for a thermal interac-
tion TI of type Conduction between two thermal entities E1 and E2, and then
recursively applies the function to the remaining configuration. The function

6 In our previous works, we have applied this technique for the Euler, Runge-Kutta 2nd
order, and Runge-Kutta 4th order methods.

12

Fadlisyah, Ábrahám, Ölveczky

Qdot-Conduction defines the dynamics as Q̇ = K·A
L
· (T1 − T2).

The function sumFlows-IP computes the sum of the initial heat flow rates
of all thermal interactions connected to a thermal entity:
op sumFlows-IP : Configuration Oid -> Rat .

eq sumFlows-IP(

< TI : ThermalInteraction | entity1 : E1, entity2 : E2, hfr : QDOT > REST, E) =

if (E == E1 or E == E2) then

(if E == E1 then -1 * QDOT + sumFlows-IP(REST, E)

else QDOT + sumFlows-IP(REST, E) fi)

else sumFlows-IP(REST, E) fi .

eq sumFlows-IP(CONFIG, E) = 0 [owise] .

The function computeEffort-P1 linearly approximates the temperature of
each thermal entity in the system after a time step, assuming constant flow
rates over the time step. It invokes the function Tdot representing the contin-

uous dynamics given by Ṫ =
∑
Q̇

m·c , where
∑
Q̇ is the sum of the heat flow rate

values of the thermal interactions of the entity as computed by sumFlows-IP,
m the mass, and c the heat capacity. The attributes numMethod and stepSize

of SM determine the numerical method and time step size, respectively:
op computeEffort-P1 : Configuration -> Configuration .

ceq computeEffort-P1(

< E : ThermalEntity | temperature : TEMP, mode : default, mass : M, heatCap : C >

< SM : SysMan | numMethod : mp, stepSize : H > REST) =

< E : ThermalEntity | temp-p : TEMP-P1 >

computeEffort-P1(< SM : SysMan | > REST)

if TEMP-P1 := TEMP + 1/4 * H * Tdot(sumFlows-IP(REST,E),M,C).

eq computeEffort-P1(CONFIG) = CONFIG [owise] .

6 Case Studies

This section investigates how the adaptation of the adaptive step size tech-
nique based on the RKF45 method affects the accuracy and performance of
the simulation and time analysis of thermal systems. We start with a cup of
hot coffee in a room. Then we add a heater giving a constant heat flow to
the coffee. 7 The experiments are performed on a computer with an Intel(R)
Pentium(R) 4 CPU 3.00 GHz and 3 GB of RAM. The executable formal mod-
els, as well as the simulation and analysis commands described below, are
available at http://www.ifi.uio.no/RealTimeMaude/Coffee/.

6.1 Case Study 1: A Cup of Coffee in a Room

We first model a cup of hot coffee in a room, as shown in Fig. 1, with con-
duction and convection as thermal interactions, and with realistic physical
parameters. The initial state consists of a SysMan object managing the nu-
merical computation, the thermal entity objects coffee and room, and two

7 In the analysis we use the error per step, and the extrapolation for the computation.

13

http://www.ifi.uio.no/RealTimeMaude/Coffee/

Fadlisyah, Ábrahám, Ölveczky

0 100 200 300 400 500 600 700 800
10

20

30

40

50

60

70

80

Time

T
e

m
p

e
ra

tu
re

Coffee - RKF45
Coffee - Exact
Room - RKF45
Room : Exact

100 200 300 400 500 600 700 800

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time

R
e

la
tiv

e
 (

G
lo

b
a

l)
 E

rr
o

r
(%

)

Coffee
Room

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

180

Time

S
te

p
 S

iz
e

Step size

Fig. 5. The simulation results of Case Study 1 using error tolerance 10−3.

thermal interaction objects that model the heat flow:
eq cs1 =

{< coffee : WaterEntity | temperature : 70 , heatCap : coffeeHC, mass : coffeeMass, mode : default,

temp-p : 0, temp-o1 : 0, temp-o2 : 0, phase : liquid, heatTrans : 0,

heatTrans-p : 0, heatTrans-o1 : 0, heatTrans-o2 : 0 >

< room : ThermalEntity | temperature : 20 , heatCap : roomHC, mass : roomMass, mode : default,

temp-p : 0, temp-o1 : 0, temp-o2 : 0,

< crCond : Conduction | entity1 : scoffee, entity2 : room, hfr : 0, thermCond : k , area : condArea,

thickness : cupThick, hfr-p1 : 0, hfr-p2 : 0, hfr-p3 : 0, hfr-p4 : 0, hfr-p5 : 0 >

< crConv : Convection | entity1 : scoffee, entity2 : room, hfr : 0, convCoeff : h , area : convArea,

hfr-p1 : 0, hfr-p2 : 0, hfr-p3 : 0, hfr-p4 : 0, hfr-p5 : 0 >

< sm : SysMan | numMethod : rkf45, stepSizeCur : INIT-TIME-STEP, stepSizeDef : INIT-TIME-STEP,

stepSizeType : dynamic, errorTol : 1/1000, compStepSize : adj1, safetyFactor : 9/10,

limitStepSize : false, stepSizeMin : 1/10, stepSizeMax : 5, limitAdjustRate : false,

adjustRateMin : 1/100, adjustRateMax : 1/4, errorControl : eps,

localExtrapolation : true >} .

The behavior of the system until time 500 can be simulated using the following
timed rewriting command:
Maude> (trew cs1 in time <= 500 .)

Fig. 5 shows the simulation results using the error tolerance 10−3. The
diagram on the left shows how the temperature of the coffee decreases and the
one of the room increases as the heat flows. The small diagram inside shows
the change of the relative values of the global error of the approximation of
both temperatures at each time step. 8 . The diagram on the right shows the
change of the step size which is getting larger as time advances.

The following table compares the simulation results using different error
tolerances for the simulation time of 500:

Error Effort Error Abs (+ Rel %) CPU Time

Tolerance Min Max Avg (s)

10−3 Tc 3.4741e-06 (4.9815e-06) 0.0101 (0.0354) 0.0056 (0.0162) 4

Tr 8.1800e-08 (4.0930e-07) 2.3796e-04 (0.0011) 1.3196e-04 (6.3503e-04)

10−4 Tc 3.4741e-06 (4.9815e-06) 0.0036 (0.0123) 0.0024 (0.0071) 75

Tr 8.1800e-08 (4.0930e-07) 8.5957e-05 (4.1164e-04) 5.7330e-05 (2.7591e-04)

10−5 Tc 3.4741e-06 (4.9815e-06) 0.0012 (0.0041) 8.9203e-04 (0.0026) 3881

Tr 8.1800e-08 (4.0930e-07) 2.8990e-05 (1.3895e-04) 2.1026e-05 (1.0123e-04)

8 The relative approximation error percentage is computed using
|valexact−valapprox|

|valexact| . Its

percentage error is 100 times the relative error.

14

Fadlisyah, Ábrahám, Ölveczky

0 50 100 150 200 250 300 350 400 450 500
-20

0

20

40

60

80

100

120

Time

T
e

m
p

e
ra

tu
re

Coffee
Room

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

Time

S
te

p
 S

iz
e

Step size

Fig. 6. The simulation results of Case Study 2 using error tolerance 10−3.

It shows the values of minimum, maximum, and average of absolute and rela-
tive values of global errors of both temperatures of the coffee Tc and the room
Tr, including the execution time. The results show that by decreasing the er-
ror tolerance we increase indirectly the accuracy of the computation, with the
consequent increase in the computation time. The values of maximum and
average errors which are greater than the error tolerances remind us again
that the error tolerance does not control directly the global error. Note that
the error values of the coffee are greater those of the room because the change
rate of the temperature of the coffee is greater than the room.

6.2 Case Study 2: Keeping the Coffee Warm

To illustrate hybrid behavior in thermal systems, we add a heater providing
a constant heat flow of 1.5 KW to the cup of coffee. We start with an initial
coffee temperature of −10◦C to go over the phase transitions from solid to
liquid through the melting phase transition. Due to lack of space, we refer
to [7] for a detailed model description.

Fig. 6 shows the simulation results using the error tolerance of 10−3. The
diagram on the left shows how both temperatures of the coffee and the room
increase as the coffee receives constant heat flow from the heater. It shows how
the discrete behavior of the coffee, namely the changes from one physical state
to the other (here solid to melting, melting to liquid, and liquid to evaporating),
affect its continuous dynamics. The diagram on the right shows the changes
of the step size, but unlike the previous case study, here the step size increases
and decreases following the changes of the dynamics of the coffee.

We model the changes in the phase transition phenomena as discrete events
that change the dynamics of the physical entities. We can use the find earliest
Real-Time Maude command to find out discrete changes in our model. For
example, we use this command to check when our coffee starts melting:
Maude> (find earliest cs2 =>*

C:Configuration < coffee : WaterEntity | phase : melting > .)

The following table compares the results and execution time of the above

15

Fadlisyah, Ábrahám, Ölveczky

command using different error tolerances:

Error Tol Discrete Jump CPU Time (s)

Time Point Tc approx

10−3 11.3135531852 0.3858197647 0.6

10−4 15.9889535171 4.5019701020 0.8

10−5 11.6013479838 0.6425970213 1.2

10−6 11.0388434197 0.1414667933 11.1

The results show an expected correlation between the error tolerance and
the execution time. However, the results do not show the ’gradual’ changes
of the discrete jump, as we may expect. The coffee is supposed starting
the melting process at temperature 0◦C. Thus we expect that as the error
tolerance decreases, the approximate value of the coffee temperature will be
closer to zero. But the results above cannot show our expectation. The
following table shows the corresponding traces to the jump points from the
simulation using different tolerances:

Time point 10−3 10−4 10−5 10−6

tj−2 -9.0569907324 -4.0031039563 -2.9549415161 -1.0583268132

tj−1 -5.9239797872 -0.0510841430 -1.1707648220 -0.4578893885

tj 0.3858197647 4.5019701020 0.6425970213 0.1414667933

The results shows that the changes of the coffee temperature value from one
time point to another correlate to the error tolerances. However, the execution
of a discrete event depends on the execution strategy for hybrid behaviors. For
the implementation presented in this paper, the check of the occurrence of a
discrete event is performed before the time step is taken, but a discrete event
that should occur between time tn and tn+1 is executed at tn+1.

7 Concluding Remarks

In this paper we describe how the adaptive-step-size technique based on the
Runge-Kutta-Fehlberg 4/5 method can be adapted to an effort-flow-based
modeling of interacting physical systems, and how the methods can be imple-
mented in Real-Time Maude. We have compared the precision and execution
times for some thermal systems, and showed that decreasing the error tol-
erances increases both the accuracy of the approximation of the continuous
behavior and the computational effort. We also found a weakness in our execu-
tion strategy of the hybrid behavior when using adaptive step size techniques.

Making these methods, and a modeling framework, available within the
Real-Time Maude rewriting logic tool should make it a suitable candidate for
the object-based formal modeling, simulation, and model checking of advanced
hybrid systems due to the tool’s expressiveness, support for concurrent objects,
user-definable data types, different communication models, etc. In future work,
this should be validated this on more advanced systems.

Acknowledgment. We thank Lawrence F. Shampine for helpful discussions.

16

Fadlisyah, Ábrahám, Ölveczky

References

[1] Bradie, B., “A Friendly Introduction to Numerical Analysis,” Pearson Education Int., 2006.

[2] Cheney, W. and D. Kincaid, “Numerical Mathematics and Computing,” Brooks & Cole
Publishing Co., 1994.

[3] Clarke, E., A. Fehnker, Z. Han, B. Krogh, O. Stursberg and M. Theobald, Verification of
hybrid systems based on counterexample-guided abstraction refinement, in: Proc. TACAS’03,
LNCS 2619 (2003).

[4] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer and C. Talcott, “All
About Maude - A High-Performance Logical Framework,” LNCS 4350, Springer, 2007.

[5] Dang, T., “Verification and Synthesis of Hybrid Systems,” Ph.D. thesis, INPG (2000).

[6] Esposito, J., V. Kumar and G. Pappas, Accurate event detection for simulating hybrid systems,
in: Proc. of HSCC’01, LNCS 2034 (2001).

[7] Fadlisyah, M., E. Ábrahám, D. Lepri and P. C. Ölveczky, A rewriting-logic-based technique for
modeling thermal systems, in: Proc. RTRTS’10, EPTCS 36, 2010.

[8] Fehlberg, E., Klassische Runge-Kutta-formeln vierter und niedrigerer ordnung mit
schrittweiten-kontrolle und ihre anwendung auf wrmeleitungsprobleme, Computing (1970).

[9] Frehse, G., PHAVer: Algorithmic verification of hybrid systems past HyTech, in: Proc. of
HSCC’05, LNCS 3414 (2005), pp. 258–273.

[10] Henzinger, T. A., B. Horowitz, R. Majumdar and H. Wong-toi, Beyond HYTECH: Hybrid
systems analysis using interval numerical methods, in: Proc. of HSCC’00, LNCS 1790 (2000).

[11] Katelman, M., J. Meseguer and J. Hou, Redesign of the LMST wireless sensor protocol through
formal modeling and statistical model checking, in: Proc. FMOODS’08, LNCS 5051 (2008).

[12] Lee, E. and H. Zheng, HyVisual: A hybrid system modeling framework based on Ptolemy II,
in: IFAC Conference on Analysis and Design of Hybrid Systems, 2006.

[13] Lien, E. and P. C. Ölveczky, Formal modeling and analysis of an IETF multicast protocol, in:
Proc. SEFM ’09 (2009).

[14] Ölveczky, P. C. and M. Caccamo, Formal simulation and analysis of the CASH scheduling
algorithm in Real-Time Maude, in: Proc. FASE ’06, LNCS 3922 (2006).

[15] Ölveczky, P. C. and J. Meseguer, Semantics and pragmatics of Real-Time Maude, Higher-Order
and Symbolic Computation 20 (2007), pp. 161–196.

[16] Ölveczky, P. C., J. Meseguer and C. L. Talcott, Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude, Formal Methods in System Design 29
(2006).

[17] Ölveczky, P. C. and S. Thorvaldsen, Formal modeling, performance estimation, and model
checking of wireless sensor network algorithms in Real-Time Maude, Theoretical Computer
Science 410 (2009).

[18] Shampine, L., “Numerical solution of ordinary differential equations,” Chapman & Hall, 1994.

[19] Shampine, L. F., Local error control in codes for ordinary differential equations, Applied
Mathematics and Computation 3 (1977), pp. 189 – 210.

[20] Simulink home page, http://www.mathworks.com/products/simulink.

[21] Wellstead, P. E., “Introduction to physical system modelling,” Academic Press, 1979.

17

http://www.mathworks.com/products/simulink

	Introduction
	Real-Time Maude
	Modeling Physical Systems
	Adaptive-Step-Size Numerical Methods
	Approximation Errors
	Adjusting the Step Size
	The Runge-Kutta-Fehlberg Order 4/5 Method

	Integrating the Adaptive-Step-Size Method for Modeling Thermal Systems
	Modeling Thermal Systems in Real-Time Maude
	Computing the Step Size
	Integrating the RKF45 Method

	Case Studies
	Case Study 1: A Cup of Coffee in a Room
	Case Study 2: Keeping the Coffee Warm

	Concluding Remarks
	References

