
Form Methods Syst Des (2010) 36: 1–36
DOI 10.1007/s10703-009-0088-7

Performability assessment by model checking of Markov
reward models

Christel Baier · Lucia Cloth · Boudewijn R. Haverkort ·
Holger Hermanns · Joost-Pieter Katoen

Published online: 18 March 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper describes efficient procedures for model checking Markov re-
ward models, that allow us to evaluate, among others, the performability of computer-
communication systems. We present the logic CSRL (Continuous Stochastic Reward Logic)
to specify performability measures. It provides flexibility in measure specification and paves
the way for the numerical evaluation of a wide variety of performability measures. The for-
mal measure specification in CSRL also often helps in reducing the size of the Markov
reward models that need to be numerically analysed. The paper presents background on
Markov-reward models, as well as on the logic CSRL (syntax and semantics), before pre-
senting an important duality result between reward and time. We discuss CSRL model-
checking algorithms, and present five numerical algorithms and their computational com-
plexity for verifying time- and reward-bounded until-properties, one of the key operators in
CSRL. The versatility of our approach is illustrated through a performability case study.

C. Baier
Department of Computer Science, Technical University Dresden, Dresden, Germany
e-mail: baier@tcs.inf.tu-dresden.de

L. Cloth (�) · B.R. Haverkort
Department of Computer Science, University of Twente, Twente, The Netherlands
e-mail: lucia@cs.utwente.nl

B.R. Haverkort
e-mail: brh@cs.utwente.nl

B.R. Haverkort
Embedded Systems Institute, Eindhoven, The Netherlands
e-mail: boudewijn.haverkort@esi.nl

H. Hermanns
Department of Computer Science, Saarland University, Saarbruecken, Germany
e-mail: hermanns@cs.uni-sb.de

J.-P. Katoen
Department of Computer Science, RWTH Aachen University, Aachen, Germany
e-mail: katoen@cs.rwth-aachen.de

 Author's personal copy

mailto:baier@tcs.inf.tu-dresden.de
mailto:lucia@cs.utwente.nl
mailto:brh@cs.utwente.nl
mailto:boudewijn.haverkort@esi.nl
mailto:hermanns@cs.uni-sb.de
mailto:katoen@cs.rwth-aachen.de

2 Form Methods Syst Des (2010) 36: 1–36

Keywords Model checking · Performability · Markov reward models

1 Introduction

Characteristic for many modern, often embedded, computer and communication systems
is that they have to meet a multitude of quantitative constraints, next to (usual) functional
constraints on their well-operation. The quantitative constraints involve the resources that
such a system may use (computation resources, power consumption, memory usage, com-
munication bandwidth, costs, etc.), assumptions about the environment in which it operates
(task arrival rates, task sizes), and requirements on the services that the system has to pro-
vide (timing constraints (performance), availability, dependability, or its combination, i.e.,
performability). The proper assessment of cost, efficiency and robustness of such systems
often comes as an afterthought: it is rather common for embedded software to be fully
designed and functionally tested before any attempt is undertaken to determine its perfor-
mance and dependability characteristics. One of the main reasons for this situation is that
well-developed and rigorous evaluation techniques for non-functional aspects have not be-
come an integral part of standard engineering practice. This situation, which is particularly
undesirable for embedded systems, has led to an increased interest to extend the usual func-
tional specification and properties with a set of “performance indices” (stated in terms of
costs, timeliness, speed and the like) and constraints on these indices [22]. In this paper
we address algorithms on how to express and evaluate such quantitative measures using a
model-based approach.

Model-based performance, dependability and performability evaluation aims at forecast-
ing system behaviour in a quantitative way. Depending on the system or application at hand,
a set of measures of interest is defined that express, once evaluated, in a numerical way,
how good the system does with respect to performance, dependability or performability. To
evaluate the measures of interest, a model has to be constructed that supports the evaluation
of the selected measures.

Due to the increasing size and complexity of real systems, performance, dependability
and performability models that are directly amenable for a numerical solution, i.e., typically
continuous-time Markov chains, are awkward to specify “by hand” and are therefore more
and more often generated automatically from high-level modelling languages, such as sto-
chastic Petri nets [1], stochastic process algebras [37, 38], stochastic activity networks [60]
or queueing networks [20]. Note that although typically good support exists for the model
specification, the specification of the measures of interest is often done in a more informal
fashion. In this paper we will specifically address the question of how to specify the mea-
sures of interest more formally and how these measures impact the model to be evaluated;
indeed, as will become clear later, in many cases, knowledge about the measures of interest
can be exploited to come to a smaller model to be evaluated, thus reducing the computational
burden for evaluation.

Next to the above “classical” performance, dependability and performability techniques,
a technique known as model checking has been developed over the last, say, 25 years, to
verify whether certain system properties, typically expressed in a formal logic, such as com-
putational tree logic (CTL) [23], do hold in a model. The models at this point typically
are described as finite-state transition systems (automata), or, using higher-level description
methods like process algebra or Petri nets (that can be mapped to such finite-state automata).
Originally, model checking techniques were developed to verify functional properties of
systems, for instance, to verify deadlock freeness, or to verify liveness properties. For an
overview of the techniques and benefits of model checking, see, e.g., [6, 15, 41].

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 3

Recently, instead of using a (timeless) finite-state transition system as a model, the use of
discrete- and continuous-time Markov chains (CTMCs) as models to be checked has been
proposed [4, 7, 10, 31]. In combination with a logic that also allows for the specification of
properties that refer to time, like the logic CSL (continuous stochastic logic), one can express
and mechanically evaluate properties relating to steady-state and transient probabilities in
Markov chains in a very flexible way. But even more so, CSL allows one to specify proba-
bilistic measures over paths through CTMCs. As an example of such a path-based measure,
it can be expressed what the probability is, that starting from a particular state, within t time
units another state is reached while avoiding or deliberately visiting particular intermedi-
ate states. This is a very powerful feature in the context of dependability evaluation, as we
have demonstrated with a large case study [33]. The papers [4, 5, 7, 8, 10] formally spec-
ify the logic CSL (syntax and semantics) and present efficient numerical procedures for its
verification.

To further strengthen the applicability of the above approach now known as “stochastic
model checking” [44], we also proposed the use of Markov models involving costs or re-
wards, i.e., Markov reward models (MRMs). For that purpose, we extended the logic CSL to
the so-called continuous stochastic reward logic (CSRL) in order to specify a wide variety of
standard and non-standard steady-state, transient and path-based measures over MRMs [9].
We showed that well-known performability measures, most notably also the performability
distribution introduced by Meyer [48–50], can be specified using CSRL. Moreover, CSRL
allows for the specification of new measures that have not yet been addressed in the per-
formability literature. For instance, when rewards are interpreted as costs, we can express
the probability that, given a starting state, a certain goal state is reached within t time units
while deliberately avoiding or visiting certain intermediate states, with a certain maximal
total cost (i.e., accumulated reward). The paper introducing the logic CSRL, cf. [9], did not
address efficient computational procedures for model checking CSRL against MRMs. In the
follow-up paper, cf. [36], we reported on first experiences with computational procedures
for model checking MRMs against CSRL; this work was later extended in [16, 17]. Fur-
thermore, the flexibility in interpreting the role of the rewards (power, costs, etc.) combined
with the expressiveness of CSRL allows us to address all kinds of quantitative design issues
for embedded systems such as energy and resource consumption.

The contribution of this paper lies in the overall and careful description of the logic
CSRL, its syntax and semantics, the full description of required computational procedures,
as well as an extensive treatment of several numerical algorithms. The relation to (and ex-
tension of) performability concepts and measures, as introduced by Meyer in 1980, is de-
scribed, and a duality result with respect to the role of time and rewards is presented, thus
generalising the well-known result of Beaudry [12]. We illustrate the CSRL model-checking
approach by addressing a performability case study.

This paper is further organised as follows. Section 2 presents the necessary background
on MRMs. Section 3 presents the logic CSRL (syntax and formal semantics) and discusses
its expressivity, especially in relation to earlier work on performability measures. This is
followed by an important duality result in Sect. 4. Section 5 then discusses the required
model checking procedure, whereas Sect. 6 presents a variety of numerical algorithms to
effectively perform the model checking. Section 7 is devoted to a case study, showing both
the versatility of CSRL and the effectiveness of the numerical algorithms. In Sect. 8 we
present pointers to related work, before we conclude the paper in Sect. 9.

 Author's personal copy

4 Form Methods Syst Des (2010) 36: 1–36

2 Continuous-time Markov reward models

Throughput, resource utilization, packet loss probabilities and waiting times are examples
of measures that characterize the desired behavior of systems. To evaluate such measures,
thereby taking into account contention for shared resources, possible component failures
and delays due to variability in the system workload, automatically forces one to use models
in which probabilistic timing is at stake, either discrete or continuous. We propose the use
of Markov models for this purpose, where we focus on continuous time. To model resource
consumption like energy usage we consider Markov models that are equipped with rewards.
In the past, the versatility of these models has been demonstrated.

We briefly recapitulate the basic concepts of Markov reward models and introduce some
notation. Let AP be a fixed, finite set of so-called atomic propositions.

Definition 1 A labelled CTMC C is a tuple (S,R,L) where S is a finite set of states,
R : S × S → R≥0 the rate matrix, and L : S → 2AP the labelling function which assigns to
each state s ∈ S the set L(s) of atomic propositions a ∈ AP that are valid in s. A state s is
called absorbing iff R(s, s ′) = 0 for all states s ′.

Intuitively, R(s, s ′) > 0 iff there is a transition from s to s ′; 1−e−R(s,s′)·t is the probability
that the transition s → s ′ can be triggered within t time units. Thus, the delay of transition
s → s ′ is governed by an exponential distribution with rate R(s, s ′). If R(s, s ′) > 0 for more
than one state s ′, a competition between the transitions exists, known as the race condition.
The probability to move from non-absorbing s to s ′ within t time units, i.e., s → s ′ to win
the race, is given by

R(s, s ′)
E(s)

· (1 − e−E(s)·t)

where E(s) = ∑
s′∈S R(s, s ′) denotes the total rate at which any transition emanating from

state s is taken. More precisely, E(s) specifies that the probability of leaving s within t

time-units is 1 − e−E(s)·t , because the minimum of exponential distributions, competing in
a race, is characterised by the sum of their rates. Consequently, the probability of moving
from a non-absorbing state s to s ′ by a single transition, denoted P(s, s ′), is determined
by the probability that the delay of moving from s to s ′ finishes before the delays of other
outgoing edges from s; formally, P(s, s ′) = R(s, s ′)/E(s). For absorbing states, the total rate
E(s) = 0; let P(s, s ′) = 0 for any state s ′.

The state space S and the rate matrix R define a stochastic process X(t), where t is the
continuous time parameter. X(t) is the random variable describing the state of the CTMC
at time t . The initial distribution of X(0) must be provided to fully specify the stochastic
process.

Definition 2 A labelled Markov reward model (MRM) M is a pair (C , ρ) where C is a
(labelled) CTMC, and ρ : S → R≥0 is a reward structure that assigns to each state s ∈ S a
reward ρ(s), also called gain or bonus or dually, cost.

An MRM defines another stochastic process, the accumulated reward. It is the integral
of the reward rates over time:

Y (t) =
∫ t

0
ρ(X(u))du.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 5

In contrast to X(t), the continuous stochastic process Y (t) assumes values in R≥0. For any
value t ≥ 0, Y (t) is a random variable.

An infinite path σ , through a CTMC or MRM, is a sequence s0, t0, s1, t1, s2, t2, . . . with
for i ∈ N, si ∈ S and ti ∈ R>0 such that R(si, si+1) > 0. For i ∈ N let σ [i] = si , the (i+1)-st
state of σ , and δ(σ, i) = ti , the time spent in si . For t ∈ R≥0 and i the smallest index with
t <

∑i

j=0 tj let σ@t = σ [i], the state in σ at time t . For t = ∑k−1
j=0 tj + t ′ with t ′ ≤ tk we

define y(σ, t) = ∑k−1
j=0 tj · ρ(sj) + t ′ · ρ(sk), the cumulative reward along σ up to time t .

Similarly, a finite path σ is a sequence s0, t0, s1, t1, s2, t2, . . . , tl−1, sl where sl is absorbing,
and R(si, si+1) > 0 for all i < l. For finite σ , σ [i] and δ(σ, i) are only defined for i ≤ l; they
are defined as above for i < l, and δ(σ, l) = ∞. For t >

∑l−1
j=0 tj we let σ@t = sl and let

the cumulative reward y(σ, t) = ∑l−1
j=0 tj · ρ(sj) + (t − ∑l−1

j=0 tj) · ρ(sl); for the other cases,

σ@t and y(σ, t) are defined as above. Let PathM (s) denote the set of infinite paths starting
in s. A Borel space (with probability measure Pr) can be defined over the set Path(s) in a
straightforward way; for details see [7, 10].

Example 1 As a running example we consider a fault-tolerant multiprocessor system in-
spired by [62]. The system consists of three processors, three memories, and a single inter-
connection network that allows a processor to access any memory. We model this system as
an MRM, depicted in Fig. 1, where state (i, j,1) models that i processors and j memories
(1 ≤ i, j < 4) are operational and are connected by a single network. Initially all components
are functioning correctly, i.e., the initial state is (3,3,1).

The minimal operational configuration of the system is (1,1,1). The failure rate of a
processor is λ, of a memory μ, and of the network γ failures per hour (fph). It is assumed
that a single repair unit is present to repair all types of components. The expected repair time
of a processor is 1/ν and of a memory 1/η hours. In case all memories, all processors, or
the network has failed the system moves to state F. After a repair in state F, we assume the
system to restart in state (3,3,1) with rate δ.

Atomic propositions can be used to record the number of operational components. The
atomic proposition 3mup is in the labelling of all states where 3 memory modules are op-
erational, that is, states (i,3,1) for 1 ≤ i < 4. Similarly, 3pup is valid in states (3, j,1),
1 ≤ j < 4. Atomic propositions 2mup, 1mup, 2pup, 1pup are defined along the same lines.
State F is only labelled with atomic proposition F.

The reward structure can be instantiated in different ways so as to specify a variety of per-
formability measures. The following reward structures are taken from [62]. The simplest re-

Fig. 1 Markov reward model for
a simple fault-tolerant
multiprocessor system

 Author's personal copy

6 Form Methods Syst Des (2010) 36: 1–36

ward structure (leading to an availability model) divides the states into operational and non-
operational states: ρ1(F) = 0 and ρ1(i, j, k) = 1. A reward structure in which varying levels
of performance of the system are represented is, e.g., based on the capacity of the system:
ρ2(F) = 0 and ρ2(i, j, k) = min{i, j}. The third reward structure considers processors con-
tending for the memories, by taking as reward for operational states the expected available
memory bandwidth: ρ3(F) = 0 and ρ3(i, j, k) = m · (1 − (1 − 1/m)l) where l = min{i, j}
and m = max{i, j}.

For an MRM two major types of state probabilities are normally considered: steady-state
probabilities where the system is considered on the long run, i.e., when an equilibrium has
been reached, and transient probabilities where the system is considered at a given time
instant t . Formally, the transient probability

π(s, s ′, t) = Pr{σ ∈ Path(s) | σ@t = s ′},

denotes the probability to be in state s ′ at time t given initial state s. We denote with π(s, t)

the vector of state probabilities (ranging over states s ′) at time t , when the starting state is s.
The transient probabilities are then computed from a system of linear differential equations:

π ′(s, t) = π(s, t) · Q, given π(s,0),

where Q is the generator defined by

Q(s, s ′) =
{

R(s, s ′), if s �= s ′,
−∑

z �=s R(s, z), if s = s ′.

The system of differential equations can be solved by standard numerical methods or by
specialised methods such as uniformisation [28, 29], which we briefly recall below.

Let λ ≥ maxs{−Q(s, s) | s ∈ S} be a rate that is not smaller than the biggest absolute
value of the diagonal entries of Q. We define the stochastic matrix

U = I + 1

λ
Q,

that defines the so-called uniformised Markov chain which has a discrete time parameter n.
Its transient distribution after n steps is simply given by the nth power of U. Let p(s, s ′, n)

denote the probability to be in state s ′ at time step n when starting in state s. The uniformised
Markov chain can be used as a replacement of the original CTMC, if the exact number of
state changes in the time interval [0, t] is known. The probability to have exactly n state
changes in this interval in the uniformised Markov chain is given by

PP(λt, n) = e−λt (λt)n

n! ,

the so-called Poisson probabilities (which can be computed efficiently [25]). Using the
law of total probability, the transient probability to be in a state s ′ can be rewritten as the
weighted sum over the probability of being there after n steps, over all possible values of n:

π(s, s ′, t) =
∞∑

n=0

PP(λt, n) · p(s,0) · Un(·, s ′),

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 7

where the initial distribution vector p(s,0) has entry 1 for starting state s and 0 for all other
states. Un(·, s ′) denotes the column of Un for state s ′. To evaluate the infinite summation we
have to truncate at some N ∈ N and approximate π(s, t) by

π̃(s, t) =
N∑

n=0

PP(λt, n)p(s,0)Un.

The error introduced by this approximation for π(s, s ′, t) is

∞∑

n=N+1

PP(λt, n)p(s,0)Un(·, s ′)
︸ ︷︷ ︸

∈[0,1]

,

which is bounded by

ε =
∞∑

n=N+1

PP(λt, n) · 1 = 1 −
N∑

n=0

PP(λt, n),

because the sum of all Poisson probabilities is one. For a predefined maximum error ε the
number Nε of summands that has to be taken into account can be determined a priori.

Steady-state probabilities are defined as

π(s, s ′) = lim
t→∞π(s, s ′, t).

This limit always exists for finite CTMCs. In case the steady-state distribution does not
depend on the starting state s we often simply write π(s ′) instead of π(s, s ′). For S ′ ⊆ S,
π(s, S ′) = ∑

s′∈S′ π(s, s ′) denotes the steady-state probability for set S ′. Steady-state prob-
abilities are computed from a system of linear equations:

π(s) · Q = 0 with
∑

s′
π(s, s ′) = 1,

which can be solved by direct methods (such as Gaussian elimination) or iterative methods
(such as SOR or Gauss-Seidel) [64]. In case the CTMC is not strongly connected, an extra
graph analysis is needed; for details, see Sect. 5.

Consider now the expected instantaneous reward rate at time t for a state s ′, having
started in state s. For its computation we have to multiply the probability to be in s ′ at time
t with its reward rate ρ(s ′):

ρ(s, s ′, t) = π(s, s ′, t) · ρ(s ′).

A similar computation is necessary for the expected long-run reward rate:

ρ(s, s ′) = π(s, s ′) · ρ(s ′).

If we integrate over the expected instantaneous reward rate for a state s ′, we get its expected
accumulated reward at time t :

EY(s, s ′, t) =
∫ t

0
ρ(s, s ′, u)du.

 Author's personal copy

8 Form Methods Syst Des (2010) 36: 1–36

It can be computed by a uniformisation-based approach:

EY(s, s ′, t) =
∞∑

n=0

PP(λt, n)
t

n + 1

n∑

m=0

ρ(s ′) · p(s, s ′,m).

In order to compute this measure over an arbitrary time interval I , we can simply use the
difference

EY(s, s ′, I) = EY(s, s ′, sup(I)) − EY(s, s ′, inf(I)).

Methods for the computation of the distribution of the accumulated reward Y (t) will be
presented in Sect. 6.

Example 2 Let λ = 0.689 × 10−4, μ = 0.2241 × 10−3, γ = 0.2024 × 10−3 and ν = 2,
η = 1, δ = 0.5. The first reward structure ρ1 is suitable to compute the availability of the
multiprocessor system, having started in state (3,3,1). It is defined as

∑

s′∈S

π(s ′) · ρ1(s
′) = 0.9996.

The expected level of service at time t = 0.25 is

∑

s′∈S

π((3,3,1), s ′,0.25) · ρ2(s
′). = 2.9997

The expected cumulative available bandwidth at time t = 5 is a measure for the amount of
data processed:

∑

s′∈S

EY((3,3,1), s ′, t) = 10.5518

3 Continuous stochastic reward logic

This section presents the syntax and the semantics of the logical formalism, called contin-
uous stochastic reward logic (CSRL, for short) that we propose for specifying properties
of MRMs. Next to that, a fixed-point characterisation will be given for the main modal
operators in the logic. These characterisations serve as the basis for the model-checking al-
gorithms for CSRL (cf. Sect. 6), and provide a basis for, amongst others, a duality theorem
that basically expresses that accumulated reward bounds can be verified using techniques
for checking time-bounded reachability properties.

3.1 Syntax

CSRL is a branching-time temporal logic à la CTL [23] that allows to express properties
over states and paths in MRMs. It extends the logic CSL [5, 7] with tailored operators to
enable the expression of properties on instantaneous, accumulated, or long run rewards.
Whereas in CTL one can state properties such as “all paths only visit legal states and even-
tually end up in a goal state”, CSRL offers the possibility to specify in addition:

1. the likelihood with which certain behaviours occur,
2. the time frame in which certain events should happen,

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 9

3. the costs (or: rewards) that are allowed to be made.

The syntax definition for CSRL is now as follows.

Definition 3 Let p ∈ [0,1] a real number,
� ∈ {≤,<,>,≥} a binary comparison operator,
and I, J ⊆ R≥0 non-empty intervals (with rational bounds allowing intervals of the form
[r,∞)). The syntax of CSRL-formulas over the set of atomic propositions AP is defined
inductively as follows:

– tt is a state-formula,
– each atomic proposition a ∈ AP is a state-formula,
– if � and � are state-formulas, then so is � ∧ � ,
– if � is a state-formula, then so are ¬�, S
�p(�),EJ (�),E t

J (�) and C I
J (�),

– if ϕ is a path-formula, then P
�p(ϕ) is a state-formula,
– if � and � are state-formulas, then X I

J � and � U I
J � are path-formulas.

The sublogic of CSRL that does not contain E and C is referred to as CSRL−.

To be able to specify the likelihood of certain behaviours, the existential and universal
path quantification from CTL are replaced by a probabilistic operator, denoted P. This
operator has three parameters: a binary comparison operator such as ≤ or ≥, a probability
p ∈ [0,1], and a path formula. The formula P
�p(ϕ) asserts that the probability measure
of the paths satisfying ϕ meets the bound
� p. For the path formulas we will use the stan-
dard modalities X (next step) and U (until), augmented with time- and reward bounds as
explained below. The temporal modality ♦ (eventually) arises as a special instance of the
until operator U . For example, the state formula P≥0.3(♦F) denotes that the probability to
eventually reach the failure state F of the multi-processor system is at least 0.3. The speci-
fication of time and reward constraints is enabled by equipping the temporal path operators
next and until with two parameters: an interval I specifying when certain events should have
happened, and an interval J that constrains the accumulated reward.

Example 3 To illustrate these enriched temporal operators consider the following examples.
A path satisfies, e.g., the formula X I

J red if its first transition is made to a red state at
time point t ∈ I such that the earned cumulative reward r until time t (in the current state)
meets the bounds specified by J , i.e., r ∈ J . Thus, path s0 2.5 s1 4 . . . satisfies X I

J red for
I = [2,4] and J = [0,4] provided s1 is labelled with the proposition red and 2.5·ρ(s0) is at
most four. A path satisfies greenU I

J red if

(i) it ends up in a red state by visiting only green states before,
(ii) the red state is reached at time t ∈ I , and

(iii) the earned cumulative reward up to time t lies in J .

As an example formula for the multi-processor system consider:

P≥0.95(♦[60,60]
[0,2] tt)

It denotes that with probability at least 0.95 the cumulative reward (e.g., the expected ca-
pacity of the system for reward structure ρ2) at time instant 60 is at most two. Given that the
reward of a state indicates the number of jobs processed per time unit, the formula

P≥0.98(3mup U [0,30]
[7,∞) mdown)

 Author's personal copy

10 Form Methods Syst Des (2010) 36: 1–36

expresses that with probability at least 0.98 at least seven jobs have been processed (starting
from the initial state) before the first memory unit fails within 30 time units, where 3mup is
valid in states (i,3,1), 1 ≤ i < 4 and mdown is valid in states (i,2,1), 1 ≤ i < 4.

Additionally, the logic CSRL is equipped with dedicated operators to reason about
steady-state properties (this operator is denoted S), expected long-run and instantaneous
rewards (denoted E), and expected cumulative rewards (denoted C). As opposed to the
probabilistic operator P that has a path formula as argument, these operators have in com-
mon that they have a state formula as argument. Stated differently, all these operators assert
something about a set of states. For instance, the formula S
�p(�) asserts that the steady-
state probability for the set of �-states meets the bound
� p. For the multiprocessor system,
the formula S≥0.8(2pup) expresses that the steady-state probability to be in a state with two
operational processors is at least 0.8 where the atomic property 2pup holds in state (2, j,1),
1 ≤ j < 4. Some other example properties are: EJ (¬F) expresses that the expected reward
rate (e.g., the system’s capacity) for an operational system lies in J , E t

J (tt) expresses that
the expected instantaneous reward rate at time t is in J and, finally, C [0,t]

J (tt) expresses that
the expected cumulated reward up to time t lies in the interval J .

Boolean connectives such as ∨ and → are derived in the obvious way. As usual
♦� = ttU � (eventually �) and the always-operator � can be obtained by the duality of
always/eventually and lower/upper probability bounds, e.g.,

P≥p(��) = P≤1−p(♦¬�).

Thus, P≥p(��) asserts a lower probability bound p for the event “always �” which is
equivalent to the upper probability bound 1 − p for the event “not always �” (which agrees
with “eventually ¬�”). It is worth mentioning that special cases occur for the trivial time-
bound I = [0,∞) and the trivial reward-bound J = [0,∞):

X � = X [0,∞)

[0,∞) � and �U � = � U [0,∞)

[0,∞) �.

In the sequel, intervals of the form [0,∞) are often omitted from the modal operators. In
fact, as we will see below, the meaning of X and U in CSRL agrees with the traditional
semantics of these operators in CTL.

3.2 Semantics

The state-formulas are interpreted over the states of an MRM. Let M = (S,R,L,ρ) with
labels in AP. The meaning of CSRL state-formulas is defined by means of a satisfaction
relation, denoted by |=, between the states s of an MRM M and a CSRL state-formula �.
The pair (s,�) belongs to the relation |=, denoted by s |= �, if and only if � is valid in s.
Let Sat(�) = { s ∈ S | s |= � } be the satisfaction set of state formula �.

Definition 4 The relation |= for CSRL state-formulas is defined by:

s |= tt s |= S
�p(�) iff π(s,Sat(�))
� p

s |= a iff a ∈ L(s) s |= EJ (�) iff ρ(s,Sat(�)) ∈ J

s |= ¬� iff s �|= � s |= E t
J (�) iff ρ(s,Sat(�), t) ∈ J

s |= � ∧ � iff s |= � ∧ s |= � s |= C I
J (�) iff EY(s,Sat(�), I) ∈ J

s |= P
�p(ϕ) iff Prob(s, ϕ)
� p

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 11

A few clarifications are in order. The semantics for the propositional fragment of CSRL
(cf. the first four clauses in the above definition) is standard. The semantics of the proba-
bilistic path operator P is defined using the auxiliary function Prob(s, ϕ) which denotes
the probability measure of all paths starting in s and satisfying ϕ. Formally:

Prob(s, ϕ) = Pr
s
{σ ∈ Path(s) | σ |= ϕ }.

The relation σ |= ϕ for path σ is defined later in this section. In order for this definition to
be well-defined, the set {σ ∈ Path(s) | σ |= ϕ } needs to be measurable. This can be verified
using standard constructions over a sigma-algebra on the paths of the CTMC underlying the
MRM under consideration, see [10].

The formula S
�p(�) holds in state s if and only if the long-run probability to be
in a �-state when starting in state s meets the bound
� p. Recall that π(s,Sat(�)) =∑

s′|=� π(s, s ′) denotes the long-run probability to be in a �-state when the MRM starts
its execution in state s. For finite-state MRMs, this long-run probability is uniquely defined.

In order to understand the meaning of the formulas EJ (�) and E t
J (�), let us recall the

definition of reward measures at the end of Sect. 2. For state s, where s is viewed as the
starting state, time t and set S ′ ⊆ S of states, the expected instantaneous reward rate

ρ(s, S ′, t) =
∑

s′∈S′
ρ(s, s ′, t)

denotes the rate at which reward is earned in some state in S ′ at time t . The expected (or
long-run) reward rate is defined by:

ρ(s, S ′) =
∑

s′∈S′
ρ(s, s ′)

Using these notions, it is not difficult to see that formula EJ (�) holds in state s whenever
the long-run reward to be in a �-state (when starting in state s) lies in the interval J . The
semantics of E t

J (�) is defined in a similar way using the instantaneous reward rate in �-
states at time instant t . Finally, C I

J (�) holds in s if and only if the expected accumulated
reward in �-states over period I lies in the interval J .

It remains to provide the semantics of path-formulas. Let σ be the path s0, t0, s1, t1, s2,

t2 . . . where si is a state in the MRM and ti denotes the residence time of state si . The
semantics of path-formulas is defined as follows:

σ |= X I
J � iff σ [1] is defined and σ [1] |= � ∧ t0 ∈ I ∧ y(σ, t0) ∈ J

σ |= � U I
J � iff ∃t ∈ I.(σ@t |= � ∧ (∀t ′ ∈ [0, t).σ@t ′ |= �) ∧ y(σ, t) ∈ J).

Stated in words, the path σ = s0, t0, s1, t1, . . . satisfies the formula X I
J � whenever s1 sat-

isfies �, t0 lies in I , and the earned reward ρ(s0)·t0 ∈ J . Path σ fulfills � U I
J � whenever

after t time units (with t ∈ I), a �-state is reached, and prior to that only �-states are visited.
Recall that σ@t denotes the current state in σ at time instant t , and that y(σ, t) denotes the
accumulated reward along the prefix of σ up to time t . The intuition behind y(σ, t) depends
on the formula under consideration and the interpretation of the rewards in the MRM M
under consideration. For instance, for ϕ = ♦good and path σ that satisfies ϕ, the cumulative
reward y(σ, t) can be interpreted as the cost to reach a good state within t time units. For
ϕ = ♦bad, it may be interpreted as the gain earned before reaching a bad state within t time
units.

 Author's personal copy

12 Form Methods Syst Des (2010) 36: 1–36

3.3 Specifying performability measures

Given the logical framework of CSRL, the question arises which performability measures
can be expressed. Let us, first and foremost, remark that using the logic, one expresses con-
straints on the measures-of-interest rather than the measures themselves. This is due to the
boolean interpretation of the logic. For instance, we can express that the likelihood that
the accumulated reward in a time interval is below or beyond a threshold, but cannot state
the value of the cumulative reward. That is to say, CSRL provides ample means to express
performability guarantees for MRMs. At the same time, the model checking algorithms do
compute the value of the measure (or at least a numerical approximation of it) before evalu-
ating it against the given constraint. CSRL allows for expressing guarantees over almost all
commonly known performability measures; our point of reference is the list of performabil-
ity measures as presented in the seminal papers [51, 62]. These measures have been widely
adopted by the dependability community.

For the sake of conciseness, we write “= t” for I = [t, t] and “≤ t” for intervals of the
form [0, t]. Similar conventions are adopted for reward intervals. Table 1 lists the performa-
bility measures of [62] together with a specification in CSRL that asserts a guarantee on this
measure. Most measures refer to the multi-processor system introduced before. The second
column describes the constraint on performability measures while referring to the random
variables X(t) and Y (t) that describes the state of the MRM at time t and the accumulated
reward at time t respectively. The random variable W(t) describes the time-averaged accu-
mulated reward and is defined as Y (t)/t . The random variable A(t) indicates the availability
of the system and equals one if the system is operational at time t , and zero otherwise. In
this case, reward one is assigned to the operational states, while the non-operational state
are equipped with reward zero. The second column provides the formal characterization of
the performability measure at hand, and is identical (modulo adaptations to our notations)
to the one in [62].

We clarify the main cases in this table. For state s, the atomic proposition ats uniquely
characterizes state s, i.e, it only holds in state s and not in any other state. Formulas (a)

Table 1 Important performability base cases and their specification in CSRL

Performability measure CSRL formula

(a) π(s, t)
� p Transient probability of being in state s at time t P
�p(♦=t ats)

(b) π(s)
� p Steady-state probability of being in state s S
�p(ats)

(c) A(t)
� p Transient availability P
�p(♦=t ¬F)

(d) limt→∞ A(t)
� p Steady-state availability S
�p(¬F)

(e) Pr{ρ(X(t ′)) ≥ 1,∀t ′ ≥ t} Reliability P
�p(�≥t ¬F)

(f) E[ρ(X(t))] ≤ r Expected reward rate at time t E t≤r (tt)

(g) E[Y (t)] ≤ r Expected cumulative reward until time t C≤t≤r (tt)

(h) Pr{Y (t) ≤ r}
� p Distribution of cumulative reward until t P
�p(♦=t≤r tt)

(i) Pr{Y (∞) ≤ r}
� p Distribution of cumulative reward P
�p(¬F U [0,r] F)

(j) Pr{A(t) ≤ r}
� p Interval availability (see case (m))

(k) E[W(t)] ≤ r Expected time-average cum. reward until t C≤t≤r·t (tt)
(l) E[W(∞)] ≤ r Expected time-average cum. reward C≤r (¬F)

(m) Pr{W(t) ≤ r}
� p Dist. of time-average cum. reward up to t P
�p(♦=t≤r·t tt)

(n) Pr{W(∞) ≤ r} Distribution of time-average cum. reward –

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 13

and (b) are guarantees on standard transient-state and steady-state probabilities. Transient
availability at a certain time instant t (measure (c)) expresses (a bound on) the probability to
be not in a failed state at time t . Here, it is assumed that failed states are indicated by F and
operational states by ¬F . Although failed and operational states are usually modelled by
binary rewards (e.g., zero and one for the modes failed and operational, respectively [62]),
we use the proposition F . Using the S -operator this can also be generalised towards infinite
time-horizons, cf. measure (d). The reliability measure (e) expresses that the system is up,
i.e., ρ(X(t)) ≥ 1 from a certain time instant t on. This time constraint is represented by the
time bound of the always (i.e., �) operator, while being reliable is (as before) indicated by
¬F . Note that the measures (a) through (e) can also be expressed in CSL [10].

Measures (f) and (g) are the straightforward application of the E and C operators, re-
spectively. As there is no need to select a certain set of states, the state sub-formula simply
equals true. Measure (h) expresses the simultaneous distribution of the accumulated reward
against time, i.e., it expresses the probability for the reward accumulated at time t to be at
most r . This measure is also known as Meyer’s performability distribution [48]. As there is
no restriction imposed on the type of state reached at time t , the sub-formula true is used. For
an infinite time-horizon, one typically considers the accumulated reward until failure. This
is expressed by measure (i). Measure (j) is a special case of measure (m) in which only failed
and operational states are distinguished (typically by binary rewards). The CSRL-formula
for measure (m) can thus also be applied to (j) without modification. The CSRL-formula for
guarantees on the measures (k) and (m) follow directly from the fact that W(t) = Y (t)/t

(for finite t). Note that the reward bound is r·t , as an accumulated reward r·t over the inter-
val [0, t] yields a time-averaged accumulated reward r . For the long-run case, measures (g)
and (l) coincide (see [62]). Measure (n) cannot be specified in CSRL, as there is no means
to refer to the time-averaged cumulative reward on the long run.

To conclude, we emphasise that CSRL allows to specify much more complex performa-
bility measures than those listed in Table 1. For instance, for cases (f), (g) and (h) one may
select a subset of states, e.g., those in which the system is guaranteed to offer a certain
quality-of-service, that are of interest at time instant t (rather than considering any state).
Moreover, due to the general syntax of the logic, nesting of measures is naturally supported.
This allows to specify a non-trivial property like the transient probability at time t to be in a
state s, say, that guarantees that almost surely the accumulated reward (when starting in s)
within a given deadline d is at most r , exceeds 0.99, is given by:

P>0.99(♦=tP=1(♦≤d
≤r tt)).

Example 4 The formal specification of some typical performability measures for our run-
ning example are presented in the last column of Table 1. Notice that the traditional per-
formability measures are specific instances of our operators. For the availability measures
there are two alternatives, since in this case rewards are either zero or one, which can be
‘encoded’ as the validity of an atomic proposition. Other, more sophisticated measures are,
for instance:

– E t
≥12(2pup ∨ 3pup) expresses that the expected number of jobs that are processed by the

system at time t is at least 12 when at least two processors are operational.
– E≤5(P≥0.3(♦≤10F)) denotes that the expected number of jobs that are processed in states

from which a complete breakdown can happen within 10 time units with at least 0.3
probability is at most 5.

 Author's personal copy

14 Form Methods Syst Des (2010) 36: 1–36

4 Duality of time and reward constraints

The main aim of this section is to show—in the spirit of the observations in the late nineteen
seventies by Beaudry [12]—the duality of the elapse of time and rewards. The proof of this
fact heavily relies on a least fixed-point characterization of the until-operator. In fact, this
characterization of the semantics of the probability operator will serve as basis for the model-
checking algorithms presented in Sect. 5. The results in this section apply to a significant
fragment CSRL− of CSRL that is obtained by excluding the operators E and C . That is,
these operators are assumed not to occur in the formula at hand.

The probability Prob(s, ϕ) for the set of paths that fulfill a CSRL path-formula ϕ and
that start in s can be characterised as follows. We first observe that it suffices to consider
time bounds specified by closed intervals since:

Prob(s,� U I
J �) = Prob(s,� U cl(I)

J �)

where cl(I) denotes the closure of I . A similar observation applies to the next operator. This
follows from the fact that the probability measure of a basic cylinder set does not change
when some of the intervals are replaced by their closure. In the sequel, we assume that
interval I is closed.

Let K = {x ∈ I | ρ(s) · x ∈ J } for closed intervals I and J . (Strictly speaking, K is a
function depending on s. As s is clear from the context, we omit it and write K instead of
K(s).) Stated in words, K is the subset of I such that the cumulative reward (in s) lies in J .
The probability of leaving state s at some time point x within the interval I such that the
earned reward ρ(s) · x lies in J can be expressed by:

PI
J (s) =

∫

K

E(s) · e−E(s)·x dx (1)

For instance, P[0,t]
[0,∞)(s) = 1−e−E(s)·t , the probability to leave state s within t time units where

the reward earned is irrelevant. If ρ(s) = 2, I = [1,3] and J = [9,11] then K = ∅ and
PI

J (s) = 0.
Let I � x denote { t−x | t ∈ I, t ≥ x }.

Theorem 1 For CSRL state-formulas � and � , the probabilities Prob(s,� U I
J �) are

yielded by the least solution in the interval [0,1] of the following integral equation system:1

(i) if s |= ¬� ∧ � , inf I = 0 and infJ = 0 then Prob(s,� U I
J �) = 1,

(ii) if s |= � ∧ ¬� then

Prob(s,� U I
J �) =

∫ supK

0

∑

s′∈S

P(s, s ′, x) · Prob(s ′,� U I�x
J�ρ(s)·x �)dx, (2)

(iii) if s |= � ∧ � then

Prob(s,� U I
J �) = e−E(s)·infK +

∫ infK

0

∑

s′∈S

P(s, s ′, x) · Prob(s ′,� U I�x
J�ρ(s)·x �)dx,

1The above equation system can be rewritten as a fixed point equation f = �(f) for a monotonic higher-

order operator � : (S × Int2 → [0,1]) → (S × Int2 → [0,1]) where Int denotes the set of all intervals in
R≥0. The above formulation “the probabilities Prob(s,� U I

J �) yielded by the least solution” means that

the function (s, I, J) �→ Prob(s,� U I
J

�) is the least fixed point of �.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 15

(iv) Prob(s,� U I
J �) = 0 in all remaining cases.

Here, P(s, s ′, x) = R(s, s ′) · e−E(s)·x denotes the probability of moving from state s to s ′
within x time units. The proof of this fact goes along the lines of [10] and is omitted here.

The above characterisation is justified as follows. If s satisfies � and ¬� , the probability
of reaching a �-state from s within the interval I by earning a reward r ∈ J equals the
probability of reaching some direct successor s ′ of s within x time units (x ≤ sup I and
ρ(s) · x ≤ supJ , that is, x ≤ supK), multiplied by the probability of reaching a �-state
from s ′ in the remaining time interval I � x while earning a reward of r − ρ(s) · x. If s

satisfies � ∧ � , the path-formula ϕ is satisfied if no transition outgoing from s is taken for
at least infK time units (first summand).2 Alternatively, state s should be left before infK
in which case the probability is defined in a similar way as for the case s |= �∧¬� (second
summand). Note that infK = 0 is possible (if e.g., infJ = inf I = 0). In this case, s |= �∧�

yields that any path starting in s satisfies � U I
J � and Prob(s,� U I

J �) = 1.
If the reward constraint is trivial, i.e., J = [0,∞), and I is of the form [0, t] for t ∈

R≥0, then the characterisation for U I reduces to the least solution of the following set of
equations: Prob(s,� U [0,t] �) equals 1 if s |= � , equals

∫ t

0

∑

s′∈S

P(s, s ′, x) · Prob(s ′,� U [0,t−x] �)dx (3)

if s |= � ∧ ¬� , and 0 otherwise. This coincides with the characterisation for time-bounded
until in [10]. For the special case I = J = [0,∞), we obtain K = [0,∞) and hence the
characterisation for U reduces to solving a system of linear equations as for PCTL [31].

For CSRL, time and reward constraints are dual in the sense that they can be swapped
when at the same time the MRM is “rescaled”. This is inspired by an observation, originally
made by Beaudry [12], that the progress of time can be regarded as the earning of reward
and vice versa. First we obtain a duality result for MRMs where all states have a positive
reward. After that we consider the (restricted) applicability of the duality result to MRMs
with zero rewards. More precisely, given an MRM M = (S,R,L,ρ) with ρ(s) > 0 for all
states s ∈ S, we consider the dual MRM M ∗ that results from M by adapting the exit rates
and reward structure such that the reward units in M correspond to the time units in state s

in M ∗, and vice versa. Formally, M ∗ = (S,R∗,L,ρ∗) where

R∗(s, s ′) = R(s, s ′)
ρ(s)

, and ρ∗(s) = 1

ρ(s)
.

Intuitively, the transformation of M into M ∗ stretches the residence time in state s with a
factor that is proportional to the reciprocal of its reward ρ(s) if 0 < ρ(s) < 1. The reward
structure is changed similarly. Thus, all states s for which ρ(s) < 1 are accelerated whereas
all states s with ρ(s) > 1 are slowed down. One might interpret the residence of t time units
in M ∗ as the earning of t reward in state s in M , or (conversely) an earning of a reward r

in state s in M corresponds to a residence of r time units in M ∗.
The exit rates in M ∗ are given by E∗(s) = E(s)/ρ(s). Thus, the mean sojourn time in

state s of M ∗ is 1/E∗(s) = ρ(s)/E(s). Per time unit spent in state s of M ∗, the reward
ρ∗(s) = 1/ρ(s) is earned, which gives the average reward 1/E(s) for visiting state s once
in M ∗ and agrees with the average time spent in state s of M .

2By convention, inf ∅ = ∞.

 Author's personal copy

16 Form Methods Syst Des (2010) 36: 1–36

Moreover, it follows that (M ∗)∗ = M and that M and M ∗ have the same time-abstract
transition probabilities, i.e.,

P∗(s, s ′) = R∗(s, s ′)
E∗(s)

= R(s, s ′)/ρ(s)

E(s)/ρ(s)
= R(s, s ′)

E(s)
= P(s, s ′).

In particular, M and M ∗ have the same steady state distribution. That is, we have:

Lemma 1 πM∗
(s, s ′) = πM (s, s ′) for all s, s ′ ∈ S.

We now state the duality of time and reward constraints for M and M ∗ by means of
CSRL−. In the following lemma we consider path formulas X I

J a and a1 U I
J a2 where a,

a1 and a2 are arbitrary atomic propositions, in particular, they can stand for any set of states.
Note that this is not a restriction, since formulas are verified by a bottom-up computation of
the parse tree of the formula at hand, and thus it may safely be assumed that the validity of
sub-formulas is known (and represented by fresh atomic propositions).

Lemma 2 For MRM M = (S,R,L,ρ) with ρ(s) > 0 for all s ∈ S and a, a1, a2 atomic
propositions.

(a) ProbM (s,X I
J a) = ProbM∗

(s,X J
I a)

(b) ProbM (s, a1 U I
J a2) = ProbM∗

(s, a1 U J
I a2).

Proof We only explain the argument for the until-operator for the time interval I = [0, t]
and the reward interval J = [0, r] with r, t ∈ R≥0. The general case in part (b) can be justified
with similar arguments. Part (a) follows by analogue, though simpler arguments.

Let MRM M = (S,R,L,ρ) with ρ(s) > 0 for all s ∈ S. Let s ∈ S be such that s |=
a1 ∧ ¬a2. From Theorem 1, we have that: ProbM∗

(s, a1 U J
I a2) equals:

∫

K∗

∑

s′∈S

P∗(s, s ′, x) · ProbM∗
(s ′, a1 U J�x

I�ρ∗(s)·x a2) dx

for K∗ = {x ≤ t |ρ∗(s) · x ≤ r }, i.e., K∗ = [0,min(t, r
ρ∗(s)

)]. Applying the definition of
P∗(s, s ′, x) yields:

∫

K∗

∑

s′∈S

R∗(s, s ′)·e−E∗(s)·x · ProbM∗
(s ′, a1 U J�x

I�ρ∗(s)·x a2) dx

By the definition of M ∗ this equals:
∫

K∗

∑

s′∈S

R(s, s ′)
ρ(s)

· e− E(s)
ρ(s)

·x · ProbM∗
(s ′, a1 U J�x

I� x
ρ(s)

a2) dx.

By substitution y = x
ρ(s)

this integral reduces to:

∫

K

∑

s′∈S

R(s, s ′) · e−E(s)·y · ProbM∗
(s ′, a1 U J�ρ(s)·y

I�y a2) dy

where K = [0,min(t
ρ(s)

, r)]. Thus, the values ProbM∗
(s, a1 U J

I a2) yield a solution of the

equation system (i)–(iv) (in Theorem 1) for ProbM (s, a1 U I
J a2). In fact, one can show

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 17

that the values ProbM∗
(s, a1 U J

I a2) yield the least solution. The formal argument for this
latter observation uses the fact that M and M ∗ have the same underlying graph, and hence,
ProbM (s, a1 U I

J a2) = 0 iff ProbM∗
(s, a1 U J

I a2) = 0 iff there is no path starting in s

where a1U a2 holds. In fact, the equation system restricted to all other states s from which
at least one path σ with σ |= a1U a2 emanates has a unique solution.

We now have that the values ProbM∗
(s, a1 U J

I a2) and ProbM (s, a1 U I
J a2) are least

solutions of the same equation system, which yields that they agree. Hence, we obtain:

∫

K

∑

s′∈S

P(s, s ′, y) · ProbM (s ′, a1 U I�y

J�ρ(s)·y a2) dy

and this equals ProbM (s, a1 U I
J a2) for s |= a1 ∧ ¬a2. �

For CSRL− state formula � let �∗ be defined as � where for each subformula in �

of the form X I
J or U I

J the intervals I and J are swapped. This notion can be easily
defined by structural induction on � and its definition is omitted here. For instance, for
� = P≥0.9(¬F U [50,50]

[10,∞) F) we have �∗ = P≥0.9(¬F U [10,∞)

[50,50] F).

Theorem 2 For MRM M = (S,R,L,ρ) with ρ(s) > 0 for all s ∈ S and CSRL− state
formula �:

SatM (�) = SatM
∗
(�∗).

Proof By structural induction over �, using Lemmas 1 and 2. �

If M contains states equipped with a zero reward, this duality result does not hold, as the
reverse of earning a zero reward in M when considering � should correspond to a residence
of 0 time units in M ∗ for �∗, which—as the advance of time in a state cannot be halted—
is in general not possible. However, the result of Theorem 2 applies to some restricted,
though still practical, cases, viz. if (i) for each sub-formula of � of the form X I

J �′ we
have J = [0,∞), and (ii) for each sub-formula of the form �1 U I

J �2 we either have J =
[0,∞) or SatM (�1) ⊆ { s ∈ S | ρ(s) > 0 }, i.e., all �1-states are positively rewarded. The
intuition is that either the reward constraint (i.e., time constraint) is trivial in � (in �∗),
or that zero-rewarded states are not involved in checking the reward constraint. Here, we
define M ∗ by setting R′(s, s ′) = R(s, s ′) and ρ ′(s) = 0 in case ρ(s) = 0 and as defined
above otherwise. For instance, Theorem 2 applies to the property P≥0.9(¬F U [50,50]

[10,∞) F) for
the multi-processor example, since all ¬F-states have a positive reward.

5 Model-checking fragments of CSRL

In this section we discuss the model checking problem for CSRL. Once we have formally
specified the (constraint on the) measure-of-interest in CSRL by a formula �, and have
obtained our model, i.e., MRM M , of the system under consideration, the crucial step is
the automated validation of whether � holds for a given state s in M . To mechanise the
computation of answers to such questions, we adapt and extend known algorithms.

The basic procedure is as for model checking CTL: In order to check whether a model
satisfies a property �, the set Sat(�) of states that satisfy � is computed recursively, after
which it is checked whether the given state s belongs to this set. For atomic propositions

 Author's personal copy

18 Form Methods Syst Des (2010) 36: 1–36

this set is directly obtained from the above mentioned labelling of the states; Sat(� ∧ �) is
obtained by computing Sat(�) and Sat(�), and then intersecting these sets; Sat(¬�) is ob-
tained by taking the complement of the entire state space w.r.t.. Sat(�). For the probabilistic
operators, we start with a discussion of the state formulas and how their model checking
is performed. The prime emphasis of our discussion is on time- and reward-bounded mea-
sures, and how the results in Sect. 4 can be used for efficient model checking of fragments of
the logic. For the sake of completeness, we also shortly describe some of the algorithm that
overlap with those for CSL [10]. Finally, the problem of model checking time- and reward
bounded formulas in their full generality is discussed, to motivate numerical algorithms to
be presented in Sect. 6.

5.1 State formulas

Steady-state probability This procedure goes exactly along the lines of [10]. We first re-
cursively compute the set Sat(�). We then use that

s ∈ Sat(S
�p(�)) iff π(s,Sat(�))
� p.

Thus, checking whether state s satisfies S
�p(�), a standard steady-state analysis has to be
carried out, i.e., a system of linear equations has to be solved.

In case the model M is not strongly-connected, the approach is to determine the so-
called bottom strongly-connected components (BSCCs) of M , i.e., the set of strongly-
connected components that cannot be left once there are reached. Then, for each BSCC
(which is an ergodic CTMC) the steady-state probability of a �-state (determined in the
standard way) and the probability to reach any BSCC B from state s is determined. To
check whether state s satisfies S
�p(�) it then suffices to verify

∑

B

(
Prob(s,♦B) ·

∑

s′∈B∩Sat(�)

πB(s ′)
)

� p,

where πB(s ′) denotes the steady-state probability of s ′ in BSCC B , and Prob(s,♦B) is the
probability to reach BSCC B from state s. We will discuss below how these reachability
probabilities are computed.

Expected reward rate The computational procedure just explained allows us to compute
π(s, s ′) for any s ′. According to the semantics of EJ (�), we need an additional matrix-
vector product

ρ(s,Sat(�)) =
∑

s′∈Sat(�)

π(s, s ′) · ρ(s ′)

to compute the expected long-run reward rate, and then decide whether the result lies in J .
For expected instantaneous reward rates, i.e., formula E t

J (�), we obtain in a similar way:

ρ(s,Sat(�), t) =
∑

s′∈Sat(�)

π(s, s ′, t) · ρ(s ′)

where π(s, s ′, t) is the transient state probability to be in state s ′ at time t if starting in state
s at time 0.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 19

Expected accumulated reward For formulas of the form C I
J (�), the expected accumulated

reward EY(s,Sat(�), I) is computed (see Sect. 2) for a starting state s. If EY(s,Sat(�), I)

lies in J , state s satisfies the formula.

5.2 Probability operator

The basic recipe for this operator is as for the logic CSL [10]. In order to understand how
the model checking of path formulas is performed on the basis of the probability operator,
we recall its semantics:

s ∈ Sat(P
�p(ϕ)) iff Prob(s, ϕ)
� p.

Thus we need to provide algorithmic procedures for computing Prob(s, ϕ), where ϕ may be
either of the form X I

J � or � U I
J � . The latter case will take most of our attention.

Next-state operator For the timed- and reward-bounded next-operator, we first compute
Sat(�) recursively. Then, the computation uses (1) given in Sect. 4

PI
J (s) =

∫

K

E(s) · e−E(s)·x dx,

where K = {x ∈ I | ρ(s) · x ∈ J }. The integral is easily solved directly. Now:

Prob(s,X I
J �) = PI

J (s) · P(s,Sat(�)).

P(s,Sat(�)) is the time-abstract probability to reach a �-state from s within one transition.
For the case I = J = [0,∞) this reduces to Prob(s,X �) = P(s,Sat(�)) as for PCTL
[31].

Time- and reward-unbounded until We first compute the sets Sat(�) and Sat(�) re-
cursively. The computational procedure for the until operator is based on the fixpoint-
characterisation (2) in Sect. 4. For the time- and reward-unbounded until-operator (i.e.,
I = J = [0,∞)) equation (2) reduces to

∑

s′∈S

P(s, s ′) · Prob(s ′,�U �).

This gives rise to a system of linear equation with size |S|. Thus, for the standard until-
operator, we can check whether a state satisfies P
�p(�U �) by first computing recursively
the sets Sat(�) and Sat(�) followed by solving a linear system of equations (which is
usually done iteratively) [31].

The size of the equation system can be reduced by transforming the model under con-
sideration, based on two observations. First, we observe that once a �-state in M has been
reached (along a �-path), we may conclude that �U � holds, regardless of which states
will be visited after having reached � . Thus, as a first transformation we make all �-states
absorbing. Secondly, we observe that �U � is violated once a state has been reached that
neither satisfies � nor � . Again, this is regardless of the states that are visited after having
reached ¬(� ∨ �). Thus, as a second transformation, all the ¬(� ∨ �)-states are made
absorbing. It then suffices to compute Prob(s,♦�) on the resulting (smaller) model M ′
where, in addition, unreachable states are omitted.

 Author's personal copy

20 Form Methods Syst Des (2010) 36: 1–36

Time-bounded and reward-unbounded until This case is handled using CSL model check-
ing [10]. Again, we assume the sets Sat(�) and Sat(�) to be computed already. Let us first
consider the case I = [0, t]; the general case is a bit more involved, as we shall explain
below. We solve the integral equation system arising from (2) numerically, by reducing the
problem of computing Prob(s,� U ≤t �) to a transient analysis problem. As mentioned
above, uniformisation is a well-known and efficient numerical techniques to compute the lat-
ter. The reduction is based on the observation that for a specific instance of the time-bounded
until-operator we know that it characterises a standard transient probability measure:

π(s,Sat(�), t) = Prob(s,♦=t�)

This can be generalised by transforming the model M under consideration into another
model M ′, very similar to the above case U , such that checking ϕ = � U ≤t � on M
amounts to checking ϕ′ = ♦=t� on M ′; a transient analysis of M ′ (for time t) then suffices.
The difference between M and M ′ is again twofold: all �-states are made absorbing in
M ′, and all the ¬(� ∨ �)-states are made absorbing. It then suffices to carry out a transient
analysis on the model CTMC M ′ for time t and collect the probability mass to be in a �-
state:

ProbM (s,� U ≤t �) = ProbM ′
(s,♦=t�).

By similar observations it turns out that also verifying the general U I -operator can be
reduced to two instances of (nested) transient analysis [10] (on different transformations of
M), as follows: If I = [t1, t2] for t1 > 0, we perform a first transient analysis at time t1, and
another transient analysis at time t2 − t1 where the latter analysis uses as initial distribution
the snapshot distribution at time t1 calculated before. This is possible because the Markov
property of the underlying CTMC ensures that at time t1 the relevant history of the CTMC
is given by the state distribution at time t1.

Reward-bounded and time-unbounded until Owing to the result of Theorem 2, model-
checking of � U J � in M can be reduced to model checking � U J � in the dual model
M ∗. Note that this duality requires a non-zero reward-structure, or more precisely, a reward
structure where �-states have non-zero rewards.

The general case Section 6 will discuss numerical algorithms to compute the measures
Prob(s,� U =t

≤r �) and Prob(s,� U ≤t
≤r �) for arbitrary reward structures. That is, we re-

linquish the above restriction to non-zero rewards, but we are unable to treat the general
case, where time or reward intervals have nontrivial lower bounds.

We briefly discuss the complications faced when treating this general case � U [t1,t2]
[r1,r2] � .

If J (or dually I) is [0,∞), we have explained above how to treat the case I = [t1, t2]
by performing two transient analyses at time points t1 and t2 − t1, in order to obtain the
required probability Prob(s,� U [t1,t2] �). This is possible because the Markov property of
the underlying CTMC ensures that at time t1 the relevant history of the CTMC is given by
the state distribution at time t1. This time point (as any other time point) is a regeneration
point for the CTMC, and thus the second transient analysis can take the result of the first as
initial distribution. This is different when looking at the reward accumulated in the MRM
at time t1. The accumulation of reward in the interval [0, t1] leads to a joint probability
distribution of having earned an accumulated reward r and being in state s ′ at time t1. It is
not clear how to effectively initialise the second computation (for [0, t2 − t1]) with this joint
distribution, which has a continuous support in the reward dimension.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 21

6 Numerical algorithms

In the previous section we described the model checking algorithms for most CSRL opera-
tors. Still to be discussed is the effective checking of formulas involving the until operator
with both time and reward bounding intervals, where I = [0, t] and J = [0, r]. In this section
we provide a comparative discussion of five different numerical algorithms.

6.1 General approach

First of all, we start with approaching a more specific problem, namely reward-bounded
instant-of-time reachability, which can be expressed by the modality ♦=t≤r . The following
theorem states that this problem, however, is general enough to also decide about general
time- and reward-bounded properties.

Theorem 3 Given CSRL state formulas � and � , and MRM M , let M ′ be the MRM
obtained from M by making all �-states and all ¬ (�∨�)-states absorbing and assigning
reward 0 to these absorbing states. Then,

ProbM (s,�U≤t
≤r �) = ProbM ′

(s,♦[t,t]
≤r �).

The intuitive justification for Theorem 3 goes along the same lines as for CSL [10]. Once
a path reaches a ¬ (� ∨ �)-state, there is no way in which it can satisfy a �U �-formula.
We can thus safely make these states absorbing, as the rest of the path is not of interest any-
more. Moreover, once a path reaches a �-state at time t ′ < t , while not having accumulated
more than r reward, it suffices to be trapped in that state until time t provided no reward
will be earned anymore, i.e., ρ(s) = 0 for �-state s. Note that we can amalgamate all states
satisfying � and all states satisfying ¬ (� ∨ �), thereby making the MRM considerably
smaller. This is, in fact, a form of property-specific lumping. A formal proof can be found
in [16].

Theorem 3 allows us to restrict our attention to the computation of reward-bounded
instant-of-time reachability when designing algorithms for model-checking time- and
reward-bounded until-formulas. The computational procedures in this section are based on
this observation. According to Theorem 3, the solution should proceed via the computation
of the reward-bounded instant-of-time reachability probability. We argue that the latter, in
turn, can be computed via the joint transient distribution of state and accumulated reward.
Recall that an MRM defines two stochastic processes:

– X(t), the state of the CTMC at time t , and
– Y (t), the accumulated reward until time t .

While in X(t) discrete jumps occur, Y (t) grows continuously with (changing) reward rate
ρ(X(t)). Using Theorem 3, we have:

ProbM (s,�U≤t
≤r �) = ProbM ′

(s,♦=t
≤r �) = Pr{Y (t)≤r,X(t)∈ Sat (�)|X(0) = s},

i.e., the probability of being in a �-state at time t , having accumulated reward at most r .

Theorem 4 Given CSRL state formula � , let MRM M ′ be defined as in Theorem 3. Then:

s |= P
�p(♦[t,t]
≤r �) iff Pr{Y (t) ≤ r,X(t) ∈ Sat(�) | X(0) = s}
� p.

 Author's personal copy

22 Form Methods Syst Des (2010) 36: 1–36

Theorem 4 allows us to decide the satisfaction of time- and reward-bounded until formu-
las via numerical recipes for calculating

Pr{Y (t) ≤ r,X(t) ∈ S ′ | X(0) = s}
for state s and set of goal states S ′ ⊆ S on the joint process (X(t), Y (t)). It is worth to
remark that similar processes (with mixed discrete-continuous state spaces) also emerge in
the analysis of non-Markovian stochastic Petri nets (when using the supplementary variable
approach, cf. [26]), Markov-regenerative stochastic Petri nets [14], and in fluid-stochastic
Petri nets [39]. However, we do not address the algorithms presented in these papers, since
they are either not directly applicable, or suffer from yet-unresolved numerical problems
(e.g., related to Laplace back-transformations). Instead, in what follows we present five
different numerical solutions. Since:

Pr{Y (t) ≤ r,X(t) ∈ S ′ | X(0) = s} =
∑

s′∈S′
Prs{Y (t) ≤ r,X(t) = s ′ | X(0) = s},

in the following we concentrate on a single goal state and abbreviate:

ϒ(s, s ′, t, r) = Pr{Y (t) ≤ r,X(t) = s ′ | X(0) = s}.

6.2 Hyperbolic partial differential equation systems

It has been shown [16, 55] that the joint distribution of state and accumulated reward is
described by a set of partial differential equations (PDEs):

∂ ϒ(s, s ′, t, y)

∂t
+ ρ(s) · ∂ ϒ(s, s ′, t, y)

∂y
=

∑

z∈S

Q(s, z) · ϒ(z, s ′, t, y) (4)

The integral equations

ϒ(s, s ′, t, y) = eQ(s,s)·tϒ(s, s ′,0, y−ρ(s)t)

+
∫ t

0

∑

z �=s

eQ(s,s)·x ·Q(s, z)·ϒ(z, s ′, t−x, y−ρ(s)x) dx

are the analytical solutions of the PDEs (4). They can be solved by a fixed point computa-
tion. One numerical algorithm (used by [16, 55]) for fixed point computations is “Picard’s
method”: it generates a sequence of approximations that converges to the correct solution.
The first approximation is given by:

ϒ(0)(s, s ′, t, y) = eQ(s,s)·tϒ(s, s ′,0, y−ρ(s)t).

Note that ϒ(s, s ′,0, y−ρ(s)t) is known as the initial value for the PDE. The subsequent
approximations are computed using the last approximation on the right hand side of the
integral equation. The iteration is terminated after a predefined number of steps or if the
change between two subsequent iterations drops below a given accuracy threshold. Each
iteration step involves the evaluation of integrals over the previous approximation of the joint
distribution. The integration can only be performed numerically. The multitude of numerical
integrations plus the approximate nature of the outer iteration make it impossible to indicate
an estimation of the resulting numerical error for this method.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 23

6.3 Occupation-time distributions

Sericola [61] derives a uniformisation-based solution for the system of PDEs that describes
the complementary joint distribution of state and accumulated reward

ϒ(s, s ′, t, r) = Pr
{
Y (t) > r,X(t) = s ′ | X(0) = s

}
.

Sericola conditions ϒ(s, s ′, t, r) on the number of uniformised steps n and on the number
k of steps that happen before a certain threshold yh (see below) and the reward bound r , as
follows:

ϒ(s, s ′, t, r) =
∞∑

n=0

PP(λt, n) ·
n∑

k=0

(
n

k

)
yk

h(1 − yh)
n−kC(h)(s, s ′, n, k),

where 0 = r0 < · · · < rK are the different reward rates in the MRM in increasing order,
yh = r−rh−1t

rht−rh−1t
, for y ∈ [rh−1t, rht), and

(
n

k

)
yk

h(1 − yh)
n−k is the probability that exactly k of

the n transitions have happened by time r−rh−1t

rh
. The value of C(h)(s, s ′, n, k), which is the

complementary distribution ϒ(s, s ′, t, r) conditioned on n and k, is computed recursively.
For details we refer to [16, 61]. As with ordinary uniformisation, it is not possible to eval-
uate the infinite sum but it has to be truncated. The error induced by this truncation can be
determined in the usual way (see Sect. 2).

6.4 Path exploration

In this section we present a second uniformisation-based method. It is based on the work of
Qureshi and Sanders [56, 57] and has been fully described for the CSRL model checking
context in [18]. The joint distribution ϒ(s, s ′, t, y) is not conditioned on the number of steps
taken until time t but on the (untimed) path σ taken in the uniformised MRM up to this time:

ϒ(s, s ′, t, y) =
∞∑

n=0

PP(λt, n) ·
∑

|σ |=n

first(σ)=s

last(σ)=s′

P (σ) · Pr {Y (t) ≤ r | σ } .

Following this expression, we consider the uniformised paths that start in s and end in s ′, cal-
culate the reward distribution conditioned on each of these paths and compute the weighted
sum of all conditioned probabilities. We are aware of three methods for the calculation of
this type of distribution. The approaches of Weisberg [66] and Matsunawa [46] use involved
computations and tend to be numerically unstable. The method of Diniz et al. [21] is, how-
ever, based on a very simple recursion scheme and is numerically stable.

The total number of paths that need to be considered is infinite. If we only consider
paths up to a given length N , the number of paths grows exponentially with N . Hence,
the consideration of all paths is practically infeasible. To alleviate this problem, paths with
negligible probability can be omitted. The probability P (σ) of a uniformised path is used to
weigh the conditional reward distribution. Qureshi and Sanders [57] introduce a threshold
a ∈ (0,1) for P (σ): only if P (σ) > a, the path σ is included in the summation. Additionally,
a maximum length N is fixed for the uniformised paths. The paths that are taken into account
can be found via a breadth- or depth-first search through the state space. The error induced
by not considering all paths can be bound during the computation and, hence, is known
a posteriori.

 Author's personal copy

24 Form Methods Syst Des (2010) 36: 1–36

6.5 Time and reward discretisation

Tijms and Veldman [65] proposed an approximate discretisation algorithm for the compu-
tation of ϒ(s, s ′, t, y) that uses the same step size � for both time and accumulated reward.
The algorithm is a generalisation of an earlier algorithm by Goyal and Tantawi [27] for
MRMs with only 0- and 1-rewards. It only allows for natural number reward rates, however,
rational rewards can be scaled to yield natural numbers. We use the rectangular approxima-
tion:

ϒ(s, s ′, t, r) ≈
r
�∑

j=1

υ(s, s ′, t, j · �)�,

where υ(s, s ′, t, j�) is an approximation of the density corresponding to the joint distribu-
tion. Other approximation schemes, e.g., trapezoid, are possible. The densities υ(s, s ′, t, r)
are not determined exactly but approximated by υ�(s, s ′, t, r) assuming that at most one
transition has occurred in a time interval of length �. The possibility that two or more tran-
sitions occur is neglected. This is a reasonable assumption if � is small. The initial values
for t = 0 are given by:

υ�(s, s ′,0, r) =
{

1
�

, if s = s ′ and r = 0,

0, otherwise.

By assuming that either no transition or exactly one transition has occurred in the time
interval [t, t + �), the quantity υ�(s, s ′, t + �,r) can be recursively calculated as follows:

υ�(s, s ′, t + �,r) = υ�(s, s ′, t, r−ρ(s ′)�) · (1 + Q(s ′, s ′)�)

+
∑

z �=s′
υ�(s, z, t, r − ρ(s ′)�) · Q(z, s ′)�.

This expression can be explained as follows. At time t + �, either the MRM was already in
state s ′ at time t and remained there for � time-units (the first summand), or it has moved
from a state z to state s ′ during that period (the second summand).

The recursion only works if (1 + Q(s, s)·�) and (Q(s, z)·�) are indeed probabilities,
that is, if � is small enough. This is the case if � ≤ − 1

Q(s,s)
for all s ∈ S. No error bound is

known for this method.

6.6 Markovian approximation

The last algorithm we present in this section is an approximation that is based on the tran-
sient solution of a derived CTMC, i.e., reward rates are no longer involved. It was first
published in [34]. The underlying idea appeared in [13] and is also used in [39] and [40]
(steady-state solution). The joint distribution can be rewritten by summing over evenly-sized
subintervals of length �, say, of the reward interval [0, r]:

ϒ(s, s ′, t, r) = Pr
{
Y (t) ∈ [0,�],X(t) = s ′ | X(0) = s

}

+
r
�

−1∑

j=1

Pr
{
Y (t) ∈ (j�, (j + 1)�],X(t) = s ′ | X(0) = s

}
.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 25

We want to approximate the terms in such a way that the computation is done for a pure
CTMC C ∞ (without rewards). The state space of C ∞ is (S × N), that is, the accumulated
reward is replaced by a discrete component ranging over the natural numbers. The probabil-
ity of being in state (s, j) in C ∞ yields the desired approximation:

PrM {Y (t) ∈ (j�, (j + 1)�],X(t) = s ′ | X(0) = s} ≈ πC∞
((s,0), (s ′, j), t).

The rate matrix R∞ must contain transitions from one reward level j� to the next reward
level (j + 1)�. The rate at which reward is accumulated in a state s in the original MRM
is ρ(s). The natural choice for the rate of accumulating � reward, that is, reaching the next
reward level, is ρ(s)

�
. Transitions between states at the same reward levels are transferred

from the original MRM. We thus obtain

R∞((s, i), (s ′, j)) =

⎧
⎪⎨

⎪⎩

R(s, s ′), if i = j,

ρ(s)

�
, if s = s ′ and j = i + 1,

0, otherwise.

The rate matrix R∞ has a block structure consisting of the original rate matrix R and the
matrix D/�, where D is the diagonal matrix arising from the reward rates ρ(s).

R∞ =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

R D/� 0 · · · · · ·
0 R D/� 0 · · ·
0 0 R D/� · · ·
0 0 0 R · · ·
0 0 0 0 · · ·
· · · · · · · · · · · · · · ·

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

This infinite CTMC is a quasi-birth process (a subclass of quasi-birth-death processes [52]).
Transitions are only possible within a level (matrix R) or to the next higher level (matrix
D/�). By letting � → 0, the CTMC model crossfades into the original MRM. For reason-
ably small � it should give us a decent approximation.

The transient probabilities πC∞
((s,0), (s ′, j), t) needed for the approximation can effi-

ciently be computed using uniformisation even though the CTMC C ∞ has an infinite state
space [58, 59]. The error introduced by this approximation is unknown. Of course, the ap-
proximation will get more accurate for smaller �. The accuracy is also influenced by the
error bound used for computing the transient probabilities using uniformisation.

6.7 Complexity considerations

Table 2 gives an overview of the space and time complexity of the different algorithms. We
omit the path exploration because its theoretical complexity is exponential in the number
of transitions allowed in the paths. We state the complexity for computing ϒ(s, s ′, t, r) for
all s ∈ S where s ′ is a single goal state. For Picard’s method, N is the number of iterations
needed for the solution of the fix point equation, and � is the step size for numerical in-
tegration. As one can easily see, all algorithms have a space complexity that is linear and
a time complexity that is quadratic in the number of states. Note, that the uniformisation
constant λ for the occupation time distribution plays a similar role than the step size � for
the discretisation algorithm: it determines the number of transitions considered in a given
time interval.

 Author's personal copy

26 Form Methods Syst Des (2010) 36: 1–36

Table 2 Space and time complexity of the numerical algorithms for time- and reward-bounded until. Here t

is the time bound, r the reward bound, S the set of states, K the number of distinct rewards in the MRM, λ

its uniformisation rate, N the number of iterations in Picard’s method, and � is the step size

Space Time

Hyperbolic PDEs O(|S| · t · r · �−2) O(|S|2 · N · t2 · r · �−3)

Occupation time O(|S| · λt · K) O(|S|2 · λ2 · t2)

Discretisation O(|S| · r · �−1) O(|S|2 · t · r · �−2)

Markovian approximation O(|S| · r · �−1) O(|S|2 · t · r · �−2)

Based on numerical results [17], we recommend the occupation time algorithm when-
ever the model is small (a few hundreds of states). It is the only algorithm for which an
error bound can be determined a priori. For larger models, the Markovian approximation
seems to be the only applicable algorithm. For a larger model with integer reward rates, the
discretisation algorithm could also be employed. The results of both algorithms have to be
handled with care because no error bound is provided. The performance of the path explo-
ration algorithm depends heavily on the model. For models where the probability mass is
concentrated on a few paths only, it is competitive. Picard’s method has only been studied
for completeness, it is inferior to the other algorithms in both accuracy and execution time.

7 Performability evaluation of a fault-tolerant workstation cluster

We illustrate the power of CSRL model checking by means of a case study. We present
the system description and an informal description of the measures of interest in Sect. 7.1,
after which we specify the system model formally in Sect. 7.2. In Sect. 7.3 we introduce
CSRL specifications of the measures-of-interest, while in Sect. 7.4 we describe standard
performability measures. Section 7.5 reports on the actual measures computed and on the
efficiencies of the different numerical methods presented in the previous section.

7.1 System description

We consider a fault-tolerant cluster of workstations (Fig. 2), inspired by [33]. Two sub-
clusters are connected via a backbone connection. The left and the right sub-clusters consist
of N1 and N2 workstations, respectively, connected in a star topology with a central switch
that provides the interface to the backbone.

Each of the components of the system (workstations, switches, and backbone) can break
down. There is single repair unit (not shown in Fig. 2) that takes care of repairing failed
components. Each of the workstations of the left sub-cluster has a computing power of f1

floating point operations per second (FLOPS), each of the computers on the right sub-cluster
has a computing power of f2 FLOPS. The overall computing power of the workstation clus-
ter results from the availability of backbone, switches and workstations. If the backbone,
both switches, or all workstations have failed, the cluster is not able to perform any com-
putation. If the backbone and at least one of the switches are up, the number of available
floating point operations per second is given by the accumulated FLOPS of all reachable
workstations.

For a given parallel computing task, it might be necessary to have a minimum number
k of workstations available during the complete computation, independent of the provided

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 27

Fig. 2 A fault-tolerant cluster of
workstations

FLOPS. We can define a minimum service level Available4 which should be provided by the
workstation cluster. The access time to the workstation cluster might be restricted, so we are
interested in the continuous provision of the required service level within the assigned time
slot. Finally, a task can be characterised by the number r of floating point operations needed
for its computation. The workstation cluster should provide the necessary level of service
until the task has been completed.

7.2 Stochastic Petri net model

In order to assess the extent to which these constraints are met during operation, we develop
an MRM of the system, and model check different CSRL requirements. The CTMC part of
the MRM is derived in the standard way [1] from a generalised stochastic Petri net repre-
senting the stochastic evolution of failures and repairs. The GSPN structure is depicted in
Fig. 3 and is very similar to a model studied in [32]. The first two rows represent the two
groups of workstations. For each of the groups, individual workstations can fail (transition
WorkstationFail). Once failed, the workstation is Down, and the repair unit is needed to re-
pair the workstation. The repair unit is represented by the place at the bottom of the figure.
If a repair unit (token) is available in RepairUnitAvailable, repair starts almost immediately
(transition WorkstationInspect), and the workstation is InRepair. Once repaired successfully
(transition WorkstationRepair), the workstation is Up again. The evolution of the other com-
ponents of the system is very similar. The next two rows in Fig. 3 represent the behaviour of
the two switches, and the last row represents the backbone.

Atomic propositions

Since the state space S of the CTMC underlying the GSPN model is given by the set of
reachable markings of the GSPN, it appears natural to allow atomic propositions to range
over the individual markings of each place of the GSPN. Thus, for some place P and natural
number n we use #P
� n as the atomic proposition that is valid in all reachable markings
where place P contains
� n tokens. For example,

#RepairUnitAvailable = 1

is valid, iff there is exactly one token in the corresponding place. In the following we use
the abbreviations as listed in Table 3.

Reward rates

Just as the atomic propositions, the reward rates are defined dependent on the marking. For
each marking, we obtain rates for the left and the right sub-cluster which depend also on the

 Author's personal copy

28 Form Methods Syst Des (2010) 36: 1–36

Fig. 3 Stochastic Petri net of the fault-tolerant workstation cluster

Table 3 Abbreviations of basic formulas for the workstation cluster

LeftOperationali = (#LeftWorkstationUp ≥ i) ∧ (#LeftSwitchUp > 0)

RightOperationali = (#RightWorkstationUp ≥ i) ∧ (#RightSwitchUp > 0)

Conn = (#LeftSwitchUp > 0) ∧ (#RightSwitchUp > 0)

Operationali = (#LeftWorkstationUp + #RightWorkstationUp ≥ i) ∧ Conn
Availablei = (#BackboneUp > 0)

∧ (Operationali ∨ LeftOperationali ∨ RightOperationali)

status of the switches and the backbone. The sum is the overall rate for the marking:

ρleft =
{

#LeftOperational · f1, if (#LeftSwitchUp > 0),

0, otherwise.

ρright =
{

#RightOperational · f2, if (#RightSwitchUp > 0),

0, otherwise.

ρ =
{
ρleft + ρright, if (#BackboneUp > 0),

0, otherwise.

Reward structure ρ thus defines the computating power of the workstation cluster, depending
on the number of workstation that are currently operational.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 29

7.3 Performability requirements

This section contains several interesting properties for the workstation cluster formalised
in CSRL. They are chosen not only to illustrate the power and expressiveness of CSRL,
but also to actually make statements about the performance and the dependability of the
workstation cluster.

�0: minimum level of service For a minimum level of service (Good) at least 4 worksta-
tions have to be available, otherwise the cluster is in a Bad state:

�0 = Good = Available4 and Bad = ¬Good

In the following, we only concentrate on properties that are specific to CSRL, i.e., that refer
to reward-bounded reachability.

�1: minimal service until job completion Let r be the total number of floating point op-
erations needed for a job. Will the cluster offer Good service until the job is finished, if no
access time constraint exists? “Is the probability to stay in Good states until the accumulated
reward reaches r at least 99%?”:

�1 = P≥0.99(�≤r Good)

�2: minimal service until job completion with restricted access time Here we add in addi-
tion to the reward constraint of �1 a time constraint:

�2 = P≥0.99(�≤t
≤r Good)

�3: job finishes before access time elapses “Is the probability at least 99% that the ac-
cumulated reward is exactly r at a time at most t and we have moved only along Good
states”:

�3 = P≥0.99(Good U ≤t
=r tt) = P≥0.99(Good U =t

≥r tt) = P≤0.01(Good U =t
<r tt)

Note that the second equality stems from the duality result, i.e., Theorem 2.

�4,5: nested formulas The CSRL formula

�4 = P>0.99(�≤10 �2)

ensures the CSRL property �2 to hold for more than 99% of the possible evolutions in the
next 10 time units, and

�5 = S>0.75(�2)

requires this for steady state only.

7.4 Performability measures

As shown in Table 1, CSRL is suitable to code standard performability measures. For the
ones stated in this section (availability, reliability and accumulated reward), we maintain
the outermost probability operator, even though we are actually interested in the resulting
probabilities for a given starting state s. However, the model checking algorithm can easily
return this probability of satisfying a formula. In this way, queries such as: “What is the
probability that . . .?” can be posed instead of “Is the probability at most/at least/ . . .?”. In
the results section we will concentrate on these probabilities.

 Author's personal copy

30 Form Methods Syst Des (2010) 36: 1–36

Availability The system is available at time t if it is then in a Good state. The formula

P≤p(♦=tGood)

describes the availability distribution of the system at time t . Steady-state availability is
given by

S≤p(Good).

Reliability With reliability we denote the probability that the system has been available
without interruption. The reliability for time t is given by the probability that all states up to
at least time t have been Good states:

P≤p(�≤tGood)

Distribution of accumulated reward The probability that the accumulated reward (= ac-
cumulated floating point operations) at time t is at most r is given by the following formula.

P≤p(♦=t
≤r tt)

Note that the level of service until time t does not influence this probability.

7.5 Performability results

We consider an unbalanced case where there are N1 = 8 workstations at the left side of
the switch and N2 = 16 workstations at the right side. This results in an MRM with 4077
states. Workstations on the left are able to perform 1 TFLOP per hour, this corresponds
approximately to 278 MFLOPS. The right workstations have double speed, they operate at
2 TFLOP per hour (≈ 556 MFLOPS).

The average durations assumed for the case study can be found in Table 4.
The reported runtimes were obtained on a PC with a Intel Pentium 4 processor running

on 3 GHz.

�0. Minimum level of service For the model checking of the atomic proposition Good =
available(4), in each state s it is tested whether available(4) ∈ L(s) or not. Of the
4077 states, 2015 satisfy Good. Since Bad is the negation of Good, there are 2062 Bad
states. Checking �0 proceeds in virtually no time.

�1. Minimal service until job completion The duality result of Sect. 4 (cf. Theorem 2)
is employed for the model checking of formula �1. If r = 120 TFLOP are needed for job
completion the satisfaction set contains 1839 states. The computation takes 0.21 seconds,
including the generation of the dual MRM and the transient analysis.

Table 4 Average durations
BackboneFail 5000 h BackboneRepair 8 h
LeftSwitchFail 4000 h LeftSwitchRepair 4 h
RightSwitchFail 4000 h RightSwitchRepair 0.5 h
LeftWorkstationFail 500 h LeftWorkstationRepair 0.5 h
RightWorkstationFail 500 h RightWorkstationRepair 0.5 h

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 31

�2. Minimal service until job completion with restricted access time To check this reward-
and time-bounded reachability property, we exploit Sericola’s algorithm (see Sect. 6.3) with
allowed error ε = 10−4 which suffices for the probability bound 0.99. As the state space of
the MRM for the workstation cluster is of moderate size, and this approach yields an error
indication, this algorithm is the favourable choice. For t = 5 and r = 120, 1881 states satisfy
the formula �2, exactly the same states that satisfy formula �1 with only a time bound; the
overall computation takes 40.25 seconds.

�3. Job finishes before access time elapses Formula �3 holds only for 275 states. For all
other states the probability is at least 1% that the access time is exceeded. This computation
takes 22.5 hours. Why does this take so long? We can not make goal states absorbing,
since we are interested in the precise state of the system at exactly time t . Since there is
no absorbing goal state, we cannot apply the backward version of the Sericola algorithm,
hence, we have to apply the forward version for every single starting state. We do require
approximately 40 seconds for each of these runs (with ε = 10−4, see above). Given that he
overall MRM with all bad states absorbing has 2017 states, we require 2017 × 40 seconds
≈ 22.5 hours.

�4,5. Nested formulas The formula �4 = P>0.99(�≤10 �2) is valid in 1455 states. Its
computation costs 35.8 seconds, including the checking of �2.

The state-transition graph of the MRM is fully connected and, hence, the steady state
probabilities are independent of the starting state. The sum of the steady state probabilities
of all �2-states is 0.999984 > 0.75. Thus, Sat(�5) = S. This check costs 6.94 seconds.

As CSRL formula, the following performability measures have to be embraced by the
probability operator, such that any resulting probability is compared with the probability
bound p. We here present the actual inner probabilities, thereby showing the value of CSRL
model checking algorithms in classical performance and dependability evaluation.

Availability Starting in the “best” state, that is, in the state where all components are up
and working, availability is fairly high in the beginning (> 99.9%) and only drops minimally
towards steady state. The transient availability resulting when starting in one of the “worst”
states (all components down, backbone in repair) is depicted in Fig. 4. It is virtually zero at
the beginning and only slowly approaches steady state availability.

Fig. 4 Transient availability
when starting in the “worst” state

 Author's personal copy

32 Form Methods Syst Des (2010) 36: 1–36

Fig. 5 Reliability when starting
in the ‘best’ state

Fig. 6 Distribution of
accumulated reward

Reliability Figure 5 shows the reliability of the workstation cluster. Note that the time axis
of the figure is a logscale. After 2500 hours the probability to have been in Good states only
is still higher than 99%, after 20000 hours it is still higher than 90%.

Distribution of accumulated reward Since the workstation cluster as modelled so far is
highly available, the distribution of the accumulated reward clusters around the maximal
possible value for all points in time. For illustrative reasons we have set all failure rates to
one per hour. Figure 6 then shows the distribution of accumulated reward.

8 Related work

In this section we reflect on related work that brings together the notions of model checking
and performability evaluation. The aim of this section is not to provide an overview on all
previous work on the evaluation of MRMs in general; we have provided relevant pointers to
that work throughout the text, furthermore, such overviews can be found in [50] and [35].

An important piece of work has been produced by Sanders and Obal [54] in which
reward-based measures are specified using “path automata”. In these Markov-reward mod-
els, a reward is obtained once a specific path through a model has been taken. This is an
important extension of the notion of Markov-reward models, however, it is different from
what we propose in this paper. Furthermore, the envisaged applicability comes closer to
what has been proposed with the logic asCSL [11] in which state- and transition-sequences
can be used to characterise acceptable system behaviour.

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 33

Kwiatkowska et al. [44] also refer to model checking of Markov-reward models, how-
ever, they only model-check to obtain expected instantaneous and expected accumulated
rewards, and not, as we do and which is much more difficult, accumulated reward distri-
butions. Andova et al. study discrete-time Markov reward models and model checking of
the logic PRCTL [2], and not, as we do, continuous-time models. Sokolsky et al. [63] use
rewards in model checking power issues, however, they do not address generic CSRL-type
model checking algorithms; moreover, they address discrete time. A similar observation
counts for Norman et al. [53]: they consider continuous-time Markov-reward models in the
context of model checking systems with dynamic power management, however, they do not
address specific algorithms. Finally, the model checker MRMC [42] has been developed
by Zapreev et al.; it supports the logic CSRL using the algorithms described in Sects. 6.4
and 6.5.

9 Conclusions and outlook

In this paper we have presented the logic CSRL, its syntax and semantics, as well as ap-
plicable numerical algorithms for model checking CSRL against Markov-reward models.
An important duality result, as well as a case study have been reported. We believe that
CSRL model checking comprises an important procedure for assessing resource usage in
systems that are subject to random phenomena.

Where CSL model checking [10] has now got into widespread use, this is not yet the case
for CSRL. This is primarily due to the more involved numerical algorithms; we expect more
work to be done in this context in the years to come to improve the efficiency and applicabil-
ity. To alleviate the computational costs of model checking MRMs, abstraction techniques
such as bisimulation minimisation [43], partial-order reduction [30], and alternative tech-
niques [45] can and partially have been applied. More aggressive abstraction techniques
are however called for. Furthermore, research is needed on time-inhomogeneous MRMs,
in which either the transitions or the reward-rates (or both) become dependent on time or
on the accumulated reward so far (or both); such models have important applicability in
the context of battery-constrained systems, cf. [3, 19] for first work in that direction. Initial
model-checking results for such models has been recently reported in [47]. Other directions
for future work are in considering multiple rewards [2, 24].

References

1. Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modeling with generalised
stochastic Petri nets. Wiley, New York

2. Andova S, Hermanns H, Katoen J-P (2003) Discrete-time rewards model-checked. In: Proceedings of
the international workshop on formal modeling and analysis of timed systems (FORMATS’03). Lecture
notes in computer science, vol 2791. Springer, Berlin, pp 88–104

3. Arns M, Buchholz P, Panchenko A (2008) On the numerical analysis of inhomogeneous continuous-time
Markov chains. Technical report, University of Dortmund

4. Aziz A, Sanwal K, Singhal V, Brayton R (1996) Verifying continuous-time Markov chains. In: Pro-
ceedings of the 8th international conference on computer aided verification (CAV’96). Lecture notes in
computer science, vol 1102. Springer, Berlin, pp 269–276

5. Aziz A, Sanwal K, Singhal V, Brayton R (2000) Model-checking continuous-time Markov chains. ACM
Trans Comput Logic 1(1):162–170

6. Baier C, Katoen J-P (2008) Principles of model checking. MIT Press, Cambridge
7. Baier C, Katoen J-P, Hermanns H (1999) Approximate symbolic model checking of continuous-time

Markov chains. In: Proceedings of the 10th international conference on concurrency theory (CON-
CUR’99). Lecture notes in computer science, vol 1664. Springer, Berlin, pp 146–161

 Author's personal copy

34 Form Methods Syst Des (2010) 36: 1–36

8. Baier C, Haverkort BR, Hermanns H, Katoen J-P (2000) Model checking continuous-time Markov chains
by transient analysis. In: Proceedings of the 12th international conference on computer aided verification
(CAV’00). Lecture notes in computer science, vol 1855. Springer, Berlin, pp 358–372

9. Baier C, Haverkort BR, Hermanns H, Katoen J-P (2000) On the logical characterisation of performability
properties. In: Proceedings of the 27th international colloquium on automata, languages and program-
ming (ICALP’00). Lecture notes in computer science, vol 1853. Springer, Berlin, pp 780–792

10. Baier C, Haverkort BR, Hermanns H, Katoen J-P (2003) Model-checking algorithms for continuous-time
Markov chains. IEEE Trans Softw Eng 29(6):524–541

11. Baier C, Cloth L, Haverkort BR, Kuntz M, Siegle M (2007) Model checking Markov chains with actions
and state labels. IEEE Trans Softw Eng 33(4):209–224

12. Beaudry MD (1978) Performance-related reliability measures for computing systems. IEEE Trans Com-
put 27(6):540–547

13. Bobbio A, Roberti L (1992) Distribution of the minimal completion time of parallel tasks in multi-reward
semi-Markov models. Perform Eval 14:239–256

14. Bobbio A, Telek M (1995) Markov regenerative SPN with non-overlapping activity cycles. In: Proceed-
ings of the international IEEE performance and dependability symposium (PDS’95), pp 124–133

15. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press, Cambridge
16. Cloth L (2006) Model checking algorithms for Markov reward models. PhD thesis, University of Twente
17. Cloth L, Haverkort BR (2006) Five performability algorithms: A comparison. In: Proceedings of the

Markov anniversary meeting (MAM’06). Boson Books, Raleigh, pp 39–54
18. Cloth L, Katoen J-P, Khattri M, Pulungan R (2005) Model checking Markov reward models with impulse

rewards. In: International conference on dependable systems and networks (DSN’05). IEEE Press, New
York, pp 722–731

19. Cloth L, Jongerden MR, Haverkort BR (2007) Computing battery lifetime distributions. In: Proceedings
of the international conference on dependable systems and networks (DSN’07), pp 780–789

20. Conway A, Georganas N (1989) Queueing networks: exact computational analysis. MIT Press, Cam-
bridge

21. Diniz MC, de Souza e Silva E, Gail HR (2002) Calculating the distribution of a linear combination of
uniform order statistics. INFORMS J Comput 14(2):124–131

22. Edwards S, Lavagno L, Lee E, Sangiovanni-Vincentelli A (1997) Design of embedded systems: formal
models, validation and synthesis. Proc IEEE 85(3):366–390

23. Emerson E, Clarke E (1982) Using branching time temporal logic to synthesize synchronization skele-
tons. Sci Comput Program 2:241–266

24. Etessam K, Kwiatkowska M, Vardi MY, Yannakakis M (2008) Multi-objective model checking of
Markov decision processes. Log Methods Comput Sci 4(4)

25. Fox BL, Glynn PW (1988) Computing Poisson probabilities. Commun ACM 31(4):440–445
26. German R (2000) Performance analysis of communication systems: modeling with non-Markovian sto-

chastic Petri nets. Wiley, New York
27. Goyal A, Tantawi A (1988) A measure of guaranteed availability and its numerical evaluation. IEEE

Trans Comput 37:25–32
28. Grassmann WK (1991) Finding transient solutions in Markovian event systems through randomization.

In: Stewart W (ed) Numerical solution of Markov chains. Dekker, New York, pp 357–371
29. Gross D, Miller DR (1984) The randomization technique as a modeling tool and solution procedure for

transient Markov processes. Oper Res 32(2):343–361
30. Größer M, Norman G, Baier C, Ciesinski F, Kwiatkowska MZ, Parker D (2006) On reduction criteria for

probabilistic reward models. In: Foundations of software technology and theoretical computer science
(FSTTCS). Lecture notes in computer science, vol 4337. Springer, Berlin, pp 309–320

31. Hansson H, Jonsson B (1994) A logic for reasoning about time and reliability. Form Asp Comput 6:512–
535

32. Haverkort BR (1993) Approximate performability and dependability analysis using generalized stochas-
tic Petri nets. Perform Eval 18(1):61–78

33. Haverkort BR, Hermanns H, Katoen J-P (2000) On the use of model checking techniques for dependabil-
ity evaluation. In: Proceedings of the 19th IEEE symposium on reliable distributed systems (SRDS’00).
IEEE Press, New York, pp 228–237

34. Haverkort BR, Hermanns H, Katoen J-P, Baier C (2001) Model checking CSRL-specified performability
properties. In: Proceedings of the 5th international workshop on performability modeling of computer
and communications systems (PMCCS’01), pp 105–109

35. Haverkort BR, Marie R, Rubino G, Trivedi KS (eds) (2001) Performability modelling. Wiley, New York
36. Haverkort BR, Cloth L, Hermanns H, Katoen J-P, Baier C (2002) Model checking performability prop-

erties. In: Proceedings of the international conference on dependable systems and networks (DSN’02).
IEEE Press, New York, pp 102–112

 Author's personal copy

Form Methods Syst Des (2010) 36: 1–36 35

37. Hermanns H, Herzog U, Katoen J-P (2002) Process algebra for performance evaluation. Theor Comput
Sci 274(1–2):43–87

38. Hillston J (1996) A compositional approach to performance modeling. Cambridge University Press,
Cambridge

39. Horton G, Kulkarni VG, Nicol DM, Trivedi KS (1998) Fluid stochastic Petri nets: Theory, applications,
and solution techniques. Eur J Oper Res 105:184–201

40. Horvath A, Gribaudo M (2002) Matrix geometric solution of fluid stochastic Petri nets. In: Proceedings
of the 4th international conference on matrix analytic methods in stochastic models. World Scientific,
Singapore

41. Huth M, Ryan M (2004) Logic in computer science, 2nd edn. Cambridge University Press, Cambridge
42. Katoen J-P, Khattri M, Zapreev IS (2005) A Markov reward model checker. In: Proceedings of the 2nd

international conference on the quantitative evaluation of systems (QEST’05). IEEE Press, New York,
pp 243–244

43. Katoen J-P, Kemna T, Zapreev I, Jansen DN (2007) Bisimulation minimisation mostly speeds up proba-
bilistic model checking. In: Tools and algorithms for the construction and analysis of systems (TACAS).
Lecture notes in computer science, vol 4424. Springer, Berlin, pp 87–101

44. Kwiatkowska M, Norman G, Parker D (2007) Stochastic model checking. In: Formal methods for per-
formance evaluation. Lecture notes in computer science, vol 4486. Springer, Berlin, pp 220–270

45. Lam VV, Buchholz P, Sanders WH (2004) A structured path-based approach for computing transient
rewards of large ctmcs. In: Quantitative evaluation of systems (QEST). IEEE Comput Soc, Los Alamitos,
pp 136–145

46. Matsunawa T (1985) The exact and approximate distributions of linear combinations of selected order
statistics from uniform distributions. Ann Inst Stat Math 37:1–16

47. Mereacre A, Katoen J-P (2008) Model checking HML on piecewise-constant inhomogeneous Markov
chains. In: Formal modeling and analysis of timed systems (FORMATS). Lecture notes in computer
science, vol 5215. Springer, Berlin, pp 203–218

48. Meyer JF (1980) On evaluating the performability of degradable computing systems. IEEE Trans Com-
put 29(8):720–731

49. Meyer JF (1982) Closed-form solutions of performability. IEEE Trans Comput 31(7):648–657
50. Meyer JF (1992) Performability: a retrospective and some pointers to the future. Perform Eval 14(3):139–

156
51. Meyer JF, Sanders WH (2001) Specification and construction of performability models. In: Performabil-

ity modelling. Wiley, New York
52. Neuts MF (1994) Matrix-geometric solutions in stochastic models. An algorithmic approach. Dover,

New York
53. Norman G, Parker D, Kwiatkowska MZ, Shukla SK, Gupta R (2005) Using probabilistic model checking

for dynamic power management. Form Asp Comput 17(2):160–176
54. Obal WD II, Sanders WH (1999) State-space support for path-based reward variables. Perform Eval

35(3–4):233–251
55. Pattipati KR, Mallubhatla R, Gopalakrishna V, Viswanatham N (2001) Markov-reward models and hy-

perbolic systems. In: Performability modelling. Wiley, New York, pp 83–106
56. Qureshi MA (1992) Reward model solution methods with impulse and rate rewards: An algorithm and

numerical results. Master’s thesis, University of Arizona
57. Qureshi MA, Sanders WH (1994) Reward model solution methods with impulse and rate rewards: an

algorithm and numerical results. Perform Eval 20(4):413–436
58. Remke A, Haverkort BR, Cloth L (2005) Model checking infinite-state Markov chains. In: Proceedings

of the 11th international conference on tools and algorithms for the construction and analysis of systems
(TACAS’05). Lecture notes in computer science, vol 2440. Springer, Berlin, pp 237–252

59. Remke A, Cloth L, Haverkort BR (2006) Uniformization with representatives—comprehensive transient
analysis of infinite-state QBDs. In: First international conference on performance evaluation methodolo-
gies and tools. ACM, New York, pp 7–16

60. Sanders WH, Meyer JF (1991) Reduced base model construction methods for stochastic activity net-
works. IEEE J Sel Areas Commun 9(1):25–36

61. Sericola B (2000) Occupation times in Markov processes. Commun Stat Stochastic Models 16(5):479–
510

62. Smith R, Trivedi KS, Ramesh A (1988) Performability analysis: Measures, an algorithm and a case study.
IEEE Trans Comput 37(4):406–417

63. Sokolsky O, Philippou A, Lee I, Christou K (2003) Modeling and analysis of power-aware systems. In:
Proceedings of the 9th international conference on tools and algorithms for the construction and analysis
of systems (TACAS’03). Lecture notes in computer science, vol 2619. Springer, Berlin, pp 409–425

 Author's personal copy

36 Form Methods Syst Des (2010) 36: 1–36

64. Stewart WJ (1994) Introduction to the numerical solution of Markov chains. Princeton University Press,
Princeton

65. Tijms H, Veldman R (2000) A fast algorithm for the transient reward distribution in continuous-time
Markov chains. Oper Res Lett 26:155–158

66. Weisberg H (1971) The distribution of linear combinations of order statistics from the uniform distribu-
tion. Ann Inst Stat 42(2):704–709

 Author's personal copy

	Performability assessment by model checking of Markov reward models
	Abstract
	Introduction
	Continuous-time Markov reward models
	Continuous stochastic reward logic
	Syntax
	Semantics
	Specifying performability measures

	Duality of time and reward constraints
	Model-checking fragments of CSRL
	State formulas
	Steady-state probability
	Expected reward rate
	Expected accumulated reward

	Probability operator
	Next-state operator
	Time- and reward-unbounded until
	Time-bounded and reward-unbounded until
	Reward-bounded and time-unbounded until
	The general case

	Numerical algorithms
	General approach

	Performability evaluation of a fault-tolerant workstation cluster
	System description

	Related work
	Conclusions and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

