
Symbolic Verification of System-Level

Specifications for Aerospace Applications

roveri@fbk.eu
Fondazione Bruno Kessler

Istituto per la Ricerca Scientifica e Tecnologica

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

Motivations

 COMPASS analyses for Slim models
– Functional correctness

– Safety analysis

– Diagnosability

– Performability

 These analyses rely on model checking techniques
– Semantics of Slim given as Network of Event-Data Automata

(NEDA).

– Model checkers operates on labeled transition systems

– Slim specifications can be large
» State space explosion

» Real and continuous variables

– Need of techniques to tackled with these problems
» Symbolic encoding of labeled transition system

» Advanced symbolic verification techniques for dealing with real and
continuous variables

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

Symbolic encoding of Slim models

 Slim semantics is given as a NEDA: = < Ui, ,EC,DC> i [n]
– Ui = <Mi,m0

i ,Xi,v0
i , i,Ei, i>

» Mi = finite set of modes

» m0
i = initial mode

» X i = set of input/output/local variables

» v0
i = initial valuation for variables

» i = mode invariants

» Ei = input/output events

» i = transition relation

 Model checkers operates on Labeled Transition Systems
– L = <V, , I, R>

» V = finite set of variables

» = finite set of transition labels

» I = initial condition

» R = transition relation

Symbolic Representation of EDA

 V = X loc
– loc is a variable representing the modes (domain of loc is M)

– is a real variable representing time elapse

 = E { }

 V’ = X’ loc’ ’

 inv(m) = { i ci x d}
– (i ci x d) (m) and {=,<.>,≥,≤, }

 flow(m) = { i ci (x’ – x) d }
– (i ci x’ d) (m) and {=,<.>,≥,≤, }

 I = (loc = m0 inv(m0) v=v0)

 R = j Rej j R j

– Rej = (loc = ms loc’ = md e inv(md) v’ = (v))
» For < ms, e, v’ = (v), md>

– R j = (loc = ms loc’ = ms > 0 inv(md) flow(ms) v’ = (v))
» For < ms, , v’ = (v), ms>

Slim example

device Battery

features

empty: out event port;

voltage: out data port real;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous initially 100.0;

modes

charged: initial mode

while energy' = -0.02 and

energy >= 20.0;

depleted: mode

while energy' = -0.03;

transitions

charged -[then voltage := energy/50.0 + 4.0]-> charged;

charged -[empty when energy<20]-> depleted;

depleted -[then voltage := energy/50.0 + 4.0]-> depleted;

end Battery.Imp;

Symbolic encoding: example

energy real

voltage real

loc {charged, depleted}

real

charged energy ≥ 20.0

depleted true

charged energy’- energy = -0.02

depleted energy’- energy = -0.03

V =

= {empty, }

inv(m) =

flow(m) =

device Battery

features

empty: out event port;

voltage: out data port real;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous initially 100.0;

modes

charged: initial mode

while energy' = -0.02 and

energy >= 20.0;

depleted: mode

while energy' = -0.03;

Symbolic encoding: initial condition

subcomponents

energy: data continuous initially 100.0;

…

modes

charged: initial mode

while energy' = -0.02 and energy >= 20.0;

loc = charged

energy ≥ 20.0

energy =100.0

Symbolic encoding: transitions

charged: initial mode

while energy' = -0.02 and energy >= 20.0;

….

charged -[then voltage := energy/50.0 + 4.0]-> charged

loc = charged loc’ = charged

> 0

energy’ ≥ 20.0

energy’- energy = -0.02

voltage’ = energy/50.0 + 4.0

Symbolic encoding: transitions (II)

charged -[empty when energy<20]-> depleted;

loc = charged loc’ = depleted

energy < 20

empty

true

energy’= energy

voltage’ = voltage

Symbolic encoding: transitions (III)

depleted: mode

while energy' = -0.03;

…

depleted -[then voltage := energy/50.0 + 4.0]-> depleted

loc = depleted loc’ = depleted

> 0

true

energy’- energy = -0.03

voltage’ = energy/50.0 + 4.0

Symbolic encoding of NEDA

 Symbolic encoding for EDA generalizes to NEDA
– V = i Xi

i loci
i activei

– activei being a Boolean variable true if component i is active

– = i Ei { }

– encoded symbolically with a formula (loc,active)

– EC encoded symbolically with EC(loc,E)

– DC encoded symbolically with DC(loc,X)

– Initialization determined by active EDAs

– Transition relation determined by active EDAs
» Perform local transitions

 Timed local transitions in al EDAs

 Internal transition in EDA

 Multiway event communications from EDA to connected EDAs

» Initialize (re-)activated components

» Establish consistency w.r.t. DC

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

Beyond the Boolean case

 Verification engines used in Model Checking are very
powerful
– Symbolic model checking techniques

» Binary Decision Diagrams

» Propositional SAT solvers

 They work at the Boolean level

 Reasoning at the Boolean level is a limitation
– Boolean representation not expressive enough

» encoding may not exist (e.g. reals), or can "blow up“ (bitvectors)

– Boolean reasoning not the “right” level of abstraction

» important information may be lost during encoding

Examples

 RTL circuits
– word w[n] reduced to w1 … wn Boolean variables

– booleanization destroys data path structure!

 Pipelines
– function symbols used to abstract blocks

 Timed automata
– real-valued variables for timing

– difference constraints to express time elapse

 Hybrid automata (e.g. Slim models)
– real-valued variables for physical dynamics

– mathematical constraints to express continuous evolution

 Software verification
– integer-valued variables for proof obligations

Satisfiability Modulo Theory

 Trade off between expressiveness and reasoning
– SAT solvers

» Boolean reasoning, completely automatic, very efficient

– Theorem provers

» General FOL, limited automation

 SMT aims at
– Retain efficiency of Boolean reasoning

– Increase expressiveness

– Use decidable fragments of FOL

 Expected impact in formal verification
– Increase capacity by working above the Boolean level

Satisfiability Modulo Theory

 Is an extension of Boolean SAT

 Some atoms have non Boolean (theory) content
– A1 = x – y ≤ 3

– A2 = y – z = 10

– A3 = x – z ≥ 15

 Constants, individual variables, functions and predicates
are interpreted over a theory
– If x = 0, y = 20, z = 10

– Then A1 = T, A2 = T, A3 = F

 Interpretation of atoms are constrained
– A1, A2, A3 cannot be all true at the same time

FOL Theories of Practical Interest

 Equality Uninterpreted Functions (EUF)
– x = f(y), h(x) = g(y)

 Difference constraints (DL)
– x – y ≤ 3

 Linear Arithmetic
– 3x – 5y + 7z ≤ 1

– reals (LRA), integers (LIA)

 Arrays (Ar)
– read(write(A, i, v), j)

 Bit Vectors (BV)
– A[4:8] & 0b4_1001

 Their combination

The SMT problem

 Given one theory T (e.g. LRA, …)
– Terms t, t1, t2, …

» Constants c, c1, c2, …

» Variables x, x1, x2, …, xn, y, …

» Function application f(c, x1), g(f(x, y)), …

– Theory atoms
» Predicate applications P(t1, t2), Q(t1), …

 Atoms are either
– Boolean atoms A, A1, A2, … , or

– Theory atoms

 Formulas are Boolean combination of atoms
– ¬φ1, φ1 φ2, φ1 φ2, φ1 φ2, φ1 φ2

 Is the theory formula φ satisfiable?

SMT Solver: intuition

 The search combines Boolean reasoning (DPLL) and
theory reasoning

 Find Boolean model
– Theory atoms treated as Boolean atoms

– Truth values to Boolean and theory atoms

– Model propositionally satisfies the formula

 Check consistency w.r.t. theory
– Set of constraints induced by truth values to theory atoms

– Existence of values to theory variables

Boolean DPLL search space

 The DPLL procedure

 Incremental construction of satisfying assignment

 Backtrack/backjump on conflict

 Learn reason for conflict

 Splitting heuristics

P

Q

R
S

R

Q

S

R

SAT!

SMT DPLL search space

b

b b b

P

Q

R

S R

Q

S

R

SAT!

P x – y ≤ 3

R x – z ≤ 4

S y – z ≥ 2
b b

tt
b

x,y,z : reals

Q: Booleans

Many Boolean models are not theory consistent!

S

Optimizations

 Early pruning
– Check theory consistency of partial assignments

 Learning theory conflicts
– The theory solver can detect a reason for inconsistency

– I.e. a subset of the literals that are mutually unsatisfiable
» E.g. x = y, y = z, x z

– Learn a conflict clause
» x y or y z or x = z

– By BCP the Boolean enumeration will never make same mistake again

 Theory deduction
– The theory solver can detect that certain atoms have forced values

» E.g. from x = y and x = z infer that y = z should be true

– Force deterministic assignments

– Theory version of BCP

– Furthermore, the solver can learn the deduction:
» x=y & x = z y=z

Optimizations

 Incrementality/backtrackability

– Add constraints to the theory solver without restarting from scratch

– Remove constraints without paying too much

 Limiting cost of early pruning

– Filtering, incomplete calls

 Static learning

– Pre-compile obvious theory reasoning to Boolean

The Role of SMT in Verification

 State variables of various types

– in addition to discrete

– reals, integers, bitvectors, arrays, …

 Representation

– higher level

– structural information is retained

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

SMT based model checking

 From SAT based to SMT based algorithms

 Simply replace the SAT solver with an SMT solver

– Bounded model checking

– K-induction

BMC and Induction

 Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– bug if satisfiable

– increase k until …

 Prove absence of bugs by induction
– I(X0) ⋀ ¬B(X0)

– I(X0) ⋀ R(X0, X1) ⋀ ¬B(X1)

– …

– ¬B(X0) ⋀ R(X0, X1) ⋀ … ⋀ ¬B(Xk-1) ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– proved correct if unsatisfiable (and no bugs until k)

 Important features of (SMT) solver
– incremental interface

– theory lemmas should be retained and can be shifted over time
» from Φ(X0, X1) to Φ(Xi, Xj)

– Unsatisfiable core and generation of interpolants

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

Counterexample Guided Abstraction Refinement

 Model checking validates and debugs systems by exploration of
their state spaces

 PROBLEM: state-space explosion
– Hardware and protocols: very large number of states

– Software: typically infinite-state

 SOLUTION: analyze a finite-state abstraction of the system

 ABSTRACTION:
– INPUT: a concrete LTS C (intial states + transition relation) and a an

abstraction function

– OUTPUT: finite-state conservative abstraction A
» If a property holds in A, a concrete version holds in C

» If a property does not holds in A the counterexample need to be analyzed

» If the counterexample is not spurious, than the property does not hold in C

» If the counterexample is spurious the abstraction function has to be refined

CounterExample Guided Abstraction Refinement

G (

voltage

>= 10)

Conc.

Model

Abstraction

G (p)

Abstr.

Model

Model

Checking

p

q

CounterExample

Analysis

Refinement

voltage

mode

Predicate abstraction

 Given a concrete LTS over variables X

 Given a set of predicates Ψi(X) associated to abstract
variable Pi

Pi ↔ Ψi(X)

 Obtain the corresponding abstract program
» AI(P) is defined by

∃ X.(CI (X) ⋀ ⋀i Pi ↔ Ψi(X))

» AR(P, P') is defined by

∃ X X'.(CR(X, X') ⋀ ⋀i Pi ↔ Ψi(X) ⋀ ⋀i Pi' ↔ Ψi(X'))

– Basic computation: existential quantification

Existential Quantification

 Let Φ(X, V) be a formula where
– V are Boolean variables (important variables)

– X are the other variables

 Compute a Boolean formula equivalent to ∃ X.Φ(X, V)

 Example (Boolean case):
– ∃ B.(A ⋀ (B ⋁ C))

– V = {A, C}

 Example:
– ∃ x y.((P ↔ x + y = 2) ⋀ (Q ↔ x – y < 10) ⋀ x + y > 12)

– V = { P, Q }

AllSMT

 [LNO'06] use SMT solver on Φ(x, V)

 Compute all satisfiable assignments to V
SMTAbstract(Phi, V) {

res = false;

loop {

mu = SMT(Phi);

if mu == UNSAT then return res;

else

vmu = restrict(V, mu);

res = res or vmu;

Phi = Phi and ¬vmu;

}}

AllSMT at work (Boolean case)

 ∃ B.(A ⋀ (B ⋁ C))

 V = { A, C }

 First iteration:
mu: A, ¬C, B
vmu: A, ¬C
res: A, ¬C
blocking clause: ¬A or C

 Second iteration:
mu: A, C, ¬B
vmu: A, C
res: (A,C) or res = A
blocking clause: ¬A ⋁ ¬C

 Third iteration: unsatisfiable

 Result: A

In fact,

∃ B.(A and (B or C))

reduces to

(A and (true or C))

or

(A and (false or C))

that is, A

AllSMT at work (Theory case)

 ∃ x y.(P ↔ (x + y = 2)) ⋀ (Q ↔ (x – y < 10)) ⋀ (x + y > 12)

 V = { P, Q }

 First iteration:
mu: ¬P, ¬(x + y = 2), ¬Q, ¬(x – y < 10), (x + y > 12)
vmu: ¬P, ¬Q
res: ¬P, ¬Q
blocking clause: P ⋁ Q

 Second iteration:
mu: ¬P, ¬(x + y = 2), Q, (x – y < 10), (x + y > 12)
vmu: ¬P, Q
res: (¬P, Q) or res = ¬P
blocking clause: P ⋁ ¬Q

 Third iteration: unsatisfiable

 Result: ¬ P

Hybrid abstraction: BDD + SMT [FMCAD’07]

 AllSMT: a closer look
– The approach constructs the DNF of the result
– Enumerating all the disjuncts
– Can blow up in number of disjuncts

 Binary Decision Diagrams (BDDs)
– Canonical representation for Boolean functions
– Can blow up in space

» Order of variables can make a difference

– Core of traditional EDA tools
» Often replaced by SAT techniques

» Capacity, automation, …

– But …
» In practice, can be extremely efficient

» They provide QBF functionalities
 ∃ x.Φ(x, V) == Φ(false, V) ⋁ Φ(true, V)

» Fundamental operation in model checking

 The idea
– extend BDD-based quantification

– to deal with theory constraints

A

B

C

(A ⋀ (B ⋁ C))

Hybrid abstraction: BDD + SMT [FMCAD’07]

 Intuitive reduction

– ∃ x.Φ(x, V)

– ∃ x.Φ(C1(x), …, Cn(x), V)

– ∃ x A1, …, An.(Φ(A1, …, An, V) ⋀ ⋀i (Ai ↔ Ci(x)))

– ∃ A1, …, An.Φ(A1, …, An, V)

» this is BDD existential quantification, but…

» "modulo theory", i.e. interpreting each Ai as Ci(x)

 Result

– A BDD whose paths are all theory consistent

Hybrid abstraction: BDD + SMT [FMCAD’07]

• An SMT solver without

selection heuristic

• NOT a theory solver!

• Contains stack and implication

graph

• Carries out BCP

Hybrid abstraction: BDD + SMT [FMCAD’07]

 Hybrid abstraction: a closer look

– BDD is monolithic

– No reuse of theory lemmas and

– No learning theory conflicts

 New version where

– BDD is no longer monolithic

– Reuse of theory lemmas

– Learning of theory conflicts

– Tighter integration and collaboration of BDDs and SMT

solver

Counterexample analysis

 The abstract counterexample:
– AS0(P), AS1(P), …. , ASn-1(P), ASn(P)

 It has a corresponding concrete counterpart if

– ⋀j [0,n](⋀i Pi
j ↔Ψi(X

j) ⋀ ASi(P
j))⋀CI(X0) ⋀ ⋀j [0,n-1] CR(Xj,Xj+1)

 Solved as a call to the SMT solver
– If satisfiable then it is a counterexample for the concrete

model

– If unsatisfiable then the counterexample is spurious

Refinement

 Analyze simulation of abstract trace in the concrete

 Discover new predicates to refine the abstraction
via removal of the spurious abstract transition:

– Weakest precondition

– Extraction of the unsatisfiable core

– Use of Craig interpolants

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

The NuSMV model checker

 Provides advanced symbolic model checking algorithms
– BDD based algorithms

– SAT based algorithms

 Extended to deal with infinite state domains (Integers, Reals)

 Tightly integrated with the MathSAT SMT solver
– Bitvectors, IDL, RDL, LIA, LRA, EUF

 Bounded Model checking with SMT and SAT

 Implement full CEGAR loop
– Predicate abstraction via AllSMT, Hybrid-BDD-SMT, Partitioned- Hybrid-BDD-

SMT

– State of the art Boolean model checking

– Check for spuriousness via SMT

– Refinement via SMT unsat core extraction, interpolants, weak preconditions

Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool

 The COMPASS toolset

 Conclusions

The COMPASS tool suite

 Has been built upon

– The Requirements Analysis Tool (RAT)
» http://rat.fbk.eu

– The NuSMV MC extended with MathSAT and FSAP
» http://nusmv.fbk.eu

» http://mathsat.fbk.eu

» http://fsap.fbk.eu

– The Markov Reward Model Checker
» http://www.mrmc-tool.org

– The Symbolic Bisimulation Tool Sigref
» http://sigref.gforge.avacs.org/

http://rat.fbk.eu/
http://nusmv.fbk.eu/
http://mathsat.fbk.eu/
http://fsap.fbk.eu/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/
http://sigref.gforge.avacs.org/

The COMPASS tool suite

The COMPASS tool suite

The COMPASS tool suite

The COMPASS tool suite

The COMPASS tool suite

Conclusions

 We have presented a symbolic encoding for Slim models

 We have described advanced model checking techniques
based on the use of SMT

 The verification techniques have been integrated in an
extended version of the NuSMV symbolic model checker

 The symbolic encoding, and NuSMV are the enabling
technologies for the verification functionalities of the
COMPASS tool suite

 We have developed a first prototype of the COMPASS tool
suite providing
– Requirements validation via RAT

– Correctness checks of CTL/LTL properties

– Model simulation

– (Probabilistic) Safety Analysis

– (Probabilistic) FDIR

Thanks!!

A demo of the current COMPASS tool

suite prototype is available on request

