->¢

Symbolic Verification of System-Level
Specifications for Aerospace Applications

roveri@fbk.eu

Fondazione Bruno Kessler
Istituto per la Ricerca Scientifica e Tecnologica




TR aaS———————————————
'9< Outline

¢ Motivations

¢ Symbolic encoding of Slim models

< Satisfiability Modulo Theory

¢ Bounded Model Checking via SMT

¢ Counterexample Guided Abstraction Refinement
¢ The NuSMV tool

¢ The COMPASS toolset

¢ Conclusions




e —————
N ( Motivations

FONDAZ

¢ COMPASS analyses for Slim models

— Functional correctness
— Safety analysis
— Diagnosability
— Performability

¢ These analyses rely on model checking techniques

— Semantics of Slim given as Network of Event-Data Automata
(NEDA).
— Model checkers operates on labeled transition systems
— Slim specifications can be large
» State space explosion
» Real and continuous variables
— Need of techniques to tackled with these problems
» Symbolic encoding of labeled transition system

» Advanced symbolic verification techniques for dealing with real and
continuous variables



TR aaS———————————————
'9< Outline

¢ Motivations
[ Symbolic encoding of Slim models

< Satisfiability Modulo Theory

¢ Bounded Model Checking via SMT

¢ Counterexample Guided Abstraction Refinement
¢ The NuSMYV tool

¢ The COMPASS toolset

¢ Conclusions




e —————
'9< Symbolic encoding of Slim models

¢ Slim semantics is given as a NEDA: X =< U,a,EC,DC> i € [n]
- U= <M’,m0’ X Voi JUE >
» M’ = finite set of modes
» mg = initial mode
» X'=set of input/output/local variables
» v, = initial valuation for variables
» ¢ = mode invariants
» E' = input/output events
» — = transition relation

¢ Model checkers operates on Labeled Transition Systems
— L=<V, 3, |,R>
» V = finite set of variables
» I = finite set of transition labels
» | = initial condition
» R = transition relation




e —————
'9< Symbolic Representation of EDA

¢ V=Xulocu/od
— loc is a variable representing the modes (domain of loc is M)
— 0O Is areal variable representing time elapse

¢ I=Eu{}
e V=X uloc’ U
& inv(m) ={X ¢, x oo d}
— (Zicixod) € (fm) and © € {=,<.>25, #}
& flow(m) ={2 ¢, (x’— x) cod?d}

¢ [ =(loc =m, Ainvimy) A v=v,)
¢ R= VjRej v Vj Rt
— Re; = (loc =mg A loc’=my ne ninv(imy) A v’ = p(v))
» For<mg e, v =p(v), mys € —>
— Rz = (loc = mg aloc’=mg A J>0 ~invimy) A flow(my) A v’ = p(v))
» For<mg, 1,V =p(v), m> € >



'=>< Slim example

device Battery
features
empty: out event port;
voltage: out data port real;
end Battery;

device implementation Battery.Imp
subcomponents
energy: data continuous initially 100.0;
modes
charged: initial mode
while energy' = -0.02 and
energy >= 20.0;
depleted: mode
while energy' = -0.03;

transitions
charged -[ then voltage := energy/50.0 + 4.0 ]-> charged,;
charged -[empty when energy<20 ]-> depleted;
depleted -[ then voltage := energy/50.0 + 4.0 ]-> depleted;

end Battery.Imp;



BEA Symbolic encoding: example

Q
I

inv(m) =

flow(m) =

energy real

voltage real

loc {charged, depleted}
0 real

{empty, 7}

charged energy = 20.0

depleted true

charged energy’- energy = -0.020

depleted energy’- energy = -0.030

device Battery
features
empty: out event port;
voltage: out data port real;
end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes
charged: initial mode
while energy' = -0.02 and
energy >= 20.0;
depleted: mode
while energy' = -0.03;




=9< Symbolic encoding: initial condition

subcomponents
energy: data continuous initially 100.0;

modes
charged: initial mode
while energy' = -0.02 and energy >= 20.0;

e

loc = charged
energy = 20.0 A
energy =100.0




=9< Symbolic encoding: transitions

charged: initial mode
while energy' = -0.02 and energy >= 20.0;

charged -[then voltage := energy/50.0 + 4.0]-> charged

e

loc = charged A loc’ = charged A
0>0An
energy’ = 20.0 A
energy’- energy = -0.020 A
voltage’ = energy/50.0 + 4.0




=3< Symbolic encoding: transitions (I1)

charged -[empty when energy<20]-> depleted;

e

loc = charged A loc’ = depleted A
energy <20 A
empty A
truen
energy’= energy A
voltage’ = voltage




=3< Symbolic encoding: transitions (I11)

depleted: mode
while energy' = -0.03;

depleted -[ then voltage := energy/50.0 + 4.0 ]-> depleted

e

loc = depleteda loc’ = depleted A
0>0n
true A
energy’- energy = -0.030 A
voltage’ = energy/50.0 + 4.0




I
=< symbolic encoding of NEDA

¢ Symbolic encoding for EDA generalizes to NEDA
—v=UX uU loc vou U, active
— active’ being a Boolean variable true if component i is active
— J= U, E u{g
— a encoded symbolically with a formula A(loc,active)
— EC encoded symbolically with EC(loc,E)
— DC encoded symbolically with DC(loc,X)
— Initialization determined by active EDAs

— Transition relation determined by active EDAs

» Perform local transitions

o Timed local transitions in al EDAs

¢ Internal transition in EDA

+ Multiway event communications from EDA to connected EDAs
» Initialize (re-)activated components

» Establish consistency w.r.t. DC




TR aaS———————————————
'9< Outline

¢ Motivations
¢ Symbolic encoding of Slim models
(& Satisfiability Modulo Theory ]

¢ Bounded Model Checking via SMT

¢ Counterexample Guided Abstraction Refinement
¢ The NuSMYV tool

¢ The COMPASS toolset

¢ Conclusions




- TTTRE————SSSSSS,
~5< Beyond the Boolean case

¢ Verification engines used in Model Checking are very
powerful

— Symbolic model checking techniques
» Binary Decision Diagrams
» Propositional SAT solvers

¢ They work at the Boolean level

¢ Reasoning at the Boolean level is a limitation

— Boolean representation not expressive enough
» encoding may not exist (e.g. reals), or can "blow up” (bitvectors)

— Boolean reasoning not the “right” level of abstraction
» important information may be lost during encoding



.
'9< Examples

¢ RTL circuits
— word w[n] reduced to w, ... w, Boolean variables
— booleanization destroys data path structure!
¢ Pipelines
— function symbols used to abstract blocks
¢ Timed automata
— real-valued variables for timing
— difference constraints to express time elapse
¢ Hybrid automata (e.g. Slim models)
— real-valued variables for physical dynamics
— mathematical constraints to express continuous evolution
& Software verification
— integer-valued variables for proof obligations




.
~5< gatisfiability Modulo Theory

¢ Trade off between expressiveness and reasoning

— SAT solvers
» Boolean reasoning, completely automatic, very efficient

— Theorem provers
» General FOL, limited automation

¢ SMT aims at
— Retain efficiency of Boolean reasoning
— Increase expressiveness
— Use decidable fragments of FOL

¢ Expected impact in formal verification
— Increase capacity by working above the Boolean level



.
=< gatisfiability Modulo Theory

& Is an extension of Boolean SAT

¢ Some atoms have non Boolean (theory) content
— A=x-y=<3
- A,=y-z=10
— Aj=x-z 215

¢ Constants, individual variables, functions and predicates
are interpreted over a theory
— Ifx=0,y=20,z=10
— Then A, =T,A,=T,A;=F

¢ Interpretation of atoms are constrained
— A, A,, A; cannot be all true at the same time




RS,
'9< FOL Theories of Practical Interest

¢ Equality Uninterpreted Functions (EUF)
— x =f(y), h(x) = g(y)
¢ Difference constraints (DL)
—X—-y<3
¢ Linear Arithmetic
— 3X—-9%y+7z<1
— reals (LRA), integers (LIA)
¢ Arrays (Ar)
— read(write(A, i, v), j)
¢ Bit Vectors (BV)
— A[4:8] & Ob4 1001
¢ Their combination



e —————
'9< The SMT problem

¢ Given one theory T (e.g. LRA, ...)
— Terms t, t, t,, ...
» Constants c, ¢4, Cy, ...
» Variables x, x4, X5, ..., X, Y, --.
» Function application f(c, x4), g(f(x, y)), ...
— Theory atoms
» Predicate applications P(t, t,), Q(t,), ...
¢ Atoms are either
— Boolean atoms A, A, A,, ... ,or
— Theory atoms

& Formulas are Boolean combination of atoms
— 7Py, PV Oy OIANDy,, O > Py P> Oy

¢ Is the theory formula ¢ satisfiable?




- TTTRE————SSSSSS,
'3< SMT Solver: intuition

¢ The search combines Boolean reasoning (DPLL) and
theory reasoning

¢ Find Boolean model
— Theory atoms treated as Boolean atoms
— Truth values to Boolean and theory atoms
— Model propositionally satisfies the formula

¢ Check consistency w.r.t. theory
— Set of constraints induced by truth values to theory atoms
— Existence of values to theory variables




e —————
'9< Boolean DPLL search space

¢ The DPLL procedure

¢ Incremental construction of satisfying assignment
¢ Backtrack/backjump on conflict

¢ Learn reason for conflict

¢ Splitting heuristics



e —————
'9( SMT DPLL search space

X,y,Z : reals
Q: Booleans

P x-y=s3
R x-z<4

S y—-z=22

1
b bL blL bl bl bi

tL t
SAT!

Many Boolean models are not theory consistent!




RS,
'9( Optimizations

N(

BRUN

¢ Early pruning
— Check theory consistency of partial assignments

¢ Learning theory conflicts
— The theory solver can detect a reason for inconsistency

— l.e. a subset of the literals that are mutually unsatisfiable
» E.g.X=y,y=z,x#2

— Learn a conflict clause
» X#FYOry#zZorx=z

— By BCP the Boolean enumeration will never make same mistake again

¢ Theory deduction

— The theory solver can detect that certain atoms have forced values
» E.g. from x =y and x = z infer that y = z should be true

— Force deterministic assignments

— Theory version of BCP

— Furthermore, the solver can learn the deduction:
» X=y &Xx=z—>y=z



.
'9< Optimizations

¢ Incrementality/backtrackability
— Add constraints to the theory solver without restarting from scratch
— Remove constraints without paying too much

¢ Limiting cost of early pruning
— Filtering, incomplete calls

¢ Static learning
— Pre-compile obvious theory reasoning to Boolean




.
=< The Role of SMT in Verification

¢ State variables of various types
— In addition to discrete
— reals, integers, bitvectors, arrays, ...

¢ Representation
— higher level
— structural information is retained




TR aaS———————————————
'9< Outline

¢ Motivations

¢ Symbolic encoding of Slim models
< Satisfiability Modulo Theory

(® Bounded Model Checking via SMT

¢ Counterexample Guided Abstraction Refinement
¢ The NuSMV tool

¢ The COMPASS toolset
¢ Conclusions




RS,
'9< SMT based model checking

¢ From SAT based to SMT based algorithms

¢ Simply replace the SAT solver with an SMT solver
— Bounded model checking
— K-induction




.
'3< BMC and Induction

¢ Look for bugs of increasing length
— 1(XO) A R(X%, X") A ... A R(XK1, XK) A B(X¥)
— bug if satisfiable
— increase k until ...

¢ Prove absence of bugs by induction
— 1(X% A "B(XO)
— 1(X% A R(X?, X) A 7"B(X")
— B(X% A R(X%, XT) A ... A 7B(XK") A R(XX1, XK) A B(XK)
— proved correct if unsatisfiable (and no bugs until k)

¢ Important features of (SMT) solver
— incremental interface

— theory lemmas should be retained and can be shifted over time
» from ®(X0, X) to P(Xi, Xi)
— Unsatisfiable core and generation of interpolants



TR aaS———————————————
'9< Outline

¢ Motivations

¢ Symbolic encoding of Slim models

< Satisfiability Modulo Theory

¢ Bounded Model Checking via SMT

[ & Counterexample Guided Abstraction Refinement

¢ The NuSMV tool
¢ The COMPASS toolset
¢ Conclusions




.
-:(

- Counterexample Guided Abstraction Refinement

¢ Model checking validates and debugs systems by exploration of
their state spaces

¢ PROBLEM: state-space explosion
— Hardware and protocols: very large number of states
— Software: typically infinite-state

¢ SOLUTION: analyze a finite-state abstraction of the system

¢ ABSTRACTION:

— INPUT: a concrete LTS C (intial states + transition relation) and a an
abstraction function

— OUTPUT: finite-state conservative abstraction A
» If a property holds in A, a concrete version holds in C
» If a property does not holds in A the counterexample need to be analyzed
» If the counterexample is not spurious, than the property does not hold in C
» If the counterexample is spurious the abstraction function has to be refined



-:(

- CounterExample Guided Abstraction Refinement

G(

vo_ltﬁtg)e G(p)
0™~ - | Model
<o Abstraction

- Checking
Model ,]\ Model
Refinement g %

CounterExample
Analysis

(1|




- TTTRE————SSSSSS,
'3< Predicate abstraction

& Given a concrete LTS over variables X

¢ Given a set of predicates W (X) associated to abstract
variable P,

P; & Wi(X)

¢ Obtain the corresponding abstract program
» AI(P) is defined by

Ix(Cl)A N P o wx))
» AR(P, P') is defined by
3xX.(CRX, X)AN; Pro W) AN P wix))

— Basic computation: existential quantification




- TTTRE————SSSSSS,
'3< Existential Quantification

¢ Let (X, V) be a formula where
— V are Boolean variables (important variables)
— X are the other variables

¢ Compute a Boolean formula equivalent to 4 X.®(X, V)

¢ Example (Boolean case):
— dB.(AA(BVCQ))
— V={A,C}

¢ Example:
— AXY((Pox+y=2) A (Qex—-y<10) A x+y>12)
- V={P,Q}




I
=>< AlISMT

¢ [LNO'06] use SMT solver on ®(x, V)

¢ Compute all satisfiable assignments to V
SMTAbstract(Phi, V) {
res = false;

loop {
mu = SMT(Pht);
If mu == UNSAT then return res;
else
vmu = restrict(V, mu);
res = res or vmu;
Phr = Phr and =vmu;
1}



- TTTRE————SSSSSS,
'9< AlISMT at work (Boolean case)

e IB.(AA(BVC))

e V={AC) In fact,

¢ First iteration:
Ut A G B 4 B.(A and (B or C))
vmu: A, °C
res: A, =C reduces to
blocking clause: "A or C

& Second iteration: (A and (true or C))
mu: A, C, B or
vmu: A, G (A and (false or C))

res: (A,C)orres =A
blocking clause: "A v =°C

that is, A
¢ Third iteration: unsatisfiable

¢ Result: A



.
'3< AlISMT at work (Theory case)

¢ IXYPox+y=2)A(Qoo(X-y<10)A(X+y>12)
¢ V={P, Q}

¢ First iteration:
mu: 7P, 7(x +y =2), 7Q, 7(x -y <10), (x +y > 12)
vmu: 7P, 7Q
res: 7P, 7Q
blocking clause: P v Q

¢ Second iteration:
mu: 7P, (x+y=2),Q, (x-y<10), (x +y>12)
vmu: P, Q
res: (P, Q) orres = 7P
blocking clause: P v ~Q

¢ Third iteration: unsatisfiable

¢ Result: P



FONE
BRUN

( Hybrid abstraction: BDD + SMT [FMCAD'07]

¢ AIISMT: a closer look

— The approach constructs the DNF of the result
— Enumerating all the disjuncts
— Can blow up in number of disjuncts

¢ Binary Decision Diagrams (BDDs)
— Canonical representation for Boolean functions
— Can blow up in space
» Order of variables can make a difference
— Core of traditional EDA tools
» Often replaced by SAT techniques
» Capacity, automation, ...
— But...
» In practice, can be extremely efficient

» They provide QBF functionalities
o IxXD(x,V) == O(false, V) v ®(true, V)
» Fundamental operation in model checking

¢ Theidea
— extend BDD-based quantification
— to deal with theory constraints




.
'°< Hybrid abstraction: BDD + SMT [FMCAD’07]

¢ Intuitive reduction
— I x.D(x, V)
— A X.P(C4(x), ..., C,(x), V)

- IXA, L ALPA,, L ALVIAN (A o C(X))

- dA, ..., A, PA,, ..., A, V)
» this is BDD existential quantification, but...
» "modulo theory", i.e. interpreting each A, as C,(x)

¢ Result
— A BDD whose paths are all theory consistent




=2¢ Hybrid abstraction: BDD + SMT [FMCAD’07]

BDD-based Enumerator Tcc.Add (Constr) TCC
TCC.AssumePos (Constr)
=" X=y
;:; N[/ TCC.AssumeNeg (Constr) | |- _____ Theory
K ; to/ TCC.Undo () x<y Clauses DB
< ThClause 1
TCC.GetValue (Constr) y=z ::g:a““ i
—t A TCC.IsConsist() | F---------—- Thelonne 4
'?,‘-":25' / ::.<2=\ X=z IX=y or !x<y
) Ix=y or !y=x or !x=z
t REXN 1 X=
Q 2 Q e
SN Implication
(R v Graph
| x=z | %=z . -
\ ' Constraints| | .
) Stack y=z |  Nx=z

e An SMT solver without
selection heuristic
 NOT a theory solver! .

« Contains stack and implication
graph
Carries out BCP




.
'°< Hybrid abstraction: BDD + SMT [FMCAD’07]

¢ Hybrid abstraction: a closer look
— BDD is monolithic
— No reuse of theory lemmas and
— No learning theory conflicts

¢ New version where
— BDD is no longer monolithic
— Reuse of theory lemmas
— Learning of theory conflicts

— Tighter integration and collaboration of BDDs and SMT
solver



e —————
'9< Counterexample analysis

¢ The abstract counterexample:
— AS,(P), AS,(P), ...., AS, 4(P), AS,(P)
¢ It has a corresponding concrete counterpart if
— N\ o (A\ Pl oW (Xi) A AS(P))ACIXO) I\, _g 0 CROXX)

¢ Solved as a call to the SMT solver

— |If satisfiable then it is a counterexample for the concrete
model

— If unsatisfiable then the counterexample is spurious




S —
'9< Refinement

¢ Analyze simulation of abstract trace in the concrete

¢ Discover new predicates to refine the abstraction
via removal of the spurious abstract transition:

— Weakest precondition

— Extraction of the unsatisfiable core

— Use of Craig interpolants




TR aaS———————————————
'9< Outline

¢ Motivations

¢ Symbolic encoding of Slim models

< Satisfiability Modulo Theory

¢ Bounded Model Checking via SMT

¢ Counterexample Guided Abstraction Refinement
(¢ The NuSMV tool

¢ The COMPASS toolset
¢ Conclusions




e —————
'9< The NuSMV model checker

¢ Provides advanced symbolic model checking algorithms
— BDD based algorithms
— SAT based algorithms

¢ Extended to deal with infinite state domains (Integers, Reals)

¢ Tightly integrated with the MathSAT SMT solver
— Bitvectors, IDL, RDL, LIA, LRA, EUF

¢ Bounded Model checking with SMT and SAT

¢ Implement full CEGAR loop

— Predicate abstraction via AIISMT, Hybrid-BDD-SMT, Partitioned- Hybrid-BDD-
SMT

— State of the art Boolean model checking
— Check for spuriousness via SMT
— Refinement via SMT unsat core extraction, interpolants, weak preconditions



TR aaS———————————————
'9< Outline

¢ Motivations

¢ Symbolic encoding of Slim models

< Satisfiability Modulo Theory

¢ Bounded Model Checking via SMT

¢ Counterexample Guided Abstraction Refinement
¢ The NuSMYV tool

(@ The COMPASS toolset

& Conclusions




.
~5< The COMPASS tool suite

¢ Has been built upon

— The Requirements Analysis Tool (RAT)
» http://rat.fbk.eu

— The NuSMV MC extended with MathSAT and FSAP
» http://nusmv.fbk.eu
» http://mathsat.fbk.eu
» http://fsap.fbk.eu

— The Markov Reward Model Checker

» http://www.mrmc-tool.org

— The Symbolic Bisimulation Tool Sigref
» http://sigref.gforge.avacs.orqg/



http://rat.fbk.eu/
http://nusmv.fbk.eu/
http://mathsat.fbk.eu/
http://fsap.fbk.eu/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/
http://sigref.gforge.avacs.org/

=5{ The COMPASS tool suite

I REQUIREMENTS
I
Il SAFETY D > || VALIDATION
11 AMALYSIS I 1 — Property Assurance
i~ 1 — Dynamic Fault Trees =l Properiy 1 . .
! iy I' || — Property Simulation
: 1 — FMEA Tables Model Patiern :
| |
I I
T T
I I __
| i
L
‘ l
Y Property I
Y Instantiater :
\ . |
\ Model SHm Property |
Y Extension Instantiator ¥ ~
A -
1
\ _ RAT
\ SHm23MV
1
+ S
A
|
' ™
NuSMV SMV2Si gref H Sigref2MRMC }_. MRMC
7 ; 7 4
it i g
¢ ! !
‘ ; SMV2Shm ;
14 1 ¢
i \ .
£ [ ;
h ' f
!
;. \ Trace Fault Tree N
S "‘ Viewer Viewer :
| l |
1 LI Il
| 1 |
| b |
: :: CORRECTMNESR '_L :: DIAGMNOSABILITY : :: PERFORMABIIITY
| 1| VERIFICATION v ANALYSIS |1 ANALYSIS
~ 1 — Property verification T 7l - FDIR effectivencss measures T Tl — Performability measures
"' _ simlatien :: — Synthesiz of Observability Requirements :: — Probabilistic fault trees




=5{ The COMPASS tool suite

n

o Compass Prototypetiool

Fle Edit View Activities Help

| Model | Properties Correctness Performability — Safety FDIR
5lim Models: s Add Faults Injection:
Jexamples/Adder.slim Implementation | Faults 4 Error
.fexamples/Adder_err.slim ¥ Main.Impl '3 AdderError.mpl
Adderimpl 1 BitError.Impl
Bit.Imp D
Bus.Impl 0 v
=7 Injections (1}
Root Implementations:
Implementation | Slim file
Nominal  Error Error State  Effect

K Main.Impl . Jexamples/Add : . .
' ' Adderlmpl: AdderErrorimpl: stuck_at_one’ output:=true

[«] 1 | E|

Output Console:
Compiling 'fhome/compass/COMPASS tools/examples/Adder_err.slim',..

Compiler | Logging




>{ The COMPASS tool suite

=] Compass Prototype 100
File Edit Wiew Activities Help
Model Properties ‘ Correctness| Performability  Safety FDIR
Properties Model Madel
Mame Checking | Simulation

[« observe output
[] always output is

You selected %s to be model checked.

[] Model extended by Fault Injections

Run Model Checking

Model Checker Options:
@® Use BDD (CTL and LTL)

() Use SAT (LTL only)

& The property is false
The LTL property:
G loutput
has been found false. A counter-example is shown below.

Name ~ Stepl Step2 Step3 Stepd Steps
maode init < gone_rnd2 gone_rnd12 < gone bitz < gone bitl2
run 0 . 0 0 : 0 : 0
rndl.output i 0 0 i 0
rndz2.output i 1 1 1 1
L P S :

Steg

T ey

(<]

x




I
=5{ The COMPASS tool suite

r;

Compass Prototypetiool

File Edit View Activities Help

Model Properties Correctness Performabilit Safet FDIR
g Y LoEEY = FSAP: Fault Tree Displayer (==])x]

File Actions View |
Properties i
P Fault Treg Failure Mode =5 File: I,-'home,-’compasstOMPASS,-’toolsfemm Factor: IB?%
Name Generation | Effect Analysys
[¥] observe outp

5 File: I,-'home,-’compasstOMPASS,-’toolsfexam

You can generate a FMEA table Top Level Even ]
Generate FMEA Table ‘ Cardinality: |1
Murm | Failure Model Failure Effect
R . output
1  ‘adder,_errorSubcomponent. errorState = stuck_at_one output
2 - adder_errorsubcomponent._errorState = _stuck_at_zero output

true

4] L[N

Ll w [




=9( The COMPASS tool suite

= Compass Prototypetioo]

E=11| A8 X
File Edit “iew Activities Help
Model  Properties Correctness Performability — Safety | FDIR ‘
Properties Fault Detection | Fault Isolation | Fault Recovery | Probabilistic Fault
Analysis Analysis Analysis Detection Analysis

There are 3 fault trees, Select one and click Show Fault Tree button

FSAPT Ut iree  misplayer

File Actions View

Run Fault Isolation |

5 File: |fhomefcompassfcoMPASSftooE,dnm Factor: |60%| MNurm | Event File Name Gate File Name ‘ Show
< File: |,J'homefcompasst0MPASSftonls,"ex 1 COMPASSItooIsfexampleszdder.O.ﬂt_eventsECOMPASSftoolsfexamplesmdder.o.ﬂ ~% Fault Tree
2 COMPASSftools/examples/Adder. 1 flt_events COMPASS/tools/examples/Adder.1 f]
3 COMPASStoolsfexamples/Adder.2 flt_events COMPASS/toolsfexamplesfAdder.2 fl
bitl_alarm
false
£ (] B
B
S
P=00

q e [




e —————
f?,( Conclusions

¢ We have presented a symbolic encoding for Slim models

¢ We have described advanced model checking techniques
based on the use of SMT

¢ The verification techniques have been integrated in an
extended version of the NuSMV symbolic model checker

¢ The symbolic encoding, and NuSMV are the enabling
technologies for the verification functionalities of the
COMPASS tool suite

¢ We have developed a first prototype of the COMPASS tool
suite providing
— Requirements validation via RAT
— Correctness checks of CTL/LTL properties
— Model simulation
— (Probabilistic) Safety Analysis
— (Probabilistic) FDIR



-¢

Thanks!!

A demo of the current COMPASS tool
suite prototype is available on request




