
Symbolic Verification of System-Level 

Specifications for Aerospace Applications

roveri@fbk.eu
Fondazione Bruno Kessler

Istituto per la Ricerca Scientifica e Tecnologica



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



Motivations

 COMPASS analyses for Slim models
– Functional correctness

– Safety analysis

– Diagnosability

– Performability

 These analyses rely on model checking techniques
– Semantics of Slim given as Network of Event-Data Automata 

(NEDA).

– Model checkers operates on labeled transition systems

– Slim specifications can be large
» State space explosion

» Real and continuous variables

– Need of techniques to tackled with these problems
» Symbolic encoding of labeled transition system

» Advanced symbolic verification techniques for dealing with real and 
continuous variables



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



Symbolic encoding of Slim models

 Slim semantics is given as a NEDA: = < Ui, ,EC,DC> i [n]
– Ui = <Mi,m0

i ,Xi,v0
i , i,Ei, i>

» Mi = finite set of modes

» m0
i = initial mode

» X i = set of input/output/local variables

» v0
i = initial valuation for variables

» i = mode invariants

» Ei = input/output events

» i = transition relation

 Model checkers operates on Labeled Transition Systems
– L = <V, , I, R>

» V = finite set of variables

» = finite set of transition labels

» I = initial condition

» R = transition relation



Symbolic Representation of EDA

 V = X loc 
– loc is a variable representing the modes (domain of loc is M)

– is a real variable representing time elapse

 = E { }

 V’ = X’ loc’ ’

 inv(m) = { i ci x d}
– ( i ci x d) (m) and {=,<.>,≥,≤, }

 flow(m) = { i ci (x’ – x) d }
– ( i ci x’ d ) (m) and {=,<.>,≥,≤, }

 I = (loc = m0 inv(m0) v=v0)

 R = j Rej j R j

– Rej = (loc = ms loc’ = md e inv(md) v’ = (v))
» For < ms, e, v’ = (v), md>  

– R j = (loc = ms loc’ = ms > 0 inv(md) flow(ms) v’ = (v))
» For < ms, , v’ = (v), ms>  



Slim example

device Battery

features

empty: out event port;

voltage: out data port real;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous initially 100.0;

modes

charged: initial mode

while energy' = -0.02 and 

energy >= 20.0;

depleted: mode 

while energy' = -0.03;

transitions

charged  -[                                           then voltage := energy/50.0 + 4.0 ]-> charged;

charged  -[empty when energy<20                                                           ]-> depleted;

depleted -[                                           then voltage := energy/50.0 + 4.0 ]-> depleted;

end Battery.Imp;



Symbolic encoding: example

energy real

voltage real

loc {charged, depleted}

real

charged energy ≥ 20.0

depleted true

charged energy’- energy = -0.02

depleted energy’- energy = -0.03

V =

=    {empty, }

inv(m) =

flow(m) =

device Battery

features

empty: out event port;

voltage: out data port real;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous initially 100.0;

modes

charged: initial mode

while energy' = -0.02 and 

energy >= 20.0;

depleted: mode 

while energy' = -0.03;



Symbolic encoding: initial condition

subcomponents

energy: data continuous initially 100.0;

…

modes

charged: initial mode

while energy' = -0.02 and energy >= 20.0;

loc = charged 

energy ≥ 20.0 

energy =100.0



Symbolic encoding: transitions

charged: initial mode

while energy' = -0.02 and energy >= 20.0;

….

charged  -[then voltage := energy/50.0 + 4.0]-> charged

loc = charged loc’ = charged 

> 0 

energy’ ≥ 20.0 

energy’- energy = -0.02

voltage’ = energy/50.0 + 4.0



Symbolic encoding: transitions (II)

charged  -[empty when energy<20]-> depleted;

loc = charged loc’ = depleted 

energy < 20 

empty 

true

energy’= energy 

voltage’ = voltage



Symbolic encoding: transitions (III)

depleted: mode 

while energy' = -0.03;

…

depleted -[ then voltage := energy/50.0 + 4.0 ]-> depleted

loc = depleted loc’ = depleted 

> 0 

true 

energy’- energy = -0.03

voltage’ = energy/50.0 + 4.0 



Symbolic encoding of NEDA

 Symbolic encoding for EDA generalizes to NEDA
– V = i Xi  

i loci
i activei

– activei being a Boolean variable true if component i is active

– = i Ei { }

– encoded symbolically with a formula (loc,active)

– EC encoded symbolically with EC(loc,E)

– DC encoded symbolically with DC(loc,X)

– Initialization determined by active EDAs

– Transition relation determined by active EDAs
» Perform local transitions

 Timed local transitions in al EDAs

 Internal transition in EDA

 Multiway event communications from EDA to connected EDAs

» Initialize (re-)activated components

» Establish consistency w.r.t. DC



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



Beyond the Boolean case

 Verification engines used in Model Checking are very 
powerful
– Symbolic model checking techniques

» Binary Decision Diagrams

» Propositional SAT solvers

 They work at the Boolean level

 Reasoning at the Boolean level is a limitation
– Boolean representation not expressive enough 

» encoding may not exist (e.g. reals), or can "blow up“ (bitvectors)

– Boolean reasoning not the “right” level of abstraction

» important information may be lost during encoding



Examples

 RTL circuits
– word w[n] reduced to w1 … wn Boolean variables

– booleanization destroys data path structure!

 Pipelines
– function symbols used to abstract blocks

 Timed automata
– real-valued variables for timing

– difference constraints to express time elapse

 Hybrid automata (e.g. Slim models)
– real-valued variables for physical dynamics

– mathematical constraints to express continuous evolution

 Software verification
– integer-valued variables for proof obligations



Satisfiability Modulo Theory

 Trade off between expressiveness and reasoning
– SAT solvers

» Boolean reasoning, completely automatic, very efficient

– Theorem provers

» General FOL, limited automation

 SMT aims at
– Retain efficiency of Boolean reasoning

– Increase expressiveness

– Use decidable fragments of FOL

 Expected impact in formal verification
– Increase capacity by working above the Boolean level



Satisfiability Modulo Theory

 Is an extension of Boolean SAT

 Some atoms have non Boolean (theory) content
– A1 = x – y ≤ 3

– A2 = y – z = 10

– A3 = x – z  ≥ 15

 Constants, individual variables, functions and predicates 
are interpreted over a theory
– If x = 0, y = 20, z = 10

– Then A1 = T, A2 = T, A3 = F

 Interpretation of atoms are constrained
– A1, A2, A3 cannot be all true at the same time



FOL Theories of Practical Interest

 Equality Uninterpreted Functions (EUF)
– x = f(y), h(x) = g(y)

 Difference constraints (DL)
– x – y ≤ 3

 Linear Arithmetic
– 3x – 5y + 7z ≤ 1

– reals (LRA), integers (LIA)

 Arrays (Ar)
– read(write(A, i, v), j)

 Bit Vectors (BV)
– A[4:8] & 0b4_1001

 Their combination



The SMT problem

 Given one theory T (e.g. LRA, …)
– Terms t, t1, t2, …

» Constants c, c1, c2, …

» Variables x, x1, x2, …, xn, y, …

» Function application f(c, x1),  g(f(x, y)), …

– Theory atoms
» Predicate applications P(t1, t2),  Q(t1), …

 Atoms are either
– Boolean atoms A, A1, A2, … , or

– Theory atoms

 Formulas are Boolean combination of atoms
– ¬φ1,   φ1 φ2,   φ1 φ2,   φ1 φ2,   φ1 φ2

 Is the theory formula φ satisfiable?



SMT Solver: intuition

 The search combines Boolean reasoning (DPLL) and 
theory reasoning

 Find Boolean model
– Theory atoms treated as Boolean atoms

– Truth values to Boolean and theory atoms

– Model propositionally satisfies the formula

 Check consistency w.r.t. theory
– Set of constraints induced by truth values to theory atoms

– Existence of values to theory variables



Boolean DPLL search space

 The DPLL procedure

 Incremental construction of satisfying assignment

 Backtrack/backjump on conflict

 Learn reason for conflict

 Splitting heuristics

P

Q

R
S

R

Q

S

R

SAT!



SMT DPLL search space

b

b b b

P

Q

R

S R

Q

S

R

SAT!

P x – y ≤ 3

R x – z ≤ 4

S y – z ≥ 2
b b

tt
b

x,y,z : reals

Q: Booleans

Many Boolean models are not theory consistent!

S



Optimizations

 Early pruning
– Check theory consistency of partial assignments

 Learning theory conflicts
– The theory solver can detect a reason for inconsistency

– I.e. a subset of the literals that are mutually unsatisfiable
» E.g. x = y, y = z, x z

– Learn a conflict clause
» x y or y z or x = z

– By BCP the Boolean enumeration will never make same mistake again

 Theory deduction
– The theory solver can detect that certain atoms have forced values

» E.g. from x = y and x = z infer that y = z should be true

– Force deterministic assignments

– Theory version of BCP

– Furthermore, the solver can learn the deduction:
» x=y & x = z y=z



Optimizations

 Incrementality/backtrackability

– Add constraints to the theory solver without restarting from scratch

– Remove constraints  without paying too much

 Limiting cost of early pruning

– Filtering, incomplete calls

 Static learning

– Pre-compile obvious theory reasoning to Boolean



The Role of SMT in Verification

 State variables of various types

– in addition to discrete

– reals, integers, bitvectors, arrays, …

 Representation

– higher level

– structural information is retained



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



SMT based model checking

 From SAT based to SMT based algorithms

 Simply replace the SAT solver with an SMT solver

– Bounded model checking

– K-induction



BMC and Induction

 Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– bug if satisfiable

– increase k until …

 Prove absence of bugs by induction
– I(X0) ⋀ ¬B(X0)

– I(X0) ⋀ R(X0, X1) ⋀ ¬B(X1)

– …

– ¬B(X0) ⋀ R(X0, X1) ⋀ … ⋀ ¬B(Xk-1) ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– proved correct if unsatisfiable (and no bugs until k)

 Important features of (SMT) solver 
– incremental interface

– theory lemmas should be retained and can be shifted over time
» from Φ(X0, X1) to Φ(Xi, Xj)

– Unsatisfiable core and generation of interpolants



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



Counterexample Guided Abstraction Refinement

 Model checking validates and debugs systems by exploration of 
their state spaces

 PROBLEM: state-space explosion
– Hardware and protocols: very large number of states

– Software: typically infinite-state

 SOLUTION: analyze a finite-state abstraction of the system

 ABSTRACTION:
– INPUT: a concrete LTS C (intial states + transition relation) and a an 

abstraction function

– OUTPUT: finite-state conservative abstraction A
» If a property holds in A, a concrete version holds in C

» If a property does not holds in A the counterexample need to be analyzed

» If the counterexample is not spurious, than the property does not hold in C

» If the counterexample is spurious the abstraction function has to be refined



CounterExample Guided Abstraction Refinement

G ( 

voltage 

>= 10)

Conc.

Model

Abstraction

G ( p )

Abstr.

Model

Model 

Checking

p

q

CounterExample

Analysis

Refinement

voltage

mode



Predicate abstraction

 Given a concrete LTS over variables X

 Given a set of predicates Ψi(X) associated to abstract 
variable Pi

Pi ↔ Ψi(X)

 Obtain the corresponding abstract program
» AI(P) is defined by

∃ X.( CI (X) ⋀ ⋀i Pi ↔ Ψi(X) )

» AR(P, P') is defined by

∃ X X'.( CR(X, X') ⋀ ⋀i Pi ↔ Ψi(X) ⋀ ⋀i Pi' ↔ Ψi(X') )

– Basic computation: existential quantification



Existential Quantification

 Let Φ(X, V) be a formula where 
– V are Boolean variables (important variables)

– X are the other variables

 Compute a Boolean formula equivalent to ∃ X.Φ(X, V)

 Example (Boolean case):
– ∃ B.(A ⋀ (B ⋁ C))

– V = {A, C}

 Example:
– ∃ x y.( (P ↔ x + y = 2)  ⋀ (Q ↔ x – y < 10)  ⋀ x + y > 12 )

– V = { P, Q }



AllSMT

 [LNO'06] use SMT solver on Φ(x, V)

 Compute all satisfiable assignments to V
SMTAbstract(Phi, V) {

res = false;

loop {

mu = SMT(Phi);

if mu == UNSAT then return res;

else

vmu = restrict(V, mu);

res = res or vmu;

Phi = Phi and ¬vmu;

}}



AllSMT at work (Boolean case)

 ∃ B.(A ⋀ (B ⋁ C))

 V = { A, C }

 First iteration:
mu: A, ¬C, B
vmu: A, ¬C
res: A, ¬C
blocking clause: ¬A or C

 Second iteration:
mu: A, C, ¬B
vmu: A, C
res: (A,C) or res = A
blocking clause: ¬A ⋁ ¬C

 Third iteration: unsatisfiable

 Result: A

In fact,

∃ B.(A and (B or C))

reduces to

(A and (true or C))

or

(A and (false or C))

that is, A



AllSMT at work (Theory case)

 ∃ x y.(P ↔ (x + y = 2)) ⋀ (Q ↔ (x – y < 10)) ⋀ (x + y > 12)

 V = { P, Q }

 First iteration:
mu: ¬P, ¬(x + y = 2), ¬Q, ¬(x – y < 10), (x + y > 12)
vmu: ¬P, ¬Q
res: ¬P, ¬Q
blocking clause: P ⋁ Q

 Second iteration:
mu: ¬P, ¬(x + y = 2), Q, (x – y < 10), (x + y > 12)
vmu: ¬P, Q
res: (¬P, Q) or res = ¬P
blocking clause: P ⋁ ¬Q

 Third iteration: unsatisfiable

 Result: ¬ P



Hybrid abstraction: BDD + SMT [FMCAD’07]

 AllSMT: a closer look
– The approach constructs the DNF of the result
– Enumerating all the disjuncts
– Can blow up in number of disjuncts

 Binary Decision Diagrams (BDDs) 
– Canonical representation for Boolean functions
– Can blow up in space

» Order of variables can make a difference

– Core of traditional EDA tools
» Often replaced by SAT techniques

» Capacity, automation, …

– But …
» In practice, can be extremely efficient

» They provide QBF functionalities
 ∃ x.Φ(x, V) == Φ(false, V) ⋁ Φ(true, V)

» Fundamental operation in model checking

 The idea
– extend BDD-based quantification

– to deal with theory constraints 

A

B

C

(A ⋀ (B ⋁ C))



Hybrid abstraction: BDD + SMT [FMCAD’07]

 Intuitive reduction

– ∃ x.Φ(x, V)

– ∃ x.Φ(C1(x), …, Cn(x), V)

– ∃ x A1, …, An.(Φ(A1, …, An, V) ⋀ ⋀i (Ai ↔ Ci(x)) )

– ∃ A1, …, An.Φ(A1, …, An, V)

» this is BDD existential quantification, but…

» "modulo theory", i.e. interpreting each Ai as Ci(x)

 Result

– A BDD whose paths are all theory consistent



Hybrid abstraction: BDD + SMT [FMCAD’07]

• An SMT solver without 

selection heuristic

• NOT a theory solver!

• Contains stack and implication 

graph

• Carries out BCP



Hybrid abstraction: BDD + SMT [FMCAD’07]

 Hybrid abstraction: a closer look

– BDD is monolithic

– No reuse of theory lemmas and

– No learning theory conflicts 

 New version where

– BDD is no longer monolithic

– Reuse of theory lemmas

– Learning of theory conflicts

– Tighter integration and collaboration of BDDs and SMT 

solver



Counterexample analysis

 The abstract counterexample:
– AS0(P), AS1(P), …. , ASn-1(P), ASn(P)

 It has a corresponding concrete counterpart if

– ⋀j [0,n](⋀i Pi
j ↔Ψi(X

j) ⋀ ASi(P
j))⋀CI(X0) ⋀ ⋀j [0,n-1] CR(Xj,Xj+1)

 Solved as a call to the SMT solver
– If satisfiable then it is a counterexample for the concrete 

model

– If unsatisfiable then the counterexample is spurious



Refinement

 Analyze simulation of abstract trace in the concrete

 Discover new predicates to refine the abstraction 
via removal of the spurious abstract transition:

– Weakest precondition

– Extraction of the unsatisfiable core

– Use of Craig interpolants



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



The NuSMV model checker

 Provides advanced symbolic model checking algorithms
– BDD based algorithms

– SAT based algorithms

 Extended to deal with infinite state domains (Integers, Reals)

 Tightly integrated with the MathSAT SMT solver
– Bitvectors, IDL, RDL, LIA, LRA, EUF

 Bounded Model checking with SMT and SAT

 Implement full CEGAR loop 
– Predicate abstraction via AllSMT, Hybrid-BDD-SMT, Partitioned- Hybrid-BDD-

SMT

– State of the art Boolean model checking

– Check for spuriousness via SMT

– Refinement via SMT unsat core extraction, interpolants, weak preconditions



Outline

Motivations

 Symbolic encoding of Slim models

 Satisfiability Modulo Theory

 Bounded Model Checking via SMT

 Counterexample Guided Abstraction Refinement

 The NuSMV tool 

 The COMPASS toolset

 Conclusions



The COMPASS tool suite

 Has been built upon

– The Requirements Analysis Tool (RAT)
» http://rat.fbk.eu

– The NuSMV MC extended with MathSAT and FSAP
» http://nusmv.fbk.eu

» http://mathsat.fbk.eu

» http://fsap.fbk.eu

– The Markov Reward Model Checker
» http://www.mrmc-tool.org

– The Symbolic Bisimulation Tool Sigref
» http://sigref.gforge.avacs.org/

http://rat.fbk.eu/
http://nusmv.fbk.eu/
http://mathsat.fbk.eu/
http://fsap.fbk.eu/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/
http://sigref.gforge.avacs.org/


The COMPASS tool suite



The COMPASS tool suite



The COMPASS tool suite



The COMPASS tool suite



The COMPASS tool suite



Conclusions

 We have presented a symbolic encoding for Slim models

 We have described advanced model checking techniques 
based on the use of SMT

 The verification techniques have been integrated in an 
extended version of the NuSMV symbolic model checker

 The symbolic encoding, and NuSMV are the enabling 
technologies for the verification functionalities of the 
COMPASS tool suite

 We have developed a first prototype of the COMPASS tool 
suite providing
– Requirements validation via RAT

– Correctness checks of CTL/LTL properties

– Model simulation

– (Probabilistic) Safety Analysis

– (Probabilistic) FDIR



Thanks!!

A demo of the current COMPASS tool 

suite prototype is available on request


