
Verifying Concurrent List–Manipulating

Programs by LTL Model Checking

Joost–Pieter Katoen and Thomas Noll and Stefan Rieger

RWTH Aachen University
Software Modeling and Verification Group

52056 Aachen, Germany
{katoen,noll,rieger}@cs.rwth-aachen.de

Abstract

We present a novel approach to the verification of concurrent pointer–manipulating programs which operate
on singly–linked lists. By abstracting from chains (i.e., non–interrupted sublists) in the heap, we obtain
a finite–state representation of all possible executions of a given program. The combination of a simple
pointer logic for expressing heap properties and of temporal operators then allows us to employ standard
LTL model checking techniques. The usability of this approach is demonstrated by establishing correctness
properties of a producer/consumer system and of a concurrent garbage collector.

Keywords: Software Model Checking, Abstraction, Heap Verification, Shape Analysis, LTL, Lists, Pointer
Programs

1 Introduction

Techniques for the verification of elementary properties of concurrent pointer pro-
grams are indispensable. Programming with pointers is error–prone with poten-
tial pitfalls such as dereferencing null pointers and the creation of memory leaks.
Pointer programming becomes even more vulnerable in a concurrent setting where
data structures such as linked lists and trees are manipulated and inspected by
several threads.

This paper presents a model–checking approach to the verification of concurrent
programs that manipulate singly–linked lists. Existing approaches either make use
of non–standard logics, advanced model–checking procedures or extended versions
of Hoare logics with accompanying deduction techniques (see Sct. 6 about related
work). In contrast, the approach advocated in this paper stays within the realm
of traditional (linear–time) model checking. This facilitates the usage of standard
(LTL) model checkers for validating temporal properties addressing absence of mem-
ory leaks, dereferencing of null pointers, dynamic creation of cells, and simple and
position–dependent aliasing.

Our approach is illustrated by considering a simple concurrent programming
language that besides the usual control structures offers primitives for pointer ma-
nipulation, cell creation and destruction, and (guarded) atomic regions that allow
concurrency control constructs such as test–and–set primitives and monitors. An
operational semantics is provided in terms of labeled transition systems in which
states are equipped with a graph structure representing the current list configura-
tion. List abstraction exploits a variant of summary nodes [45] that represent more
than M chained list cells where constant M is directly obtained from the formula to
be checked. Each configuration is shown to have a canonical representation (up to
isomorphism). The abstract semantics of any concurrent program in our language
is finite, obtained in a fully mechanized manner, and keeps the minimal “distance”
between program variables and summary nodes invariant. Over–approximation oc-

Katoen and Noll and Rieger

curs in a very controlled manner; only assignments may yield nondeterminism as
variables may get “too close” to summary nodes.

Properties are expressed in a first–order linear–time temporal logic (LTL) that is
enriched with assertions on singly–linked lists such as reachability of cells, aliasing,
and freshness of cells. Our logic is similar in spirit to NTL [19,20] and ETL [49].
Opposed to NTL, we avoid the use of temporal operators inside quantification. In
this way, involved mechanisms to keep track of the identities of individual cells are
not needed. As a result, standard LTL model checking algorithms can be employed.
The differences with ETL are more of a technical nature. ETL has a three–valued
interpretation, whereas our logical interpretation is a standard binary one. More-
over, ETL–formulas are translated in first–order logic with transitive closure for
the evaluation on a trace, whereas in our case traces are generated by labeled tran-
sition systems and used in standard LTL model checking. The feasibility of our
approach is shown by considering the verification of a simple concurrent garbage
collection program. Furthermore a prototypical tool is currently under development
for experimenting with real–life examples.

Please note that due to space constraints most of the proofs could not be included
in this paper.

2 A List–Manipulating Programming Language

Given a universe PV of program variables, we define the set of list–manipulating

programs (LM–programs) to be given by the following grammar (where vi, v ∈ PV):

LMP ::= var v1, ..., vk(Stmt1‖...‖Stmtl)

Stmt ::= skip | signal | v := PExp | ∗v := PExp | Stmt; Stmt

| if BExp then Stmt else Stmt fi | while BExp do Stmt od

| new(PExp) | del(PExp) | 〈BExp : Stmt〉
PExp ::= nil | v | ∗v | &v
BExp ::= tt | ff | PExp = PExp | BExp ∧ BExp | ¬BExp

V (π) := {v1, ..., vk} denotes the set of variables for π ∈ LMP.

var x, y, z(
while tt do 〈tt :

if x = nil

then new(y); x := y
else new(∗y); y := ∗y

fi
〉 od

‖ while tt do 〈x 6= nil :
z := x; x := ∗x; del(z)

〉 od
)

Fig. 1. Producer/Consumer

An LM–program thus consists of a dec-
laration of global program variables and a
series of statements to be executed in par-
allel. Each of these statements can either
be a pointer assignment, a sequence of state-
ments, a control structure, or a special state-
ment such as signal which sets a global
signal flag that can be tested in the logic,
new/del for dynamic creation or deletion of
objects at runtime (possibly leading to an
unbounded number of allocated heap cells)
and guarded atomic regions. If the Boolean
guard g in 〈g : s〉 is true, s is executed atom-
ically, i.e., with no interference by other pro-
cesses. If g is evaluated to false, the process is blocked (until g becomes true).

Pointer expressions comprise the special constant nil denoting an undefined

2

Katoen and Noll and Rieger

pointer value, a program variable, the dereferencing or referencing of a program
variable. Note that for simplicity we do not allow arbitrary dereferencing depths;
those can be emulated using a sequence of assignments within an atomic region.

Example 2.1 Figure 1 shows an LM–program implementing a producer inserting
objects and a consumer deleting objects at the end (pointed to by y) and beginning
(pointed to by x) of a queue, respectively. If the queue is empty the consumer
cannot proceed due to the guard x 6= nil until the producer has inserted at least
one object. Insertion and deletion are executed atomically to prevent interferences.

Definition 2.2 A heap configuration of a program π ∈ LMP is a tuple γ =
(N,A, µ, F) with a set of nodes N ⊇ V (π), a set of abstract nodes A ⊆ N \ PV ,
a successor function µ : N → Nnil (where Nnil := N ∪ {nil}), and a set of flags
F ⊆ {err,dl, leak, signal,new}.

Let µ⋆ : 2N → 2N with µ⋆(X) := {n ∈ N | ∃k ∈ N, ∃n′ ∈ X : µk(n′) = n} be
the transitive closure of µ, i.e. all nodes reachable from a node in X (and X itself).

Thus the nodes represent both the dynamic objects created and deleted at run-
time and the static program variables (which cannot be deleted). Edges, as for-
malized by the µ–function, encode the points–to information of a specific program
state. The set A of abstract nodes will later be used for our abstraction technique
and will be empty throughout the current section. Finally the flags give special
information about a state, e.g., whether a runtime error or memory leak occurred,
a new node was created, or the signal bit has been set using the signal command.

To ensure the finiteness of our abstraction we will automatically delete those
heap nodes that are not reachable from the program variables. This is accomplished
by the following garbage collection mapping. Whenever it removes an unreachable
node, it sets the leak flag indicating a potential memory leak.

Definition 2.3 For γ = (N,A, µ, F) we define γ↓:= (N ′, A∩N ′, µ ↾ N ′, F ∪{leak |
(N \N ′) 6= ∅}) where N ′ = µ⋆(PV).

Γ denotes the set of all garbage–free heap configurations, i.e., ∀γ ∈ Γ : γ↓= γ,
and Γc ⊆ Γ denotes the set of all concrete configurations, i.e., those with Aγ = ∅.

From now on we will always assume garbage freeness when mentioning heap
configurations. This enforces a bound on the maximal number of incoming edges
for a node (essentially the number of program variables).

Definition 2.4 Let γ = (N, ∅, µ, F) ∈ Γc. Then we define the semantics of pointer
expressions [[·]] : PExp ⇀ Nnil by 1 :

[[nil]] := nil

[[v]] := µ(v)

[[∗v]] := µ([[v]])

[[&v]] := v

The semantics of Boolean expressions [[·]] : BExp ⇀ B is standard and strict 2 .
Note that Def. 2.2 implies that µ(nil) = ⊥ and so [[·]] can indeed yield undefined
results for both pointer and Boolean expressions.

Definition 2.5 For π = var v1, ..., vk : (s1‖...‖sl) ∈ LMP the concrete operational

semantics is given by a transition system T c
π = (Q, q0, lab,→) with a set of states

1 ⇀ denotes a partial function and ⊥ the undefined value.
2 One undefined operand yields an undefined expression.

3

Katoen and Noll and Rieger

Q ⊆ Γc × Stmt⋄({‖}Stmt⋄)
⋆ where Stmt⋄ = Stmt ∪ {⋄}Stmt ∪ {ε}, an initial state

q0 = ((N0, ∅, µ0, ∅), s1‖...‖sl) whereN0 and µ0 represent the “input heap”, a labeling
lab : Q→ Γc with ∀(γ, s) ∈ Q : lab((γ, s)) = γ, and a transition relation→⊆ Q×Q.

In the following we will use the abbreviations F̂ for F \ {signal,new, leak} and
noerr for {err,dl} ∩ F = ∅. γerr and γdl will denote pointer error and deadlock
states. Most transition rules are straightforward, thus here we will only consider
some interesting examples.

[[g]] = 1 γ, s→ γ′, s′ noerr

γ, 〈g : s〉 → γ′, ⋄s′
(1)

γ, s→ γ′, s′ s′ 6= ε noerr

γ, ⋄s→ γ′, ⋄s′
γ, s→ γ′, ε noerr

γ, ⋄s→ γ′, ε
(2)

∃j s.t. γ, sj → γ′, s′j ∀i 6= j : ∄s′i s.t. si = ⋄s′i noerr

γ, s1‖...‖sk → γ′, s1‖...‖s
′
j‖...‖sk

(3)

∄j s.t. γ, sj → γ′, s′j ∃j : sj 6= ε noerr

γ, s1‖...‖sk → γdl, ε
(4)

γ, ε‖...‖ε → γ, ε‖...‖ε
(5)

[[α]] 6= ⊥ noerr

(N,A, µ, F), v := α→ (N,A, µ[v/[[α]]], F̂)↓, ε
(6)

noerr

(N,A, µ, F),new(v)→ (N ⊎ {nnew}, A, µ[v/nnew], F̂ ∪ {new})↓, ε
(7)

[[α]] ∈ N \ PV noerr

(N,A, µ, F),del(α)→ (N \ {[[α]]}, A, µ[[[α]]/⊥, µ−1([[α]])/nil], F̂)↓, ε
(8)

Some remarks on the transition rules are in order. The leak, signal, and new
flags are reset after each transition; they are only activated in the state directly
following the corresponding “event”.

Regarding the concurrency rules we need to take care of the special semantics
of the atomic regions. If a process is executing such a statement it must not be
interrupted, and therefore the corresponding state is marked with ⋄ (rule 1). The
interleaving rule 3 excludes that any other than process j is in an atomic region. If
no process can proceed (all are blocked) we reach the special deadlock state (rule 4).
If all processes are terminated or an error or deadlock state is reached the program
loops to ensure that all paths in the transition system are infinite (rule 5).

The treatment of assignments (rule 6) and the new statement (rule 7) is again
straightforward, we though have to keep in mind in the first case that runtime errors
might occur (dereferencing of nil pointers) and that garbage may be generated.
Rule 8 handles the deletion of nodes. Please note that the next–pointers of the
predecessors of the deleted node are set to nil (mainly to avoid case distinctions for
undefined expressions in the semantics).

We conclude that for the producer/consumer example (Fig. 1) the state space

4

Katoen and Noll and Rieger

becomes infinite when applying the operational semantics as defined above.

3 State–Space Abstraction

As we have seen in the previous section the state space of LM–programs can get
infinite even for simple example programs making standard verification methods
inapplicable. To tackle the problem we use abstraction techniques to generate an
abstract transition system that incorporates the behavior of the concrete one, i.e.,
whose runs cover all concrete ones. This approach is correct but generally incom-
plete: although we can conclude from the satisfaction of a property in the abstract
state space its validity in the concrete case, the inverse is impossible though. But
since the abstraction is parameterized via a global constant M ∈ N we can refine the
abstraction depending on our needs. For a given M > 0 we set M := {0, 1, ...,M, ⋆},
where ⋆ represents all values greater than M .

Chain Abstraction

The main idea of our abstraction is to summarize subgraphs of a configuration
into summary nodes [45], which will be exactly those contained in the A–component
of a heap configuration. Summary nodes (also called abstract nodes) are not allowed
to represent arbitrary structures but only so–called chains, i.e., non–interrupted
lists. Our abstraction is based on [18,19] with the difference that nodes are either
truly abstract or concrete, thus recording node multiplicities is not necessary.

Definition 3.1 Let γ = (N,A, µ, F) ∈ Γ be a configuration. A nonempty set of
nodes C ⊆ N is called a chain if either

• |C| = 1 and C ⊆ PV or

• C ∩ PV = ∅ and there exists a bijection π : {1, ..., |C|} → C such that µ(π(i)) =
π(i+ 1) for i ∈ {1, ..., |C|} and ∀i ∈ {2, ..., |C|} : |µ−1(π(i))| = 1.

For a given chain C we will use the abbreviations
←−
C := π(1), and

−→
C := π(|C|). A

chain is called maximal if no superset C ′ ⊃ C is a chain.

Thus a chain is a sequence of pointer–connected nodes without interference of
other incoming edges or a singleton set containing a program variable. It follows
that the abstraction of chains preserves the graph structure. We will now introduce
a type of functions, called abstraction morphisms, that is based on this concept.

Definition 3.2 Let γi = (Ni, Ai, µi, Fi) ∈ Γ, i ∈ {1, 2} be two heap configurations.
An abstraction morphism h : N1 → N2 satisfies for all v ∈ PV ∩N1 and ni, n

′
i ∈ Ni:

1. h(v) = v

2. h−1(n2) is a chain in N1

3. µ2(n2) = n′2 ⇒ µ1(
−−−−−→
h−1(n2)) =

←−−−−−
h−1(n′2)

4. µ1(n1) = n′1 ⇒ h(n1) = h(n′1) ∨ µ2(h(n1)) = h(n′1)

5. n2 ∈ A2 ⇔ h−1(n2) ∩A1 6= ∅ ∨ |h
−1(n2)| > M

6. F1 = F2

We write h : γ1 γ2 to denote that the abstraction morphism h abstracts γ1 to γ2

and γ2 ≤ γ1 ⇔ ∃h : γ1 γ2.

5

Katoen and Noll and Rieger

Abstraction morphisms abstract from concrete chains with minimal lengthM+1
(cond. 2 and 5). The preservation of the graph structure is enforced by conditions
3 and 4. Program variables, being special nodes, remain untouched (cond. 1).

Example 3.3 Figure 2 shows an abstraction morphism for M = 1. The dashed
lines represent the mapping, and the black nodes denote the resulting abstract
nodes. Note that for M = 2 the nodes 3 and 4 could not be projected onto the
same abstract node (condition 5 of Def. 3.2). The chain {3, 4} cannot be extended
by node 5, since this node has two incoming edges which is only allowed for the first
node of a chain. Although in this example the source configuration is concrete, this
is of course not necessary by definition.

x 1 2 3 4 5

6

7

8
9

x 1 2

Fig. 2. An Abstraction Morphism

An important property of abstrac-
tion morphisms is their surjectivity. If,
in addition a morphism is injective it
becomes an isomorphism. Isomorphic
configurations cannot be distinguished
except for node naming, the graph
structure is the same.

Canonical Configurations

Previously we have defined how con-
figurations can be abstracted. It re-
mains the problem that there can be different abstractions of a given source con-
figuration. For this reason we need a normal form that implies uniqueness. In the
following we define this normal form, assuming γ = (N,A, µ, F) ∈ Γ.

Definition 3.4

(i) Let ⌊N⌋j := {n ∈ N | ∄v ∈ PV : µk(v) = n, k < j} be the set of nodes with a
distance of at least j from the variable nodes. Analogously ⌈N⌉j := N \⌊N⌋j+1.

(ii) A configuration γ is called canonical if ⌈N⌉2 ∩ A = ∅ and for all maximal 3

chains C ⊆ ⌊N⌋3 either |C| = 1 or |C| ≤ M ∧ C ∩ A = ∅. The set of all
canonical configurations is denoted by Γ♮.

The notion of canonical configurations is quite intuitive: maximal chains are
collapsed where possible but only up to a distance of three from variable nodes. The
latter condition ensures that pointer expressions always evaluate to concrete nodes,
which will simplify the definition of the abstract LMP semantics. The abstraction
morphism in Fig. 2 yields a canonical configuration, as can be easily verified.

Theorem 3.5 (Existence) For every γ ∈ Γ with ⌈N⌉2 ∩ A = ∅ there exists a

γ′ ∈ Γ♮ such that γ′ ≤ γ.

It is easy to construct a morphism yielding a canonical configuration. It has
to collapse maximal chains that are larger than M or contain abstract nodes, if
they are sufficiently distant from the variable nodes. In the following we will call
this morphism h♮. The precise definition does not matter as states the following
theorem.

3 Here we refer to maximality in ⌊N⌋3.

6

Katoen and Noll and Rieger

Theorem 3.6 (Uniqueness) Let γ ∈ Γ and γ1, γ2 ∈ Γ♮ such that h1 : γ γ1 and

h2 : γ γ2 are two abstraction morphisms. Then γ1 and γ2 are isomorphic.

The proof of the uniqueness had to be omitted here. The consequence of these
results is the appropriateness of canonical configurations as a normal form. The
abstract semantics will operate on such configurations.

Abstract Semantics of List–Manipulating Programs

As already mentioned, our goal is to guarantee the correctness of our abstraction
approach. This can be achieved by ensuring that every concrete execution of a given
system can be “simulated” by an abstract computation, which necessarily introduces
nondeterministic behavior on the abstract side.

Regarding the expression semantics nothing needs to be modified: in a canonical
configuration, abstract nodes have a distance greater than two from the variable
nodes such that every pointer expression refers to a concrete node. The expression
semantics can therefore be chosen identical to the concrete case (Def. 2.4), now
interpreted on canonical configurations.

Definition 3.7 Given a program π = var v1, ..., vk : (s1‖...‖sl) ∈ LMP, its ab-

stract operational semantics is defined by the labeled transition system T a
π =

(Q, [q0]∼=, lab,→) with state set Q ⊆ Γ♮/∼= × Stmt⋄({‖}Stmt⋄)
⋆, initial state q0 as

in Def. 2.5, labeling function lab : Q → Γ♮ where ∀(K, s) ∈ Q : lab((K, s)) = K,
and transition relation → as specified by the following rules (we focus on the as-
signments, since the other rules are analogous to the concrete case, but operating
on isomorphism congruence classes).

α /∈ ∗V (π) noerr

[(N,A, µ, F)]∼=, v := α→ [h♮((N,A, µ[v/[[α]]], F̂)↓)]∼=, ε
(1)

γ′ ∈ Γ♮ s.t. h♮((N,A, µ[v/[[∗w]]], F̂)↓) ≤ γ′ [[w]] 6= nil noerr

[(N,A, µ, F)]∼=, v := ∗w → [γ′]∼=, ε
(2)

[[v]] 6= nil [[α]] 6= ⊥ noerr

[(N,A, µ, F)]∼=, ∗v := α→ [h♮((N,A, µ[µ(v)/[[α]]], F̂)↓)]∼=, ε
(3)

[[α]] = ⊥ ∨ [[α′]] = ⊥ noerr

[γ]∼=, α := α′ → [γerr]∼=, ε
(4)

In Fig. 3 the semantic rules are visualized for an example configuration. In rule
2 there might be the necessity for both abstraction and concretion. The execution
of the assignment and the following abstraction via h♮ yields an intermediate config-
uration which is generally not canonical since the variable v could now be too close
to an abstract node. Therefore we have to find a canonical configuration γ′ that
is at least as concrete as γ̄ and related by an abstraction morphism to it. There
might be more than one solution, thus this rule is nondeterministic (indicated by
the dashed arrows), but remains the only source of nondeterminism.

In rules 1 and 3 the distance to an abstract node is not reduced, but the opposite
case can occur: just imagine an assignment of the form y := nil . If y points
into a list whose head is referred to by another variable, we possibly increase the
distance from that variable to abstract nodes. The execution of the assignment

7

K
a
t
o
e
n

a
n
d

N
o
l
l

a
n
d

R
ie

g
e
r

(1) v = w (analogously: v = nil , v = &w)
w

v

assign

x

w

v

GC

x

w

v

abstract

x

w

v

x

(2) v = ∗w
w

v

assign

x

w v

GC

x

w v

abstract

x

w v

x

w v

x

w v

x

concretize

(3) ∗v = w (analogously: ∗v = ∗w, ∗v = &w)
w

v

assign

x

w

v

GC

x

w

v x

abstract

w

v x

Fig. 3. Exemplary visualization of the abstract semantics (M = 3)

8

Katoen and Noll and Rieger

x y x y x y x y

yxyx

p

c

p

c

p

c

pc

p

c

p

c

Fig. 4. Producer/Consumer: Abstract State Space (M = 1)

therefore potentially yields a non–canonical configuration and we have to re–abstract
to determine the corresponding canonical configuration. According to Thm. 3.6 the
result is unique and thus these steps are deterministic.

Example 3.8 Figure 4 shows the finite abstract state space of the pro-
ducer/consumer program from Fig. 1 for M = 1. The p– and c–transitions each
summarize several producer/consumer steps. The dashed transitions are nondeter-
ministic steps, since the abstract node, visualized in black color, represents at least
two nodes in a chain. If now the consumer deletes one node from the beginning of
the queue the distance of x to the abstract node becomes two and thus we need to
concretize the graph to obtain a canonical configuration. For this we distinguish
two cases: either the abstract node represents exactly two nodes, then we reach the
graph to the right, or it represents more than two, in which case we stay in the
same state since the abstract node still represents more than one concrete node.

Theorem 3.9 (Finiteness) For every π ∈ LMP, T a
π is finite.

The idea of the proof is to establish a bound on the number of nodes of canonical
configurations for a given number of program variables.

Theorem 3.10 (Correctness of the Abstraction) Let π ∈ LMP. For every

transition in T c
π there exists a corresponding abstract transition in T a

π such that the

heaps are related by abstraction morphisms.

The proof of the correctness theorem has been omitted due to space constraints.

4 A Logic for Concurrent List–Manipulating Programs

In the previous sections we have defined our programming language for concurrent
pointer manipulation and both its concrete and abstract semantics. In this section
we will present a logic which will allow us to reason about heap configurations and
program behavior. In the following LV denotes a set of logical variables, where we
always assume that LV ∩ PV = ∅.

Pointer Logic

Pointer logic deals with single configurations and is employed to express graph
properties as well as to inspect the special flags of heap configurations (see Def. 2.2).

9

Katoen and Noll and Rieger

Definition 4.1 The set PL of Pointer Logic formulas is given by the grammar

NExp ::= nil | v (∈ PV) | x (∈ LV) | ∗NExp

Atomic ::= tt | ff | err | dl | leak | signal | new | NExp = NExp | NExp ; NExp

PL ::= Atomic | ¬PL | PL ∧ PL | ∃x : PL

Later on we will use the logical operations ∨, →, ↔, and ∀ (defined as usual)
as abbreviations. Note that in contrast to pointer expressions in LM–programs our
logic supports dereferencing operations of arbitrary depth. The special operation
α ; α′ expresses the reachability of heap objects.

Definition 4.2 Let β : LV ⇀ N be a variable valuation and γ ∈ Γc a concrete
heap configuration. Then we define [[·]] : NExp ⇀ Nnil by:

[[nil]] := nil [[v]] := v for v ∈ PV
[[x]] := β(x) for x ∈ LV [[∗α]] := µγ([[α]]) for α ∈ NExp

Note the semantic difference with respect to the programming language. In
navigation expressions a variable v is interpreted by itself and not by the node it is
referencing. This avoids the necessity of the referencing operator &.

Definition 4.3 The (concrete) satisfaction relation |= for PL–formulas is given as
follows 4 (for γ = (N, ∅, µ, F)):

γ, β |= f iff f ∈ F , where f ∈ {err,dl, leak, signal,new}
γ, β |= α1 = α2 iff [[α1]] = [[α2]] 6= ⊥
γ, β |= α1 ; α2 iff [[αi]] 6= ⊥ ∧ [[α2]] ∈ µ⋆([[α1]])

γ, β |= ∃x : ϕ iff ∃n ∈ N : γ, β[x/n] |= ϕ

Temporal Pointer Logic

Pointer Logic enables us to express properties of single configurations. However
it cannot be used to specify (ongoing) computations, i.e., configuration sequences.
To this aim we will now extend this logic by temporal operators.

Definition 4.4 The set TPL of Temporal Pointer Logic formulas is given as follows:

TPL ::= PL | ¬TPL | TPL ∧ TPL | X TPL | TPL U TPL

For ϕ ∈ TPL we use the abbreviations Fϕ := ttUϕ and Gϕ := ¬F¬ϕ. Moreover
V (ϕ) ⊆ LV denotes the set of (bound or free) logical variables occurring in ϕ.

Note that it is not possible to nest quantifiers and temporal operators. To do so
it would be necessary to keep track of the object identities between states, which is
difficult in the presence of abstract nodes. In addition it would blow up the state
space and exclude the use of standard model checking algorithms. To the best of
our knowledge the only approach to support this idea is the one in [18,19,20]; other
works in the area such as [46] consider only shapes of the heap. This results in a loss

4 For ∧,¬, tt and ff the semantics is standard and therefore omitted.

10

Katoen and Noll and Rieger

of expressivity, e.g., a property like ∀x : new(x)→ F del(x) which states that every
produced object will eventually be consumed cannot be formulated. Nonetheless
we can specify many interesting properties.

Example 4.5 For our producer/consumer system from Fig. 1 it holds true:

1. ¬F(dl ∨ err) (never deadlock or pointer errors)

2. GF new (new objects are created infinitely often)

3. G((∗x 6= nil ∨ ∗y 6= nil)→ (x ; ∗y ∧ ∀v : (v 6= y → x ; v)))
(whenever the queue is not empty, the object y points to is reachable from x
and between x and this object lies a chain)

More general correctness properties are:

4. F ∗x = ∗y (x and y will eventually become aliases)

5. G¬(∃z : (x ; z∧ y ; z)) (x and y always point to disjoint parts of the heap)

6. G(∀y : (x ; y → (¬∃z : (y ; z ∧ ∗z ; y))))
(x always points to a non–cyclic list)

7. FG(¬leak) (only finitely often a memory leak can occur)

8. G(∀y : (x ; y → (∀z : (z ; y → x ; z)))) (x always points to a chain)

As mentioned before, TPL specifies computation paths. The set of possible
paths is represented by a transition system.

Definition 4.6 Let T = (Q, q0, lab,→) be a (concrete) transition system with lab :
Q→ Γc. A path in T is an infinite sequence of states ρ = ρ0ρ1ρ2... ∈ Qω such that
ρi → ρi+1 for all i ∈ N. Then for ϕ ∈ PL we have

ρ |= ϕ (∈ PL) iff ∃β : LV ⇀ Nlab(ρ0) s.t. lab(ρ0), β |=PL ϕ

For the temporal operators the semantics is identical to the one of LTL. We
write T |= ϕ iff ρ |= ϕ for all paths ρ ∈ {q0}Q

ω in T .

Reasoning about Abstract Computations

As expected the concrete semantics is straightforward. When we switch to ab-
stract configurations, however, we run into several complications since logical vari-
ables can be bound to both concrete and abstract nodes. In the latter case we have
to record which concrete node, represented by the summary node, it is bound to.
This could lead to undefinedness of Pointer Logic formulas. This problem occurs
mainly in direct comparisons of the form α = α′. To tackle this problem we choose
the global precision constant M in dependence of the formula as follows. If ϕ ∈ TPL
is the formula to check, then we assume from now on that

M ≥
∑

x∈V (ϕ)

{j + 1 | ∗jx occurs in ϕ}.

Due to the presence of abstract nodes it is not sufficient anymore to evaluate logical
variables by simple variable–to–node mappings. Additionally we must record the
offset of a variable referring to an abstract node and the distance between variables
pointing to the same abstract node. This leads to the concept of abstract valuations.

11

Katoen and Noll and Rieger

Given γ ∈ Γ♮ and ϕ ∈ TPL, an abstract valuation is of the form η = (β, o, δ),
where β : V (ϕ) → Nγ maps logical variables to (abstract) nodes, o : V (ϕ) → M
denotes the offset for an abstract node, and δ : V (ϕ) → V (ϕ) ⇀ M is a “distance
matrix” for the logical variables with potentially undefined entries. δ is only defined
if both arguments are mapped onto the same entity, and o is only different from 1
if the corresponding variable is mapped onto an abstract node. The set of all such
valuations will be denoted by Valγ,ϕ.

Using this concept one can define a function dγ,η : NExp × NExp → {0, 1,∞}
measuring the “distance” of pointer expressions, where distance here means either 0
if the expressions are mapped onto the same (concrete) entity, 1 if the the first case
does not hold but the second argument is reachable from the first or ∞ if neither
is the case.

The presence of abstract nodes plays a vital role in the abstract semantics.
Without the global constraint for M we would not be able to resolve all possible
cases of abstract valuations, a third truth value would thus become necessary. The
distance function δ is required for the case that both variables are mapped onto an
abstract node with offset ⋆. With the help of the distance function the abstract
semantics of PL and TPL is straightforward.

Definition 4.7 Let γ = (N,A, µ, F) ∈ Γ♮ and η = (β, o, δ) ∈ Valγ,ϕ. The satisfac-
tion relation |= for PL–formulas on canonical configurations is then given as follows
(omitting the trivial cases):

γ, η |= f iff f ∈ F , where f ∈ {err,dl, leak, signal,new}
γ, η |= α1 = α2 iff dγ,η(α1, α2) = 0

γ, η |= α1 ; α2 iff dγ,η(α1, α2) ∈ {0, 1}
γ, η |= ∃x : ϕ iff ∃n ∈ N, off ∈M, dist : V (ϕ) ⇀ M s.t.

γ, (βη [x/n], oη[x/off], δη [x/dist]) |= ϕ

Let T = (Q, q0, lab,→) be an abstract transition system with lab : Q → Γ♮/∼=
and ρ ∈ Qω a path in it. Then ρ |= ϕ ∈ PL iff for γ ∈ lab(ρ0) there exists an
η ∈ Valγ,ϕ s.t. γ, η |=PL ϕ. Temporal operators and Boolean connectives are treated
in the standard way. We write T |= ϕ iff ρ |= ϕ for all paths ρ ∈ {q0}Q

ω in T .

The following theorem states that the abstract semantics of TPL and of the
programming language is correct, i.e., that the validity of a formula under the
abstract interpretation implies the validity under the concrete one. The converse
though does not hold.

Theorem 4.8 Let π ∈ LMP and ϕ ∈ TPL. If T a
π |= ϕ then T c

π |= ϕ.

Proof. It suffices to show for all ϕ ∈ PL and γ ∈ Γc the proposition:

∃β : LV ⇀ Nγ s.t. γ, β |= ϕ ⇔ ∃η ∈ Valγ,ϕ s.t. h♮(γ), η |= ϕ (⋆)

Note that the ⇐–direction is sufficient for correctness, the ⇒–direction though is
trivial. In the proof the choice of the global constant M (depending on the formula)
plays a central role. Imagine for example a property “the heap contains at least five
objects different from program variables”. To formulate this property we need at
least five different logical variables and the constraint onM implies that M ≥ 5. For
smaller M it can happen that a formula that is satisfied in the abstract case, does

12

Katoen and Noll and Rieger

not hold in all concrete configurations associated with the abstract one. E.g. for
M = 1 and a graph with one abstract node our example property would be satisfied;
in the corresponding concrete graph where the abstract node is represented by two
concrete nodes not necessarily.

With (⋆) we can infer from Thm. 3.10 the validity of the claim, since TPL
does not allow path quantifiers. By construction of the abstract PL–semantics it is
intuitively clear that (⋆) holds. 2

Model Checking Temporal Pointer Logic

Because of the two–stage approach in defining the logic, we can reduce the TPL
model checking problem to an LTL model checking problem, which can efficiently
be verified by existing model checkers.

Algorithm 1 Let T = (Q, q0, lab,→) be the abstract transition system generated

by a program π ∈ LMP and ϕ ∈ TPL the formula to verify. Let Ψ := {ψ ∈ PL |
ψ maximal subformula of ϕ} = {ψ1, ..., ψr}.

Define a “traditional” transition system T ′ = (Q, q0, lab
′,→) where lab ′ : Q →

2AP with AP = {pi | i ∈ {1, ..., r}} such that pi ∈ lab ′(q) ⇔ lab(q) |= ψi.

Now solve the LTL model checking problem T ′ |=?
LTL ϕ[ψ1/p1, ..., ψr/pr].

The idea is thus to replace all (maximal) PL–subformulas by atomic propositions
to obtain an LTL–formula. To do so we first have to evaluate the PL–formulas on the
transition system and to change its labeling from configurations to atomic proposi-
tions, where each atomic proposition represents the truth value of the corresponding
PL–subformula on the given configuration. The correctness of this approach is clear.

Limitations

Due to the nondeterminism in the abstract semantics caused by the presence
of abstract nodes we may obtain false negatives. This means that in the abstract
transition system there may exist computations which do not correspond to concrete
ones and on which the property to verify does not hold.

Consider a program creating a list (pointed to by v) with M + 3 elements and
then deleting again M + 3 elements. The property to verify is XF(∗v = nil), i.e.
that the list becomes empty. It is obvious that due to the presence of an abstract
node after the construction of the list in the abstract semantics there is a path that
retains that abstract node and thus the list never becomes empty (see Def. 3.7, rule
2). In the concrete case however the formula is satisfied.

Due to the overapproximation and the LTL approach false positives though
cannot occur. This means that the successful verification of a property in the
abstract case implies the correctness in the concrete case. False negatives can only
occur in cases where information on the precise number of objects is necessary.

5 Application: Concurrent Garbage Collection

In this section we will show we will employ our approach to find counterexamples of
a concurrent garbage collection algorithm. More concretely we will consider a so–
called mark–and–sweep collector, which maintains a bit for each object in the heap
to record its reachability status. Here we model this information as an additional
heap component, a (partial) function r : N ⇀ B which indicates whether the

13

Katoen and Noll and Rieger

collector considers a node to be reachable (1) or not (0). This component is made
accessible to the garbage collector program using the additional constructs

• reset ∈ Stmt, which resets the reachability value of every node to 0,

• mark(α) ∈ Stmt where α ∈ PExp, which sets the reachability information of the
node [[α]] to 1, and

• r(α) ∈ BExp where α ∈ PExp tests whether the reachability bit of [[α]] is set.

We refrain from giving the formal details of the extended syntax and semantics
of LM–programs; these are straightforward to formalize. The only modification we
would like to mention explicitly is an adaptation of the automatic garbage collec-
tion procedure (cf. Def. 2.3), which is activated after the execution of every LM–
statement which potentially causes nodes to become unreachable (we refer to the
derivation rules in Def. 2.5). To ensure the finiteness of our abstraction, we still have
to use it. However, we will adapt the handling of the leak flag such that it will be set
only if the garbage collector considers an unreachable node n to be reachable, i.e., if
r(n) = 1. Formally this means that for an extended configuration γ̂ = (N,A, µ, F, r)
we define γ̂↓:= (N ′, A ∩ N ′, µ ↾ N ′, F ∪ {leak | ∃n ∈ (N \ N ′) : r(n) = 1}, r ↾ N ′)
with N ′ = µ⋆(PV).

Using these concepts we can now proceed by describing how a concurrent
garbage collector can be added to a given LM–program, called a mutator. For π =
var v1, . . . , vk : (s1‖ . . . ‖sl) ∈ LMP, we define π′ := var v1, . . . , vk, t : (s1‖ . . . ‖sl‖c)
with garbage collector c as in Fig. 5.

while tt do
reset;
with v ∈ PV do
t := v;
while t 6= nil do

if r(t) then t := nil

else mark(t);
t := ∗t

fi
od

od;
signal

od

Fig. 5. A naive garbage
collector

Thus the garbage collector is running concur-
rently with the mutator. It executes an infinite
loop, starting by resetting the reachability bit of
every node in the heap. Using the auxiliary vari-
able t, it then marks every reachable node, begin-
ning with the roots of the heap which are acces-
sible by the program variables. Here the state-
ment with v ∈ PV do s od is a meta construct
which is expanded to s[v/v1]; s[v/v2]; ...; s[v/vk]
for PV = {v1, . . . , vk}. Whenever it encounters
a node which has already been marked (if state-
ment), it continues with the next program vari-
able to avoid redundant assignments. Finally it
employs the signaling mechanism of our program-
ming language to indicate that now the actual
collection phase would start, i.e., that all nodes
whose reachability bit is 0 would be removed.

Note, however, that we are still using our au-
tomatic garbage collection procedure such that we can guarantee that in every
configuration of the system, all nodes are reachable. In other words, whenever the
signal occurs there should not exist any unmarked node in the heap. This obser-
vation is the key idea for specifying the soundness of the garbage collector c as
a safety property in TPL. Here we assume that the underlying Pointer Logic (cf.
Def. 4.1) is extended by atomic propositions of the form r(α) which allow us test
the reachability information of the node to which the navigation expression α refers:

G(signal→ ∀x : r(x))

14

Katoen and Noll and Rieger

x x

0 0 0

x

1 1 0

x

1 1 0

t x

1 1 0

x

1 1 0

x

1 1 0

x

1 0

x

1 0

x

1 0

t y t y

t yt

C: reset C+ M: y := ∗x M: ∗x := ∗y

M: ∗y := nil

M: y := nilC: t := ∗t
“leak”“signal”

C+C: signal

Fig. 6. Possible erroneous run of garbage collector and mutator

Another important issue is the completeness of the garbage collector, which
means that every node which has become unreachable in the course of the compu-
tation, will eventually be removed. This, however, cannot be directly expressed for
two reasons. First, verifying this property would require to keep track of the iden-
tity of objects between different configurations, which in turn involves the nesting
of quantifiers and temporal operators. This is not supported by our logic. Second,
our automatic garbage collection procedure immediately removes nodes that have
become unreachable.

What we can formulate instead, however, is a safety property which comes very
close to the actual completeness. It expresses that a node which has become un-
reachable will never be marked by the garbage collector. Employing the modified
handling of the leak flag, this property can simply be formulated as

G ¬leak

Note that this formalization is only justified since the garbage collector is mono-
tonic in the following sense: once a node has been marked, its reachability infor-
mation will not be reset before the collection signal occurs. Moreover completeness
can only be expected (just as the above soundness property) if it is guaranteed that
the mutator does not modify the reachability bits.

The example computation in Fig. 6 shows that the above garbage collector
violates both of these requirements. Here the mutator program is assumed to be of
the form y := ∗x; ∗x := ∗y; ∗y := nil ; y := nil ; it simply discards the second node
of the list whose head is referenced by x (assuming that this node exists). Here C
and M stand for operations of the collector and the mutator, respectively, which are
either concretely given or summarized by a “+” sign. The bits labeling the nodes
indicate the reachability information as set by the collector.

The computation shows that the collector is neither correct nor complete. In
the final step involving the signal flag, the reachability value 0 of the list’s tail node
means that it would be removed by the collector although it is reachable. Two steps
earlier, the leak flag indicates that garbage has automatically been deleted which
has been marked as reachable by the collector. Both of these problems are caused
by the uncontrolled interaction between the mutator and the collector; they can be
avoided by placing the body of the collector loop in an atomic region.

6 Related Work

Related work on the topic of analyzing pointer–manipulating programs can be clas-
sified into the following (often overlapping) categories.

15

Katoen and Noll and Rieger

Predicate abstraction abstracts the state space of the program by evaluating it
under a number of given predicates. This yields a Boolean program which conser-
vatively simulates all potential executions [25]. Successful software model checkers
such as BLAST [28] and SLAM [3] are based on this approach. There are several
papers that use classical predicate abstraction for pointer analysis [2,14]. In partic-
ular, [15,16] study concurrent garbage collection using predicate abstraction.

Shape analysis is a static analysis framework that represents recursive data struc-
tures of unbounded size by finite structures, called “shape graphs”. The idea is to
apply to the heap the same abstraction that is applied to the program’s states in
predicate abstraction: it is defined in terms of equivalence classes of heap objects
that are induced by a finite set of predicates on those objects. The usual approach
is to formalize shape graphs by three–valued logical structures [46]. This approach
has been implemented TVLA [34] and in BLAST [5] which makes use of TVLA.

Recent developments comprise the development of adaptive methods which au-
tomatically adjust to the data structures that occur in the given program [31,35,48],
demand–driven techniques [5,27], efficiency improvements [33], and interprocedural
shape analysis [26,30,43,44].

It is often argued that the application of predicate abstraction to pointer struc-
tures does not work well because it is difficult to find predicates which abstract
heap structures in an appropriate and compact way [5]. This claim is substantiated
by the results in [36] which investigates the application of both predicate abstrac-
tion and shape analysis to programs operating on singly–linked lists, employing a
similar abstraction as ours: elements on unshared list segments are summarized.
It is shown that standard predicate abstraction requires an exponential number of
predicates in comparison to the number of predicates in shape analysis. Also [41]
considers both techniques, but in a very restricted programming–language setting
which only supports single assignments.

Regular model checking is a framework for unified verification of infinite–state
systems based on automata theory. It represents states using words (trees) over
a finite alphabet and sets of states using finite (tree) automata [10]. Like in our
approach, singly–linked lists are also considered in [8,9], but only safety and termi-
nation properties are verified.

Dataflow analysis is a technique for gathering information about certain aspects
of a program using its control flow graph. This approach is generally efficient but
restricted to rather shallow properties of programs such as aliasing relations [17,39],
points–to information [47,51], or pointer range analysis [50].

Hoare–style approaches: first–order reasoning typically breaks down when it
comes to prove properties of pointer–manipulating programs. The main reason is
that it is impossible to express an invariant of all members of a data structure in
first–order logic. The latter has to be extended therefore to support the definition of
a reachability predicate [1,12,22,32,37,38]. However such deductive techniques usu-
ally involve user interaction, or otherwise only restricted properties such as deref-
erencing of nil pointers or aliasing effects can be analyzed.

Separation logic has been proposed as an extension to Hoare logic that permits
local reasoning about linked structures, supporting features to support modular cor-
rectness proofs for pointer–manipulating programs [40,42]. It has been employed for
termination proofs of heap–manipulating programs [4], for interprocedural shape

16

Katoen and Noll and Rieger

analysis [24], for handling abstract data types [7], and for verifying garbage col-
lection algorithms [6]. However most of the work on separation logic focuses on
verifying programs manually.

In summary, many of the characterizing features of our approach are already
present in earlier papers: the restriction to singly–linked lists without data fields,
the introduction of abstract entities which represent a potentially unbounded num-
ber of heap cells (called “summary nodes” in [13]); see e.g. [2,9,36], and the ob-
servation that, in this setting, the number of sharing points in heap structures is
bounded by the number of program variables [9,36].

However none of these combines the strengths of our approach which supports
concurrent programs with dynamic memory allocation and destructive updates such
that arbitrary (cyclic) linked lists can be constructed, integrates both abstraction
and model checking in a fully automated way, supports a linear–time logic in which
both safety and liveness properties can be expressed, and which allows to use stan-
dard LTL model checkers.

In comparison, many of the existing approaches suffer from the poor program-
ming environment, the exclusion of cyclic data structures, the requirement of user
interaction, or the restriction to safety properties. Notable exceptions are [2], which
also offers liveness properties but requires user–defined ranking functions, [20], which
employs extended tableau–based techniques for model checking, and [49], which has
a non–standard interpretation.

7 Conclusions and Future Work

We have presented a framework for the verification of concurrent pointer–manipu-
lating programs with unbounded heap size and destructive updates. The correctness
properties are specified using temporal pointer logic which is essentially pointer
logic for expressing heap properties enriched with temporal operators. Instead of
requiring dedicated algorithms, the TPL model checking problem is reduced to an
LTL model checking problem that can be verified effectively with a broad variety of
existing model checkers. The tradeoff is the restriction to list–like data structures
as well as the limitation in expressiveness of the logic because object identities are
not tracked between configurations.

Currently we are implementing our method to verify more realistic examples in
the future. In particular we will extend the analysis of concurrent garbage collectors
by defining a “hardest mutator”, i.e., a general mutator program which is capable
of simulating the behavior of any other mutator. This will enable us to establish
the correctness of garbage collectors independent of the concrete mutator.

Furthermore due to the extensive use of concurrency, state space reduction and
optimization techniques such as partial order reduction [21,23] will have to be em-
ployed and integrated in the implementation. We also plan to extend our framework
with dynamic (unbounded) creation of threads. Another interesting aspect could be
the combination of existing finite–state modeling languages like Promela [29] and
pointer manipulation. Finally in the long run we have plans to increase the expres-
sivity of the logic as well as to generalize our approach to richer data structures,
for which new abstractions will be necessary. Moreover an automata–theoretic ap-
proach to defining a storeless semantics, as it is studied in [11] for a (concrete)
semantics for pointer programs seems promising.

17

Katoen and Noll and Rieger

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object–oriented programs.
In POPL ’06, pages 91–102. ACM Press, 2006.

[2] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. In VMCAI ’05, volume
3385 of LNCS, pages 164–180. Springer–Verlag, 2005.

[3] T. Ball and S. K. Rajamani. The SLAM project: debugging system software via static analysis. In
POPL ’02, pages 1–3. ACM Press, 2002.

[4] J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for programs
with shape–shifting heaps. In CAV ’06, volume 4144 of LNCS, pages 386–400. Springer–Verlag, 2006.

[5] D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In CAV ’06, volume 4144 of LNCS,
pages 532–546. Springer–Verlag, 2006.

[6] L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying garbage collector. In
POPL ’04, pages 220–231. ACM Press, 2004.

[7] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation logic. In
POPL ’05, pages 259–270. ACM Press, 2005.

[8] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists are
counter automata. In CAV ’06, volume 4144 of LNCS, pages 517–531. Springer–Verlag, 2006.

[9] A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dynamic 1–selector-
linked list structures in regular model checking. In TACAS ’05, volume 3440 of LNCS 3440, pages
13–29. Springer–Verlag, 2005.

[10] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree model checking of
complex dynamic data structures. In SAS ’06, volume 4134 of LNCS, pages 52–70. Springer–Verlag,
2006.

[11] M. Bozga, R. Iosif, and Y. Lakhnech. Storeless semantics and alias logic. ACM SIGPLAN Not.,
38(10):55–65, 2003.

[12] M. Bozga, R. Iosif, and Y. Lakhnech. On logics of aliasing. In SAS ’04, volume 3148 of LNCS, pages
344–360. Springer–Verlag, 2004.

[13] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures. In PLDI ’90, pages
296–310. ACM Press, 1990.

[14] D. Dams and K. S. Namjoshi. Shape analysis through predicate abstraction and model checking. In
VMCAI ’03, volume 2575 of LNCS, pages 310–323. Springer–Verlag, 2003.

[15] S. Das and D. L. Dill. Successive approximation of abstract transition relations. In LICS ’01, pages
51–58. IEEE, 2001.

[16] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In N. Halbwachs and D. Peled,
editors, CAV ’99, volume 1633 of LNCS, pages 160–171. Springer–Verlag, 1999.

[17] A. Deutsch. Interprocedural may–alias analysis for pointers: beyond k–limiting. In PLDI ’94, pages
230–241. ACM Press, 1994.

[18] D. Distefano. On Model Checking the Dynamics of Object–Based Software: a Foundational Approach.
PhD thesis, Univ. of Twente, 2003.

[19] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? – on the automated
verification of linked list structures. In FSTTCS ’04, volume 3328 of LNCS, pages 250–262. Springer–
Verlag, 2004.

[20] D. Distefano, J.-P. Katoen, and A. Rensink. Safety and liveness in concurrent pointer programs. In
FMCO ’06, volume 4111 of LNCS, pages 280–312. Springer–Verlag, 2006.

[21] C. Flanagan and P. Godefroid. Dynamic partial–order reduction for model checking software. In
POPL ’05, pages 110–121. ACM Press, 2005.

[22] P. Fradet, R. Gaugne, and D. L. Métayer. Static detection of pointer errors: an axiomatisation and a
checking algorithm. In ESOP ’96, volume 1058 of LNCS, pages 125–140. Springer–Verlag, 1996.

[23] P. Godefroid. Partial–Order Methods for the Verification of Concurrent Systems: An Approach to the
State–Explosion Problem, volume 1032 of LNCS. Springer–Verlag, 1996.

[24] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap abstractions.
In SAS ’06, volume 4134 of LNCS, pages 240–260. Springer–Verlag, 2006.

18

Katoen and Noll and Rieger

[25] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV ’97, volume 1254 of
LNCS, pages 72–83. Springer–Verlag, 1997.

[26] B. Hackett and R. Rugina. Region–based shape analysis with tracked locations. In POPL ’05, pages
310–323. ACM Press, 2005.

[27] N. Heintze and O. Tardieu. Demand–driven pointer analysis. ACM SIGPLAN Not., 36(5):24–34, 2001.

[28] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with BLAST. In SPIN ’03,
volume 2648 of LNCS, pages 235–239. Springer–Verlag, 2003.

[29] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison–Wesley, 2003.

[30] B. Jeannet, A. Loginov, T. W. Reps, and S. Sagiv. A relational approach to interprocedural shape
analysis. In SAS ’04, volume 3148 of LNCS, pages 246–264. Springer–Verlag, 2004.

[31] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using grammar-based shape
analysis. In ESOP ’05, volume 3444 of LNCS, pages 124–140. Springer–Verlag, 2005.

[32] T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava, and G. Yorsh. Simulating reachability
using first–order logic with applications to verification of linked data structures. In CADE ’05, volume
3632 of LNCS, pages 99–115. Springer–Verlag, 2005.

[33] T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction for shape analysis with fast and precise
transformers. In CAV ’06, volume 4144 of LNCS, pages 547–561. Springer–Verlag, 2006.

[34] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. In SAS ’00, volume 1824
of LNCS, pages 280–302. Springer–Verlag, 2000.

[35] A. Loginov, T. W. Reps, and S. Sagiv. Abstraction refinement via inductive learning. In CAV ’05,
volume 3576 of LNCS, pages 519–533. Springer–Verlag, 2005.

[36] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and canonical abstraction
for singly–linked lists. In VMCAI ’05, volume 3385 of LNCS, pages 181–198. Springer–Verlag, 2005.

[37] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In PLDI ’01, pages 221–231.
ACM Press, 2001.

[38] G. Nelson. Verifying reachability invariants of linked structures. In POPL ’83, pages 38–47. ACM
Press, 1983.

[39] E. M. Nystrom, H.-S. Kim, and W. mei W. Hwu. Bottom–up and top–down context–sensitive summary–
based pointer analysis. In SAS ’04, volume 3148 of LNCS, pages 165–180. Springer–Verlag, 2004.

[40] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In POPL ’04, pages
268–280. ACM Press, 2004.

[41] A. Podelski and T. Wies. Boolean heaps. In SAS ’05, volume 3672 of LNCS, pages 268–283. Springer–
Verlag, 2005.

[42] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS ’02, pages 55–74.
IEEE Computer Society, 2002.

[43] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure local heaps and
its abstractions. In POPL ’05, pages 296–309. ACM Press, 2005.

[44] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint–free programs. In
SAS ’05, volume 3672 of LNCS, pages 284–302. Springer–Verlag, 2005.

[45] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape–analysis problems in languages with destructive
updating. ACM Trans. Program. Lang. Syst., 20(1):1–50, 1998.

[46] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3–valued logic. ACM Trans.
Program. Lang. Syst., 24(3):217–298, 2002.

[47] J. Whaley and M. S. Lam. An efficient inclusion–based points–to analysis for strictly–typed languages.
In SAS ’02, volume 2477 of LNCS, pages 180–195. Springer–Verlag, 2002.

[48] E. Yahav and G. Ramalingam. Verifying safety properties using separation and heterogeneous
abstractions. In PLDI ’04, pages 25–34. ACM Press, 2004.

[49] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties specified via evolution
logic. In ESOP ’03, volume 2618 of LNCS, pages 204–222. Springer–Verlag, 2003.

[50] S. H. Yong and S. Horwitz. Pointer–range analysis. In SAS ’04, volume 3148 of LNCS, pages 133–148.
Springer–Verlag, 2004.

[51] J. Zhu and S. Calman. Symbolic pointer analysis revisited. In PLDI ’04, pages 145–157. ACM Press,
2004.

19

	Introduction
	A List--Manipulating Programming Language
	State--Space Abstraction
	A Logic for Concurrent List--Manipulating Programs
	Application: Concurrent Garbage Collection
	Related Work
	Conclusions and Future Work
	References

