
A Stochastic Automata Model and its Algebraic ApproachPedro R. D'Argenio1�, Joost-Pieter Katoen2, and Ed Brinksma11Dept. of Computer Science. University of Twente.P.O.Box 217. 7500 AE Enschede. The Netherlands.fdargenio,brinksmag@cs.utwente.nl2Lehrstuhl f�ur Informatik VII. University of Erlangen.Martensstrasse 3. D-91058 Erlangen. Germany.katoen@informatik.uni-erlangen.deAugust 8, 1997AbstractWe discuss a new model for the analysis and simulation of stochastic systems which wecall stochastic automata. Basically, they are a combination of the timed automata modeland generalised semi-Markov processes (GSMPs for short). We discuss their behaviourand we compare them to the GSMPs model. In addition, we de�ne a stochastic processalgebra that supports general distribution (both continuous and discrete). Its semantics isgiven in terms of stochastic automata. We show that stochastic automata can be expressedin terms of the process algebra. We discuss a concrete example and we �nish by discussingour current work on this topic and possible future directions.1991 Mathematics Subject Classi�cation: 68Q55, 68Q60, 68Q75, 93E03.1991 CR Categories: C.4, D.3.1, F.3.1, F.3.2, I.6.2.Keywords: stochastic automata, process algebra, stochastic systems, real-time, timedautomata, performance analysis.Note: This is a revised version of the article appeared in E. Brinksma and A. Nymeyereditors, Proc. of 5th International Workshop on Process Algebras and Performance Mod-eling, Enschede, The Netherlands, Technical Report CTIT 97-14. University of Twente,June 1997.
�Supported by the NWO/SION project 612-33-006.1

1 IntroductionIn the world of performance modelling, many models have been de�ned to analyse and simulatesystems such as queuing networks, stochastic Petri-nets, or generalised semi-Markov processes.It has been argued many times that, in these kind of models, the di�culty of the design andmodelling of a system whose performance is studied rapidly grows with the size and complexityof the system itself.In the last few years, this phenomenon has drawn the attention of many researchers intoextending process algebras with stochastic and real-time features [15, 9, 11, 3, 6, 16]. Stochasticprocess algebras, as they are usually called, considerably simplify the tractability of complexsystems because, in this framework, systems do not need to be modelled as a whole, but as acomposition of small subsystems. Another advantage is that stochastic process algebras notonly allow to study the performance of a system, but also its functionality.In this paper, we introduce a new model to study stochastic systems that we namedstochastic automata. The stochastic automata model is an extension of the traditional au-tomata model with ideas borrowed from timed automata [2, 12] and GSMPs [8, 25]. Basically,a stochastic automaton is an automaton with clocks. Clocks are set randomly according toan associated distribution function and their value decreases as time passes. The occurrenceof a transition at a certain time is controlled by the clocks. Each transition has associated aset of clocks and it must take place as soon as all these clocks have expired, i.e., they havedecreased further than the value zero.We use stochastic automata as the underlying semantics of a stochastic process algebra.Actually, the stochastic automata model and the process algebra turn out to be equally ex-pressive. In this way, the process algebra can be regarded as a language to describe stochasticautomata. This result closely follows the methodology of [7] where a process calculus fortimed automata was introduced.Usually, the semantics of stochastic process algebras such as TIPP [9, 13], PEPA [15],and EMPA [3], is de�ned in terms of extended transition systems, which, basically, have eachtransition labelled not only with the action name, but also with a distribution function thatdetermines the timing of such a transition. But the inherent interleaving characteristic oftransition systems demands a careful treatment of the de�nition of parallel composition. Intraditional interleaving process algebras like CCS [18], it holds thata;P jj b;Q = a; (P jjb;Q) + b; (a;P jjQ)Stochastic process algebras extend the pre�xing into aF ;P where F is a distribution functionwhich determines the probability of the random delay after which the action a must happen.In this setting, it is not generally true thataF ;P jj bG;Q = aF ; (P jjbG;Q) + bG; (aF ;P jjQ) (1)since, in the left hand side process, the time of a and b starts to count from the same initialmoment, while in the right hand side process, the delay of one action starts to count after theother action has already occurred. A possible �rst solution is to restrict the attention only toexponential distributions. Their memoryless property restores the expansion law, i.e., in thiscontext, equation (1) holds [15, 13, 3].An alternative solution was proposed in [6] by moving to true concurrency semantics,where the expansion law is not longer generally true. The only restriction of this approach2

is that the set of chosen distribution functions should form a monoid. The drawback ofthis solution is that, even for very simple recursive processes, the underlying semantic object(namely, a stochastic variation of an event structure) is in�nite.With our stochastic process algebra, we propose a more elegant solution. We separatethe stochastic information from the action name. (We should remark that a similar approachhas been used in [11].) Instead of writing aF ;P , we write fjxF jg (fxF g7!7!a;P). The operatorfjxF jg : : : sets the clock xF according to the distribution function F , and the operationfxF g7!7! : : : prevents the pre�xing a;P to happen until clock xF has expired. In this settingwe can have an alternative expansion law:fjxF jg (fxF g7!7!a;P) jj fjyGjg (fyGg7!7!b;Q) =fjxF ; yGjg (fxF g7!7!a; (P jj fyGg7!7!b;Q) + fyGg7!7!b; (fxF g7!7!a;P jj Q))In addition, this separation of concerns (setting of time according to a distribution function,expiration of such a time, and actual activity) introduces more expressive power. We observethat in principle any kind of (continuous or discrete) distribution function is allowed in thismodel, while we maintain a �nite semantic object in a reasonable way (comparable to regularprocesses in CCS).The aim of this article is to introduce and discuss the stochastic automata model andthe general stochastic process algebra. Theoretical concerns will be discuss in deep in aforthcoming report.The paper is organised as follows. In Section 2, we introduce the stochastic automatamodel. We discuss its behavioural properties and we informally discuss the underlying se-mantics. In Section 3, GSMPs are shown to be properly included in the stochastic automatamodel. The stochastic process algebra is introduced in Section 4. We discuss its intuitivebehaviour and de�ne its semantics in terms of stochastic automata. Moreover, we show thatany stochastic automaton can be expressed by the process algebra. In Section 5, a non-trivialexample is introduced. We describe the CSMA/CD protocol in terms of our stochastic processalgebra. Finally, in Section 6, we conclude by discussing work in progress, future directionsof our research, and related work.2 The Stochastic Automata ModelIn this section, we introduce a kind of automaton that allows us to represent processes withstochastic information. The basic idea is borrowed from timed automata [2, 12] but the ideaof the behaviour and compositionality (see Section 4) is mainly based on the approach of [26]by combining it with ideas of discrete event systems, in particular GSMPs [8, 25].First we enumerate all the ingredients of a stochastic automaton.De�nition 2.1 A stochastic automaton is a structure (S; s0; C;A; -; �; F) where:� S is a set of locations,� s0 2 S is the initial location,� C is a set of clocks,� A is a set of actions, 3

� - � S � (A �}(C)) � S is the set of edges. We usually denote (s; a; C; s0) 2 -by s a;C- s0 and we say that C is its trigger set ,� � : S ! }(C) is the clock setting function,� F : C ! (IR! [0; 1]) assigns to each clock a distribution function such that F (x)(t) = 0for t < 0; we write Fx instead of F (x).Notice that each clock x 2 C is a random variable with distribution Fx. 2As in [7], the information of which clock should be set is related to the locations instead ofthe edges. This will be helpful for compositionality when we use stochastic automata as thesemantic interpretation of a process algebra (see Section 4). In stochastic automata, clocksare randomly set according to a certain associated distribution function and they count down.A clock expires if it has reached or decreased below the value 0. The occurrence of an action iscontrolled by the expiration of clocks. Thus, whenever s a;C- s0 and the system is in locations, a must happen as soon as all the clocks in the trigger set C have expired. Immediatelyafterwards all clocks in �(s0) are randomly set according to their respective distributions. Theidea of clocks that decrease in time is borrowed from GSMPs [8, 25] (see also Section 3).For the reader familiar with timed automata model [2, 12] we may remark that constraintsare implicit in stochastic automata. On the one hand, guards on s a;C- s0 would be madeexplicit by Vx2C x � 0 (we recall that clocks are counting down). That is, all the clocks thattrigger the edge s a;C- s0 should have expired. In this case, we say that s a;C- s0 is enabled.On the other hand, the invariant of s would be 8s a;C- :Wx2C x > 0, which says that itis allowed to idle in location s while no action is enabled. Notice that as soon as an edgebecomes enabled, the invariant becomes false; thus, the system must leave this location byexecuting an enabled edge.We give a simple example to understand the intuition of the model. Figure 1 representsa switch that controls a light in a corridor or stairway. In the picture, circles representlocations, variables enumerated in each location are the clocks that should be set accordingto the function �, and edges are represented by the arrows. The initial state is represented bythe small ingoing arrow. The distribution function of each clock is given beside the picture.The switch may be turned on at any time according to an exponential distribution witharrival rate �, even if the light is still on. It switches automatically o� exactly 60 seconds afterthe most recent time the light was switched on. Since we considered that exact 60 seconds mustpast before the light is turned o�, y is a random variable that takes value 60 with probability1. Notice that we can easily change the system to consider that clock y is not precise and hasa drift of � units of time. We can assume that such a drift is uniformly distributed. Then, ywould become a random variable with uniform distribution in [60 � �; 60 + �].The semantics of a stochastic automata is given in terms of a probabilistic transitionsystem. We will not formally de�ne the semantics of a stochastic automaton. Instead, we givea
avour of the underlying semantic model. We de�ne a kind of probabilistic transition systemin which we allow any kind of probability spaces, including thus continuous probabilities. Weconsider separately probabilistic transitions and non-deterministic transitions. In this way,our model is close to those of [10] and [11], although we do not distinguish between timedtransitions and discrete transitions. Instead, we use the approach of time-stamped actions.4

Figure 1: The switchx
on; x
o� ; yxon

onx x : exp(�)Fy(t) = � 0 if t < 601 if t � 60
x; y

De�nition 2.2 Let Prob(H) denote the set of probability spaces (
;F ; P) such that
 � H.A probabilistic transition system is a structure (�;�0; �0;A� IR�0; T;�!) where� � and �0 are two disjoint sets of states, with the initial state �0 2 �. States in � arecalled probabilistic states and states in �0 are called non-deterministic states.� A is a set of actions and IR�0 is the set of non-negative real numbers. We write a(d)for (a; d) (2 A� IR�0).� T : �! Prob(�0) is the probabilistic transition relation. Since T is de�ned as a (total)function, there is exactly one probabilistic transition relation for each probabilistic state.� �! � �0 � (A � IR�0) � � is the labelled (or non-deterministic) transition relation.We write �0 a(d)�! � for h�0; a(d); �i 2 �! and its intended meaning is that whenever thesystem is in the non-deterministic state �0, it can perform an action a at time d andmove to the probabilistic state �. 2The probabilistic transition system of a given stochastic automaton would be de�nedas follows. Suppose that the system arrives at a location s with the clocks having valuesaccording to a valuation v. We identify this situation with a probabilistic state (s; v). Assoon as this location is reached, clocks in �(s) are randomly set according to a distributionfunction de�ning new valuations v0 where the clocks which are not in �(s) preserve the samevalue of v. Hence, this procedure de�nes a probabilistic transition and the elements of theprobability space de�ned by T (s; v) are the non-deterministic states (s; v0)0. (We take theconvention that non-deterministic states are primed to distinguish them from probabilisticstates.) Once the clocks are set, we calculate which is the �rst edge s a;C- s0 that becomesenabled. So there will be a smallest non negative real d 2 IR�0 such that, for every clockx 2 C, v0(x) � d � 0. This will induce a labelled transition (s; v0)0 a(d)�! (s0; v00), where v00 isobtained by decreasing all the values in v0 by d time-units with the exception of the triggeredclocks in C which are set to in�nity. Notice that more than one edge can become enabled atthe same time, in such a case non-determinism arises.5

To understand the formal semantics, we consider a simple example. Figure 2 represents analarm bell that rings randomly between 10 and 11 seconds according to a uniform distribution.We write x : U1110 to mean that x is a random variable with a uniform distribution functionFx in the interval [10; 11]. Figure 2: The alarm bellx xring x : U1110Its probabilistic transition system would be given by� = f(s0; x := d) j d 2 IRg T (s0; x := d) = (�0;F ; P)�0 = f(s0; x := d)0 j d 2 IRg (s0; x := d)0 ring(d)�! (s0; x := d)where (�0;F ; P) is the probability space in which F is some appropriate transformation ofthe Borel space in IR (basically, a bijection from IR to �0) and P is the probabilistic measurefor a uniform distribution in the interval [10; 11].3 Stochastic automata and GSMPsThe generalised semi-Markov process model (GSMP for short) [8, 25] is a general methodto analyse and simulate discrete-event systems. It has been shown to be an e�ective tool tostudy complex and non-trivial systems.De�nition 3.1 A generalised semi-Markovian process (GSMP) is de�ned by the structure(Z; z0; x0; C; �; �; F) where� Z is the set of (output) states, with initial state z0 2 Z;� C is the set of clock events, with the initially triggered clock x0 2 C;� � : Z ! }(C), with �(z0) = fx0g, assigns a set of active clock events to each outputstate;� � : Z � C ! Z assigns the next state according to the current state and the clock thatis triggered; and� F : C ! (IR! [0; 1]) assigns to each clock a continuous distribution function such thatF (x)(0) = 0; we write Fx instead of F (x). 2We have restricted our attention to a subclass of GSMPs which is su�cient for our pur-poses. In fact, the only signi�cant restriction is that the next state function is deterministic.That is, the next state is uniquely determined by the present state and the triggered clockevent. In general GSMPs, this function is probabilistic, i.e., the next state is going to be6

chosen with certain probability from a set of states. Two other minor restrictions are con-sidered. First, the assignment of a distribution function to a clock event may depend on thehistory of the GSMP. In our framework, it only depends on the clock name. This is not areal restriction since we can introduce as many clock events as necessary to represent themore general GSMP. (Actually, each history of the general GSMP may become a clock eventin the reduced GSMP.) Second, sometimes clocks are allowed to have di�erent rates. Thisis not very usual, and moreover, under certain conditions, such \multirated" GSMPs can berepresented by GSMPs where the clock rates are all 1, just like our case.We remark also that, usually, the initial state of a GSMP is studied apart. For simplicity,we consider that the system has an initial state z0 and that it was reached by triggeringsome clock x0. We de�ned � such that, for the initial case, it is consistent with the originalde�nition of GSMP.A GSMP behaves as follows. Suppose that the system is in a certain state z. The activeclocks in �(z) will have some non-negative value and all other clock events (the inactive ones)have value1. The active clock with the smallest value is chosen to be triggered. Say x is thatclock, and d its value. Notice that such a clock is unique with probability 1, since in GSMPall the clocks are continuous random variables. The next state is given by �(z; x). The setof new clocks is given by �(�(z; x))n(�(z)nfxg), i.e., the clocks active in the new state whichwere not active before. All these new clocks are set according to their respective distributionfunction given by F . The old clocks which are still active take as a new value the previousvalue decreased d units of time (the value of x just before being triggered). Clocks which arenot active are set to 1. In this new state with the new valuation, the process is repeated.As for stochastic automata, we have also de�ned an operational semantics for GSMPs interms of probabilistic transition systems.We show the relation between stochastic automata and GSMP by given a formal trans-lation. This translation shows that the GSMP model is properly included in the stochasticautomata model.De�nition 3.2 Let G = (Z; z0; x0; C; �; �; F) be a GSMP. The translation of G into a stochas-tic automaton, is de�ned by M(G) def= (Z �}(C); (�(z0; x0); ;); C; C; -; �; F) where - isde�ned by x 2 �(z)(z; C) x;fxg- (�(z; x); �(z)nfxg)and �(z; C) def= �(z)nC. 2In the pair (z; C), C carries the information of which clocks were already active. No-tice that there are much too many locations (z; C). In fact, the only \useful" (reachable)locations have the format (�(z; x); �(z)nfxg) for some appropriate z 2 Z and x 2 �(z).This can be notice by observing the source of the edge de�ned in the rule of De�nition 3.2and that the initial state is (�(z0; x0); ;) = (�(z0; x0); �(z0)nfx0g). Moreover, notice that�(�(z; x); �(z)nfxg) = �(�(z; x))n(�(z)nfxg), which is the set of new clock events in the out-put state �(z; x). Besides, for each active clock in the output state z, there is an output edgefrom any location (z; C), that is, �(z) = Sfx j (z; C) x;fxg-g.It is clear that a translation is not possible in general in the other way around since thestochastic automata model not only allows a more general class of distribution function, but7

also allows non-determinism. We have proven that the translation given in De�nition 3.2preserves probabilistic bisimulation equivalence.4 A stochastic process algebraIn the following we introduce a stochastic process algebra. The methodology that we followto de�ne the syntax and the semantics is inspired by [7] where a process algebra for timedautomata was introduced.Let A be a set of actions. Let CN be a set of clock names and DF a set of distributionfunctions. We de�ne C def= CN �DF to be the set of clocks. We denote xG for (x;G) 2 C. Wede�ne the distribution assignment function F : C ! (IR! [0; 1]) by F (xG) def= G.De�nition 4.1 Let V a set of process variables. The syntax of the process algebra L isde�ned according to the following grammar:p ::= stop j a; p j C 7!7!p j p+ p j fjCjg p j pjjAp j p[f] j Xwhere C � C, a 2 A, A � A, f : A ! A, and X 2 V. A recursive speci�cation E is a setof recursive equations having the form X = p(V) for each X 2 V, where p(V) 2 L. Everyrecursive speci�cation has a distinguished process variable called root . 2Process stop represents inaction; it is the process that cannot perform any action. Theintended meaning of a; p (named (action-)pre�xing) is that action a must be performed assoon as possible followed by the execution of p. C 7!7!p is the triggering condition; processp is executed as soon as all the clocks in C have expired. p + q is the choice; it executesthe fastest of processes p and q, and if both of them become enabled at the same time,the choice is made non-deterministically. The clock setting operation fjCjg p sets the clocksin C according to their respective distribution function. We choose a LOTOS-like parallelcomposition. Thus, pjjAq executes p and q in parallel, and they are synchronised by actions inA. We should remark that synchronisation happens as soon as all the processes are ready todo it. This happens straightforwardly by considering the union of the triggering sets. Finally,the renaming operation p[f] is a process that behaves like p except that actions are renamedby f . We will assume the following precedence among the operators: + < jjA < fjCjg =C 7!7! = a; < [f].As a simple example, we give the speci�cation of the switch described in Section 2.Arrival = fjxGjg fxGg7!7!on;ArrivalSwitcho� = on;SwitchonSwitchon = on;Switchon + fjyK jg fyKg7!7!o� ;Switcho�System = ArrivaljjfongSwitcho� (2)In this case G is an exponential distribution with rate � and K gives probability 1 to the value60. Process Arrival models the arrival of people which occurs with exponential distribution ofrate �. Switch models the switch itself which initially is o� . Notice that the switch is alwaysenabled to accept an \on" and hence no clock controls this activity on the switch part of thesystem. Process System describes the whole system, allowing people to turn on the switch,i.e., process Arrival and Switch should synchronise on the action on.8

In the sequel, we need the notion of free and bound clock variables. Let p 2 L. A clockx is free in p if it has a subterm C 7!7!q such that x 2 C which do not appear in a contextfjC 0jg : : : with x 2 C 0. A clock x is bound in p if it has a subterm fjCjg q such that x 2 C. Wedenote by fv(p) and bv(p) the sets of free and bound clock variables respectively.To each term in the language we associate a stochastic automaton. In order to de�ne theautomaton associated to a parallel composition, we need to consider the additional operationck. ck(p) is a process that behaves like p except that no clock is set at the very beginning. Weonly allow occurrences of ck within the scope of static operations, namely, parallel compositionand renaming operation. The sets of free and bounded variables for ck(p) are de�ned byfv(ck(p)) = fv(p) [�(p) and bv(ck(p)) = bv(p), where � is de�ned in Table 1.To associate a stochastic automaton to a given term in the language, we need to de�nethe di�erent parts of the stochastic automaton. We start by de�ning predicates � and -as the least relations satisfying rules in Table 1. However, not all the processes can have astraightforward stochastic automaton as a semantic interpretation. To associate a stochasticautomaton to a term, clocks names must be considered with care as we see as follows.Table 1: Stochastic automata for L (X = p 2 E)�(stop) = ; �(fjCjg p) = C [�(p) �(p+ q) = �(p) [�(q)�(a; p) = ; �(C 7!7!p) = �(p) �(pjjAq) = �(p) [�(q)�(X) = �(p) �(p[f]) = �(p) �(ck(p)) = ;a; p a;;- pp a;C- p0p+ q a;C- p0q + p a;C- p0p a;C- p0X a;C- p0
p a;C0- p0fjCjg p a;C0- p0p a;C0- p0C 7!7!p a;C[C0- p0p a;C- p0p[f] f(a);C- p0[f]

p a;C- p0pjjAq a;C- p0jjAck(q)qjjAp a;C- ck(q)jjAp0 a =2 Ap a;C- p0 q a;C0- q0pjjAq a;C[C0- p0jjAq0 a 2 Ap a;C- p0ck(p) a;C- p0Consider the processp1 � fjxGjg (a; fxGg7!7!(fjxG; yH jg fyHg7!7!b; stop)) (3)The second occurrence of xG is intended to be bound to the outermost clock setting as shownby the grey arrow. Using the rules in Table 1, the following stochastic automaton would beobtained b; fxG; yHga; ;xG xGyH9

In this sense, xG would be captured by the innermost clock setting as shown by the blackarrow in formula (3). Therefore, we consider that clocks are di�erent if they are set in di�erentplaces, although they may have the same name.Situations of clock capture also occur in contexts with summations and parallel com-position. Consider the process p2 � fjxGjg fxGg7!7!a; stop + fjxGjg fxGg7!7!b; stop where Gis some continuous distribution function. p2 should not be considered equivalent to p3 �fjxGjg (fxGg7!7!a; stop + fxGg7!7!b; stop). Intuitively, in p2, a and b are enabled at the sametime with probability 0 (i.e. is improbable to have a non-deterministic choice between a andb), because the clocks responds to di�erent settings. Instead, our intuition says that the pro-cess p3 always enables a and b at the same time because they respond to exactly the samesetting of the same clock. In a naive interpretation of p2, its associated automaton wouldbecome isomorphic to that one of p3 which contradicts our intuition.Similarly, an attempt to de�ne the associated stochastic automaton of process p4 �fjxGjg fxGg7!7!a; stopjj;fjxGjg fxGg7!7!b; stop, would unify the two independent clocks xG goingagain against our intuition.In this sense, we need to characterise the set of processes that do not have con
ict ofvariables. A process does not have con
ict of variables if for every of its subterms p, thefollowing conditions holds:1. p � C 7!7!q implies C \ �(q) = ;2. p � q + q0 implies �(q) \ �(q0) = fv(q) \ �(q0) = �(q) \ fv(q0) = ;3. p � qjjAq0 implies bv(q) \ var(q0) = var(q) \ bv(q0) = ;Notice that all processes de�ned above have con
ict of variable.De�nition 4.2 For every process p such that p does not have con
ict of variable, the stochas-tic automaton associated to p is de�ned by [[p]]S def= (L; p; C;A; -; �; F). 2The reader is invited to check that processes for the switch system de�ned in (2) do nothave con
ict of variable, and that the stochastic automaton associated to the process Systemis the one depicted in Figure 1 up to the consideration that for every process p, ck(ck(p)) isisomorphic to ck(p).The restriction to processes which do not have con
ict of variable is not an actual problem,since we can always �-convert properly any process into one that does not have con
ict of vari-ables. With \properly" we mean that the distribution function associated to the clock must bepreserved. For instance, p4 can be �-converted into fjxGjg fxGg7!7!a; stopjj;fjyGjg fyGg7!7!b; stop.In this way, any process in the language has an associated stochastic automaton modulo �-conversion.The process algebra introduced below has the property of expressing any (�nitely branch-ing) stochastic automaton. The proof of the following theorem follows closely the ideas of asimilar theorem in [7].
10

Theorem 4.3 For every �nitely branching1 stochastic automaton SA there is a guarded re-cursive speci�cation2 E with root X such that the reachable part of SA and the reachable partof [[X]]S are isomorphic.Proof (Sketch). The proof consists of associating a process variable to each location s of SAand de�ning each one of them as the term that sets the clocks of �(s) over the summation ofthe outgoing edges represented by pre�xings with its respective triggering sets as follows. LetSA = (S;A; C; s0; -; �; F). For each location s 2 S de�ne a di�erent variable Xs. De�nethe recursive speci�cation E with root Xs0 and recursive equationsXs = fj�(s)jg �P fC 7!7!a;Xs0 j s a;C- s0g�where Pfpi j i 2 f1; : : : ; ngg def= p1 + p2 + � � � + pn. In particular, P ; def= stop.Now, we restrict SA and [[Xs0]]S to their reachable parts, and the isomorphism is given bythe function that maps every location in SA into its corresponding variable in [[Xs0]]S . 25 An example: the CSMA/CD protocolIn this section we use the models introduced above to describe the carrier sense multiple accessprotocol with collision detection (CSMA/CD). The CSMA/CD is widely used on LANs in themultiple access control (MAC) sublayer, in particular, in the IEEE 802.3 standard based onthe well known Ethernet system (see [27] for more information). Formal veri�cations of thisprotocol have been studied in [20, 10, 19].The informal description of the protocol is as follows. When a station has data to send, it�rst listens to the channel to check if there is some transmission at that moment. If the channelis busy, the station waits a random amount of time and retries to transmit. When the channelis idle, the station may transmit a frame. However, it could be the case that two stationscheck at the same time that the channel is idle and both of them start to transmit. Thiswould cause a collision of both transmissions. In this case the stations detect the collision andabort their transmissions immediately. After waiting a random amount of time, the stationstry to transmit again the same frame.The propagation delay of messages along the channels plays an important role. Before, wesaid that \two stations can check at the same time that the channel is idle". Of course thissituation is improbable. What actually happens is that one station starts to transmit and theother checks the channel before the message has reached it. So, the second station \believes"the channel is idle and transmits, which causes the collision.We consider the propagation delay to be uniformly distributed between 0 and �, that is,� is the maximal propagation delay. When a collision occurs the caused noise burst has totravel back to the original station, thus, in the worst case, 2� units of time will be need tohear a collision. So, we model the waiting time to retry as a random variable distributed witha uniform distribution between 0 and 2�.1A stochastic automaton is �nitely branching if for every location s its set of outgoing arrows fs a;C- s0 j a 2A; C 2 C; s0 2 Sg is �nite.2A process variable is guarded if all its occurrences appear in a context of a pre�x. A recursive speci�cationE is guarded if X = p 2 E implies that all process variables in p are guarded.11

The station behaves as follows. Messages to be sent arrive in intervals distributed expo-nentially3 with rate �. We denote this distribution function by F�. The station listens ifthe channel is busy during a time uniformly distributed between 0 and a small � before itbegins to transmit. If the channel is busy, the station waits randomly according to a uniformdistribution over [0; 2�] before retry. Messages have a minimal redundancy that takes k unitsof time to be transmitted and the duration of the rest is exponentially distributed with rate�. We denote F k� such a distribution function. If a collision occurs before the transmission iscompleted, the station behaves just as if the channel were busy. In the following we modelthe station. We abbreviate fjzF jg fzF g7!7!a;P by a(F);P provided zF =2 fv(P). This is ausual notation in stochastic process algebras. In addition, we write Uab to refer to a uniformdistribution function in the interval [a; b].STATION = send(F�);STARTSTART = busy;RETRY + begin(U �0);TRANSTRANS = end(F k�);STATION + cd;RETRYRETRY = retry(U2�0);STARTThe channel behaves as follows. When it is idle, any station may begin. Once somestation begins to transmit, the signal will propagate along the channel within � units of time.Afterwards, all stations are able to listen a busy channel. We consider such a time to bedistributed according to a uniform distribution over [0;�]. If some other station begins totransmit before the propagation of the �rst signal is complete, a collision occurs. All thestations will be able to listen such a collision within � units of time (distributed uniformly).Notice that some stations may interpret the collision just as a busy channel, since they mayhave not started any transmission. After exactly � units of time, every station has been ableto detect the collision. Notice that this time is not probabilistic (or with probability 1), sowe model it to be distributed according to the functionK�(t) def= � 0 if t < �1 if t � �If the message is sent successfully, the end of the signal will take some time to be propagated,which will keep the channel busy for a while. Such a time is distributed according to a uniformin [0;�]. The model of the channel is as follows. We assume i range between 1 and n, wheren is the amount of stations.CHAN = Pi begini; INUSEiINUSEi = safe(U�0);BUSY i+Pj beginj; fjx1U�0 ; : : : ; xnU�0 ; yK� jg CDETECT;BUSY i = Pj 6=i busyj;BUSY i + endi; fjxU�0 jg REMANENCE3Actually, we are not going to model this part neatly as a queue on top of the station, but we sloppilyinclude this information directly into the station speci�cation.
12

REMANENCE = Pi busyi;REMANENCE + fxU�0 g7!7!ok;CHANCDETECTI = Pi begini;CDETECTI+Pi=2IfxiU�0 g7!7! �cdi;CDETECTI[fig + busyi;CDETECTI[fig�+Pi2I busyi;CDETECTI+fyK�g7!7!ok;CHANFor all i 2 f1; : : : :ng, we de�ne the renaming function fi by fi(a) = ai for all a 2 A. Thecomplete system is modelled bySYSTEM = �STATION [f1] jj; � � � jj; STATION [fn]� jjfbusy i;cdi;begini;endig CHANIn Figures 3 and 4, we depict the station and the channel, respectively. We have omittedthe subindices of distribution functions. Instead we enumerate them beside the automata. Inparticular, in the channel we have draw some grey coloured edges. Although they actuallyappear in the channel and in the complete system, the reader may check that they cannothappen, or better, they happen with probability 0.6 Further discussionsConclusions and further work. We introduced a new model to represent stochastic systems.We have compared it to a useful model in performance analysis, namely GSMPs, and weshowed that GSMPs are properly contained in our model. In addition, we de�ned a stochasticprocess algebra whose expressivity is richer than existing ones. We show that the processalgebra and its underlying semantic model, the stochastic automata, are equally expressive.The direction of our current work is two fold. On the one hand, we address the study ofstochastic systems by using stochastic automata and, on the other, we study the compositionalproperties of the stochastic process algebra and its axiomatisation.Regarding the �rst direction, as it was already said, we have de�ned a semantics of stochas-tic automata in terms of probabilistic transition systems. This semantics leads to an algorithmfor discrete event simulation. We use the notion of adversaries or schedulers [29, 24] to resolvenon-deterministic choices. Since parallel composition of stochastic automata can be easilyde�ned (actually, it is de�ned just like for the process algebra, see Table 1), the simulationalgorithm can compose the complete stochastic automaton on the
y, which reduces the statespace explosion problem. Although (probabilistic) adversaries allow to obtain a completeprobabilistic �nal model, the inclusion of them as a new ingredient is not that appealing sinceit would require an additional e�ort when modelling systems. Because of that, our currentwork is to characterise the set of stochastic automata in whose underlying transition systemevery choice is resolved probabilistically.Although simulation is a powerful tool from the performance point of view, analyticalmethods are far more e�ective to study the correctness of a system. Usually errors are eventswith low probability, so, the use of simulation may not guarantee that they are not presentor that their probability is low enough to be considered. Model checking has proven to be apowerful and simple tool to verify timed systems. Some early papers like [1] have shown thepossibility of borrowing ideas from model checking on timed automata and applying them13

Figure 3: The station in the CSMA/CD protocolend; y begin; x y cdzretryz
xsend; ww z : U2�0y : F k�x : U �0w : F�

busy
Figure 4: The channel in the CSMA/CD protocol

x1
x2x2

begin1 begin2
busy2 beginibusy i cd1busy1

busy1busy1 beginibusy2cd2 cd2busy2begini beginibusy2
x xx safexcd2x2

x1busy1 cd1cd1 x1
end1 end2x busy i busy i

busy2ok; xok; x

safe

busy1
begini

okybegin2 begin1
x; xi : U�0ok; y ok; yyok

xi; y

y : K�

14

to stochastic systems. Our work will also address the use of model checking on stochasticautomata.Regarding the process algebra, we are studying congruence results. Probabilistic bisim-ulation turns out not to be a congruence. An easy example is as follows. Processes p1 �a; stop+ fjxGjg fxGg7!7!b; stop and p2 � a; stop+ fjxGjg fxGg7!7!c; stop (b 6= c) are probabilis-tically bisimilar if G(0) = 0, since in both cases, only the action a at time 0 can be performed(with probability 1). However, p1jjfagstop and p2jjfagstop are not bisimilar. In this context,the execution of action a is preempted since there is no possible synchronisation, then b or cmay happen (at a certain time greater than 0). We are now studying a strictly �ner relationwhich takes into account potential activity of a given process. Besides, our current work alsoinvolves the study of possible axiomatisations. We are not aiming to be complete with respectto some equivalence. We expect to give a set of axioms that allows to reduce any processinto some basic term using the basic operation, namely, pre�xing, summation, triggering,and clock setting. As we have discussed in the introduction, we know it is possible to havean expansion law. In fact, to obtain a �nite axiomatisation of the parallel composition, weare considering to include the additional operations, jj A (left-merge) and jA (communicationmerge). The axiomatisation resembles in many cases the work done in [7].Related work on stochastic process algebra and discrete event simulation. In this paperwe established a link between stochastic process algebras and discrete-event simulation, inparticular the more formal model of GSMPs. To our knowledge the use of (a variation of)GSMPs as a semantic model for stochastic process algebras is novel. Katoen et. al. [17]indirectly used GSMPs as a semantic model: they map a non-Markovian stochastic processalgebra onto event structures, and obtain for a subclass of event structures (the so-calledstochastic deterministic ones) a GSMP. The intermediate model, event structures, has becomeobsolete in our approach. In addition, for recursive processes in�nite event structures areobtained which makes the approach of [17] less suited for the use of e�cient regenerativesimulation techniques. The �nite representations we obtain do not su�er from this problem.The relation between process algebras and discrete-event simulation models has been stud-ied from several perspectives. Harrison & Strulo [11] developed a stochastic process algebrato formally describe discrete-event simulation. They de�ned an operational semantics us-ing action, timed, and probabilistic transition relations and developed notions like weak andstrong bisimulation (plus axiomatisations). Although their work is closely related to ours, ourmodel appears to be more intuitive and resembles more closely the conceptual ideas of realisticsimulation languages. In particular, measure theory comes in in our case when de�ning theformal interpretation of stochastic automata, not directly in the semantics of the language.Pooley [21] investigated the mapping of a high-level language for describing discrete-event sim-ulation models, baptised extended activity diagrams, onto the timed process algebra TCCSand the process-based simulation language DEMOS (Discrete-Event Modelling On Simula)[4]. Using this framework Pooley is able to check certain properties of a model a priori to sim-ulation, by analysing the (T)CCS speci�cation. In this extensive work distribution functionswere neglected and the role of process algebra with respect to simulation is di�erent from ours.Tofts and Birtwistle use process algebras, basically CCS and its synchronous variant SCCS,to provide a denotational semantics of DEMOS [5]. They focus on analysing properties likeabsence of deadlock and livelock and do not consider timing aspects.We conclude by mentioning some other approaches in the �eld of stochastic process alge-bras dealing with non-exponential distributions. A partial-order semantics for such process15

algebras was introduced by Brinksma et. al. [6]; this model was used in [17] to obtain GSMPsas mentioned above. Priami [22] extended his stochastic extension of the �-calculus withgeneral distributions. He used operational semantics and basically decorated the transitionrelation in such a way that causality information can be easily obtained from that in a post-processing phase. To our knowledge no mapping onto a performance model has been givenyet. Herzog [14] used stochastic task graphs, a performance model for which e�cient numeri-cal analysis methods exist, as a semantic model of a (deterministic) process algebra. Finally,we mention the recent work of Tofts [28] who uses a weighted synchronous version of CCS(WSCCS) to represent general (discrete) distributions and compositions thereof. When fo-cusing on bounded probabilities he shows how to perform certain performance assessments ina compositional way.References[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time systems. InJ. Leach Albert, B. Monien, and M. Rodr��guez, editors, Proceedings 18th ICALP, Madrid, LNCS510, pages 113{126. Springer-Verlag, 1991.[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183{235,1994.[3] M. Bernardo and R. Gorrieri. Extended markovian process algebra. In U. Montanari and V. Sas-sone, editors, Proceedings CONCUR 96, Pisa, Italy, LNCS 1119 of pages 314{330. Springer-Verlag,1996.[4] G.M. Birtwistle. Discrete Event Modelling on Simula. MacMillan, 1979.[5] G.M. Birtwistle and C. Tofts. Process semantics for simulation. Technical report, University ofSwansea, 1996.[6] E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic causality-based processalgebra. The Computer Journal, 38(7):552{565, 1995.[7] P.R. D'Argenio and E. Brinksma. A calculus for timed automata (Extended abstract). In B. Jons-son and J. Parrow, editors, Proceedings of the 4th International School and Symposium on FormalTechniques in Real Time and Fault Tolerant Systems, Uppsala, Sweden, LNCS 1135, pages 110{129. Springer-Verlag, 1996.[8] P.W. Glynn. A GSMP formalism for discrete event simulation. Proceedings of the IEEE, 77(1):14{23, 1989.[9] N. G�otz, U. Herzog, and M.Rettelbach. TIPP - Introduction and application to protocol per-formance analysis. In H. K�onig, editor, Formale Beschreibungstechniken f�ur verteilte Systeme,FOKUS series. Saur Publishers, 1993.[10] H.A. Hansson. Time and Probability in Formal Design of Distributed Systems, volume 1 of Real{Time Safety Critical Systems. Elsevier, 1994.[11] P. Harrison and B. Strulo. Stochastic process algebra for discrete event simulation. In F. Bacelli,A. Jean-Marie, and I. Mitrani, editors, Quantitative Methods in Parallel Systems, Esprit BasicResearch Series, pages 18{37. Springer-Verlag, 1995.[12] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-timesystems. Information and Computation, 111:193{244, 1994.16

[13] H. Hermanns and M.Rettelbach. Syntax, semantics, equivalences, and axioms for MTIPP. InU. Herzog and M. Rettelbach, editors, Proc. of the 2nd Workshop on Process Algebras and Per-formance Modelling, pages 71{87. University of Erlangen, July 1994.[14] U. Herzog. A concept for graph-based stochastic process algebras, generally distributed activitytimes, and hierarchical modelling. In Ribaudo [23], pages 1{20.[15] J. Hillston. A Compositional Approach to Performance Modelling. Distinguished Dissertation inComputer Science. Cambridge University Press, 1996.[16] J.-P. Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD thesis, Depart-ment of Computer Science, University of Twente, April 1996.[17] J.-P. Katoen, E. Brinksma, D. Latella, and R. Langerak. Stochastic simulation of event structures.In Ribaudo [23], pages 21{40.[18] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.[19] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time speci�cations into extended automata.IEEE Transactions on Software Engineering, 18(9):794{804, September 1992.[20] J. Parrow. Verifying a CSMA/CD-protocol with CCS. In S. Aggarwal and K. Sabnani, editors,Protocol Speci�cation, Testing, and Veri�cation, VIII, Atlantic City, NJ, USA, pages 373{384.North-Holland, June 1988.[21] R.J. Pooley. Integrating behavioural and simulation modelling. In H. Beilner and F. Bause, eds,Quantitative Evaluation of Computing and Communication Systems, LNCS 977, pages 102{116.Springer-Verlag, 1995.[22] C. Priami. Stochastic �-calculus with general distributions. In Ribaudo [23], pages 41{57.[23] M. Ribaudo, editor. Proc. of the 4th Workshop on Process Algebras and Performance Modelling,Torino, Italy, 1996. Universit�a di Torino.[24] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal ofComputing, 2(2):250{273, 1995.[25] G.S. Shedler. Regenerative Stochastic Simulation. Academic Press, 1993.[26] J. Sifakis and S. Yovine. Compositional speci�cation of timed systems. In Proceedings of the13th Annual Symp. on Theoretical Aspects of Computer Science, STACS'96, LNCS 1046, pages347{359, Grenoble, France, 1996. Springer-Verlag.[27] A.S. Tanenbaum. Computer Networks. Prentice-Hall International, third edition, 1996.[28] C. Tofts. Compositional performance evaluation. In E. Brinksma, editor, Proceedings of the ThirdWorkshop on Tools and Algorithms for the Construction and Analysis of Systems, Enschede, TheNetherlands, LNCS 1217, pages 290{305. Springer-Verlag, April 1997.[29] M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite state programs. In 26thAnnual Symposium on Foundations of Computer Science, Portland, Oregon, pages 327{338. IEEEComputer Society Press, 1985.
17

