
Boosting Fault Tree Analysis by Formal Methods

Joost-Pieter Katoen1,2 and Mariëlle Stoelinga2

1 RWTH Aachen University, Germany
2 University of Twente, the Netherlands

Abstract. Fault trees are a key technique in safety and reliability en-
gineering. Their application includes aerospace, nuclear power, car, and
process engineering industries. Various fault tree extensions exist that
increase expressiveness while yielding succinct models. Their analysis is
a main bottleneck: techniques do not scale and require manual effort.
Formal methods have an enormous potential to solve these issues. We
discuss a mixture of formal method techniques resulting in a fully auto-
mated and scalable approach to analyze Dugan’s dynamic fault trees.

1 Introduction

Fault trees are ubiquitous. Fault trees were developed in 1961 at Bell Labs. A
few years later Boeing started to use fault tree analysis (FTA, for short) for
civil aircraft design. The U.S. Nuclear Regulatory Commission published the
NRC Fault Tree Handbook in 1981. Several other industries followed later with
their FTA standards. Since the Challenger accident in 1986, NASA considers
FTA as a key system reliability and safety analysis technique. The U.S. Federal
Aviation Administration’s System Safety Handbook (2000) advocates the use of
FTA. Fault trees are used on a daily basis by millions of engineers around the
world. For example, after the explosion of the (unmanned) Falcon-9 rocket in
2015, the SpaceX CEO posted the following on Twitter [42]:

“That’s all we can say with confidence right now. Will have more to say
following a thorough fault tree analysis.”

What are fault trees? They are directed acyclic graphs. Leaves model individual
component failures or human errors. As errors in FTA are assumed to happen
randomly, leaves are equipped with a continuous probability distribution. Inter-
nal vertices (a.k.a.: nodes), commonly referred to as gates, model how component
failures lead to system failures. Gates are like logical elements in circuits such as
AND and OR (but no inverters). FTA amounts to determine the failure prob-
ability of the root of the fault tree, called the top-level event. Fault trees that
only contain logical gates such as AND and OR are called static. Static fault
tree analysis can be efficiently done using binary decision diagrams 3. The key
step in the analysis is determining a minimal cut set. This is a set of leaves of

3 BDDs are succinct representations for switching functions. In 1990, their use in
formal methods, in particular formal verification, has been introduced [11].

2 Joost-Pieter Katoen and Mariëlle Stoelinga

minimal cardinality whose failures together causes the top-level event to fail.
The analysis of static fault trees is simple as the ordering of failure is irrelevant;
it only matters whether a leaf has failed or not.

Dynamic fault trees. Static fault trees are too simple for practical systems. This
has led to several extensions; for a recent survey see [49]. Dugan’s dynamic fault
trees [16] (DFTs, for short) are the most well-known and commonly used. The
behaviour of a DFT not only depends on the set of failed leaves, but also on
their order. Thus, DFTs have a richer set of gates and are more expressive than
static fault trees. This, however, comes at a price. Their analysis can no longer be
done using minimal cut sets. Instead, their behaviour is state-dependent. DFT
analysis is typically done by distilling a stochastic process, mostly a continuous-
time Markov chain (CTMC, for short), from the DFT. Markov chain analysis is
used to obtain information about the probability of the top-level event to fail.

The challenge. Conceptually, this sounds simple. In practice it is not. This leads
to the belief that DFT analysis is a difficult problem. For instance, [54] and [43]
argue that a state-based approach for dynamic gates is not “realistic” due to
the state-space explosion on increasing the DFT size. Indeed, DFTs in practice
are large. Hundreds of nodes is not an exception. Their Markov chains consist of
millions or even billions of states. State-space generation is a major bottleneck
in DFT analysis. This complicates their analysis considerably. As [20] argues:

“Although DFTs are powerful in modeling systems with dynamic fail-
ure behaviors, their quantitative analyses are pretty much troublesome,
especially for large scale and complex DFTs.”

Or, in the most recent survey paper on fault tree analysis [32]:

”Although many extensions of fault trees have been proposed, they suffer
from a variety of shortcomings. In particular, even where software tool
support exists, these analyses require a lot of manual effort.”

Model checking. In our opinion, this common belief is way too pessimistic! We
know that formal methods are not a panacea. However, we argue in this paper
that probabilistic and statistical model checking can alleviate the above men-
tioned “problems” and “shortcomings” to a very large extent. Model checking
[4] is a systematic way to analyze the state space with powerful algorithms. It is
heavily used in hardware industry to verify IC designs, and the founding fathers
of model checking won the prestigious ACM Turing award in 2007.

Probabilistic model checking combines standard model checking techniques
with clever stochastic methods to obtain efficient numerical algorithms. Statis-
tical model checking, a state-of-the-art Monte Carlo simulation technique, is
more widely applicable and is far less dependent on the state space size. How-
ever, it is not an exhaustive technique and requires special treatment of rare
events and nondeterminism. In this paper, we show that due to unremitting
improvements of state-space generation techniques in the field of probabilistic

Boosting Fault Tree Analysis by Formal Methods 3

and statistical model checking, extremely large state spaces can nowadays be
treated, both numerically and statistically. In particular, we show how techniques
like compositionality, abstraction, partial order reduction, graph rewriting, and
abstraction-refinement can be exploited to analyse large DFTs in a matter of
minutes.

Take-home message. As such, this paper argues that FTA is a playground par
excellence for formal methods. Formal methods boost dynamic fault tree analysis
significantly and result in a fully automated and software-supported approach.

2 Dynamic Fault Trees in a Nutshell

What are DFTs? Dynamic fault trees (DFTs) [16] are directed acyclic graphs
consisting of gates and leaves. A DFT has a distinguished root node, called the
top-level event (TLE, for short). DFT leaves represent component failures, called
basic events (BEs, for short). DFTs describe how component failures propagate

inputs

output

(a) OR

inputs

output

(b) AND

k/n

inputs

output

(c) VOTING

inputs

output

(d) PAND

output

Primary
Spares

(e) SPARE

dummy output

trigger

Dependent events

(f) FDEP

Fig. 1: Gates in dynamic fault trees

through the system. Gates, depicted in Fig. 1, model failure propagation. The
static gates OR, AND, VOT(k) fail if respectively one, all or k (out of n ≥ k)
of their inputs fail. The PAND, SPARE, and FDEP are dynamic gates. A PAND-
gate fails if the inputs fail from left to right; if the components fail in any other
order, then no failure occurs. A SPARE-gate contains one primary, and one or
more spare inputs. If the primary input fails, then the leftmost dormant spare
takes over its functionality, putting the spare from dormant into active mode.
If all spares have failed too, then the SPARE-gate fails. Primary and spares
can be entire DFTs, and spares can be shared among several gates. An FDEP-
gate contains a trigger input, which instantaneously triggers the failure of all its
dependent events.

DFT leaves can be either dormant, active, or failed. Component failures are
governed by continuous distribution functions, e.g., exponential probability dis-
tributions. Dormant leaves fail less frequently as they are not in use. Their failure
rate λ is reduced by a dormancy factor d in the interval [0, 1]. The probability
for an active component to fail within time t is 1 − e−λ·t and 1 − e−d·λ·t for a
dormant component. Fig. 2(a) depicts a simple sample DFT.

The DFT’s Markov chain. DFTs have an internal state, e.g., the order in which
failures occur influences the internal state, and thus whether the designated top

4 Joost-Pieter Katoen and Mariëlle Stoelinga

T

SP

α β γ

(a)

B

A

C

BA

AC

CA

F

d·γ

β

α

d·γ

β
β

α

α

γ

γ
β

β

d := dormancy factor

(b)

Fig. 2: A (a) sample DFT with three leaves, an OR-gate (top-level event T) and
a PAND-gate P and a SPARE-gate S (T’s children), and (b) its CTMC.

event has failed. The behaviour of DFTs can be naturally described by CTMCs,
where transitions correspond to the failure of a basic event. Fig. 2(b) depicts
the CTMC of our sample DFT. Initially, any of the leaves can fail with failure
rates α, β, and γ, respectively. As the rightmost leaf is dormant, its failure rate
is reduced by d. Once this leaf becomes active, e.g., in CTMC state B, its failure
rate becomes γ. In the rightmost CTMC state F, the TLE and thus the entire
DFT has failed. Due to the expressive power of DFTs, their interpretation is not
always clear; an in-depth discussion on this can be found in [31].

Nondeterminism. Most DFTs are fully probabilistic. They do not exhibit any
nondeterminism. Their behaviour can adequately be described by CTMCs. Some
DFTs give rise to nondeterminism. An example is provided in Fig. 3(a). The two
SPARE gates share a spare. Once the rightmost leaf fails first, the primary child
of each SPARE fails. A “race” occurs between the left and right SPARE to use the
middle leaf (in blue). This race is nondeterministic. It fundamentally differs from
a probabilistic choice as there is no quantitative information available about how
to resolve this race. As a result, the underlying model for a DFT is a CTMC
with nondeterminism, a so-called interactive Markov chain (IMC, for short) [28,
29]. Fig. 3(b) depicts the IMC of the DFT in Fig. 3(a). The nondeterministic
choice occurs after the occurrence of the β-transition in the initial state. The
two nondeterministic transitions, one for each possible resolution of the race, are
labeled with τ . Note that if the race is resolved in favor of the left SPARE-gate,
the right SPARE-gate fails, and due to the top-most PAND-gate, the DFT can
never fail.

3 Compositional State-Space Generation

A crucial step in DFT analysis is to generate the state space underlying a DFT.
Each state records for each BE its status, i.e., whether it is up or down and
whether it is operational or not. Key result in [6, 7] is to perform this via com-
positional aggregation, a.k.a. iterative minimization. Rather than generating the

Boosting Fault Tree Analysis by Formal Methods 5

α β

γ

(a)

F

α

d · γ

β

β

τ

γ

τ
γ

β

α

β

β

d := dormancy factor

(b)

Fig. 3: A (a) sample DFT with three leaves, a PAND-gate (top-level event), two
SPARE-gates, and an OR-gate, arranged to create nondeterminism, (b) its IMC
(assuming the PAND fails on simultaneous failures of its children).

whole state space at once—leading to a procedure that is difficult to understand
and modify—[6, 7] generate a Markov model for each DFT element. Recently,
Ammar et al. [1] advocated the use of compositional model generation combined
with probabilistic model checking for DFTs using Markov decision processes
(MDPs). The whole state space is then obtained by composing these Markov
models in a smart way.

IOIMCs. Standard Markov models cannot be composed in a natural way; i.e.,
there are no adequate notions to build a larger Markov model from smaller ones.
Hence, [5–7] use input/output interactive Markov chains (IOIMCs) [5]. IOIMCs
combine CTMCs and labeled transition systems, see Fig. 4 for an example.
They feature two types of transitions: Markovian transitions are labeled with
the parameter λ (a.k.a.: rate) of an exponential distribution. Such a transition
can be taken after an exponential waiting time, i.e., the probability to take
this transition before time t is given by 1 − e−λ·t. Interactive transitions are
labeled with action labels and can be used to synchronize two or more IOIMCs.
Interactive transitions feature three types of action labels: transitions labeled
with input labels a? indicate that the IOIMC waits for another component to
provide a corresponding output label a!. Transitions labeled with input actions
are delayable, meaning that the IOIMC can wait as long as needed to take this
transition. Output actions a! are immediate; i.e., as soon as the output action a!
is enabled, it has to be taken. In particular, this means that whenever a state
enables both an output action and a Markovian action, the Markovian action is
never taken as its probability to be taken immediately is zero. Internal transitions
are like output actions, and hence immediate, with the difference being that the
action label is not visible to the environment. Thus, internal actions are used to
model steps that are internal to the component.

6 Joost-Pieter Katoen and Mariëlle Stoelinga

act?

λ

fail!

Dormant

Active

Failing

Failed

(a) cold BE

act?

λ

fail!

µ

Dormant

Active

Failing

Failed

(b) warm BE

failA?failB?

failB?failA?

fail!

Initial

A failedB failed

Failing

Failed

(c) AND-gate

failA?failB?

failB?

fail!

Initial

A failed

Failing

Failed

Cannot
fail

(d) PAND-gate

Fig. 4: Examples of the IOIMCs underlying DFTs.

Example 1. Fig. 4(a) depicts the IOIMC underlying a cold BE, a basic event
that cannot fail in dormant mode. In the initial state, the IOIMC waits to be
activated, i.e., it waits until it has received an input signal act? from its envi-
ronment. If so, it moves to the state named Active. This state has a Markovian
transition labeled with λ, indicating that the BE’s failure rate is exponentially
distributed with parameter λ. After failing, the IOIMC moves to state Failing,
which has an outgoing transition labeled with fail!. As soon as the BE has failed,
the IOIMC sends out a fail! signal, so that other components can update their
state.

Fig. 4(b) depicts the IOIMC of a warm BE, i.e., a basic event that can fail
in dormant mode, but with a reduced rate µ = d·λ. Now, in the initial state,
two things may happen: Either the component is activated, and moves to state
Active and the behavior is as before. Alternatively, the component fails before
activation, which happens with a reduced failure rate µ, as modeled by the
transition Dormant

µ−→ Failing.
The IOIMC for an AND-gate C with children A and B is given in Fig. 4(c).

When it has received failure signals from both its children, the IOIMC sends out
a fail! signal. Finally, the IOIMC for the PAND-gate is given in Fig. 4(d): if the
IOIMC receives a failure signal from A first, and then from B, then the IOIMC
sends out a fail! signal; otherwise it moves to a sink state (indicated by X) from
which it can never fail.

The IOIMCs for the other gates are similar, but more complex.

Smart composition. The CTMC underlying a DFT is obtained by composing all
DFT-element IOIMCs via composition aggregation. That is, rather than compos-
ing all IOIMCs in one shot, all DFT-element models are composed one-by-one,
in an iterative way. After each step, the models are reduced. Thus, the com-
positional aggregation procedure iteratively performs the following three steps:
(1) Pick two IOIMCs and compose these. (2) Hide all actions that are not rele-

Boosting Fault Tree Analysis by Formal Methods 7

vant for other components; i.e., actions that are not used for synchronization by
other IOIMCs are made internal. (3) Reduce the model just obtained via mini-
mization techniques such as weak bisimulation [5] or confluence reduction [51].
Action hiding makes that more states are equivalent, enabling stronger reduc-
tions. Minimization means that one replaces the model by an equivalent one
that is smaller, for instance by grouping states that exhibit the same behavior.
The order in which the models are composed does not matter for the end re-
sult; however, it impacts the memory footprint, i.e., the size of the intermediate
Markov models. Heuristics have been developed to obtain a low peak memory
usage [13].

This procedure has been implemented in the tool CORAL and its successor
DFTCalc [2]. An advantage of this technique is its flexibility: adding new gates
for instance, is easy, since one only has to provide the IOIMC for that new gate.
For example, cyber attacks can easily be incorporated in this way [3, 36], and
the same holds for maintenance strategies [24, 25]. A further improvement over
existing methods is that the compositional approach is more liberal on the DFTs
it can analyze. Earlier methods make rather severe assumptions on the DFTs
to analyze, which limits the ability to model and analyze realistic systems. For
example, dependent events of FDEP-gates could only be BEs, and the same holds
for the spare inputs of a SPARE-gate. CORAL was the first tool to alleviate these
restrictions.

Experiments. Several experiments have been carried out comparing DFTCalc’s
predecessor CORAL to Galileo [50], the state-of-the-art tool at that time. The
following case studies were used: Cascaded PAND system (CPS), Cardiac as-
sist system (CAS), fault tolerant parallel processors (FTPP) [16], and a pump
system with inherent nondeterminism (NDPS). Table 1 shows the benchmark
results in terms of memory footprint (i.e., maximum number of states and tran-
sitions encountered during the analysis process) and in terms or running time.
It also indicates the DFT’s unreliability of the DFT, i.e., the probability that
the DFT fails within a deadline. Except for the CAS system which has a very
small state space, compositional analysis outperforms Galileo, both in time and
memory usage. CORAL could analyze several variants of the the FTPP case where
Galileo ran out of memory. Note that the NDPS system cannot be modeled in
Galileo, since it does not support nondeterminism. Due to the nondeterminism,
the unreliability of the NPDS system is an interval and not a single value as for
the other cases.

4 Reduce, Reduce, and Reduce More

The previous section described a compositional approach for distilling a CTMC
from a DFT. Its main advantage is that each DFT gate and leaf results in
a relatively simple CTMC. These CTMCs can be reduced individually and in
a pairwise fashion after being put in parallel. This reduces the peak memory
consumption. The price is that the CTMC of a DFT gate needs to be equipped

8 Joost-Pieter Katoen and Mariëlle Stoelinga

Case Approach Max # Max # of Unreliability Run time
study of states transitions (sec)

CPS Galileo 4,113 24,608 0.00135 490
CORAL 133 465 0.00135 67

CPS Galileo 8 10 0.65790 1
CORAL 36 119 0.65790 94

CAS-PH CORAL 40,052 265,442 0.112826 231

FTPP-4 Galileo 32,757 426,826 0.01922 13111
CORAL 1,325 13,642 0.01922 65

FTPP-5 CORAL 43,105 643,339 0.00306 309

FTPP-6 CORAL 1,180,565 22,147,378 0.000453 1989

FTPP-C CORAL 653,303 12,220,653 0.02136 1806

FTPP-A Galileo 32,757 426,826 0.0167 13111
CORAL 19,367 154,566 0.0167 240

NDPS CORAL 61 169 [0.00586, 266
0.00598]

Table 1: Results of CORAL and Galileo (taken from [7]).

with extra transitions to enable its parallel composition with CTMCs of other
DFT gates. They thus are slightly more complex due to the fact that they need
to be composed. Another drawback is that the CTMCs of each DFT gate are
“context free”. That is to say, their behaviour does not take into account the
context in which they are put. This is good on the one hand, as it means equal
gates yield equal CTMCs, which can be exploited. On the other hand, it is bad
as certain parts of the CTMCs might not be reachable if the context would be
taken into account. For instance, if a given sub-tree can only become active once
other parts of the DFT have failed, then parts of the sub-tree might not be
relevant any more.

Revive the original approach. An alternative is to take the original Galileo [50]
approach—the first tool for DFT analysis; it treats a DFT as monolithic entity—
and modernise it using techniques to shrink the state space prior or during its
generation. Techniques that can be adopted are: symmetry reduction, partial-
order reduction, and don’t care detection. Symmetry reduction recognises iso-
morphic sub-trees and stochastic independences among sub-trees by a static
analysis of the DFT. It thus is not a symmetry reduction at state-space level,
but rather at the DFT level. Sub-trees that become obsolete (don’t care) after
the occurrence of some failures in the DFT are pruned. Finally, one can detect
superfluous nondeterminism such that certain failure orderings are irrelevant. A
detailed account of this approach is given in [52, 53].

Monolithic state-space generation with don’t care propagation. The principle is
rather straightforward. Each gate and leaf in the DFT is provided with a status
such as e.g., operational (OP), failed (F), fail-safe (FS), or don’t care (X). For
each SPARE-gate, one has to do some extra bookkeeping. One needs to keep

Boosting Fault Tree Analysis by Formal Methods 9

track of the currently used child (a.k.a.: spare) (CUC). In addition, for each
spare one needs information about whether it is active (A) or dormant (D). All
this information together constitutes the state space of a DFT. A state is thus
the status of each gate and leaf, plus some extra information for each SPARE-
gate and its spares. State changes originate from the failure of one of the DFT
leaves 4. These state changes not only involve a status change of the just failed
BE. It may affect the CUC of a SPARE-gate, may give rise to gates to become
fail-safe (FS) as they cannot fail in the future anymore, and involves don’t care
propagation—a top-down pass over the DFT determining whether nodes have
become don’t care (X) as all their parents are F or FS.

Partial-order reduction. In many DFTs, the actual order in which subsets of
leaves fail is not crucial. This is exploited for FDEP-gates, where instead of
exploring all interleavings over the triggered events one aims to only explore a
single order. This can be done applying static partial order reduction [4, Ch.
8.2.4] to DFTs. A static analysis of the DFT identifies which dependencies can
be executed in arbitrary order. If so, only a canonical order is expanded.

Symmetry reduction. The symmetry in a DFT, i.e., the presence of isomorphic
sub-trees, can be exploited [12]. Faults in isomorphic sub-trees have the same
effect if they are only connected to the remaining DFT via a single static node,
i.e., an AND, OR, or a VOT(−) gate. The states of symmetric sub-trees can then
be swapped. Thus it is not important to administer which nodes in symmetric
sub-trees have failed, but only how many and reduces the number of states.

Experiments. Together with compact bit-level state representations and manipu-
lations, bisimulation minimisation of the resulting CTMC, and modularisation,
the above approach results in a well-performing modern version of Galileo.
Modularisation [26] is a DFT technique that identifies independent sub-trees
in the DFT, analyses them separately, and combines the results to a final re-
sult. Experiments show that intermediate state spaces are often ten times smaller
compared to the compositional approach. This results in boosting the state-space
generation by up to several orders of magnitude 5. For some case studies, the
compositional approach yields a smaller peak memory usage. For 164 problem
instances, this approach solved 11% more cases (for analysing the DFT’s relia-
bility) than the compositional approach. Plots indicating the difference between
the compositional and the revived Galileo approach are provided in Fig. 5.
These are log-log scale plots. Fig. 5(a) compares the time consumption (which
includes state-space generation and analysis). The lower dashed line indicates an
advantage of our tool by a factor ten, the upper of a factor 100. The outer lines

4 As failure probabilities are continuous probability distributions, the probability that
two or more leaves fail simultaneously is zero.

5 It is fair to say, that some of these effects are also due to a different implementation of
the state-space generation process; the compositional approach as realised in the tool
DFTCalc [2] is based on the CADP tool-box [19], whereas the monolithic approach
is implemented [52] on top of the storm model checker [15].

10 Joost-Pieter Katoen and Mariëlle Stoelinga

1 6
0

6
0
0

3
6
0
0

1

60

600

3600

T
O

M
O

TO
MO

monolithic+reduction approach

co
m

po
si

ti
o

n
a

l
a

p
p

ro
a

ch

HECS

MCS

RC

SF

(a) run time (seconds)

1 1
0

1
0
0

1
0
0
0

1

10

100

1000

T
O

M
O

TO
MO

monolithic+reduction approach

co
m

po
si

ti
o

n
a

l
a

p
p

ro
a

ch

HECS

MCS

RC

SF

(b) memory footprint (MB)

Fig. 5: Overview of the experimental results on four different benchmark sets
(taken from [52, 53]).

indicate time-outs (TO) and memory-outs (MO), respectively. Fig. 5(b) indi-
cates the peak memory consumption. Here one sees that for several benchmarks
it is beneficial to employ compositional state-space generation and reduction,
whereas for others it is not. The following benchmarks were used: Hypothetical
Example Computer System (HECS) from the NASA FT handbook, Multiproces-
sor Computing System (MCS) [40], Railway Crossing (RC) [24] and the Sensor
Filter (SF) [8]. The sizes of the corresponding CTMCs vary to up to one million
states.

5 Fault Tree Rewriting and All That

Whereas the previous reductions work on the underlying CTMC or IOIMC,
one can also reduce the DFT before any state is generated, thus obtaining a
“slim” fault tree. This is the idea behind the paper Fault trees on a diet [30]: one
rewrites a DFT into another one that is equivalent—in the sense that important
measures-of-interest such as reliability and mean time-to-failure are preserved—,
but whose state space is much smaller. Note that this does not necessarily mean
that the fault tree itself is smaller.

Since fault trees are graphs, it is natural to use graph transformation systems
for that. Graph transformation systems rewrite one graph into another one via
transformation rules. These rules look for patterns in a graph, and if such a
pattern is found, then it can be replaced by another pattern. In this way, nodes
and edges can be removed or added, and attributes such as failure rates can be
changed. For example, if two OR-gates are stacked on top of each other, then
these gates can be glued into one large OR-gate as depicted as follows: In total,
[30] has developed a set of 29 transformation rules, which have been implemented

Boosting Fault Tree Analysis by Formal Methods 11

A

AND,OR,PAND 3

C1

. . .

CmB

Tp(A)

. . .

D1 Dk

A′

Tp(A)

B′

Tp(B)

C′
1

. . .

C′
mD′

k

. . .

D′
1

Input: {Ci 7→ C′
i}mi=1 ∪ {Di 7→ D′

i}ki=1

Output: {A 7→ A′, B 7→ B′}

Rewrite rule 1: Left-flattening of AND-/OR-/PAND-gates

in the graph transformation tool GROOVE [22], and can be used in combination
with any DFT analysis tool.

Experiments. The effect of rewriting was analyzed on 183 benchmarks, obtained
by instantiating seven different, mostly industrial, case studies with different pa-
rameter values [30]. We investigated the influence of rewriting on (1) the number
of nodes in the DFT, (2) the peak memory consumption, (3) the total analysis
time (including model generation, rewriting, and analysis), as well as (4) the size
of the resulting Markov chain, see Fig. 6(a)-(d). The base setting is the composi-
tional minimization approach as realised in the tool DFTCalc without rewriting.
These plots clearly show that rewriting DFTs improves the performance for all
these criteria in almost all cases. Improvements of upto several orders of mag-
nitude were obtained. In particular, 49 cases could be analysed that yielded a
time-out (TO, two hours) or out-of-memory (MO, 8000 MB) in the base setting
without rewriting. A more detailed analysis reveals that the graph rewriting with
GROOVE is very fast, typically between 7 and 12 sec. Most time is devoted to the
Markov chain construction and bisimulation minimisation. The analysis time of
the resulting Markov chain using probabilistic model checking (see Section 3) is
negligible.

6 Abstract, Check, and Refine

Partial state-space generation. The approaches so far focused on the analysis
of the DFT after the entire CTMC has been generated. This has the advantage
that all information is available to get an exact 6 account of the DFT’s measures-
of-interest. In many cases, however, one is not interested in the exact mean time
to failure (MTTF) or the exact probability that the top-level event fails within
a certain time deadline (a.k.a.: reliability). Instead, in practice one often wants

6 Up to some numerical or simulative evidence.

12 Joost-Pieter Katoen and Mariëlle Stoelinga

6
0

6
0
0

3
6
0
0

7
2
0
0

60

600

3600

7200

T
O

M
O

TO

MO

with rewriting

w
it

h
o
u
t

re
w

ri
ti

n
g

RC

MCS

HECS

SF

(a) run time (seconds)

1 1
0
0

5
0
0

1

100

500

T
O

M
O

TO

MO

with rewriting

w
it

h
o
u
t

re
w

ri
ti

n
g

RC

MCS

HECS

SF

(b) memory footprint (MB)

1
0
3

1
0
4

1
0
6

103

104

106

T
O

M
O

TO

MO

with rewriting

w
it

h
o
u
t

re
w

ri
ti

n
g

RC

MCS

HECS

SF

(c) # states in MC

solved Σ time (h) red.

bs rw bs rw(1) rw(2) |Vrw|
|Vbs|

HECS(44) 34 43 11.8 3.3 9.1 1.4
MCS(44) 30 43 9.3 3.7 8.2 1.1
RC(36) 15 31 7.3 5.1 9.3 2.1
SF(39) 31 38 10.1 5.3 7.1 1.5
MOV(8) 3 7 2.3 0.6 0.7 3.4
HCAS(8) 8 8 0.4 0.3 0.3 1.2
SAP(4) 4 4 0.1 0.1 0.1 1.7

total(183) 125 174 41.3 18.4 34.8 1.6
(1) time on instances solved by all.
(2) time on all instances solved.

(d) timing (bs = base)

Fig. 6: Overview of the experimental results on four different benchmark sets
(taken from [30]).

Boosting Fault Tree Analysis by Formal Methods 13

to know whether the reliability is below a given threshold or, similarly, whether
the MTTF is beyond a certain value. To answer these queries, it suffices to
analyse DFTs by considering their partial state space only. The simple idea
is to generate only a—hopefully small—fragment of the DFT’s CTMC. This
goes along the way described in Section 4 except that one stops the state-space
generation at a certain point, e.g., if a certain fraction of the DFT has been
considered, a certain size of the CTMC has been reached, or similar. Inspired by
the ISO 26262 standard where “high-order” failures are ignored, bounded depth
exploration is a good possible termination criterion: any states encoding up to
k-point failures are considered. This CTMC fragment is now used to obtain lower
and upper bounds on the measure-of-interest, say MTTF. A detailed account of
this approach can be found in [53].

Pessimistic abstraction. To obtain a lower bound on the MTTF, the DFTs failure
probability is overestimated. Correspondingly, it is assumed that the failure of
any additional leaf results in a TLE failure. This is easily realised by mildly
adapting the state space fragment: a transition is added in the CTMC from
each unexplored state to a failed state on the failure of any additional DFT leaf.
The rate of such transition is the sum of the failure rates of the operational
leaves. The resulting CTMC can be viewed as a pessimistic abstraction of the
DFT. This results in a lower bound on the MTTF as it corresponds to the worst
possible scenario. The true MTTF can not be worse. The lower bound thus is
safe.

Optimistic abstraction. Symmetrically, an optimistic view is obtained by assum-
ing that all of the unconsidered DFT leaves have to fail to cause the TLE to fail.
This uses the mild assumption that the TLE always fails if all (fallible) leaves
fail regardless of the order in which they fail 7. This yields a safe upper bound, as
the true MTTF can not be larger. The realisation of this optimistic perspective
is somewhat more involved though. The failure rate of the DFT is given by the
maximum of all failure rates of the operational leaves. We add a transition to
each state in the CTMC fragment. Its rate µ is chosen such that the expected
time of an exponential distribution with rate µ equals the expected time of the
maximum over the failure distributions of the operational leaves. The resulting
CTMC can be viewed as an optimistic abstraction of the DFT.

Refinement. So far, so good. Assume now the DFT’s MTTF is required to
exceed some threshold M , say. If the lower bound lb is at most M , the DFT
satisfies the requirement; if the upper bound ub is below M , it refutes. In all
other cases, the result is inconclusive. In that case, a heuristic can be employed
to refine the two abstractions. This can be done such that earlier analysis results
can be partially re-used. The MTTF analysis by means of probabilistic model

7 It can be automatically checked whether a DFT satisfies this assumption by encoding
it in difference logic, a fragment of linear integer arithmetic, and check this encoding
using SMT solvers; for further details see [53].

14 Joost-Pieter Katoen and Mariëlle Stoelinga

1 6
0

6
0
0

3
6
0
0

1

60

600

3600

T
O

M
O

TO
MO

Approximation

M
o
n
o
li
th

ic

HECS

MCS

RC

SF

(a) run time (seconds)

1 6
0

6
0
0

3
6
0
0

1

60

600

3600

T
O

M
O

TO
MO

Approximation (lower bound)

M
o
n
o
li
th

ic

HECS

MCS

RC

SF

(b) run time (seconds)

Fig. 7: Abstract-reduce-refine versus the monolitic approach on four different
benchmark sets (taken from [53]).

checking (see section 7), provides bounds on the MTTF for each state. This
can be exploited in a simple heuristic: states that are reachable with a high
probability and whose gap between lower and upper bound is wide, are explored
first.

Abstract-reduce-refine. Altogether, this results in an iterative abstraction-
refinement approach. It stops whenever it can be decided whether the MTTF
is beyond or below M . Or, if one is nonetheless interested in more precise in-
formation about the MTTF, one can also terminate the abstraction-refinement
process whenever the gap between lower and upper bound is sufficiently tight.
While obtaining the partial state spaces, symmetry and partial-order reduction,
as well as don’t care propagation (see Section 4) can be exploited.

Experiments. This approach works very well for larger models: some DFTs which
result in an out-of-memory for the monolithic approach of Section 4 are now
solved within minutes. Results are provided in Fig. 7a where a precision of 10%
is used. That is to say, the abstract-reduce-refine algorithm terminates with lower
bound lb and upper bound ub if ub−lb < 0.1 · ub+lb

2 . The approximation comes
at some overhead. It requires some internal bookkeeping for the state-space
generation and constructing the upper bound is costly. Whenever the upper
bound is too pessimistic, an almost complete state space is required leading
to a decreased performance. Lower bounds are easier to estimate and are not
really influenced by low probability paths. The on-the-fly algorithm updates
the approximation after each iteration, and the lower bounds quickly becomes
accurate. Let x be the true MTTF: For Fig. 7b the runtime until the (unchanged)
procedure certified that the MTTF was at least 0.95 · x is given. This is always
very fast. Thus, 90% to 99% of the computation time is spent making the upper
bound tighter.

Boosting Fault Tree Analysis by Formal Methods 15

7 Probabilistic Model Checking

The quantitative analysis of the resulting DFT’s CTMC can be done using prob-
abilistic model checking [34, 37]. This is not the branch of computer-aided veri-
fication that exploits randomized algorithms for verification but rather the area
that focuses on the model checking of probabilistic models such as Markov chains
and variations thereof. This field is not new. Soon after the birth of model check-
ing in 1981, the first papers on probabilistic model checking (though not called
that way) appeared. Whereas initial works focused on almost-sure events—does
a phenomenon happen with probability one?—, later quantitative queries could
be handled by combining model-checking algorithms with algorithms from nu-
merical mathematics and operations research. Powerful tools such as Prism [38],
MRMC [35] and storm [15] together with the development of various efficient ver-
ification algorithms have led to an enormous impulse to the field. It is fair to
say that probabilistic model checking extends and complements long-standing
analysis techniques for Markov processes.

Model checking DFTs. Probabilistic model checking can be directly applied to
the CTMCs underlying DFTs. This does not require any additional means. It
can be used as a black box. Measures-of-interest such as MTTF and reliability
can be readily cast as formulas in stochastic temporal logics such as some form
of probabilistic CTL. Alternatively, automata can be used. In fact, this is not
quite right. Logics allow for specifying constraints on such measures. Examples
are e.g., the MTTF is at least M , or the probability that the TLE fails is below
10−9. Verifying these logical formulas is typically very fast and requires a neg-
ligible amount of time compared to the state-space generation for DFTs. The
aforementioned tools enable the automated verification of models with several
millions of states within a couple of minutes.

The benefits of probabilistic model checking DFTs. Is that all? Not quite. Given
the rich plethora of functional correctness properties that can be described in
temporal logics, the functional correctness of DFTs can be checked as well. Prop-
erties such as: can it ever happen that gates A and B both fail? or: if the leaves
fail in a certain order, does that cause a TLE failure? can be automatically
checked using model checking too. No dedicated algorithms are needed for that.
Using the same machinery for validating the measures of interest, many func-
tional properties can be checked.

The use of logics and automata for specifying DFT’s properties offers, in
addition, a high degree of expressiveness and flexibility. Most standard measures
such as MTTF, reliability, and availability are readily covered. Nesting formulas
yields a simple mechanism to specify complex measures in a succinct manner. A
complex property like “ the probability that once a certain set of gates have failed
soon with high probability (say, within 10 time units with at least probability
0.99), the TLE will fail within 1,000 time units when in addition gates A and
B have failed is low” can be captured by a succinct formula. The main benefit

16 Joost-Pieter Katoen and Mariëlle Stoelinga

though is the use of model checking as a fully algorithmic approach toward mea-
sure evaluation. Even better, it provides a single computational technique for
any possible measure that can be written. This applies from simple properties
to complicated, nested, and possibly hard-to-grasp formulas. This is radically
different from common practice in DFT evaluation where tailored and new al-
gorithms are developed for “new” measures.

Measure-specific computation. All algorithmic details, all detailed and non-
trivial numerical computation steps are hidden to the user. Without any expert
knowledge on, say, numerical analysis techniques for CTMCs, measure evalua-
tion is possible. Even better: the algorithmic analysis is measure-driven. That is
to say, the stochastic process can be tailored to the measure of interest prior to
any computation, avoiding the consideration of parts of the state space that are
irrelevant for the property of interest. In this way, computations must be carried
out only on the fragments of the state space that are relevant to the property of
interest.

Nondeterminism. Finally, probabilistic model checking is applicable to mod-
els with nondeterminism. This is relevant for DFTs too, as some DFTs may
give rise to nondeterminism, see Fig. 3 (left). In these models the future be-
haviour is not always determined by a unique probability distribution, but by
selecting one from a set of them. Rather than providing exact probabilities,
the measures are subject to the resolution of the nondeterminism. As a result,
bounds on the measures are obtained: lower bounds typically correspond to the
“worst” possible resolution of nondeterminism, whilst upper bounds correspond
to the most favourable resolution of the nondeterminism. For DFTs, the recent
advances in model checking of Markov automata [17], a nondeterministic ex-
tension of CTMCs is of relevance. Efficient algorithms have been developed for
objectives such as expected reward (and time, a.k.a.: MTTF), long-run rewards,
timed reachability, and combinations of such objectives; for algorithmic details
we refer to [23].

8 Statistical Model Checking

Statistical model checking [39] relies on Monte Carlo simulation, and can be
seen as a modern form of discrete event simulation. Rather than exploring the
whole state space and numerically computing the probability on a certain event,
statistical model checking takes (a large number of) random samples from a
statistical model and estimates the metric of interest.

Advantages. Statistical model checking has two important advantages over nu-
merical model checking. First, it can handle very large state spaces, enabling the
analysis of DFTs with many and/or complex elements, which cannot be tack-
led with numerical methods due to the size of the underlying state space. The
memory footprint of statistical techniques is extremely low, and this method can
trivially be parallelized on multi-core computer clusters.

Boosting Fault Tree Analysis by Formal Methods 17

Second, statistical methods can handle (almost) any probability distribution.
Numerical computations of models with non-exponential probability distribu-
tions is difficult, especially when various types of distributions are combined.
One can however, approximate arbitrary distributions with combinations of ex-
ponentials, using (acyclic) phase type distributions, but this comes at the cost
of a larger state space. This is particularly true for the frequently occurring de-
terministic distributions and Gaussian distributions. Statistical methods do not
suffer from this problem of combining different probability distributions. There-
fore, they have been fruitfully applied in a number of case studies. These include
the evaluation of complex maintenance strategies and their effect on system reli-
ability [45, 46, 44]. Here, the failure rates are Erlang-distributed, whereas repair
times and inspection frequencies are deterministic.

Drawbacks and remediations. Statistical methods have also their drawbacks.
First, they yield a stochastic estimate upto a certain confidence level, rather
than an exact value. It is, however, a subject of debate whether this is a true
disadvantage, since the failure rates and other numerical values appearing in
DFTs are often estimates themselves, obtained via measurements or expert opin-
ions. Second, statistical methods have a hard time supporting nondeterminism,
however, recent progress has been made in [14].

Finally, statistical methods require many samples for rare events, i.e., events
whose probability is low, which is typically the case for safety-critical systems.
For example, if the probability for a failure to happen is 1

1000 , we need 1,000
samples on average to see the event once, and for statistically significant results,
even more samples are needed, e.g., 10,000. To remedy this problem, rare event
simulation techniques have been invented [33]. These techniques increase the
probability for the rare events to happen, and then compensate the end result
for it. Two major classes of rare event simulation exist: importance sampling
[27] and importance splitting [41], and both have also been applied to DFTs,
respectively in [47] and [10].

9 Industrial Applications

Railway engineering. We have conducted a series of case studies [24, 44, 46, 48]
in close collaboration with stakeholders from railroad engineering, namely asset
manager ProRail, rolling stock maintenance company NS/NedTrain, and consul-
tancy firm Movares. All these case studies focussed on maintenance and studied
the effect of different maintenance policies in terms of their performance benefits
(i.e., increased availability or reliability) and costs (broken down into cost for
planned and unplanned downtime, and corrective and preventive maintenance).

More specifically, the maintenance strategies were modeled in the leaves of
the fault trees, leading to fault maintenance trees [45]. Both probabilistic and
statistical model checking were deployed.

The paper [24] analyzed a railway safety system of a railroad trajectory a
major crossing-points in the Netherlands. The goal of the analysis is to verify

18 Joost-Pieter Katoen and Mariëlle Stoelinga

that the rail trajectory fulfils the railway system specifications. Here, the focus
lies on the availability of the systems on the rail trajectory, defined by three
failure categories: Severe disruption in both directions, such that no train can
ride; severe disruption in one direction, such that no train can ride; and minor
disruption which leads to dispunctuality. These yield fault trees containing 25
to 350 BEs.

The paper considers two different repair strategies: a dedicated repair pro-
cedure for each component, i.e., each component can be repaired at any time.
This is the strategy Movares has considered for their analysis. A second strategy
considers one repair per group of components, which is more realistic in practice.

The paper [44] studies the effect of different maintenance strategies on a
pneumatic compressor, which produces compressed air used to operate, among
other things, the doors and brakes of trains. This compressor is critical to the
operation of the train, and a failure can lead to a lengthy and expensive disrup-
tion. Within the rolling stock maintenance company NedTrain, [44] modelled this
compressor as a fault maintenance tree (FMT), i.e., a fault tree augmented with
maintenance aspects. We have shown how this FMT naturally models complex
maintenance plans including condition-based maintenance with regular inspec-
tions. The analysis demonstrates that FMTs can be used to model the compres-
sor, a practical system used in industry, including its maintenance policy. We
validate this model against experiences in the field, compute the importance of
performing minor services at a reasonable frequency, and find that the currently
scheduled overhaul may not always be cost-effective.

The paper [46] studies the effect of different maintenance strategies on the
electrically insulated railway joint (EI-joint), a critical asset in railroad tracks for
train detection, and a relative frequent cause for train disruptions. Together with
experts in maintenance engineering, [46] modeled the EI-joint as a fault main-
tenance tree (FMT). Again, complex maintenance concepts, such as condition-
based maintenance with periodic inspections, were naturally modeled by FMTs,
and several key performance indicators, such as the system reliability, number
of failures, and costs, can easily be analysed.

The analysis shows that the current maintenance policy is close to cost-
optimal. It is possible to increase joint reliability, e.g., by performing more in-
spections, but the additional maintenance costs outweigh the reduced cost of
failures.

The faithfulness of quantitative analyses heavily depends on the accuracy of
the parameter values in the models. Here, we have been in the unique situation
that extensive data could be collected, both from incident registration databases,
as well as from interviews with domain experts from several companies. This
made that we could construct a model that faithfully predicts the expected
number of failures at system level.

Automotive industry. For the car manufacturer BMW, we have carried out a
large case study on the design-phase safety analysis of vehicle guidance sys-
tems [21]. Its aim is to model a variety of safety concepts and E/E architectures
for drive automation. Several DFTs have been automatically generated from

Boosting Fault Tree Analysis by Formal Methods 19

system descriptions and combined (in an automated manner) with hardware
failure models for several mappings of functions on hardware. The DFT state-
space generation has been done according to the monolithic approach using
abstraction-refinement to obtain bounds. The DFT analysis focused on investi-
gating the effect of different hardware partitionings on a range of metrics. These
metrics include e.g., the mean time from degradation to failure and the mini-
mal degraded reliability. DFTs with more than 300 nodes resulting in a CTMC
of about 4 million states and 66 million transitions have been generated and
successfully analysed in a matter of minutes.

Aerospace industry. This paper focused on exploiting formal methods in state-
space generation and DFT analysis. Formal methods can however also help
to synthesise fault trees from system description languages such as AADL or
SysML, see the recent survey [32]. The key idea here is to exploit the structure
of the system architecture so as to generate a fault tree in a fully automated
manner. In a case study with ESA [18], this technique has been successfully
applied to obtain a (static) fault tree of 66 nodes explaining the behaviour of
a severe failure in a complex satellite. The interesting aspect here is that the
satellite design team developed this FT manually, whereas using the compass

tool-set [8] that supports AADL, it could be generated in a fully automated
manner within two hours. The FT generation algorithm is described in detail
in [9].

10 Epilogue

Summary. This paper concentrated on the analysis of (dynamic) fault trees.
This includes the generation of stochastic state-based models from DFTs as well
as their quantitative analysis. We argued why formal methods can substantially
boost this. In a nutshell, the main benefits are: (1) probabilistic model checking
is mostly faster than competitive DFT analyses especially when several dynamic
gates are involved; (2) it enables the treatment of a larger class of DFT, namely
also those giving rise to nondeterminism; (3) it supports a large set of measures
of interest that go beyond the classical DFT measures; (4) compositionality,
abstraction, and reduction techniques improve the scalability of DFT analysis;
and (5) flexibility: attack trees can be treated in a similar way, extensions with
maintenance aspects, and other DFT elements are possible.

Future work. This paper concentrated on state-space generation for DFTs and
the analysis of the resulting stochastic (decision) processes. Open research chal-
lenges are to improve the process of obtaining DFTs for systems at hand. There
are effective ways to obtain fault trees from architecture description languages
such as AADL and SysML in an automated manner. Formal methods play an
important role here too as recently surveyed in [32]. The current approaches do
however not support the full expressiveness of DFTs but rather concentrate on a
subclass of DFTs. More importantly though is how to obtain trustworthy infor-
mation about the system at hand, such as failure rates, repair strategies and so

20 Joost-Pieter Katoen and Mariëlle Stoelinga

on. We believe that big data analysis can be exploited to help out. An alternative
direction is to consider parametric DFTs in which rates or even the redundancy
of components is left open. The key issue is then to synthesize parameter values
for which the resulting DFT ensures to satisfy a given reliability.

Acknowledgement. We thank the anonymous reviewers for their valuable feed-
back. A big thanks goes to our co-workers on fault trees in academia: Hichem
Boudali, Pepijn Crouzen, Dennis Guck, Sebastian Junges, Viet Yen Nguyen,
Bart Postma, Enno Ruijters, and Matthias Volk, and to our industrial partners:
Peter Drolenga (NS/NedTrain), Jaap van Ekris (Delta Pi), Bob Huisman (NS),
Madji Ghadhab (BMW), Gea Kolk (Movares), Matthias Kuntz (BMW), Martijn
van Noort (ProRail), Margot Peters (NS/NedTrain), Wietske Postma (Nuclear
Research Group), Judi Romijn (Movares), and Yuri Yushstein (ESA).

We thank Ed Brinksma for his guidance and inspiration over the many years.
This survey paper is a birthday salute to him. His belief in formal methods, espe-
cially the elegance of compositionality and his strong view on narrowing the gap
between formal methods and industrial practice have influenced our work to an
enormous extent. About 25 years ago, Ed was one of the creative minds to aim at
developing a framework for the integrated modelling and analysis of functional
and performance aspects of reactive systems. This survey gives a short account
about what one can achieve along these lines in a by tradition completely dif-
ferent research field—reliability analysis. Last but not least, we thank Ed for
his eloquence, his view on culture, art, books, and good food. And, as a Rec-
tor Magnificus of the University of Twente, his role in establishing a branch of
Starbucks on campus, almost next to our offices.

References

1. Marwan Ammar, Ghaith Bany Hamad, Otmane Aı̈t Mohamed, and Yvon Savaria.
Efficient probabilistic fault tree analysis of safety critical systems via probabilistic
model checking. In Proc. of FDL. IEEE, 2016.

2. Florian Arnold, Axel Belinfante, Freark van der Berg, Dennis Guck, and Mariëlle
Stoelinga. DFTCalc: A tool for efficient fault tree analysis. In Proc. of SAFE-
COMP, volume 8153 of LNCS, pages 293–301. Springer, 2013.

3. Florian Arnold, Dennis Guck, Rajesh Kumar, and Mariëlle Stoelinga. Sequential
and parallel attack tree modelling. In Proc. of SAFECOMP, volume 9338 of LNCS,
pages 291–299, 2015.

4. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

5. Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A compositional seman-
tics for dynamic fault trees in terms of interactive Markov chains. In Proc. of
ATVA, volume 4762 of LNCS, pages 441–456. Springer, 2007.

6. Hichem Boudali, Pepijn Crouzen, and Mariëlle I. A. Stoelinga. Dynamic fault tree
analysis using input/output interactive Markov chains. In Proc. of DSN, pages
708–717, 2007.

Boosting Fault Tree Analysis by Formal Methods 21

7. Hichem Boudali, Pepijn Crouzen, and Mariëlle I. A. Stoelinga. A rigorous, com-
positional, and extensible framework for dynamic fault tree analysis. IEEE Trans
on Dependable Secure Comput, 7(2):128–143, 2010.

8. Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen,
Thomas Noll, and Marco Roveri. Safety, dependability and performance analy-
sis of extended AADL models. The Computer Journal, 54:754–775, 2011.

9. Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic fault tree
analysis for reactive systems. In Proc. of ATVA, volume 4762 of LNCS, pages
162–176. Springer, 2007.

10. Carlos E. Budde, Pedro R. D’Argenio, and Holger Hermanns. Rare event simula-
tion with fully automated importance splitting. In Proc. of EPEW, volume 9272
of LNCS, pages 275–290. Springer, 2015.

11. Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. In Proc. of LICS, pages
428–439. IEEE Computer Society, 1990.

12. Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla. Symme-
try reductions in model checking. In Proc. of CAV, volume 6605 of LNCS, pages
147–158. Springer, 1998.

13. Pepijn Crouzen and Frédéric Lang. Smart reduction. In Proc. of FASE, volume
6603 of LNCS, pages 111–126. Springer, March 2011.

14. Pedro R. D’Argenio, Arnd Hartmanns, Axel Legay, and Sean Sedwards. Statistical
approximation of optimal schedulers for probabilistic timed automata. In Proc. of
IFM, volume 9681 of LNCS, pages 99–114. Springer, 2016.

15. Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
storm is coming: A modern probabilistic model checker. In Proc. of CAV, volume
10427 of LNCS, pages 592–600. Springer, 2017.

16. Joanne Bechta Dugan, Salvatore J. Bavuso, and Mark A. Boyd. Dynamic fault-
tree models for fault-tolerant computer systems. IEEE Trans Rel, 41(3):363–377,
1992.

17. Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic au-
tomata in continuous time. In Proc. of LICS, pages 342–351. IEEE CS, 2010.

18. Marie-Aude Esteve, Joost-Pieter Katoen, Viet Yen Nguyen, Bart Postma, and Yuri
Yushtein. Formal correctness, safety, dependability, and performance analysis of a
satellite. In Proc. of ICSE, pages 1022–1031. IEEE Computer Society, 2012.

19. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP
2011: a toolbox for the construction and analysis of distributed processes. Int’l J
on Software Tools for Technology Transfer, 15(2):89–107, 2013.

20. Daochuan Ge, Meng Lin, Yanhua Yang, Ruoxing Zhang, and Qiang Chou. Quan-
titative analysis of dynamic fault trees using improved sequential binary decision
diagrams. Reliab Eng Syst Safe, 142:289 – 299, 2015.

21. Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias Kuntz, and
Matthias Volk. Model-based safety analysis for vehicle guidance systems. In Proc.
of SAFECOMP, volume 10488 of LNCS. Springer, 2017. (To appear).

22. Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and
Maria Zimakova. Modelling and analysis using GROOVE. STTT, 14(1):15–40,
2012.

23. Dennis Guck, Hassan Hatefi, Holger Hermanns, Joost-Pieter Katoen, and Mark
Timmer. Analysis of timed and long-run objectives for Markov automata. LMCS,
10(3), 2014.

22 Joost-Pieter Katoen and Mariëlle Stoelinga

24. Dennis Guck, Joost-Pieter Katoen, Mariëlle I. A. Stoelinga, Ted Luiten, and Judi
Romijn. Smart railroad maintenance engineering with stochastic model checking.
In Proc. of RAILWAYS, volume 104 of Civil-Comp Proceedings, pages 299–314.
Civil-Comp Press, 2014.

25. Dennis Guck, Jip Spel, and Mariëlle I. A. Stoelinga. DFTCalc: Reliability centered
maintenance via fault tree analysis (tool paper). In Proc. of ICFEM, volume 9407
of LNCS, pages 304–311, 2015.

26. Rohit Gulati and Joanne Bechta Dugan. A modular approach for analyzing static
and dynamic fault trees. In Proc. of RAMS, pages 57–63, 1997.

27. Philip Heidelberger. Fast simulation of rare events in queueing and reliability
models. ACM Trans. Modeling and Computer Simulation, 5(1):43–85, 1995.

28. Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality,
volume 2428 of Lecture Notes in Computer Science. Springer, 2002.

29. Holger Hermanns and Joost-Pieter Katoen. The how and why of interactive markov
chains. In Proc. of FMCO, volume 6286 of LNCS, pages 311–337. Springer, 2009.

30. Sebastian Junges, Dennis Guck, Joost-Pieter Katoen, Arend Rensink, and Mariëlle
Stoelinga. Fault trees on a diet: automated reduction by graph rewriting. Formal
Asp. Comput., 29(4):651–703, 2017.

31. Sebastian Junges, Dennis Guck, Joost-Pieter Katoen, and Mariëlle I. A. Stoelinga.
Uncovering dynamic fault trees. In Proc. of DSN, pages 299–310. IEEE CS, 2016.

32. Sohag Kabir. An overview of fault tree analysis and its application in model based
dependability analysis. Expert Syst. Appl., 77:114–135, 2017.

33. Herman Kahn and T. E. Harris. Estimation of particle transmission by random
sampling. In Monte Carlo method; Proc. Symp. held June 29, 30, and July 1, 1949,
volume 12 of Nat. Bur. Standards Appl. Math. Series, pages 27–30, 1951.

34. Joost-Pieter Katoen. The probabilistic model checking landscape. In Proc. of
LICS, pages 31–45. ACM, 2016.

35. Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and
David N. Jansen. The ins and outs of the probabilistic model checker MRMC.
Perform. Eval., 68(2):90–104, 2011.

36. Rajesh Kumar and Mariëlle Stoelinga. Quantitative security and safety analysis
with attack-fault trees. In Proc. of HASE, pages 25–32. IEEE, 2017.

37. Marta Z. Kwiatkowska. Model checking for probability and time: from theory to
practice. In Proc. of LICS, pages 351–360. IEEE Computer Society, 2003.

38. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In Proc. of CAV, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

39. Kim G. Larsen and Axel Legay. On the power of statistical model checking. In
Proc. of ISoLA (2), volume 9953 of LNCS, pages 843–862, 2016.

40. Stefania Montani, Luigi Portinale, Andrea Bobbio, and Daniele Codetta-Raiteri.
Automatically translating dynamic fault trees into dynamic Bayesian networks by
means of a software tool. In Proc. of ARES, pages 804–809, 2006.

41. Jérôme Morio, Rudy Pastel, and François Le Gland. An overview of importance
splitting for rare event simulation. Eur. J. of Physics, 31(5):1295–1303, August
2010.

42. Elon Musk, 2015. https://twitter.com/elonmusk/status/615185689999765504.

43. K. Durga Rao, V. Gopika, V.V.S. Sanyasi Rao, H.S. Kushwaha, A.K. Verma, and
A. Srividya. Dynamic fault tree analysis using Monte Carlo simulation in proba-
bilistic safety assessment. Reliab Eng Syst Safe, 94(4):872 – 883, 2009.

Boosting Fault Tree Analysis by Formal Methods 23

44. Enno Ruijters, Dennis Guck, Peter Drolenga, Margot Peters, and Mariëlle
Stoelinga. Maintenance analysis and optimization via statistical model checking:
Evaluation of a train’s pneumatic compressor. In Proc. of QEST, volume 9826 of
LNCS, pages 331–347. Springer, 2016.

45. Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga. Fault main-
tenance trees: reliability centered maintenance via statistical model checking. In
Proc. of RAMS. IEEE, 2016.

46. Enno Ruijters, Dennis Guck, Martijn van Noort, and Mariëlle Stoelinga.
Reliability-centered maintenance of the electrically insulated railway joint via fault
tree analysis: A practical experience report. In Proc. of DSN, pages 662–669. IEEE,
2016.

47. Enno Ruijters, Daniël Reijsbergen, Pieter-Tjerk de Boer, and Mariëlle Stoelinga.
Rare event simulation for dynamic fault trees. In Proc. of SAFECOMP, volume
10488 of LNCS, 2017. (Accepted for publication).

48. Enno Ruijters and Mariëlle Stoelinga. Better railway engineering through statis-
tical model checking. In Proc. of ISoLA, volume 9952 of LNCS, pages 151–165,
2016.

49. Enno Ruijters and Mariëlle I. A. Stoelinga. Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools. Computer Science Review, 15-
16:29–62, 2015.

50. Kevin J. Sullivan, Joanne Bechta Dugan, and David Coppit. The Galileo fault tree
analysis tool. In Proc. of FTCS, pages 232–235, 1999.

51. Mark Timmer, Joost-Pieter Katoen, Jaco van de Pol, and Mariëlle Stoelinga. Con-
fluence reduction for Markov automata. In Theor Comput Sci, volume 655, pages
193–219, 2016.

52. Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. Advancing dynamic
fault tree analysis. In Proc. of SAFECOMP, volume 9922 of LNCS, pages 253–265.
Springer, 2016.

53. Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. Fast dynamic fault
tree analysis by model checking techniques. IEEE Trans on Industrial informatics,
2017. (To appear) doi: 10.1109/TII.2017.2710316.

54. T. Yuge and S. Yanagi. Quantitative analysis of a fault tree with priority AND
gates. Reliab Eng Syst Safe, 93(11):1577–83, 2008.

