Symbolic Computation Techniques in
Satisfiability Checking

Erika Abrahdm
Computer Science Department
RWTH Aachen University
Aachen, Germany
abraham @cs.rwth-aachen.de

Abstract—Satisfiability Checking is a relatively young research
area, aiming at the development of efficient software technologies
for checking the satisfiability of existentially quantified logical
formulas. Besides the success story of SAT solving for proposi-
tional logic, SAT-modulo-theories (SMT) solvers offer sophisti-
cated solutions for different theories. When targeting arithmetic
theories, SMT solvers also make use of decision procedures rooted
in Symbolic Computation.

In this paper we give a brief introduction to SMT solving,
discuss differences to Symbolic Computation, and illustrate the
potentials and obstacles for embedding Symbolic Computation
techniques in SMT solving on the example of the Cylindrical
Algebraic Decomposition.

Keywords—Satisfiability Checking, SAT-Modulo-Theories Soly-
ing, Algebra

I. INTRODUCTION

Logical formalisations are frequently used in different
research and application areas to specify, e.g., combinatorial,
scheduling, planning, verification, synthesis or optimisation
problems. To find solutions to the logically specified problems,
decision procedures can be used to check the satisfiability or
validity of the logical formulas.

The first decision procedures were developed in mathe-
matical logic for algebraic theories. The achievements in the
area of Symbolic Computation are not only of theoretical
nature: efficient implementations in powerful computer algebra
systems allow applications to practically relevant problems.

Independently, another line of research evolved in computer
science. Satisfiability Checking [6] attacks the problem from
a different perspective: Whereas Symbolic Computation rather
focuses on the satisfiability problem for sets of arithmetic'
constraints, the main aim of Satisfiability Checking is to offer
(practically) efficient solutions for logical formulas with a
Boolean structure. Starting with propositional logic and easier
theories like equalities and uninterpreted functions, nowadays
quite a number of SAT and SAT modulo theories (SMT) solvers
are available for a large number of theories (including arith-
metic theories). These solvers use dedicated data structures
and sophisticated heuristics to achieve an efficiency that allows
their application to large industrial problems.

This work was supported by the H2020-FETOPEN-2016-2017-CSA project
SC? (712689).

! Algebraic theories are often called arithmetic theories in the SMT-solving
context.

For propositional logic, which is known to be NP-complete,
SAT solvers use an elegant combination of enumeration, propa-
gation [16] and resolution [17]. Conflict-driven clause-learning
and non-chronological backtracking [30], and novel implemen-
tation techniques like the two-watched-literal scheme, restarts,
cache performance optimisation, etc. brought further impres-
sive progress.

SMT solvers [5], [28] enrich propositional SAT solvers
with solver modules for different theories like equalities and
uninterpreted functions, bit-vector arithmetic, floating-point
arithmetic, array theory, difference logic, (quantifier-free) lin-
ear real/integer/mixed arithmetic, and (quantifier-free) non-
linear real/integer/mixed arithmetic.

For arithmetic theories, SMT solvers often make use of
decision procedures developed in the area of Symbolic Com-
putation. On the one hand, these procedures must be adapted
and extended before they can be embedded in an SMT solver,
what might cost quite some effort. On the other hand, we can
exploit the main strengths of SMT solving and apply dedicated
heuristics (for each decision procedure adjusted to its nature) to
improve their performance in the SMT solving context. Further
potential lies in the lifting of combinatorial problems from the
theory level to the Boolean level, where learning can be used
for an efficient search.

In this paper we give a short introduction to the theoretical
foundations of Satisfiability Checking and a nutshell-overview
about state-of-the-art SMT solvers including our own SMT
solver SMT-RAT [15]. We discuss the efficient embedding of
algebraic decision procedures in SMT solvers on the example
of the cylindrical algebraic decomposition [12].

II. SAT-MODULO-THEORIES SOLVING

SAT-modulo-theories (SMT) solving aims at deciding the
satisfiability of (usually quantifier-free) first-order logic for-
mulas over some theories. Before we give an insight into the
functioning of state-of-the-art SMT solvers, we first discuss the
algorithmic basics of SAT solving for checking the satisfiability
of propositional logic formulas without any underlying theory,
which is a central component at the heart of SMT technologies.

A. SAT Solving

Propositional logic formulas are Boolean combinations of
Boolean variables. The satisfiability problem for propositional
logic, which is known to be NP-complete [14], is the problem

a: (na Vv -d V e)
c2: (ma Vv -d V —e)
cs: (-b V —c)

Fig. 1. Enumeration

to decide whether a propositional logic formula is satisfiable,
i.e., whether there exists an assignment of values to the
variables in the formula that evaluates the formula to true.

The perhaps most natural decision procedure for checking
the satisfiability of such formulas is to enumerate all possible
assignments and check whether one of them satisfies the
formula. If a satisfying assignment has been found then the
formula is satisfiable otherwise not.

Example 1: Figure 1 illustrates an enumeration path lead-
ing to an unsatisfying assignment.

A big step towards practical relevance was the combi-
nation of enumeration with propagation [16]. The formulas
are first transformed into a satisfiability-equivalent formula in
conjunctive normal form, that means into a formula being a
conjunction of clauses, where each clause is a disjunction
of literals, and each literal is either a variable or a negated
variable. Instead of checking complete assignments, a variable
ordering heuristics chooses a variable and a value, and the
algorithm decides to try first assignments where the given
variable is assigned the given value. In contrast to enumeration,
before a next decision is taken, Boolean constraint propagation
is used to detect implications of previously made decisions.
Such an implication is detected if a clause is unigue, which
means that all of its literals but one are false and the last one
is unassigned; in this case propagation assigns the value frue
to this last literal, implying that all other assignments, which
would assign false to that last literal and thereby would lead to
an unsatisfying assignment, are not considered. If propagation
finds that all literals in a clause are false then a conflict is
detected. As all extensions of the current partial assignment
would be inevitably unsatisfying, enumeration stops at this
point. Backtracking flips the variable value for the last decision
that was not yet flipped and the search for a satisfying full
assignment continues with propagating the flipped value; if no
such decision exists then the formula is unsatisfiable.

Example 2: Figure 2 illustrates why the previous assign-
ment from Example 1 can be avoided when combining enu-
meration with propagation: after deciding to assign frue to
both a and b, propagation in clause c3 will imply that only
the value false needs to be considered for ¢ under the given

cr: ((—a Vv -dV e)
c2: (—ma Vv -d V —e)
cs: (-b V -c)

B

Enumeration with propagation

\/\0

Fig. 2.

partial assignment.

A further milestone in efficiency improvement merged a
third basic component with enumeration and propagation. This
component is resolution, which is a complete but for practical
applications too costly decision procedure for propositional
logic. The underlying idea is the following: if a clauses
¢ = (I1 V... VI, V) contains a variable x and another
clause co = (I{ V...V I,V —x) its negation —x then
all assignments satisfying both clauses must satisfy either
LVv...Vigorli V...V, ie. they must satisfy the clause
(l3V.. VI, VI V... vI). The merging point with enumeration
and propagation is the way how conflicts are resolved: instead
of flipping the last non-flipped decision, conflict-driven clause
learning [30] applies resolution to follow back the chain of
implications during propagation and to derive a clause which,
if it would have been in the clause set at an earlier point, would
have saved the procedure from running into the given conflict.
The search jumps back to that earlier point and continues the
search from there, starting with propagation to assure that the
information in this new clause is exploited.

Example 3: Figure 3 illustrates the usage of resolution
when a conflict appears. The conflicting clause is cz, whose
literals are all false. This holds especially for its last assigned
literal —e, which is false because clause c; implied that e must
be true. As —e appears in ¢y and e appears in c;, we can apply
resolution. The resulting clause states that all assignments
extending a = true must set d to false. When resolving this
conflict, the last two decisions b = true and d = true will be
undone, the new clause will be added to the clause set, and
propagation in the new clause will imply that d = false must
hold for all extensions of this partial assignment.

These algorithmical developments were implemented in
numerous SAT solvers, which are nowadays able to solve
practical problems with millions of variables. This efficiency
led to the embedding of these tools into several approaches
not only in different research areas like analysis, synthesis
and optimisation, but also in industry, where SAT solvers are
massively used for, e.g., digital circuit design and verification.

Remark 1: One of the enabling factors for this success
was the active community support, resulting in a standardised
input language, a huge benchmark collection, competitions

ca: (—na Vv -d V e)
cp: (—a Vv -d VvV —e)
cg: -b V —c)
ciw (—a Vv -d)

ca:(maV-dV—e) ¢ :

(ma VvV =dVe)
¢yq : (maV—d)

Resolution

Fig. 3. Combining enumeration, propagation and resolution

since 2002, the SAT Live! forum as a community platform,
the organisation of dedicated conferences, etc.

B. SMT Solving

As propositional logic is sometimes too weak for mod-
elling, also more expressive logics and decision procedures for
them were considered in the area SAT-modulo-theories (SMT)
solving.

Here we describe the less lazy SMT solving approach,
which takes as input a logical formula over some theories in
conjunctive normal form, and builds its Boolean skeleton by
replacing each theory atom by a fresh Boolean variable. The
resulting formula is passed to a SAT solver to find solutions for
the Boolean structure of the problem. After each decision and
propagation loop of the SAT solver, it consults a theory solver,
which implements a decision procedure for sets of theory
constraints, asking whether those theory constraints whose
abstraction variable is frue and the negation of those whose
abstraction variable is false’ are together consistent. If they
are consistent, the SAT solver continues its search. Otherwise,
the theory solver returns an explanation for the inconsistency.
Such an explanation is a tautology in the theory, usually (but
not necessarily) stating that an inconsistent subset of the theory
solver’s passed constraints cannot hold together. The SAT
solver makes use of this explanation to refine the Boolean
abstraction by adding the abstraction of the explanation to its
clause set, and handling this new clause similarly to a Boolean
conflict.

Example 4: Figure 4 illustrates the SMT-solving procedure
on an example. In the input formula, first the constraints
<0,z >2 22 =1and 22 < 0 are abstracted by the
Boolean variables a, b, ¢ and d. The resulting propositional
logic formula is passed to a SAT solver, who first might decide

2Those constraints whose abstraction variable is false do not need to be
considered if the input formula does not contain any negated theory constraints.

(x<0Va>2)A(z2=1Vva?<0)

(a vV b)AN(¢ VvV d)

-a, b

>0, 2>2 SAT

Theory solver(s)

(x<OVvae>2)A(@2=1va?<0)

(a vV b)AN(¢ V d

UNSAT: —(z* < 0)

) A (=d)

x>0, z>2,22#1, 22 <0

Theory solver(s)

Fig. 4. Less lazy SMT solving example

a = false, implying by propagation b = true. Before the
next decision, the consistency of the corresponding constraints
x > 0 and = > 2 is checked by a theory solver. As they are
consistent, the SAT solver might decide ¢ = false, from which
we imply d = true by propagation. The previous constraint
set sent to the theory solver gets extended by the constraints
22 # 1 and 22 < 0. The set of these four constraints is
inconsistent, an explanation being —(x? < 0). The SAT solver
will now learn the abstraction —d of this explanation to refine
the abstraction and to assure that in the remaining search d
will not be set to true and thus that the search will not run
into the same theory conflict again.

Figure 5 lists some decision procedures which could be im-
plemented inside a theory solver for some arithmetic theories.
The simplex algorithm, the ellipsoid method [27], the Gauf3
and the Fourier-Motzkin variable elimination algorithms, or
the incomplete method of interval constraint propagation [23],
[25] are applicable for linear real arithmetic, whereas in the
linear integer case cutting planes [19], branch and bound [20],
the Omega test [33], bit-blasting [11] and interval constraint
propagation can be used. Satisfiability checking for non-linear
real arithmetic, which has an exponential time-complexity, can
be done using the cylindrical algebraic decomposition [12]
method, methods based on Grobner bases [35], the virtual
substitution [36] method, or interval constraint propagation.
Some incomplete methods for non-linear integer arithmetic, for
which satisfiability is undecidable, are the generalised branch-
and-bound [] and bit-blasting.

Linear real arithmetic:
e Simplex
e Ellipsoid method

e Gauf} and Fourier-Motzkin variable elimination (mostly pre-

processing)
e Interval constraint propagation (incomplete)
Non-linear real arithmetic:
Cylindrical algebraic decomposition
Grobner bases (mostly preprocessing/simplification)
Virtual substitution (incomplete)
Interval constraint propagation (incomplete)

Fig. 5. Some decision procedures for arithmetic theories

Examples for SMT solvers that can cope with arithmetic
problems (either in a complete or in an incomplete manner)
are Alt-Ergo [13], AProVE [11], cvc4 [3], iSAT3 [22], [34],
MathSATS [10], Minismt [38], OpensSMT2 [9], SMT-RAT [15],
veriT [7], Yices2 [21], and z3 [32]. However, just a few
of these solvers use algebraic decision procedures beyond the
simplex method.

Implementations for algebraic decision procedures can be
found in many computer algebra systems and other algebraic
tools like, e.g., CoCoALib [1], Maple [29], Mathematica
[37], Maxima [31], QEPCAD [8], Reduce [24] or Singular
[18], just to mention a few.

Unfortunately, we cannot just plug in such an algebraic
decision procedure as a theory solver into an SMT solver,
because the SMT context puts certain special requirements on
its theory solvers.

e The above example illustrates that the theory solver
must check the consistency of sequences of problems
with increasing constraint sets, until the problem gets
inconsistent (or until a full solution is found). If the
consistency check is done independently for each set,
the computational effort would be very high. However,
for most methods it is possible to re-use computations
from the previous checks to reduce the computational
effort. This ability is called incrementality.

e As explained above, if a set of constraints turns out to
be inconsistent, in order to refine the Boolean abstrac-
tion, the theory solver should return an explanation to
the SAT solver. As explanations of smaller size usually
stronger prune the search space, it is advantageous to
generate minimal (if any constraint is removed then
the set is feasible) or even minimum (smallest under
all) explanations.

e Finally, if a (Boolean or theory) conflict occurs, the
SAT solver will undo some of its assignments. Dually,
the theory solver should also be able to backtrack by
removing some constraints from its passed constraints.

Further problems raise from the fact that most implementations
are not available as a library, or they are not thread-safe and
thus does not support parallelisation approaches.

As available implementations of algebraic decision proce-
dures in general do not provide the above functionalities, there
is a need to adapt them to satisfy the SMT solvers’ require-
ments. Such adaptations are sometimes tricky, but they can

Linear integer arithmetic:

e Cutting planes, Gomory cuts

e Branch-and-bound (incomplete)

e Omega test

e Bit-blasting (eager)

e Interval constraint propagation (incomplete)
Non-linear integer arithmetic:

e Generalised branch-and-bound (incomplete)
e Bit-blasting (eager, incomplete)

lead to elegant novel solutions. The European Communication
and Support Action SC?: Satisfiability Checking and Symbolic
Computation [2] aims at supporting such developments by
bridging the two communities.

Such adaptations for decision procedures for non-linear
arithmetic problems stay in the focus of our SMT-RAT solver
[15], whose structure is depicted in Figure 6. Based on some
standard libraries, the CArL library offers functionalities for
basic arithmetic computations with arithmetic objects. Based
on CArL, we implemented a set of different modules for
decision procedures and methods for preprocessing, simplifica-
tion etc. Most modules implement adapted algebraic decision
procedures that satisfy the SMT requirements (incrementality,
generation of explanations, backtracking). These SMT-RAT
modules can be connected by a user-defined strategy to
combine the strengths of different decision procedures. For
example, the user could specify to use, as a theory solver,
the simplex module if the problem is linear. If this is not
the case, it could call the virtual substitution module, which
offers quantifier elimination for variables that appear at most
quadratically in the constraints. This elimination generates
a set of sub-problems; if one of these sub-problems has a
too high degree for the virtual substitution, the cylindrical
algebraic decomposition module could be invoked to check
the satisfiability of those subproblems.

Remark 2: Above we discussed only the less lazy tech-
nique. Besides full lazy solving that consults the theory solver
only for complete assignments, also eager SMT solving can be
applied to theories that are not more expressive than proposi-
tional logic; eager approaches transform an input formula into
a satisfiability-equivalent propositional logic formula, whose
satisfiability can be checked by a SAT solver. Furthermore,
there are also SMT solving techniques, which more closely
integrate theory-solving parts into the SAT-solving mechanism.

Similarly to SAT solving, a great driving force for the
impressive development of SMT solving was the introduction
of an SMT-LIB [4] as standard input language in 2004, what
allowed also the collection of benchmark sets for different
theories and the start of competitions in 2005.

III. EMBEDDING THE CYLINDRICAL ALGEBRAIC
DECOMPOSITION IN SMT SOLVING

The cylindrical algebraic decomposition (CAD) method
[12] is a complete quantifier elimination method for real
algebra. As such, in the context of SMT-solving, the CAD

CArL
real-arithmetic
computations

gmp, Eigen3, boost

SMT Solver Manager
Strategic composition of SMT-RAT modules (
SAT | ‘ Conditipn Conditipn Conditjon
SMT—RAT solver 1
(SMT real-algebraic toolbox) Module | | Module | | Module | | Module
preprocessing, SAT and
theory solver modules \ - g
\\f SAT solver b

CNF converter
Preprocessing/simplifying modules
Interval constraint propagation
Simplex

Grobner bases

Virtual substitution

Cylindrical algebraic decomposition
Generalised branch-and-bound

Fig. 6. The structure of our SMT—RAT library

method can be employed as a theory solver to check the
satisfiability of non-linear real-arithmetic problems. In the
following we first briefly explain the basic ideas behind the
CAD method, and give two examples of how to exploit its
functionalities in an SMT solver.

A. The Cylindrical Algebraic Decomposition

First we give some insights of how the CAD method can
be used to check the satisfiability of a set of polynomial
constraints, each of them comparing a polynomial to zero.
Due to space limitations, we cannot give any mathematically
precise description here, and we restrict ourselves to the
intuition and the algorithmic aspects.

Intuitively, the CAD idea is based on the observation that
the algebraic varieties of a set of polynomials (the sets of the
points at which the polynomials evaluate to zero) partition the
state space into finitely many connected regions, over which
the polynomials are sign-invariant. Thus if we can construct
such a partitioning for the polynomials in our polynomial
constraints, we can take a single sample point from each
partition and check whether one of those samples satisfies
all polynomial constraints. If yes, we have found a solution,
otherwise the set of constraints in unsatisfiable.

The construction of such a partitioning with the CAD
method (the cylindrical algebraic decomposition of the state
space) is illustrated on an example in Figure 7. In its first
phase, the CAD method applies some projection operators,
which generate for a set of n-dimensional polynomials in the
variables 1, ..., x, a set of (n — 1)-dimensional polynomials
in the variables z1,...,x,_; with the following property: at
each n-dimensional point at which the number or the order
of the zeros of the polynomials change when we move in
the x,-dimension (for example where the zero surfaces of
two polynomials cross each other), the projection of this n-
dimensional point to the (n — 1)-dimensional space will be a
zero of one of the projected (n — 1)-dimensional polynomials.

The projection is repeatedly applied until we get one-
dimensional polynomials, whose zeros &;1,...,&1,k, can be

isolated and ordered (for example using Sturm sequences
and Cauchy bounds). Thanks to the projection property, we
know that for each two successive zeros &;; and & ;41 of
the one-dimensional polynomials, the cylinder (§;,&;+1) x R
is a stack of (finitely many two-dimensional) sign-invariant
regions of the two-dimensional polynomials. L.e., for any (one-
dimensional) sample s1 € (§14,&1,441), the line {s1} x R
will hit the same sign-invariant regions of the two-dimensional
polynomials.

Based on this observation, in the second construction phase
of the CAD method we choose 2k; 41 samples 511 < 512 =
§1,1 <513 <814 =2E812<...<512% =&k < 81,2841
one from each sign-invariant region of the one-dimensional
polynomials. For each s;; of these samples we proceed as
follows. We substitute s;; into the two-dimensional poly-
nomials and isolate the zeros &21,...,&2,%, of the resulting
(now one-dimensional) polynomials. Again, we choose 2k;+1
samples s21 < S22 = §2,1 < 823 < 824 = &22 < ... <
522k, = &2k, < S22k,+1 and proceed the same way for
each sample s ; by substituting (sq;,S2 ;) into the three-
dimensional polynomials etc.

At the end, we get of a set of m-dimensional samples,
which contains from each n-dimensional connected sign-
invariant region of the n-dimensional polynomials at least one
point, such that we can test whether the sign conditions on
the n-dimensional polynomials, as posed by the polynomial
constraints, can be satisfied by any of these points.

B. Making the CAD method SMT-compliant

First we explain how our SMT-RAT implementation adapts
the CAD method to be SMT-compliant. We adapted the
underlying data structures to make the CAD module incre-
mental, being able to generate explanations, and being able to
backtrack.

For incrementality, we first need to remark that, when
applied to a set .S of n-dimensional polynomials, projection
operators generate a set of (n — 1)-dimensional polynomials
by applying projection to single polynomials and to pairs of

Py={(z—-2°+(y—27°-1z—y}

projection

y

P ={2? -4z +3,22> -8z +7,... }

Fig. 7. The cylindrical algebraic decomposition on an example

polynomials from S. Once the CAD was applied to a set .S of
n-dimensional polynomials, if this set is extended with a set
S’ of new polynomials, to get all projections for S U S’, the
old projection for .S needs to be extended by (i) projections of
polynomials p € S’ and (ii) projections of pairs of polynomials
from (SUS’) x S’. Thus the previous projection computations
can be reused. As the projection sets increased monotonically,
also the sample sets increase monotonically. Thus we can re-
use the previous sample tree for S and extend it with samples
that arise due to additional zeros of the newly computed
projections.

This incremental approach is implemented in SMT-RAT.
Efficient data structures are used for book-keeping which
projections and constructions are completed and which are the
ones that still need to be computed. As a side-effect, the CAD
module of SMT-RAT is able to make partial computations in
both phases, i.e., there is no need to compute the full projection
before we can start constructing samples. Furthermore, it al-
lows us to use sophisticated heuristics to guide the CAD search
(e.g., to project lower-dimensional polynomials first). These
properties allow to speed up satisfiability checks remarkably
for satisfiable problem instances.

Explanations are generated by our SMT-RAT CAD module
as follows. If all samples are computed and none of them
satisfies the sign conditions specified by the input polynomial
constraint set, we compute for each sample the set of all input
polynomial constraints whose sign conditions are violated by
that sample. To achieve an explanation of unsatisfiability, we
compute a covering set that contains for each sample at least
one polynomial constraint from its set of violated constraints.
This covering set is an unsatisfiable subset of the input con-
straint set, as it contains for each sample at least one violated
polynomial constraint. To generate smaller explanations, with
some additional effort also minimal covering sets can be
computed.

Backtracking can be supported by a dedicated data struc-
ture. For each projected polynomial and each constructed
sample we can remember its “parents” (i.e., for the projection
the polynomials that were projected, and for sample con-
struction the polynomials whose zeros define the boundaries
of the cell that the sample represents). As projection and

2

zeros of
Py[/z]

zeros of

' N
1 *

Py 0

N ——————> Ot .

sample construction are computed in a recursive manner, these
dependencies define chains in the projection and sample trees.
If a polynomial constraint gets removed by backtracking, all
the chains that are rooted in the polynomial of that constraint
are removed recursively. Note that we need to pay special
attention to multiple “parents” (e.g., if the same polynomial
was generated by several projection steps or if projected
polynomials have a common zero); such object are removed
only when all their “parents” disappear.

C. The Z3 Approach

As an example for a deeply novel adaptation of an algebraic
decision procedure in an SMT solver, we briefly explain the
embedding of the CAD method in the SMT solver z3 [32],
[26].

Instead of the strictly distinguished handling of the Boolean
structure of a problem and its theory constraints, this SMT
approach combines Boolean decision, propagation and con-
flict resolution with theory decision, propagation and conflict
resolution. Intuitively, the idea is as follows.

Given a real-arithmetic formula in conjunctive normal form
whose satisfiability we want to decide, we assume a static
variable order x1,...,x, of the theory variables appearing in
the theory constraints of the formula. Starting with z;, the
procedure iteratively assigns values «(z;) to the theory vari-
ables x;. Before assigning x;, for all clauses with constraints
in x1,...,x;, if none of their constraints in xq,...,x;_1 is
satisfied by the current partial assignment, then one of their
constraints in xi,...,x; is chosen that should be satisfied
by the forthcoming assignment to z;. Substituting the current
partial assignment (z1), ..., a(z;—1) into those chosen con-
straints results in a set of univariate polynomial constraints (in
x;). The procedure now checks whether they have a common
solution. If yes, a common solution is assigned to x;.

Otherwise, the method determines an infeasible subset .S
of those polynomial constraints and constructs a (partial) CAD
just for the polynomials of the constraints in S. Next, the
method computes an algebraic description D of the CAD cell
that contains the current partial solution a(x1),...,a(z;—1).
Finally, the method learns a new clause (Ac.csc) — —D. After

backtracking and conflict resolution, the method continues as
described below, until either a satisfying solution is found or
a conflict is detected before making any decisions (in which
case the problem is unsatisfiable).

The above embedding of the CAD method in SMT solving
is extremely efficient. One reason is that due to the careful
selection of variable values, lots of unsatisfying CAD cells are
not considered at all. Furthermore, the complete CAD for all
polynomials in the input formula will for most problems never
be computed. Instead, CADs for relatively small constraint sets
combined with learning help to exclude large unsatisfying cells
from further search.

IV. CONCLUSION

After having presented the algorithmic basics of SMT
solving and the embedding of decision procedures rooted
in symbolic computation into the SMT solving context on
the example of the cylindrical algebraic decomposition, we
conclude the paper with a short discussion on where the current
research development moves.

One thread focuses on further improving the scalability
of SMT solvers by, e.g., performance optimisation (better
lemmas, heuristics, cache behaviour, ...), further novel com-
binations of decision procedures, developing dedicated SMT
solvers tuned to be efficient for certain problem types, or par-
allelisation. Highly interesting are also functionality extensions
to enable, e.g., the generation of unsatisfiable cores also in the
presence of theories, the generation of proofs in the case of
unsatisfiability, the computation of interpolants, the handling
of quantified arithmetic formulas, and last but not least linear
and non-linear (global) optimisation.

REFERENCES

[1] Abbott, J., Bigatti, A.M.: What is new in CoCoA? In: Proc. of ICMS’ 14.
LNCS, vol. 8592, pp. 352-458. Springer (2014)

[2] Abrahém, E., Abbott, J., Becker, B., Bigatti, A.M., Brain, M., Buch-
berger, B., Cimatti, A., Davenport, J.H., England, M., Fontaine, P.,
Forrest, S., Griggio, A., Kroening, D., Seiler, WM., Sturm, T.: Sc?: Sat-
isfiability checking meets symbolic computation. In: Proc. of CICM’16.
LNCS, vol. 9791, pp. 28-43. Springer (2016)

[3] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D.,
King, T., Reynolds, A., Tinelli, C.: CVC4. In: Proc. of CAV’11. LNCS,
vol. 6806, pp. 171-177. Springer (2011)

[4] Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories
Library (SMT-LIB). www . SMT-LIB.org (2016)

[5] Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo
theories. In: Handbook of Satisfiability, Frontiers in Artificial Intelli-
gence and Applications, vol. 185, chap. 26, pp. 825-885. I0S Press
(2009)

[6] Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press (2009)

[71 Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An
open, trustable and efficient SMT-solver. In: Proc. of CADE-22. LNCS,
vol. 5663, pp. 151-156. Springer (2009)

[8] Brown, C.W.: QEPCAD: A program for computing with semi-algebraic
sets using CADs. ACM SIGSAM Bulletin 37(4), 97-108 (2003)

[9] Bruttomesso, R., et al.: The OpenSMT solver. In: Proc. of TACAS’10.
LNCS, vol. 6015, pp. 150-153. Springer (2010)
[10] Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSATS
SMT solver. In: Proc. of TACAS’13, LNCS, vol. 7795, pp. 93-107.
Springer (2013)

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-
ring constraints. In: Proc. of SMT’13. EPiC Series, vol. 20, pp. 88-97.
EasyChair (2013)

Collins, G.E.: Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In: Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134-183. Springer (1975)

Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework
for non-linear integer arithmetic reasoning in Alt-Ergo. In: Proc. of
SYNASC’13. pp. 161-168. IEEE (2013)

Cook, S.A.: The complexity of theorem-proving procedures. In: Proc.
of STOC’71. pp. 151-158. ACM (1971)

Corzilius, F., Kremer, G., Junges, S., Schupp, S., Abrahém, E.: SMT-
RAT: An open source C++ toolbox for strategic and parallel SMT
solving. In: Proc. of SAT’15. LNCS, vol. 9340, pp. 360-368. Springer
(2015)

Davis, M., Logemann, G., Loveland, D.: A machine program for
theorem-proving. Commun. ACM 5(7), 394-397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification
theory. J. ACM 7(3), 201-215 (Jul 1960)

Decker, W., Greuel, G.M., Pfister, G., Schonemann, H.: Singular 4-
0-2 — A computer algebra system for polynomial computations.
http://www.singular.uni-k1l.de (2015)

Dillig, 1., Dillig, T., Aiken, A.: Cuts from proofs: A complete and
practical technique for solving linear inequalities over integers. In: Proc.
of CAV’09. LNCS, vol. 5643, pp. 233-247. Springer (2009)

Doig, A.G., Land, B.H., Doig, A.G.: An automatic method for solving
discrete programming problems. Econometrica 28, 497-520 (1960)

Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T).
In: Proc. of CAV’06. LNCS, vol. 4144, pp. 81-94. Springer (2006)

Frinzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation 1(3-4), 209-236 (2007)

Gao, S., Ganai, M., Ivancié, F., Gupta, A., Sankaranarayanan, S., Clarke,
E.M.: Integrating ICP and LRA solvers for deciding nonlinear real
arithmetic problems. In: Proc. of FMCAD’10. pp. 81-90. IEEE (2010)

Hearn, A.C.: REDUCE: The first forty years. In: Proc. of A3L. pp. 19—
24. Books on Demand GmbH (2005)

Herbort, S., Ratz, D.: Improving the efficiency of a nonlinear-system-
solver using a componentwise Newton method. Tech. Rep. 2/1997, Inst.
fiir Angewandte Mathematik, University of Karlsruhe (1997)

Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: Proc.
of IJCAR’12. LNAI, vol. 7364, pp. 339-354. Springer (2012)
Khaciyan, L.C.: Polynomial algorithm for linear programming. Soviet
Doklady 244, 1093-1096 (1979), typed translation

Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic
Point of View. Springer (2008)

Maplesoft. http://www.maplesoft.com/

Marques-silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers 48, 506—
521 (1999)

Maxima, a computer algebra system.
http://maxima.sourceforge.net/

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: Proc. of
TACAS’08. LNCS, vol. 4963, pp. 337-340. Springer (2008)

Pugh, W.: The Omega test: A fast and practical integer programming
algorithm for dependence analysis. Commun. ACM 8§, 4-13 (1992)
Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in
the SMT solver iSAT. In: Proc. of MBMV’13. pp. 231-241. Institut fiir
Angewandte Mikroelektronik und Datentechnik, Fakultit fiir Informatik
und Elektrotechnik, Universitit Rostock (2013)

Weispfenning, V.: A new approach to quantifier elimination for real
algebra. In: Quantifier Elimination and Cylindrical Algebraic Decompo-
sition. pp. 376-392. Texts and Monographs in Symbolic Computation,
Springer (1998)

Weispfenning, V.: Quantifier elimination for real algebra - the quadratic
case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85-101
(1997)

[37] Wolfram, S.: Mathematica: A System for Doing Mathematics by
Computer. Addison-Wesley (1988)

[38] Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arith-
metic. In: Proc. of LPAR’10. LNAI, vol. 6355, pp. 481-500. Springer
(2010)

