
HyPro: A C++ Library of State Set Represen-
tations for Hybrid Systems Reachability Analysis?

S. Schupp1, E. Ábrahám1, I. B. Makhlouf1, and S. Kowalewski1

RWTH Aachen University, Germany

Abstract. In this tool paper we introduce HyPro, our free and open-
source C++ programming library, which offers implementations for the
most prominent state set representations used by flowpipe-construction-
based reachability analysis techniques for hybrid systems.

1 Introduction

As hybrid systems with mixed discrete-continuous behaviour are often safety-crit-
ical applications, a rising interest in their safety verification resulted in the devel-
opment of powerful tools implementing different approaches to determine the set
of system states that are reachable from a given set of initial states. Besides ap-
proaches based on, e.g., theorem proving or SMT solving, flowpipe-construction-
based reachability analysis is a well established method, which over-approximates
the set of reachable states of a hybrid system by a union of state sets, each of
them being represented by a geometric object of a certain shape (like boxes,
polytopes, or zonotopes) or symbolically (like support functions or Taylor mod-
els). Hybrid systems reachability analysis tools like, e.g., Cora [1], Flow* [2],
HyCreate [7], HyReach [8], SoapBox [5], and SpaceEx [3] implement different
techniques using different geometric or symbolic state set representations, each
of them having individual strengths and weaknesses.

The implementation of novel reachability analysis algorithms that use some
geometric or symbolic state set representations is still effortful, as datatypes for
the underlying state set representations need to be implemented first. In this pa-
per we report on the first release of our free and open-source C++ library HyPro,
providing implementations for the most prominent state set representations. Our
aim is to offer assistance for the rapid implementation of new algorithms by en-
capsulating all representation-related issues and allowing the developers to focus
on higher-level algorithmic aspects.

The HyPro library specifies a unified interface for different representations,
which supports all operations required in reachability analysis as well as con-
version methods between the different representations. Besides own implemen-
tations for state set representations, the library also offers approaches towards
wrapping other existing libraries implementing a certain state set representation.
? This work was supported by the German Research Council (DFG) in
the context of the HyPro project. The original publication is available at
http://www.springerlink.com.



2 S. Schupp, E. Ábrahám, I. B. Makhlouf, and S. Kowalewski

After some preliminaries in Sec. 2, we describe in Sec. 3 the structure and
usage of our library and provide some experimental evaluation in Sec. 4.

2 Hybrid Systems Reachability Analysis

Reachability analysis aims at the computation of the set of states that are reach-
able in some system from a given set of initial states. Reachability analysis is
often used for safety verification by showing that the set of reachable states does
not intersect with a pre-defined set of unsafe states.

We are interested in reachability analysis for hybrid automata [6], a pop-
ular modelling formalism for hybrid systems. Intuitively, they extend discrete
automata models, whose nodes resp. transitions model the states (control modi)
resp. state changes (jumps) of the discrete part of the system, by addition-
ally modelling the evolution of continuous quantities (flowpipe) between discrete
state changes through ordinary differential equation (ODE) systems.

As the reachability problem for hybrid automata is in general undecidable,
over-approximative bounded reachability analysis can be used to over-approxi-
mate reachability along such paths that satisfy some upper bounds on the time
elapse between two consecutive jumps (time horizon) and on the number of
jumps (jump depth). Due to the over-approximation, we can prove bounded
safety in case of an empty intersection of the reachable state set with the unsafe
state set, but no conclusive answer can be given if this intersection is not empty.

Fig. 1. Flowpipe-construction-based
reachability analysis (guard satisfying
sets in red, jump successor in green).

Flowpipe-construction-based reacha-
bility analysis approaches iteratively
compute successors of a given initial
state set. To over-approximate flow-
pipes, they divide a given time hori-
zon into time segments and over-ap-
proximate the states reachable within
each time segment by a state set, thus
“paving” the flowpipe with state sets. For
computing jump successors, they deter-
mine the intersections of those “paving”
state sets with the guards of jumps that exit the current control modus, and
apply the jumps’ reset transformations to those intersections (see Fig. 1).

3 The HyPro Library

The library is published at https://github.com/hypro/hypro. In the following
we describe its components (see Fig. 2) and its usage. For more details we refer
to the online documentation and the user’s guide accessible on the above page.
Arithmetic computations HyPro is templated in the number type and makes
use of boost and the following external libraries:

– cln, gmp (optional): exact number types cl_RA and mpq_class;



HyPro: A C++ library of state set representations 3

da
ta
st
ru
ct
ur
es

ut
il

algorithms

re
pr
es
en
ta
ti
on

sBox

HPolytope

VPolytope

PPL-Polytope

Zonotope

SupportFunction

Orthogonal polyhedra

Taylor model

GeometricObject

<Interface>

H
yb

ri
d

au
to
m
at
on

P
oi
nt

H
al
fs
pa

ce Converter

Plotter

Logger

Parser

Reachability
analysis

Optimizer

glpk SMT-RAT Z3 SoPlex

Fig. 2. HyPro class structure.

– CArL: number-type-templated (cl_RA or mpq_class) exact arithmetic com-
putations, number type conversion;

– Eigen3: number-type-templated matrix computations; when instantiated with
double, conservativeness is not assured;

– PPL (optional): efficient but inexact computations with polytopes;
– glpk: linear optimiser using either floating-point or exact arithmetic, how-

ever, its interface does not support the exchange of exact numbers, thus the
results are not provably correct;

– SMT-RAT, SoPlex and Z3 (optional): exact linear optimisers; SMT-RAT
and SoPlex support mpq_class in their interfaces, but not Z3, therefore we
need to convert mpq_class-numbers to strings when calling Z3;

– log4cplus (optional): logger functionalities.

Currently, HyPro can be instantiated with inexact (double) or exact (cl_RA,
mpq_class) number types; Eigen3 will be instantiated the same way. When
inexact, all representations as well as Eigen3 use the double number type, thus
we cannot guarantee over-approximative results; however, as exact optimisation
is extremely important for meaningful results for most representations, we still
guarantee exact optimisation through a combination of inexact glpk with an
exact optimiser if available (see Fig. 3). When using an exact number type,
HyPro assures conservative results if one of the modules SMT-RAT, SoPlex
or Z3 are available and if PPL is not used; as glpk is faster than the other
optimisers but its interface is inexact, we use the same approach as for the
double representation shown in Fig. 3, but run glpk in exact modus.

State set representations To implement the computations described in the pre-
vious section, we need a suitable data type (representation) that supports the
storage of state sets (subsets of Rn) and certain operations on them. The choice
of the state set representation is highly relevant, as it strongly influences both



4 S. Schupp, E. Ábrahám, I. B. Makhlouf, and S. Kowalewski

Compute
optimal
solution
glpk

Compute optimal solution s∗ ≥ s
SMT-RAT/SoPlex/Z3

Compute optimal solution
SMT-RAT/SoPlex/Z3

Solution

No
solution

solution s

no solution
no

solution

solution s∗

no solution

solution s∗

Fig. 3. Increased efficiency by combining inexact and exact computations.

computational effort and precision. Our library offers state-set representation by
boxes, (convex) polytopes [10] in vertex (V) as well as in halfspace (H) repre-
sentation, support functions [9] and zonotopes [4]. For these representations, we
provide all operations needed for the reachability analysis of linear hybrid au-
tomata (hybrid automata specified using linear conditions and resets, and linear
ODEs): linear transformation, Minkowski sum, intersection, union, and test for
emptiness. All the above representations implement a common interface specify-
ing these operations, extended with some additional convenience functions (e.g.,
functions for determining the dimension of a set or functionalities for output).
Some representations also extend this interface with individual functions, only
relevant for that representation (e.g., order reduction functions for zonotopes).

We additionally provide a module for orthogonal polyhedra, but it is partial
as we found no proper way to compute the Minkowski sum and linear transfor-
mation. We thank Xin Chen who contributed with a further module for Taylor
models; however, as Taylor-model-based reachability analysis requires different
operations, this module does not implement the global HyPro interface.

Conversion None of the state set representations is generally optimal in terms
of both computational effort and precision in reachability analysis. Switching be-
tween representations, although mostly expensive, can pay off during the anal-
ysis, for instance to improve the precision of the computed state sets locally.
This feature allows for the implementation of backtracking mechanisms and fast
look-ahead strategies in a dynamic reachability analysis approach. HyPro im-
plements easy-to-use (exact or over-approximating) conversion operations for all
included state set representations; this converter is a template parameter and
thus exchangeable by the user, if more specialised methods are desired.

Reduction techniques The size of state set representations usually strongly in-
creases during the analysis due to more complex shapes (e.g., when comput-
ing Minkowski sum) and number representations (e.g., when computing linear
transformation). For boxes and polytopes, HyPro provides efficient and conser-
vative over-approximating number reduction techniques. For zonotopes we offer
a conservative order-reduction algorithm to limit the number of generators. For
support functions we reduce the operational tree of the object.

Additional datastructures and utility functions We provide a data type for hy-
brid automata, a parser for Flow*-like syntax, utility functions such as a plotter
which creates gnuplot or TikZ output files for state set visualisation, logging
mechanisms to trace executions, and an exemplary reachability analysis algo-
rithm among various other examples showing how to use the library.



HyPro: A C++ library of state set representations 5

Usage We illustrate the usage of the HyPro library on some simple examples
based on the double number type (where also Eigen3 objects are instantiated
with double); for further details see the examples folder and the user’s guide.

We can create a state set {x ∈ Rn|Ax ≤ b} represented by an H-polytope p
by specifying an Eigen3 matrix A, representing the constraints (row-wise) and
an Eigen3 vector b representing the constant parts, as follows:

HPolytope<double> p = HPolytope<double>(A, b);

The Minkowski sum p of two H-polytopes p1 and p2 can be computed by:
HPolytope<double> p = p1.minkowskiSum(p2);

A box containing a set V of points of type std::vector<Point<double> > can
be converted to a polytope in the H-representation using the Converter class:

HPolytope<double> p = Converter::toHPolytope(Box<double>(V));

To plot an object (per default in the first two dimensions), we can report its
vertices to the singleton class Plotter, and create a gnuplot file using the
method plot2d():

Plotter<double>::getInstance().addObject(p.vertices());
Plotter<double>::getInstance().plot2d();

Future work Currently we focus on efficiency-related improvements for the pre-
sented representations, including the better exploitation of inexact arithmetic.
Long-term plans address also extensions with further representations. Regarding
efficiency, naturally, we cannot compete with well-established special-purpose li-
braries like PPL and polymake for polytope computations. Additionally to PPL,
we work on the development of further wrappers for third-party libraries. Last
but not least, as representation-related parameter settings are currently global
and static, we work on the support of representation- and object-specific settings.

4 Experimental Evaluation

Using our library we implemented a simple reachability analysis algorithm for
linear hybrid systems, and used it to evaluate the efficiency of our library on
three commonly known benchmarks: (1) the bouncing ball (BBall) models the
bouncing of an elastic ball dropped from a predefined height (parameters: time
step δ = 0.01, time horizon T = 3); (2) the rod reactor (Rod) models the
temperature controller of a nuclear power plant and its cooling dynamics (δ =
0.01, T = 17); (3) the switching 5D linear system (5D SW) is an artificially
created benchmark in 5 dimensions with planar guards (δ = 0.001, T = 0.2).

All experiments were carried on an Intel Core i7 (4×4 GHz) CPU with 16 GB
RAM. Tab. 1 shows the results when using mpq_class (exact) and double (in-
exact) number types, and as representations boxes (Box), H-polytopes (HPoly),
V-polytopes which are converted to H-polytopes for intersection computation
(VPoly), polytope representation by the PPL library (PPL), support functions
(SF) and zonotopes (Zono). For both mpq_class and double, we distinguish
glpk only in exact resp. inexact modus, and glpk+SMT-RAT and glpk+Z3
combining glpk with an exact solver as in Fig. 3. Inexact-arithmetic results that



6 S. Schupp, E. Ábrahám, I. B. Makhlouf, and S. Kowalewski

mpq_class double

glpk glpk+ glpk+ glpk glpk+ glpk+ SpaceEx
SMT-RAT Z3 SMT-RAT Z3 LGG STC

B
ox BBall 0.1 0.1 0.1 0.002 0.002 0.03 0.003 0.01

Rod 63.8 64.8 65.1 0.01 0.06 0.02 0.02 0.2
5D SW 0.3 0.3 0.3 0.02 0.02 0.02 0.02 0.03

H
P
ol

y BBall 1.2 1.1 8.7 0.2 0.7 4.9 - -
Rod 24.3 21.3 136.5 4.8 16.1 131 - -
5D SW 54.8 TO TO 4.3 TO TO - -

V
P
ol

y BBall 1.8 1.5 6.0 TO (0.7) (5.5) - -
Rod 100.2 98.7 171.5 TO (0.3) (2.6) - -
5D SW TO TO TO TO TO TO - -

P
P
L BBall 0.07 0.07 0.08 0.05 0.06 0.06 - -

Rod 2.7 2.6 2.9 1.8 1.9 1.9 - -
5D SW TO TO TO TO TO TO - -

SF

BBall 0.6 2.0 15.6 0.02 1.1 43.8 0.2 0.03
Rod 72.8 101.6 1125.8 0.4 54.4 609.6 1.1 0.9
5D SW 270.6 279.8 411.1 0.04 2.6 319.3 0.8 0.2

Z
on

o BBall TO TO TO 0.006 0.007 0.006 - -
Rod 4.8 4.9 4.9 0.02 0.02 0.02 - -
5D SW 3.8 3.9 3.9 0.004 0.004 0.004 - -

Table 1. Benchmark results with runtimes in seconds (TO for ≥ 20 minutes). Dashes
indicate that a tool does not support this kind of state set representation.

we (manually) detected to be under-approximating are put in parenthesis; this
occurred for VPoly due to inexact Eigen3 computations. For comparison, we
present SpaceEx results using support functions (SF) as well as SF with box
templates (Box); note that SpaceEx uses double representation and glpk.

Due to space limitation, we discuss only some timing issues. At least on these
few examples, HyPro in inexact glpk-only modus is competitive with SpaceEx.
A higher computational effort can be observed for exact arithmetic, most promi-
nently for SF, which highly relies on optimisation; the longer running times for
glpk +Z3 (wrt. SMT-RAT) are due to the string-based interface communication
overhead. For 5D SW, the initial set is a single point. Zonotopes, performing well
on small initial sets, deliver very good results here.

References

1. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Transaction on Robotics 30(4), 903–918 (2014)

2. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. CAV’13. LNCS, vol. 8044, pp. 258–263. Springer (2013)

3. Frehse, G., Guernic, C.L., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A.,
Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Proc.
CAV’11. LNCS, vol. 6806, pp. 379–395. Springer (2011)

4. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Proc.
HSCC’05. LNCS, vol. 3414, pp. 291–305. Springer (2005)

5. Hagemann, W., Möhlmann, E., Rakow, A.: Verifying a PI controller using SoapBox
and Stabhyli: Experiences on establishing properties for a steering controller. In:
Proc. ARCH’14. EPiC Series in Computer Science, vol. 34. EasyChair (2014)



HyPro: A C++ library of state set representations 7

6. Henzinger, T.: The theory of hybrid automata. In: Proc. of LICS’96. pp. 278–292.
IEEE Computer Society Press (1996)

7. HyCreate. http://stanleybak.com/projects/hycreate/hycreate.html
8. HyReach. https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach
9. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support

functions. Nonlinear Analysis: Hybrid Systems 4(2), 250–262 (2010)
10. Ziegler, G.M.: Lectures on polytopes, vol. 152. Springer Science & Business Media

(1995)


