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Abstract
Randomization is a key element in sequential and distributed com-
puting. Reasoning about randomized algorithms is highly non-
trivial. In the 1980s, this initiated first proof methods, logics, and
model-checking algorithms. The field of probabilistic verification
has developed considerably since then. This paper surveys the al-
gorithmic verification of probabilistic models, in particular prob-
abilistic model checking. We provide an informal account of the
main models, the underlying algorithms, applications from reliabil-
ity and dependability analysis—and beyond—and describe recent
developments towards automated parameter synthesis.

Categories and Subject Descriptors B.8 [Performance and Reli-
ability]: General; F.3.1 [Logics and Meaning of Programs]: Me-
chanical Verification.; G.3 [Probability and Statistics]: Markov
Processes.

Keywords abstraction, applications, fault trees, Markov chains,
Markov decision processes, model checking, parameter synthesis,
probabilistic logics

1. Introduction
Soon after the birth of model checking in 1981, the first papers
on automated verification techniques for probabilistic models ap-
peared [95, 156, 171]. They focused on almost-sure properties
for probabilistic programs—does a program satisfy a property
with probability one? Seminal works by Courcoubeitis & Yan-
nakakis [59, 60] and Hansson & Jonsson [94] opened the possi-
bility for determining the probability with which an ω-regular and
probabilistic CTL formula hold, respectively. These works all fo-
cused on discrete-time Markov models. The algorithms by Baier et
al. [14], operationalizing the decidability result of Aziz et al. [10],
provided the starting point of model checking continuous-time
Markov chains at the end of the 1990s. Powerful tool support [129]
together with unremitting algorithmic improvements and the use
of succinct data structures led to an impulse to the field. It is fair
to say that probabilistic model checking extends and complements
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long-standing analysis techniques for Markov processes. Nowa-
days, probabilistic model checking is a well-established (and still
growing) branch of computer-aided verification. This is perhaps
mainly due to its wide variety of applications, most notably in de-
pendability, reliability, and performance analysis as well as systems
biology. Probabilistic model checking seems to have a bright future.
New application areas such as robotics, energy-aware computing,
and probabilistic programming—a dejà vu since Kozen’s seminal
works [120, 121]—are stimulating further advances. Richer mod-
els and more expressive properties are being considered. Clarke
(2008) mentions probabilistic model checking as one of the main
challenges “for the future” [57]. Recently (2015), Alur, Henzinger
and Vardi [6] state: “A promising new direction in formal meth-
ods research these days is the development of probabilistic models,
with associated tools for quantitative evaluation of system perfor-
mance along with correctness.”

This paper surveys the main probabilistic models, algorithms,
abstraction techniques, applications, and gives a brief account of
a promising new direction: parameter synthesis. The explanations
are kept mostly informal 1.

2. The Probabilistic Models Landscape
Markov chains. Discrete-time Markov chains [113, 114] (DT-
MCs, for short) are the simplest possible probabilistic models. A
DTMC is a Kripke structure in which all transitions are equipped
with a probability. For each state, the sum of the outgoing transition
probabilities equals one. The DTMC in Fig. 1 models the random-
ized algorithm by Knuth and Yao [118]. It aims at mimicking a
six-sided die by means of a fair coin. Depending on the outcome of
the coin flip in s0, the next state is either s1 (on “tails”) or s2 (on
“heads"). We denote P(s0, s1)=1/2 and P(s0, s2)=1/2. The coin
is flipped until the outcome is between and . (For simplicity,
the self-loops at these states are omitted.) Due to the cycles, it is
not evident that repeatedly tossing a coin indeed yields an adequate
model of a six-sided die. Is the probability of each of the outcomes
indeed 1/6? In order to answer this question, we consider infinite
paths through the Markov chain. Thus, e.g., s0 s2 s5

ω is a path.
To define the probability of e.g., the set of paths that finally end up
in state , one considers cylinder sets, sets of paths that all share
a common prefix [171]. The cylinder set of s0 . . . sn is the set of
paths that have s0 . . . sn as prefix. For example, the cylinder set
of s0 s2 s6 is the set of infinite paths consisting of s0 s2 s6

ω and
s0 s2 s6

ω . The probability of a cylinder set C of s0 . . . sn is de-
fined as P(s0, s1) · . . . ·P(sn−1, sn) if n > 0; for n=0, it is one.
(Technically speaking, the σ-algebra on infinite paths in a DTMC is
generated using cylinder sets.) Any set of paths that can be written
as the complement and/or countable union of cylinder sets is now
measurable.

1 More extensive and detailed treatments of verifying Markov decision
processes are given in [11, 25, 79, 85]. Introductions to discrete-time and
continuous-time Markov chain model checking are given in [104, 128].
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Figure 1: A Markov chain for Knuth-Yao’s six-sided die.

Continuous-time Markov Chains (CTMCs). CTMCs [33, 152]
extend DTMCs over state space S with a function r : S →
R>0 assigning to each state s the rate of a negative exponential
distribution governing the residence time in s. Thus, the probability
to reside in state s maximally d time units is 1− e−r(s)·d. Phrased
alternatively, the average residence time of state s is 1/r(s). If
r(s) = 2·r(s′), the residence time in s′ is—on average—half the
residence time in state s. An alternative view of a CTMC is to
combine the transition probabilities given by function P and the
rate function r by: R(s, s′) = P(s, s′)·r(s), the transition rate
from s to s′. Both perspectives are equivalent. In the sequel, we
will use (and change between) both equivalent definitions whenever
convenient. The operational interpretation of a CTMC is as follows.
On entering a state s, the residence time is determined by an
exponential distribution with rate r(s). On leaving the state s, the
probability to move to state s′ equals P(s, s′). The probability to
move from s to s′ in the interval [0, t] is:

R(s, s′)

r(s)
·
(
1− e−r(s)·t

)
.

Whereas in a DTMC, a path is simply an infinite sequence of states,
in a CTMC we need to keep track on how long we stay in each
state. A (timed) path in a CTMC is thus an infinite alternating
sequence of states and time delays. A probability measure over
infinite timed paths is defined—as in the discrete-time setting—
by cylinder sets. This is slightly more complex than before, as
the residence times in the individual states along a path need to
be considered as well. We do so by considering intervals in R>0.
Formally, the (interval) cylinder set of an (interval) path fragment
s0 I0 s1 I1 s2 I2s3, where I0, I1, and I2 are intervals, is the set of
timed paths in the CTMC that all have a prefix s0 t0 s1 t1 s2 t2 s3
where t0 ∈ I0, t1 ∈ I1, and t2 ∈ I2. The probability of a cylinder
set of s0 I0 . . . In−1sn is:

n∏
j=1

P(sj−1, sj) ·
∫
Ij−1

r(sj−1)·e−r(sj−1)·x dx︸ ︷︷ ︸
probability to leave sj−1 in interval Ij−1

Any set of (timed) paths that can be written as the complement
and/or countable union of (interval) cylinder sets is now measur-
able. Solving the integrals results in∫

Ij

r(sj)·e−r(sj)·x dx = e−r(sj)· inf Ij − e−r(sj)· sup Ij

where inf Ij and sup Ij are the infimum and supremum of the Ij ,
respectively. Zeno paths occur in CTMCs. A Zeno path is a path
in which the total time that elapses converges. In case

∑
i ti does

not diverge, the timed path represents an “unrealistic” computation
where infinitely many transitions are taken in a finite amount of
time. An example Zeno path is s0 1/2 s1 1/4 s2 1/8 s3 . . . converging
to 1. In timed automata, such executions are typically excluded
from the analysis. Zeno paths may occur in CTMCs but do not
harm: their probability mass is zero [14].

Discrete time Continuous time

Deterministic discrete-time continuous-time MC
Markov chain (DTMC)

Nondeterministic Markov decision CTMDP
process (MDP)

Compositional Segala’s Probabilistic Markov
Automata (PA) Automata (MA)

Figure 2: Overview of Markov models

Markov decision processes. A Markov decision process (MDP,
for short [101, 157]) extends a Markov chain with non-determinism.
In a Markov chain state s, the next state is chosen according to the
probability distribution Ds = P(s, ·) over the states. However,
in an MDP, a state may have several distributions. On reaching a
state s in an MDP, non-deterministically a distribution µ ∈ D(s)
is selected. The next state is then determined according to µ. That
is, state s′ is selected with probability µ(s′). It is assumed that
D(s) 6= ∅ for each state s. Every MDP for which |D(s)| = 1 in
every state s, is a Markov chain. Paths in an MDP are infinite alter-
nating sequences of pairs of states and distributions: (si, µi) where
µi ∈ D(si) and µi(si+1) > 0, for each i. A probability measure
on such paths can be defined using the cylinder set construction,
as for Markov chains, provided for each state si it is known which
distribution µi has been selected. This is formalized by a policy—
also referred to as scheduler or adversary—that in state si selects a
distribution µ ∈ D(si). (A policy can be viewed as oracle.) Several
types of policies do exist. Two ingredients are relevant: on the basis
of which information does a policy make a decision, and can it use
randomisation to do so, or not. Positional policies decide solely on
the current state si and not on the history, i.e., the prefix of the path
until reaching si. Randomized positional policies select µ ∈ D(si)
with a certain probability. Deterministic ones select a fixed distri-
bution from D(si). History-dependent policies base their decision
on the prefix s0µ0 . . . µi−1si. A policy imposed on an MDP yields
an (possibly infinite-state) MC.

Continuous-time MDPs (CTMDPs, for short [90]), are MDPs
in which the state residence time is—as for CTMCs—governed
by a negative exponential distribution. The rate of this exponential
distribution depends on the discrete probability distribution that is
used to determine the next state. Accordingly, the average residence
time in state s under taking distribution µ is given by 1/r(s,µ). Rate
r(s, µ) thus determines the random residence time in state s pro-
vided distribution µ is selected in s. Paths in CTMDPs are infinite
sequence of triples (si, ti, µi) where ti denotes the residence time
in state si given that distribution µi has been selected. Policies in
CTMDPs cannot only decide on the basis of the states visited and
the selected distributions so far, but may also exploit the elapsed
time (in every state). This gives rise to uncountably many policies.
It for instance, makes a difference whether a policy decides on en-
tering a state (early) or on leaving a state (late). A categorisation of
the class of policies for CTMDPs is given in [145].

Other probabilistic models. A summary of the four described
models is provided in Fig. 2. This overview is (deliberately) in-
complete. A plethora of other probabilistic models do exist; for
overviews see [27, 96]. Let us mention a few that have been stud-
ied in the field of formal verification. Probabilistic extensions of
timed automata exist [151]; they are known as probabilistic timed
automata (PTA). Their edges are discrete probability distributions
over states. PTA are finite symbolic representations of uncountable
MDPs—as clock valuations are real values. Non-determinism is in-



herited from timed automata. Computing reachability probabilities
in PTA is decidable via a region graph-like construction. Whereas
in PTA clocks are deterministic, stochastic timed automata [30]
(STA) provide a stochastic interpretation to clocks. In STA, un-
bounded clocks are interpreted as negative exponential distribu-
tions, whereas bounded clocks obey a uniform distribution. This
model is no longer Markovian. Stochastic interpretations of TA are
also used in statistical model checking [63].

PTA and STA are symbolic representations of (uncountable)
infinite-state probabilistic models. Other (countable) infinite-state
Markov models that have been subject to verification include prob-
abilistic push-down automata [40], (the equally expressive) re-
cursive Markov chains and recursive MDPs [80]. Such automata
are natural means to model e.g., recursive probabilistic programs.
The configuration graph of a probabilistic push-down automaton
is a countable infinite-state DTMC (or MDP). Alternative infinite-
state models include decisive Markov chains [2], probabilistic lossy
channel systems [162], and probabilistic multi-counter automata—
also known as probabilistic vector-addition systems with states
(pVASS) [41]. The model of pVASS is strongly related to prob-
abilistic Petri nets [124]. Finally, we mention probabilistic ω-
automata [21], probabilistic models with continuous dynamics [1],
stochastic games [48], and labelled Markov processes [153].

Rewards. All Markov models can be naturally extended with
the notion of a cost, or dually, a gain. This can be done in two
ways. Costs that are associated to transitions—the so-called tran-
sition rewards—are constant non-negative real values that are in-
curred on taking a transition. Thus, on moving from state s to
state s′ via distribution µ, a transition reward rew(s, µ, s′) is
earned. Similarly, a cost rate can be associated to states—the so-
called state rewards. In continuous-time models, residing t time
units in a state with cost rate rew(s, µ) leads to earning a reward
rew(s, µ)·t. In discrete-time models, one typically only considers
transition rewards. The cumulative reward of a finite path fragment
s0µ0 . . . µk−1sk in an MDP is defined as the sum of all transition
rewards, that is,

∑k−1
i=0 rew(si, µi, si+1). In a CTMDP, addition-

ally the state rewards come into the play. That is to say, the term∑k−1
i=0 rew(si, µi)·ti is added on top of the cumulative transition

reward. Evidently, in absence of transition rewards and all state re-
wards equal to one, the cumulative reward equals the elapsed time
along a finite path fragment. This simple observation can be gen-
eralized: as first observed for CTMCs in [29], the role of time and
rewards can often be swapped when the reward (continuous-time)
Markov model is “rescaled”. For the sake of simplicity, assume all
transition rewards are zero. Consider a CTMDP with rew(s, µ) > 0
for all states s and distributions µ ∈ D(s). The dual CTMDP re-
sults by adapting the exit rates and reward function such that the
reward units in state s in the original CTMDP correspond to the
time units in state s in its dual version, and vice versa. This is
accomplished by the following scheme:

R∗(s, µ, s′) =
R(s, µ, s′)

rew(s, µ)
and rew∗(s, µ) =

1

rew(s, µ)
.

where R∗ and rew∗ denote the transition rate and reward func-
tion in the transformed CTMDP, respectively. Intuitively, the trans-
formation stretches the residence time in state s with a factor
that is proportional to the reciprocal of its reward rew(s, µ) if
0 < rew(s, µ) < 1. The reward function is changed similarly.
Thus, all transitions with rew(s, µ) < 1 are accelerated whereas
those with rew(s, µ) > 1 are slowed down. One might interpret the
residence of t time units in the transformed model as the earning of
t reward in state s (under distribution µ) in the original model. Con-
versely, earning a reward r in s under distribution µ corresponds to
residing r time units in s in the transformed model [19].

Compositional models. In order to cope with the magnitude and
complexity of probabilistic models for realistic systems, compo-
sitional variants of Markov models are considered. These are
mild extensions of Markov models that facilitate the parallel com-
position in a process-algebraic manner like in CCS and CSP.
Segala’s probabilistic automata [163] (PA, for short) 2 are like
MDP where the distributions D(s) in a state s are labelled with
actions. Rather than having distributions µ1 through µk in D(s),
we have a1, . . . , ak ∈ D(s). It is not just all about naming though.
We stipulate that in state s several equally labelled distributions
may exist, thus ai = aj = b is possible for i 6= j. This is not
possible in an MDP. Let P a−→µ denote that (the initial state of)
PA P with action a selects distribution µ; state u is the next state
with probability µ(u). The actions are used to define a parallel-
composition operator ||A that is parametrized with a set A of ac-
tions. PAP||AQ denotes the parallel composition of the PAsP and
Q. The individual PAs P andQ perform (transitions labelled with)
actions that are outside A autonomously. This happens in an inter-
leaved manner. Transitions labelled with actions in A need to be
taken synchronously. Thus, P and Q must evolve simultaneously
when taking an action in A. The resulting probability distribution
of taking a ∈ A is simply the product of the distributions of P
taking a and Q taking a. There is one exception: the distinguished
(internal) action τ 6∈ A can only be performed autonomously. The
transition relation is thus defined as follows:

P a−→µ

P ||AQ a−→ ν
if a 6∈ A s.t. ν(P ′||AQ′) = µ(P ′)·δQ

P a−→µ andQ a−→µ′

P ||AQ a−→ ν
if a ∈ A s.t. ν(P ′||AQ′) = µ(P ′)·µ′(Q′)

where δQ denotes the Dirac distribution for PAQ, i.e., δQ(Q) = 1
and δQ(R) = 0 forQ 6= R. The first inference rule corresponds to
PAP performing action a autonomously. We have omitted the sym-
metric case of the first inference rule (in which Q autonomously
performs an action) for the sake of brevity. The second inference
rule covers the case in which a synchronisation between P and Q
takes place. The aim is now to model a complex system by means
of several components:

((P1 ||A1 P2) ||A2 . . .PN−1) ||AN−1 PN
and then turn all actions into τ -actions, refraining from the action
names. (This can be done using appropriate operators that are
omitted here.) Put shortly, the actions are used for synchronization
purposes only; once the entire model is defined, actions become
irrelevant. The resulting model is an MDP, and all concepts and
analysis algorithms for MDPs readily apply. Variants of parallel
composition of PA can be found in [55, 175].

Markov automata [70, 76] (MA, for short) are the continuous-
time variant of Segala’s PA. Whereas PA are a mild extension to
MDPs, MA are a variant of CTMDPs 3. (Strictly speaking, Her-
manns’ interactive Markov chains [98] play this role; MA extend
this model with probabilistic branching as in PA.) The key idea
here is to separate the passage of time (denoted •−−→ ) from taking
an action-labelled transition (denoted −→). Technically speaking,
MA are Segala’s PA with one extra feature—transitions that are
labelled with rates of exponential distributions. One may safely as-
sume that between any pair of states at most one such transition oc-

2 These should not be confused by the probabilistic automata introduced by
Paz [155] and Rabin [159]; these are a probabilistic extension of classical
finite-state automata (with accept states).
3 The distinction between CTMDPs and MA is however more subtle than
that between PA and MDPs. This is e.g., reflected in the class of policies
that attain extremal reachability probabilities.



curs as s • λ−−→ s′ and s • λ′−−−→ s′ are equivalent to s • λ+λ′−−−−−→ s′.
MA thus have a transition relation between states and distributions
over states, where the transition is either labelled by an action or by
a positive real number. In the former case the target probability dis-
tribution is explicitly given, in the latter case it is implicitly given.
This can be seen as follows. If s • 3−−→u and s • 8−−→ v, then this
can be viewed as s 3+8−−−→µ where µ(u) = 3/11 and µ(v) = 8/11.
The semantics of an MA is defined as follows. For states with only
outgoing action-labelled transitions, the interpretation is as for PA.
For states with only rate-labelled transitions, the MA evolves as a
CTMC. For the moment, we refrain from treating states that have
both outgoing action- and rate-labelled transitions. We get back to
this issue later on. Actions may be subject to synchronisation with
other MA, and thus may be subject to a delay. This happens if an
MA needs to synchronise on action a, say, while its synchroniza-
tion partner can only perform the a-transition after a rate-transition
(a delay). Action-transitions labelled with τ—the distinguished in-
ternal action that cannot be subject to synchronization—are special.
That is to say, they have priority over rate-labelled transitions. More
precisely, if in a state both an τ -labelled transition (and no oth-
erwise labelled action-transitions) and (one or more) rate-labelled
transition are emanating, priority is given to the τ -transition. This
is called the maximal progress assumption. The rationale behind
this assumption is that internal (i.e., τ -labelled) transitions are not
subject to interaction and thus can happen immediately, whereas
the probability of a Markovian transition to immediately happen is
zero. Thus, s • λ−−→ s′ almost never fires instantaneously. Note that
the maximal progress assumption does not apply in case s • λ−−→ s′

and s α−−→µ with α 6= τ , as α-transitions—unlike τ -transitions—
can be used for synchronisation and thus be subject to a delay. In
this case, the transition s • λ−−→ s′ may happen with positive proba-
bility. Note that also in this case, the maximal progress assumption
applies: if s τ−−→µ and s has several Markovian transitions, only
the τ -transition can occur and no delay occurs in s. MA possess
the same compositional features as Segala’s PA. Parallel composi-
tion for MA is very similar as for PA. In fact, action transitions are
defined as for PA. For real-valued transitions we have:

M λ−−→µ and notM τ−−→
M||AN λ−−→ ν

where ν(M′||AN ′) = µ(M′)·δN ′

where we omit the symmetric case, for brevity’s sake. As for PA, a
complex system is modelled by means of several components:

((M1 ||A1M2) ||A2 . . .MN−1) ||AN−1MN

and then all actions are turned into τ -actions, refraining from the
action names. As before, the actions are used for synchronization
purposes only; once the entire model is defined, actions become ir-
relevant. The resulting model is an MA with the property that it has
no states with both outgoing action- and rate-labelled transitions.
This is due to the fact that all actions are turned into τ -transitions
and the maximal progress assumption. Along similar lines, compo-
sitional variants of generalized semi-Markov chains (GSMCs) have
been considered [62].

Applications of compositional models. Are the compositional
models such as PA and MA of pure theoretical interest? No. Vari-
ous high-level description languages have been provided a seman-
tics in terms of Segala’s PA or MA. PA have been used as op-
erational model for probabilistic process algebras, the PIOA lan-
guage, and have served to reason about randomized distributed al-
gorithms [148]. Segala [163] has studied several behavioural rela-
tions on PA such as (weak and strong) bisimulation and simulation
pre-orders, as well as trace inclusions. These relations form the ba-
sis for obtaining abstractions of PA, i.e., smaller models amenable
to further analysis. MA have been used to provide a semantics
of Markovian process algebras à la PEPA [100], dynamic fault

Branching-time Linear-time

Discrete time probabilistic deterministic automata
CTL (safety and LTL)

Continuous time probabilistic deterministic
timed CTL timed automata

(MITL)

Figure 3: Overview of elementary properties

trees [36], data-flow languages like SDF [105], and the domain-
specific language AADL [38] (see later on). The operational model
of a guarded command programming language with rates for pro-
gramming multi-robot systems is very similar to MA [144]. Re-
cently, it has been shown that MA are an adequate model to treat
confusion in generalised stochastic Petri nets (GSPNs) [77, 138], a
problem that has been open for several decades. Probabilistic I/O
automata [175] are closely related to MA.

3. The (How to Check) Properties Landscape
We treat the major properties in probabilistic model checking.

Qualitative reachability. One of the elementary questions for the
analysis of probabilistic models is whether a certain set of goal
states can be reached almost surely, i.e., with probability one,
or dually, with a positive probability. For set G of target states,
let ♦G denote the event to reach (some state in) G eventually.
The event ♦G is measurable as it can be characterised as the
union of all cylinders of finite path fragments that end in a state
in G and do not hit G before. For finite-state Markov chains,
the question whether Pr(♦G)=1? is equivalent to whether all
strongly fair paths from the initial state eventually reach G. Thus
a standard graph search algorithm suffices [95]. The same applies
to the question whether events such as �G, ♦�G, �♦G, or ω-
regular events such as ♦�G1 ∧ �♦G2 almost surely hold. All
these objectives can be reduced to reachability objectives, as each
path in a finite Markov chain eventually ends in a terminal SCC, a
strongly connect component that once entered cannot be left [171].
This yields, for instance, that Pr(s |= �♦G) = 1 is equivalent
to whether T ∩ G 6= ∅ for each terminal SCC T that is reachable
from state s. Or, stated differently, it is equivalent to whether the
CTL-formula ∀�∃♦G holds in s. Note that a graph analysis for
almost-sure reachability objectives in infinite-state Markov chains
does not suffice. For example, whether the origin is almost surely
visited in a one-sided, one-dimensional random walk depends on
the transition probabilities. If the probability to walk to the right
exceeds 1/2, the origin is not almost surely visited; if however this
probability is less than 1/2, it does.

Quantitative reachability. As opposed to qualitative reachability,
we are now interested in checking whether the probability to reach
G exceeds a threshold like 2/3. More precisely, we want to deter-
mine the probability of the set of paths in ♦G, given that we start in
some state s. Assuming that the Markov chain at hand has finitely
many states, we let variable xs = Pr(s |= ♦G) for state s. The fol-
lowing recursive characterization will be helpful. If G is not reach-
able from s, then xs = 0; if s ∈ G, then xs = 1. For all other
cases:

xs =
∑
t6∈G

P(s, t) · xt︸ ︷︷ ︸
reach G via t 6∈ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step

This provides the basis to show that reachability probabilities are
unique solutions of a linear equation system. Such linear equation



system is obtained in the following way. Let S? be the set of states
not in G that can reach G. Let matrix A =

(
P(s, t)

)
s,t∈S?

,
the transition probabilities between the states in S?. Let the vector
b =

(
bs
)
s∈S?

, the probabilities to reach some state G in a single

step, i.e., bs =
∑
u∈G

P(s, u). Then, x = (xs)s∈S? with xs =

Pr(s |= ♦G) is the unique solution of:

x = A·x + b or in short form (I− A)·x = b

where I is the identity matrix of cardinality |S?|·|S?|.4 To conclude:
reachability probabilities can be obtained as the unique solution of
a linear equation system. Any technique to solve such system either
exactly (e.g., Gaussian elimination) or iteratively (e.g., the Power
method) can be used to obtain reachability probabilities.

Bounded reachability events put an upper bound on the number
of transitions that are allowed to reach G. Let ♦6kG denote the
set of paths that reach G in at most k steps. For example, the
path s0 s2 s5

ω belongs to ♦63 , but does not belong to ♦62 .
To compute Pr(♦6kG) in DTMC D, we make all states in G
absorbing, i.e., replace all outgoing transitions from every state
s ∈ G by a self-loop with probability one. Denote the resulting
Markov chain by D[G]. Once a path reaches a state in G within k
steps, that path will still be in that state in G after exactly k steps:

Pr(s |= ♦6kG)︸ ︷︷ ︸
reachability in D

= Pr(s |= ♦=kG)︸ ︷︷ ︸
reachability in D[G]

= 1s ·P
k
G︸ ︷︷ ︸

in D[G]

Here ♦=kG denotes the set of infinite paths that after exactly
k steps reach G, and 1s is the characteristic vector for state s.
The term 1s·P

k
G is the transient state distribution of D[G] (when

starting in state s) at epoch k.
Like for qualitative reachability, probabilities for ω-regular ob-

jectives in finite Markov chains can be obtained from reachability
probabilities [59]. This again is based on the fact that infinite paths
eventually end up in traversing a terminal SCC. This yields, for
instance, that Pr(s |= �♦G) = Pr(s |= ♦U) where U is the
collection of terminal SCCs T for which T ∩G 6= ∅. For arbitrary
ω-regular properties, an automaton-based approach can be taken.
Given a deterministic Rabin automaton (DRA) for the property at
hand, we determine the product (denoted ⊗) of the Markov chain
and the DRA. Recall that the acceptance condition of a DRA equals
{ (Li,Ki) | 0 < i 6 m } with Li,Ki being sets of states of the
DRA. This is thus a set of pairs, where each element of a pair is
a set of states. A run of DRA is accepting if for some i the run
visits all states in Li only finitely often and visits some state in
Ki infinitely often. A terminal SCC in D ⊗ A is accepting if for
some i if it contains no states from Li and some state fromKi. The
accepting terminal SCCs in the product of D and DRAA thus cor-
respond to the possible infinite runs in D that are accepted by A.
It follows that the probability of an ω-regular property in a Markov
chain D equals the reachability probability of an accepting SCC in
the product D⊗A. This provides an effective way to determine the
probability with which an LTL formula holds.

To reason about events in MDPs such as reachability, non-
determinism is resolved by an oracle, called a policy (also called
adversary of scheduler). A policy for an MDP is a function S
that for a given finite path fragment through the MDP yields a
distribution to take next. Due to the presence of non-determinism,
the probability ♦G depends on which distribution is selected at
each state. One therefore considers reachability probabilities that

4 It follows that all Eigenvalues of matrix A are strictly less than one and
that the infinite sum of powers of A, that is,

∑
I Ai converges to the inverse

of I − A. This yields that the matrix I − A is non-singular and the linear
equation system has a single solution.

are subject to a given policy. Let PrS(s |= ♦G) denote this for
policy S. Core questions are then: what is the best (or, dually,
the worst) achievable reachability probability for G? The maximal
reachability probability of G ⊆ S is:

Prmax(s |= ♦G) = supSPrS(s |= ♦G)

where policy S ranges over all, infinitely (countably) many, poli-
cies. Minimal reachability probabilities are defined similarly. Us-
ing a similar procedure as explained above, let variable xs =
Prmax(s |= ♦G). If s ∈ G, then xs = 1 and if s 6|= ∃♦G, then
xs = 0. Otherwise:

xs = max
{∑
t∈S

P(s, µ, t) · xt | µ ∈ D(s)
}

This is an instance of the Bellman equation for dynamic program-
ming. It is well known that for every finite MDP, a positional pol-
icy does exist that attains Prmax(s |= ♦G). Value or policy ite-
ration, and linear programming are computational techniques to
obtain these policies. Linear inequation systems are thus key—
as linear equation systems are for Markov chains—for reachabil-
ity objectives in finite-state MDPs. Repeated reachability events
or persistence probabilities can be obtained by considering maxi-
mal end-components [60], the MDP counterpart to terminal SCCs.
Whereas positional policies suffice for reachability (and long run)
objectives, bounded reachability objectives require finite-memory
policies. The same applies to ω-regular properties. For ♦6kG this
can be intuitively understood as follows. Consider a state with two
choices: one that almost surely leads to G but takes many steps,
and one that may lead to G directly, but with a certain probability
ends up in a state from which G can never be reached. Then, de-
pending on how many steps are left to reach G, an optimal policy
will decide for the (first) safe choice, whereas if only a few steps
remain to reachG, it picks the (second) unsafe strategy. LTL model
checking of MDPs goes along similar lines as for Markov chains
using a product construction with DRA [60].

Timed reachability. Reachability objectives and their variations
on finite CTMCs can be determined by considering the embedded
DTMC, i.e., by only considering P while ignoring the rate func-
tion r. This works, as these objectives do not refer to the timing.
That is to say, they do not impose any constraints on e.g., when
the set G is reached. Timed reachability is more interesting and
more involved. Decidability of (nested, constrained) timed reacha-
bility was shown in [10]. We focus on the algorithmic aspects. Con-
sider a CTMC with finite state space and t ∈ R>0. Aim: determine
Pr(s |= ♦6tG). Timed reachability probabilities can be charac-
terised recursively by Volterra integral equation systems [14]. With
every state s we associate the function xs(d) = Pr(s |= ♦6dG).
If G is not reachable from s, then xs(d) = 0 for all d; if s ∈ G.
then xs(d) = 1 for all d. For the remaining case we have:

xs(d) =

∫ d

0

∑
u∈S

R(s, u) · e−r(s)·y︸ ︷︷ ︸
probability to move to

state u at time x

· xu(d−y)︸ ︷︷ ︸
prob. to fulfill
♦6d−y G from u

dy

Unlike for the discrete-time models, this recursive characterisation
does not immediately provide an algorithmic approach. Solving
these integral equation systems is non-trivial, inefficient, and has
several pitfalls such as numerical instability. We can however re-
duce this to another problem for which efficient numerical tech-
niques do exist—computing transient probabilities in CTMCs. Ob-
serve that once a path reaches G within t time, then its remaining
behaviour is not important. This suggests to make all states in G



absorbing. This yields C[G]. Then:

Pr(s |= ♦6tG)︸ ︷︷ ︸
timed reach. in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
timed reach. in C[G]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[G]

.

Transient probabilities are solutions of linear differential equations:
the vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of r (considered as vector). So-
lution using standard knowledge yields: p(t) = p(0)·e(R−r)·t.
Computing the matrix exponential is a challenging numerical prob-
lem [141, 142]. These problems can be overcome by transforming
the CTMC into a uniform one, a CTMC in which r(s) = r for
some fixed r, for all states s. Let r > maxs∈S r(s). For the uni-
formized CTMC [87] we have r(s) = r for all s ∈ S, and:

P(s, s′) =

{
r(s)
r
·P(s, s′) if s′ 6= s

r(s)
r
·P(s, s) + 1− r(s)

r
otherwise

Uniformization preserves weak bisimulation [17], see Section 4.
Then p(t) = p(0)·e−r·t·er·t·P. Still a matrix exponential remains,
but the matrix exponent now is a stochastic matrix. This yields a
numerically stable technique, that can be employed for all states
in the CTMC simultaneously [106]. Its complexity is linear in the
time bound t, the uniformization rate r, and quadratic in |S|.

Expected time objectives on CTMCs can be characterised as so-
lutions of sets of linear equations. Long-run average objectives—
what is the fraction of time spent in some state in G in the long
run?—can be determined using a two-step procedure. First, deter-
mine the limiting distribution in any terminal SCC that contains
some state in G. This amounts to solving a linear equation system
for the terminal SCC. The weighted sum with reachability proba-
bilities of these terminal SCCs yields the long-run average [14]. Al-
ternatively, long-run objectives can be described by automata that
“observe” the CTMC; this technique has been advocated in [65]; a
similar technique for expected delays originates from [166] and for
(path) rewards in [72].

Linear-time timed objectives like “can we reach G within a
deadline t while not residing more than d time units in bad states
all the while”?, can be encoded as deterministic timed automata
(DTA). In a deterministic TA, it is uniquely determined for any time
point what will be the next location given the current location. The
following procedure can be followed: (a) determine the zone graph
of the DTA, (b) take the product of the CTMC and this zone graph 5,
and (c) determine the probability to reach an “accepting” zone.
The latter reachability probabilities can be characterised by Volterra
integral equation systems of the second type [52]. For single-clock
DTA, the product can be decomposed into a series of CTMCs.
The reachability probability in the product can then be obtained
by transient distributions of these CTMCs [26]. An extension of
this technique towards infinite-state CTMCs is given in [139]. The
extension to multiple rewards is covered in [86]. Checking CTMCs
against linear duration properties has been reported in [53]. These
properties are stated as conjunctions of linear constraints over the
total duration of time spent in states that satisfy a given property.

Timed reachability in CTMDPs. As for MDPs, policies for CT-
MDPs are oracles to resolve the non-determinism. Whereas in
MDPs, positional policies attain maximal reachability probabili-
ties, this is not true in CTMDPs for timed reachability objectives.
The maximal timed reachability probability of G ⊆ S is:

Prmax(s |= ♦6tG) = supSPrS(s |= ♦6tG)

5 This yields a (simple) piecewise deterministic Markov process.
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Figure 4: A (left) sample CTMDP and (right) some policies for ♦61 s2.

where policy S ranges over all, uncountably many, policies. Min-
imal timed reachability probabilities are defined similarly. Using
a similar procedure as explained above for CTMCs, let function
xs(d) = Prmax(s |= ♦6dG). If s ∈ G, then xs(d) = 1 and if
s 6|= ∃♦G, then xs(d) = 0, for all d. Otherwise xs(d) equals

max
{ ∫ d

0

∑
u∈S

R(s, µ, u) ·e−r(s,µ)·y ·xu(d−y) dy | µ ∈ D(s)
}

For finite-state CTMDPs, timed positional policies are optimal to
attain maximal (or minimal) timed reachability probabilities [140,
145]. These policies decide on the total time elapsed so far, and the
current state. To illustrate this, consider the CTMDP in Fig. 4(a)
and objective ♦61 s2. The initial state is the only non-deterministic
state. By choosing distribution β, s2 is almost surely reached, but
the expected time to do so is 4/3. Picking α reaches s2 in expected
time 1, but with probability 1/3 only. With probability 2/3 a state
is reached from which the goal can never be reached. The optimal
policy in state s0 selects α if 1−t0 6 ln 3− ln 2, and β otherwise,
where t0 denotes the residence time in s0; see Fig. 4(b).

As there are uncountably many timed positional policies, one
resorts to discretization to obtain ε-optimal policies. These policies
attain the optimal timed reachability probability up to ε. One way
to view this, is that a timed positional policies is approximated by
a piecewise-continuous policy. Depending on the precision of the
discretization, tight bounds can be obtained but at the expense of a
considerable time penalty. Various algorithms have been developed
in the last years; see e.g., [43, 82]. An efficient algorithm for
uniform CTMDPs was proposed in [16]. It was recently shown that
by letting the uniformization rate approaching infinity, a uniform
CTMDP is obtained on which a time-abstract policy—a policy that
does not base its decisions on the elapsed time—arbitrarily closely
approximates the optimal timed positional policy on the original
CTMDP [44]. In most cases, invoking the algorithm of [16] for
various uniformization rates is more efficient than discretization.

Branching-time logics. PCTL [94] is a probabilistic variant of
CTL in which the universal and existential path quantifiers are re-
placed by a probabilistic quantifier. The formula [♦[�G]=1]>1/2,
e.g., expresses that with probability at least 1/2 a state is reached
from which almost surely one stays in G. CTL and the qualitative
fragment of PCTL, in which only bounds =1 and >0 are allowed,
are incomparable [11, Ch. 10]. The formulas [♦G]=1 and ∀♦G are
not equivalent; consider a two-state DTMC where G = {u} and
P(s, u) = P(s, s) = 1/2. Then s |= [♦G]=1 and s 6|= ∀♦G. In
fact, there is no CTL formula that is equivalent to [♦G]=1, and ∀♦G
is not expressible in PCTL. More precisely, this statement holds for
infinite Markov chains. For finite DTMCs, [♦G]=1 is equivalent to
the CTL-formula ∀♦G under strong fairness. In the example, this
rules out sω , the only run violating ∀♦G. PCTL is an expressive
logic though. Whereas the LTL-formula ♦�G is not expressible in
CTL, it is in PCTL; indeed also [♦�G]>1/2 is expressible in PCTL.
Model checking a DTMC against a PCTL-formula proceeds by a
recursive descent over the parse tree of the formula. The core pro-



cedure is determining (constrained) reachability probabilities. This
goes as explained before. A safety-liveness classification for PCTL
on DTMCs is given in [111]. PCTL can also be interpreted over
MDPs by quantifying over policies; e.g., [♦G]>1/2 holds if under
all policies G is reached eventually with probability at least 1/2.
PCTL∗ [31] model checking combines the DRA procedure for the
LTL sub-formulas with the recursive descent for PCTL. Extensions
of these logics with dedicated operators for long-run averages, ex-
pected time objectives, reward objectives [8] and so forth can be
readily defined. CSL (Continuous Stochastic Logic [10]) is a vari-
ant of PCTL that includes until-modalities with timing constraints.
The core model-checking procedure is determining timed reacha-
bility objectives. Verification algorithms for MA have recently been
considered in [88]. Expected time and reachability objectives can
be solved by standard MDP algorithms; reward-bounded properties
can be reduced to time-bounded reachability properties by exploit-
ing the duality between progress of time and reward, and reducing
long-run average properties long-run ratio objectives in MDPs.

Richer property specifications. We mention a few other prop-
erty classes. Conditional probabilities like [♦G|♦F ]>1/2 can be
efficiently dealt with using a copy-construction of the Markov
model [24] or by path reductions [68]. Other properties include
PCTL on MDPs with fairness constraints [12], verifying Markov
chains against push-down specifications [74], and quantiles [122,
160]. Counterexample generation—how to generate diagnostic
feedback in case a property is violated?—for Markov chains is sur-
veyed in [3]. Extensions to CSL have been considered with nested
until-formulas [177] and timed-automata constraints [71]. CSL ex-
tensions with rewards have been considered in [20, 22]. These
model-checking algorithms exploit the duality result of Section
2. Multi-objective specifications [81] focus on questions such as:
does an MDP admit a policy satisfying [♦G1]>1/2 and [♦G2]>1/2?
Variations of multi-objective specifications have been considered
in [23, 42]. An alternative [4] is to consider state distributions of
Markov models at each time step, e.g., whether the probability to be
in a given state is always at least 1/2. The algorithms become quite
different, and decidability is not always ensured [5]. Finally, we
mention the verification of various objectives on stochastic games
such as expected total rewards, expected mean-payoff, and ratios
of expected mean-payoffs in PRISM-games [125].

4. The Abstraction Landscape
A major obstacle is the state-space explosion problem. We survey
the main abstraction techniques.

Bisimulation quotienting. For a DTMC with state space S, the
equivalence R on S is a probabilistic bisimulation [133] on S if all
pairs (s, t) in R satisfy that P(s, C) = P(t, C) for all equivalence
classes C ∈ S/R where P(s, C) is shorthand for

∑
s′∈C P(s, s′).

(If states are labelled with propositional symbols, then s and t
need to be equally labelled too.) Let ∼ denote the largest possi-
ble probabilistic bisimulation, also known as probabilistic bisimi-
larity. It turns out that Paige-Tarjan’s efficient algorithm for bisim-
ulation quotienting of labelled transition systems can be adapted
to Markov chains [169]. Computing probabilistic bisimilarity is P-
hard, as shown in [51]. The quotient Markov chain is thus obtained
in O(|P|· log |S|) where |P| denotes the number of non-zero ele-
ments in the matrix P. Every probabilistic bisimulation R induces
a lumping partition [113]—lumpability is a classical concept for
Markov chains—and vice versa. ∼ yields the coarsest lumpable
partition. Altogether this means that the coarsest possible lumpable
partition can be obtained in an algorithmic manner. This is an ex-
ample par excellence of a result from formal verification that im-
pacts Markov chain theory! Probabilistic bisimulation can easily

Figure 5: Abstraction-refinement using game-based abstraction (taken
from [112]).

be adapted to the other Markov models. For CTMCs, e.g., one re-
quires R(s, C) = R(t, C) for all equivalence classes C ∈ S/R.
For MDPs, one requires for each distribution in D(s) the existence
of a “matching” distribution in D(t). The bisimulation relation ∼
coincides with PCTL- (and PCTL∗-) equivalence on all countably
large Markov chains [17]. Coarser abstractions can be obtained us-
ing weak bisimulation, a stuttering variant of ∼. The underlying
idea is that only the conditional probability to leave an equivalence
class is of importance and needs to be matched. The notion for
DTMC is somewhat involved [17]; for CTMC, it boils down to re-
quiring R(s, C) = R(t, C) for all equivalence classes C ∈ S/R,
except for C = [s]R = [t]R. Weak bisimulations preserve PCTL∗

without next [17]. Experiments show that substantial (up to expo-
nential) state space reductions can be obtained at almost no time
penalty [107]. As shown in [107], combinations with symmetry re-
duction [127] turn out to be rather beneficial too. Bisimulation rela-
tions over distributions [73] (rather than over states) are related and
have shown their theoretical relevance for linear-time objectives.

More aggressive abstraction. Most abstraction schemes are
based on grouping states that are not necessarily bisimilar. Ab-
stract and concrete models are then no longer bisimilar but they
are related by a simulation relation. Abstraction is typically conser-
vative in the sense that affirmative verification results for abstract
models carry over to concrete models. That is to say, if the abstract
model satisfies a property, the concrete one does so too. Probabilis-
tic simulation, e.g., preserves a safe fragment of PCTL, but not the
full PCTL [17]. This does not apply to negative verification results,
as false negatives may occur due to over-approximation in the ab-
straction. Three-valued semantics, i.e., an interpretation in which a
formula evaluates to either true, false, or indefinite may help out.
In this setting, abstraction is conservative for both positive and
negative verification results. Only if the verification of the abstract
model yields an indefinite answer (“don’t know”), the validity in
the concrete model is unknown. This has been adopted to Markov
models [110]. For a queueing system from performance evalua-
tion, (hand-crafted) three-valued abstraction shows that 10278 con-
crete states (calculated analytically) can be reduced to 1.2 million
states, while preserving six decimals accuracy for timed reacha-
bility probabilities [116]. An important question is which type of
model to use as abstraction. Models that are used include interval
Markov chains, abstract probabilistic automata [69] that equip PA
with modalities, and two-player stochastic games [112]. The latter
are used for obtaining abstractions of MDPs. One player is rep-
resenting the non-determinism that is inherent in the MDP, while
the other player controls the non-determinism introduced by the
abstraction. Crucially, this allows lower and upper bounds to be
computed for the reachability properties of the MDP. The tightness
of these bounds indicate the quality of the abstraction and form
the basis of refinement, see Fig. 5. Experiments show encouraging
results reducing models of millions of states to hundreds of states
in a few abstraction-refinement iterations [112]. A closely related
approach is menu-based abstraction [174].

Compositional abstraction. In order to avoid treating the en-
tire system model for abstraction, one can exploit composition-



ality. This amounts to applying abstraction in a component-by-
component fashion. This requires the abstraction relation (such as
∼, weak bisimilarity, or similarity) to be a congruence with respect
to parallel composition. For PA and MA, this means:

(M1 ∼ N1 andM2 ∼ N2) impliesM1 ||AM2 ∼ N1 ||AN2

phrased for the bisimulation ∼. Compositional abstraction works
component-wise. Each component Mi is abstracted by α(Mi).
Then M1 ||A . . . ||AMn is abstracted by α(M1) ||A . . . ||A
α(Mn). Or, groups of parallel processes can be taken and ab-
stracted, applying a similar regime. This has been applied to PA
and (modal extensions of) MA [99, 108]. These strategies all at-
tempt to reduce the peak memory consumption during state space
generation. Exploitation of the compositional system structure in
the verification using assume-guarantee verification has been con-
sidered in [119, 130].

Other techniques. There are several avenues to tackle the state
space explosion problem. One can argue that bisimulation is too
precise, in particular for probabilistic models. This can be remedied
by considering approximate bisimulations [170]; however, quoti-
enting is rather expensive. The usage of symbolic data structures
such as multi-terminal BDDs originates from [13]. For many prac-
tical examples (see also the next section), this is quite scalable. On-
the-fly partial-order reduction has been adapted to MDPs (and PA
and MA) [18]. As opposed to the aforementioned techniques, this
works on the high-level description of the MDP, not on the MDP
itself. Experimental results show that using adequate heuristics two
thirds of the total achievable reduction possible with weak bisimu-
lation can be obtained [168]. Other techniques include paralleliza-
tion [35] and Monte Carlo simulation 6. To analyse models of many
replicas, mean-field approximation can be employed [34]. The lat-
ter technique is based on counter abstraction, and yields approxi-
mate results for (in the limit infinitely) many replicas. A survey on
abstraction techniques for probabilistic systems is given in [67].

5. The Application Landscape
This section focuses on some practical applications of probabilistic
model checking.

Reliability engineering. Probabilistic safety assessment is com-
mon practice for safety-critical systems, and often required by
law. Typical measures of interest are the mean time to failure—
what is the expected time of the failure?—and reliability—how
likely is the system operational up to time t? Fault tree analy-
sis (FTA) [165, 172] is one of the most (if not the most) promi-
nent safety assessment technique. A recent detailed survey is given
in [161]. It is standardised by the IEC, and deployed by many com-
panies and institutions, like FAA, NASA, ESA, Airbus, Honeywell,
etc. Fault trees (FTs) model how failures propagate through the sys-
tem: FT leaves model component failures and are equipped with
continuous probability distributions; FT gates model how compo-
nent failures lead to system failures. FTs are one of the most promi-
nent model to describe top-down causes for a system failure and
facilitate, amongst others, the analysis of the mean time to failure
and system reliability. It is a common assumption that the failure of
FT leaves is governed by exponential distributions.
Remark. The incorporation of stochastic timing is motivated by
the fact that failures and repairs—the key events in reliability
analysis—occur randomly. Especially for failures, the negative
exponential distribution is a specific, though rather reasonable

6 Also called statistical model checking [134, 176]; this is however typically
restricted to bounded reachability properties (and variants thereof) and
cannot handle non-determinism.
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Figure 6: A (a) sample DFT with three leaves, an OR-gate (top event) and
two SPARE-gates (its children), and (b) its CTMC.

choice. The exponential distribution maximises the entropy7: if
only the mean failure rate is known, then the most appropriate
continuous-time distribution is the exponential distribution with
that mean [135]. For mechanical component failures, the bathtub
curves states that after the burn-in the failure rate is constant until
at some point wearing-off becomes a major influence [117]. For
repairs, other distributions such as uniform or combinations of uni-
form and deterministic distributions come into the play. These dis-
tributions can however be matched arbitrarily closely with phase-
type distributions (at the cost of state-space increase), distributions
that are defined as the time until absorption in a CTMC [146].

Due to redundancy, not every single component failure leads
to a system failure. Static fault trees have logical gates such as
AND- and OR-gates, but no inverters. Their analysis is easy and
can be done efficiently using BDD-based techniques. Dynamic
fault trees (DFTs) [75] are directed acyclic graphs that are more
expressive and more involved than static fault trees. They cater
for common dependability patterns, such as spare management,
functional dependencies, and sequencing. DFTs have an internal
state, e.g., the order in which events fail influences the internal
state, and thus whether the designated top event has failed. DFT
leaves can be either dormant, standby, active, or failed. Basic events
are assumed to be independent, therefore they almost surely never
fail simultaneously. The failure rate depends on the status; an active
leaf has failure rate λ, dormant and standby leaves have a reduced
rate. The DFT in Fig. 6(a), e.g., models (part of) a motor bike with
a spare wheel. If either wheel W1 or W2 fails, the motor bike fails.
Either wheel can be replaced by the spare wheel WS but not both.
WS is less likely to fail as long as it is not used; this is modelled by
a reduced failure rate. Assume the front wheel W1 fails. The spare
wheel WS is available and used, while its failure rate is increased,
as its status changes from dormant (or standby) to active. If any
other wheel fails, e.g., W2 then no spare wheels are available any
more. In that case, the SPARE BW and the DFT SF fails.

The behaviour of DFTs can be naturally described by CTMCs,
where transitions correspond to the failure of a basic event. Fig. 6(b)
depicts the CTMC of our sample DFT. (Strictly speaking, DFTs
can exhibit non-determinism due to the presence of functional
dependency-gates; Markov automata (MA) are appropriate as se-
mantics. For the sake of simplicity, we refrain from considering
such gates.) It turns out that the state space generation, i.e., the
generation of the CTMC for a given DFT, is one of the main bottle-
necks. By exploiting successful reduction techniques from classical
model checking, such as symmetry and (static) partial-order reduc-
tion, the state-space generation can be boosted drastically. Symme-
try reduction exploits the fact that many parts in DFTs are symmet-
ric and that failures have analogous effects in symmetric parts; e.g.,

7 According to the principle of maximum entropy, if nothing is known about
a distribution except that it belongs to a certain class (usually defined in
terms of specified properties or measures), then the distribution with the
largest entropy should be chosen as the least-informative default.



in the example the front- and back wheel are symmetric. Symmetry
reduction combined with pruning sub-DFTs that become obsolete
(don’t care) after the occurrence of some failures turns out to yield
substantial gains. Recent experiments have shown that the state-
space generation is accelerated up to five orders of magnitude by
exploiting these model-checking techniques [173]. The generation
of CTMCs with about 20 million states from symmetric DFTs is
a matter of a few minutes. The probabilistic verification of the re-
sulting CTMC—determining the DFT’s mean-time to failure, or
its reliability—can be done using the algorithms explained before.
This is very fast and negligible compared to the state-space genera-
tion. Alternative techniques [36] exploit the structure of the DFT by
generating the CTMC (in fact, an MA) in a compositional manner.
Here, an MA is generated for each DFT gate, and is enriched with
some transitions to enable its composition with the MA for other
gates. During this compositional state-space generation, bisimu-
lation quotienting is employed on the individual MA to reduce
the peak memory consumption. Efficient state-space generation
techniques combined with probabilistic model checking has been
successfully applied to large instances of benchmarks DFTs from
the literature (stemming from different application fields) as well
as to safety assessment of Dutch railway systems, see e.g. [89].

Dependability. The second application is concerned with depend-
ability modelling and analysis of spacecrafts. System dependabil-
ity evaluation is tightly related to performance evaluation, but es-
pecially concerned with evaluating service continuity of systems
while failures may occur. It goes without saying that spacecraft
systems such as satellites, Mars pathfinders, and launchers are sub-
ject to extreme dependability requirements. Space systems engi-
neering is an evolving field and its current state of practice is
strongly influenced by software. The advent of digital interfaces
of parts and equipment, and the flexibility of software-based con-
trol over analogue interfaces and electrical/mechanical control led
to an exponential growth of the size of the deployed software in
space crafts. In a cooperation of almost a decade with the ESA
(European Space Agency), an extension of the Architecture Analy-
sis & Design Language (AADL) [83] has been developed with ac-
companying tool support that includes probabilistic model check-
ing [38]. The AADL dialect enables to express the system, the
software and—most importantly—its reliability models in a sin-
gle modelling language. This language is equipped with a rigorous
formal semantics, that maps models onto an automata-based for-
malism. The automata are extended with data, continuous dynam-
ics (to describe temperature, pressure and the like), and discrete and
continuous probability distributions. The latter are primarily used
for modelling the failure behaviour of (typically redundant) system
components. AADL is a component-based modelling language in
which hierarchical system components interact with each other in
a rendezvous manner. The behaviour of component consists of two
parts: its nominal and its error behaviour. The effect of an error
occurrence is described by a so-called fault injection, basically an
assignment to some variables in the nominal part. The nominal be-
haviour is given by a (possibly non-deterministic) state-transition
diagram, while the error behaviour is described by a CTMC. The
error model expresses how faults may affect normal operation and
may lead the system into a degraded mode of operation. The paral-
lel composition of these two “automata” together with the fault in-
jection gives the total component’s behaviour. Modes are thus pairs
of nominal modes and error model states. The transition relation
consists of all possible interleavings and interactions between the
nominal and error model, taking failure effects into account. An
example is given in Fig. 7.

Ignoring the hybrid and timed behaviour yields an MA, a
CTMC with possible non-determinism. The generation and analy-
sis of the resulting MA is supported by the COMPASS tool-set; its

idle wait

active

cnt := 1

cnt := 2cnt := 0

cnt := cnt + 1

(a) Nominal model

ok failed
fail

recover

(b) Error model

idle#ok idle#failed

wait#ok wait#failed

active#ok active#failed

fail; cnt := −1

recover

fail; cnt := −1

recover

fail; cnt := −1

recover

cnt := 1

cnt := 2

cnt := 1

cnt := 2

cnt := cnt + 1 cnt := −1

cnt := 0 cnt := −1

(c) Extended model

Figure 7: Nominal (a) and error model (b) with fault injection cnt := 1
yields extended model (c).

model checker is described in [37]. MA are reduced by weak bisim-
ulation quotienting; in case this yields a CTMC—due to the elim-
ination of spurious non-determinism by the quotienting—CTMC
model checking is employed; otherwise MA verification is ap-
plied. A large internal case study at ESA modelled a satellite plat-
form [39, 78]. The 90 components modelled the reaction wheels,
and the attitude and orbital control system (AOCS) etc.; the 20 er-
ror models range from sensor failures to propulsion failures and
AOCS break down. The nominal model already consists of 50 mil-
lion states. Fault injection yields blow-ups ranging from a factor 3
(for local errors) up to 200,000 (for the AOCS). Using BDDs, com-
bined with (weak) bisimulation quotienting, and property-based
abstraction, the AADL model of the satellite has been successfully
analysed [78]. The need for more effective abstraction techniques
is clearly given as the reliability of the satellite in the presence
of a sensor failure could not be computed in nine hours. A more
detailed model of the satellite has also been analysed in [39]. The
ESA activities are perhaps the largest industrial project so far 8 that
has used probabilistic model checking.

Other applications and tools. Probabilistic model checking has
been adopted by various performance modelling techniques, most
notably by (generalized) stochastic Petri nets (GSPNs) [138]. Tran-
sitions in these Petri nets are equipped with exponential distribu-
tions, and safe SPNs yield finite-state CTMCs. Due to the presence
of immediate transitions, GSPNs may have confusion; their mark-
ing graph is no longer a CTMC but an MA [77]. Established GSPN
tools such as GreatSPN [7] nowadays include CSL model check-
ing. We also mention a (plug-in) extension of STATEMATE that
augments Statechart models with probabilistic timing information
in a compositional manner—in a similar manner as described above
for AADL—and exploits CTMDP model-checking algorithms [32]
The availability of powerful software tools such as PRISM [129],
MRMC [109], LiQuor [56], iscasMC [92], and PAT [164] has
boosted the application of probabilistic model checking in a wide
variety of application fields. An important application field is sys-
tems biology. CTMCs naturally reflect the operations of biological
mechanisms such as molecular reactions. In recent years various
biological systems have been studied by CTMC model check-
ing [61, 131, 139]. These include Petri net approaches [97, 137].
A recent overview is given in [126]. In particular, computing
time-bounded reachability probabilities and long-run probabilities
is of importance. Other applications include: quantitative secu-

8 See compass.informatik.rwth-aachen.de for more details.
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Figure 8: A variant of the Knuth-Yao die for two unfair coins.

rity [149], stochastic scheduling, planning, robotics [154], prob-
abilistic programs [115], data-flow computations [105], user ac-
tivity patterns for mobile apps [9], and so forth. Extensions with
rewards have been applied, amongst others, to energy-aware com-
puting [150]. An extensive set of case studies can be found on
www.prismmodelchecker.org. Statistical model checkers
that check a temporal logic formula using Monte Carlo simulation
have emerged in the last years [134, 176].

6. The New Parameter Synthesis Landscape
The parameter synthesis problem. A major practical obstacle
is that probabilistic model checking assumes that all probabilities
(rates) in the Markov model are a priori known. However, at early
development stages, certain system quantities such as fault rates,
reaction rates, packet loss ratios, etc. are often not—or at the best
partially—known. In such cases, parametric probabilistic models
can be used, where transition probabilities are specified as arith-
metic expressions over real-valued parameters. The problem of pa-
rameter synthesis is: Given a finite-state parametric Markov model,
what are the parameter values for which a given reachability prop-
erty exceeds (or is below) a given threshold β? Put differently,
what probabilities in the system are tolerable such that the overall
probability to reach some critical states is below a given thresh-
old like 10−8? Answering such a question may for instance allow
developers of network protocols to decide for which communica-
tion channels reliability is most important, or it may help reliability
engineers optimising investments by focussing on the most criti-
cal components. Due to possible dependencies between paramet-
ric transition probabilities, synthesis is intrinsically hard. Param-
eter synthesis has considerably advanced recently, and we survey
available techniques for discrete-time parametric Markov models.

Computing symbolic reachability probabilities. As a running ex-
ample we consider a parametric variant of the Knuth-Yao algo-
rithm [118]. We assume that a finite number of parameters is given.
Transitions in parametric DTMCs (pMCs, for short) are labelled
with rational functions over these parameters. A rational function is
a fraction of polynomials in terms of the parameters. No restrictions
on the shape of multivariate polynomials are imposed; the rational
functions should, of course, be on [0, 1]. It is assumed that pMCs
are realizable, i.e., there exists a parameter evaluation such that a
DTMC is induced. Checking this is NP-hard [132]. Consider two
biased coins that result in heads with probability p and q, respec-
tively. In the parametric Knuth-Yao algorithm, we throw these coins
in an alternating fashion, see Fig. 8. A sample synthesis question is:
For which values of p and q is the probability of eventually getting

or at most 1/3? Note that there are multiple trade-offs in the
sense that, e.g., higher or lower values of p (or q) are not necessarily
beneficial for the probability of either or . It is possible to com-
pute a rational function expressing the reachability probability in a
pMC. In the example, this yields for the non-linear rational func-
tion p· q·(1−p)

1−p·q . This can be obtained—as first observed in [64] and
implemented in [91]—by state elimination, a technique akin to con-
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Figure 9: State-elimination for parametric Markov chains.

structing a regular expression from a finite-state automaton. We use
state and transition elimination, as illustrated below. The principle
is to remove states one-by-one from the pMC until only a start state
and the target states remain. We show this procedure for the left
sub-tree of the parametric die. Eliminating state s3 (see Fig. 9(a))
results in transitions from s1 to the targets of the outgoing transi-
tions of s3. Eliminating the self-loop at s1 (see Fig. 9(b)) rescales
all other outgoing transitions. Eliminating s1 (see Fig. 9(c)) yields
the rational function describing the probability for the event ♦ .
Finally, eliminating state s4 yields Fig. 9(d). This approach can
be generalised to obtain rational functions for objectives such as
conditional reachability probabilities [68] and expected rewards in
pMCs whose rewards may be parametric too.

Depending on the structure and the size of the pMC, this pro-
cedure may yield rational functions with many high-degree mul-
tivariate polynomials. For many Markov models it is beneficial to
construct the rational function by exploiting their structure. A prac-
tically viable approach is to apply a hierarchical decomposition of
the pMC into SCCs [102]. This yields a tree of SCCs, the root be-
ing the pMC at hand. One can then determine the rational func-
tions in a bottom-up fashion over this tree, starting with the leaves,
i.e., the SCCs that do not contain any SCCs. The rationale behind
this strategy is to keep the rational functions manageable. Together
with improved gcd-computations, a bottleneck for computing ratio-
nal functions, this approach scales well. In addition, probabilistic
bisimulation quotienting on pMCs can be applied using the poly-
nomial algorithm for ordinary MCs together with SMT (Satisfia-
bility Modulo Theory) techniques [58] that simplify the rational
functions and compare them. Experimental results [102] show that
this approach to computing rational functions works efficiently for
pMCs of up to a few million states and two parameters.

Partitioning the parameter space. The aim of parameter synthe-
sis is to obtain all parameter values for which a given property
holds. This can be conveniently represented by partitioning the
parameter space, indicating for which sets of parameter values—
called regions—the property holds, and for which ones it does not.
The first regions are safe; the second ones are unsafe. Formally, re-
gions are half-spaces defined by a system of linear inequalities over
the parameters. A region R for threshold 6 β for fixed probability
β and rational function f is safe iff there is no well-formed parame-
ter valuation v ∈ R 9 such that f instantiated with v exceeds β. An
unsafe region R does not contain a valuation v such that f instan-
tiated by v is at most β. We present two approaches to partition the
parameter space into safe and unsafe regions: generating candidate
regions that are checked for (non-) safeness, and parameter lifting.

Candidate region generation and checking. To partition the pa-
rameter space into safe (indicated in green) and unsafe regions (in-
dicated in red), one can—either algorithmically or user-guided—
indicate candidate regions. To check whether a region is safe or not,
satisfiability checking can be employed. This approach is based on
a symbolic representation of reachability probabilities as given by
the rational functions obtained by, e.g., state elimination. For our
running example, the aim is to determine for a region R such as

9 A parameter valuation is well-formed whenever it induces a Markov chain.
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Figure 10: Sampling (a) and two snapshots (b) and (c) of incremental parameter space partitioning for Pr (♦ ) > 3/20.

1/3 6 p 6 1/2 and 1/2 6 q 6 2/3, all values of p and q such that
(see Fig. 9(d)):

p·q·(1−p)
1− p·q + p2· 1−q

1− p·q 6
1/3.

This can be done by SMT techniques over non-linear real arith-
metic [103] supported by tools such as Z3 [66] and SMT-RAT [58].
If a candidate region is not safe (or not unsafe), the counterexam-
ple provided by the SMT solver can be used to split the candidate
region into sub-regions. This naturally gives rise to a CEGAR10-
like loop: once the rational function is computed, one first checks
a number of instantiations of the rational function up to a user-
adjustable degree. This yields a coarse abstraction of the parameter
space partitioning. Based on the sampling, a safe (unsafe) candi-
date region is constructed. An SMT-solver then either verifies that
this region is indeed safe (unsafe). Fig. 10 shows a typical initial
sampling, together with an intermediate and an (almost) final parti-
tioning for the two parameters of the parametric version of Knuth-
Yao’s die. The tool PROPhESY [68] supports this procedure.

Parameter lifting. Instead of computing a rational function and
involving an SMT-solver, the new parameter lifting technique takes
a different approach [158]. It takes as input a pMC but is—in con-
trast to the above technique—also directly applicable to parametric
MDPs. For each unique parameter at transitions emanating from
a state, we use a fresh parameter to remove parameter dependen-
cies. This is called relaxation. Now, for each function over these
parameters, we compute extremal values, i.e., maximal and mini-
mal probabilities based on the region of interest. The key idea is
to replace the (parametric) probabilistic choice at each state by a
non-deterministic choice between these extremal values. This sec-
ond step is called substitution. The resulting (non-parametric) MDP
can be verified using the algorithms discussed before. This analy-
sis yields sound over- and under-approximations for all parameter
instantiations within the given region. Parameter lifting thus allows
verifying regions via standard MDP model checking and avoids
computing rational functions and SMT solving. This approach is
sound if transition probabilities are linear in each variable, and re-
gions are hyper-rectangles. These restrictions are not severe; most
benchmarks from the literature adhere to this. Let us give an exam-
ple. Consider Fig. 11(a) and let region R = [0.1, 0.3]×[0.4, 0.6].
The relaxation (see Fig. 11(b)) replaces parameter p in s4 by y, the
bounds for y are as for p, [0.1, 0.3]. Now, every variable occurs
only at a single state, so the choice of a variable becomes a local
choice. Note that this over-approximates the possible instantiations.
Substitution yields the MDP in Fig. 11(c). That is, for each outgo-
ing transition in a state we either pick the upper or lower bound for
the corresponding variable. The solid (dashed) lines depict transi-
tions that belong to the action for the upper (lower) bound. The
elegance of this approach is that it is simple and can be applied to

10 CounterExample-Guided Abstraction-Refinement.
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Figure 11: Illustrating (b) relaxation and (c) substitution.

parametric MDPs too. It also avoids the main practical bottlenecks
of computing the rational function and SMT solving. Substitution
then yields a two-player stochastic game, see [158]. The analysis
of this game using standard means [84] yields upper- and lower-
bounds on the maximal and minimal reachability probabilities for
the pMDP. These bounds are safe by construction. The technique
can also be used to verify expected reward properties. By replac-
ing sampling of the rational function, parameter lifting can be em-
bedded into a parameter space partitioning framework as described
above. Parameter lifting enables parameter space partitioning for
pMCs and pMDPs with a 95% coverage for up to a few million
states and four parameters [158].

Applications. Despite the fact that parameter synthesis is a rather
young research area, several applications have been reported re-
cently. Parametric probabilistic models are used to rank patches in
the repair of software [136] and are quite natural in adaptive soft-
ware where “continuous” verification frequently amends system
models during deployment [45]. Parameter synthesis in CTMCs
has first been considered in [93]; recent extensions are reported
in [46]. Early work on parameter synthesis for discrete probabilis-
tic models occurred in [132]. Perturbation analysis [54, 167] and
model-repair [28] exploit parametric Markov models.

Other synthesis works. Rather than having parametric transition
probabilities, properties may be parametric. Consider the paramet-
ric LTL-formula ♦6x ϕ, where x is a natural variable. The synthe-
sis problem now is to determine the set of valuations of x such that
the probability to satisfy the instantiated formula is below thresh-
old β. This is undecidable in general but decidable for some LTL
fragments and qualitative properties [47]. The controller synthesis
problem is: given a (CT)MDP and a reachability objective, it is pos-
sible to effectively synthesize a controller? For MDPs and PCTL
extended with long-run averages, the controller synthesis problem
is decidable [123]; for a similar logic and MDPs in which some
(but not all) non-determinism is controllable, it is NP-hard [15].
Other variants include the control-flow synthesis from libraries of
reusable probabilistic components—which is decidable for almost-
sure specification [49, 143]—the synthesis of systems in proba-
bilistic environments [50] and the synthesis of probabilistic pro-
grams [147].
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