
Probabilistic Programming:
A True Verification Challenge

Joost-Pieter Katoen

Software Modelling and Verification, RWTH Aachen University, Germany
Formal Methods and Tools, University of Twente, The Netherlands

katoen@cs.rwth-aachen.de

Probabilistic programming. Probabilistic programs [6] are sequential programs,
written in languages like C, Java, Scala, or ML, with two added constructs: (1)
the ability to draw values at random from probability distributions, and (2)
the ability to condition values of variables in a program through observations.
For a comprehensive treatment, see [3]. They have a wide range of applications.
Probabilistic programming is at the heart of machine learning for describing
distribution functions; Bayesian inference is pivotal in their analysis. Probabilis-
tic programs are central in security for describing cryptographic constructions
(such as randomised encryption) and security experiments. In addition, proba-
bilistic programs are an active research topic in quantitative information flow.
Quantum programs are inherently probabilistic due to the random outcomes of
quantum measurements. Finally, probabilistic programs can be used for approx-
imate computing, e.g., by specifying reliability requirements for programs that
allocate data in unreliable memory and use unreliable operations in hardware (so
as to save energy dissipation) [1]. Other applications include [4] scientific model-
ing, information retrieval, bio–informatics, epidemiology, vision, seismic analysis,
semantic web, business intelligence, human cognition, and more. Microsoft has
started an initiative to improve the usability of probabilistic programming which
has resulted in languages such as R2 [13] and Tabular [5] emerged.

What is special about probabilistic programs? They are typically small (up to a
few hundred lines), but hard to understand and analyse, let alone algorithmically.
For instance, the elementary question of almost-sure termination—for a given
input, does a probabilistic program terminate with probability one?—is as hard
as the universal halting problem—does an ordinary program halt on all possible
inputs? [11]. Loop invariants of probabilistic programs typically involve quanti-
tative statements and synthesizing them requires more involved techniques than
for ordinary programs [12]. As a final indication of their complexity, we mention
that probabilistic programs allow to draw values from parametric probability
distributions. Obtaining quantitative statements such as “what is the expected
value of program variable x on termination?” require non-trivial reasoning about
such parametric distributions.

Analysing probabilistic programs. Bugs easily occur. We develop program anal-
ysis techniques, based on static program analysis, deductive verification, and



2 Joost-Pieter Katoen

model checking, to make probabilistic programming more reliable, i.e., less
buggy. Starting from a profound understanding from the intricate semantics
of probabilistic programs (including features such as observations, possibly di-
verging loops, continuous variables, non-determinism, as well as unbounded re-
cursion), we study fundamental problems such as checking program equivalence,
loop-invariant synthesis, almost-sure termination, and pre- and postcondition
reasoning. The aim is to study the computational hardness of these problems
as well as to develop (semi-) algorithms and accompanying tool-support. The
ultimate goal is to provide lightweight automated means to the probabilistic
programmer so as check elementary program properties.

Formal semantics and verification. In this invited talk, I will survey recent
progress on the formal semantics and verification of (parametric) probabilis-
tic programs. This involves relating weakest pre-conditions and operational se-
mantics [9, 7], loop-invariant synthesis techniques by constraint solving [12, 8],
hardness results on almost-sure termination [11], and verifying parametric prob-
abilistic models and their applications [2, 10, 14].

Acknowledgement. This work is funded by the EU FP7-projects SENSATION
and MEALS, and the Excellence Initiative of the German federal and state
government.

References

1. M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quantitative reliability for
programs that execute on unreliable hardware. In Proc. of OOPSLA, pages 33–52.
ACM Press, 2013.

2. C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen,
and E. Ábrahám. PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In
Proc. of CAV, volume 9206 of LNCS. Springer, 2015.

3. N. D. Goodman and A. Stuhlmüller. The Design and Implementation of Proba-
bilistic Programming Languages. (electronic), 2014. http://dippl.org.

4. A. D. Gordon. An agenda for probabilistic programming: Usable, portable, and
ubiquitous, 2013.

5. A. D. Gordon, T. Graepel, N. Rolland, C. V. Russo, J. Borgström, and J. Guiver.
Tabular: a schema-driven probabilistic programming language. In Proc. of POPL,
pages 321–334. ACM Press, 2014.

6. A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic
programming. In Proc. of FOSE, pages 167–181. ACM Press, 2014.

7. F. Gretz, N. Jansen, B. L. Kaminski, J.-P. Katoen, A. McIver, and F. Olmedo.
Conditioning in probabilistic programming. In Proc. of MFPS, ENTCS.

8. F. Gretz, J.-P. Katoen, and A. McIver. PRINSYS - on a quest for probabilistic
loop invariants. In Proc. of QEST, volume 8054 of LNCS, pages 193–208. Springer,
2013.

9. F. Gretz, J.-P. Katoen, and A. McIver. Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval.,
73:110–132, 2014.



Probabilistic Programming: A True Verification Challenge 3

10. N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Ábrahám, J.-P. Katoen, and
B. Becker. Accelerating parametric probabilistic verification. In Proc. of QEST,
volume 8657 of LNCS, pages 404–420. Springer, 2014.

11. B. L. Kaminski and J.-P. Katoen. On the hardness of almost-sure termination. In
Proc. of MFCS, volume 9234 of LNCS. Springer, 2015.

12. J.-P. Katoen, A. McIver, L. Meinicke, and C. C. Morgan. Linear-invariant gener-
ation for probabilistic programs. In Proc. of SAS, volume 6337 of LNCS, pages
390–406. Springer, 2010.

13. A. V. Nori, C.-K. Hur, S. K. Rajamani, and S. Samuel. R2: An efficient MCMC
sampler for probabilistic programs. In Proc. of AAAI. AAAI Press, 2014.

14. S. Pathak, E. Ábrahám, N. Jansen, A. Tacchella, and J.-P. Katoen. A greedy
approach for the efficient repair of stochastic models. In Proc. of NFM, volume
9058 of LNCS, pages 295–309. Springer, 2015.


