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Probabilistic programming. Probabilistic programs [6] are sequential programs,
written in languages like C, Java, Scala, or ML, with two added constructs: (1)
the ability to draw values at random from probability distributions, and (2)
the ability to condition values of variables in a program through observations.
For a comprehensive treatment, see [3]. They have a wide range of applications.
Probabilistic programming is at the heart of machine learning for describing
distribution functions; Bayesian inference is pivotal in their analysis. Probabilis-
tic programs are central in security for describing cryptographic constructions
(such as randomised encryption) and security experiments. In addition, proba-
bilistic programs are an active research topic in quantitative information flow.
Quantum programs are inherently probabilistic due to the random outcomes of
quantum measurements. Finally, probabilistic programs can be used for approx-
imate computing, e.g., by specifying reliability requirements for programs that
allocate data in unreliable memory and use unreliable operations in hardware (so
as to save energy dissipation) [1]. Other applications include [4] scientific model-
ing, information retrieval, bio–informatics, epidemiology, vision, seismic analysis,
semantic web, business intelligence, human cognition, and more. Microsoft has
started an initiative to improve the usability of probabilistic programming which
has resulted in languages such as R2 [13] and Tabular [5] emerged.

What is special about probabilistic programs? They are typically small (up to a
few hundred lines), but hard to understand and analyse, let alone algorithmically.
For instance, the elementary question of almost-sure termination—for a given
input, does a probabilistic program terminate with probability one?—is as hard
as the universal halting problem—does an ordinary program halt on all possible
inputs? [11]. Loop invariants of probabilistic programs typically involve quanti-
tative statements and synthesizing them requires more involved techniques than
for ordinary programs [12]. As a final indication of their complexity, we mention
that probabilistic programs allow to draw values from parametric probability
distributions. Obtaining quantitative statements such as “what is the expected
value of program variable x on termination?” require non-trivial reasoning about
such parametric distributions.

Analysing probabilistic programs. Bugs easily occur. We develop program anal-
ysis techniques, based on static program analysis, deductive verification, and
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model checking, to make probabilistic programming more reliable, i.e., less
buggy. Starting from a profound understanding from the intricate semantics
of probabilistic programs (including features such as observations, possibly di-
verging loops, continuous variables, non-determinism, as well as unbounded re-
cursion), we study fundamental problems such as checking program equivalence,
loop-invariant synthesis, almost-sure termination, and pre- and postcondition
reasoning. The aim is to study the computational hardness of these problems
as well as to develop (semi-) algorithms and accompanying tool-support. The
ultimate goal is to provide lightweight automated means to the probabilistic
programmer so as check elementary program properties.

Formal semantics and verification. In this invited talk, I will survey recent
progress on the formal semantics and verification of (parametric) probabilis-
tic programs. This involves relating weakest pre-conditions and operational se-
mantics [9, 7], loop-invariant synthesis techniques by constraint solving [12, 8],
hardness results on almost-sure termination [11], and verifying parametric prob-
abilistic models and their applications [2, 10, 14].
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