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Abstract

Reducing the runtime is one of the main problems in software model checking. Es-
pecially the runtime of CEGAR algorithms can be dramatically reduced by minimizing
the abstract reachability tree. Using large-block encoding loop free parts of a control
flow automaton are summarized into a single edge. This thesis provides the theoretical
background of large-block encoding and introduces an advanced version of large-block
encoding. Both versions of large-block encoding are evaluated on several test cases.
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1 Introduction

Code verification can improve software development in various design phases. We dis-
tinguish between two types of code verification: a semantic check of code and software
model checking. A semantic check of a software can be done for example via the Hoare
calculus. By using the Hoare calculus the program or a set of functions of the program
can be checked. Therefore, one introduces preconditions and postconditions for each
function. For a precondition P , a program Q and the postcondition R following nota-
tion is used: P{Q}R. If the precondition P holds before executing the program Q, the
postcondition R must hold as well. In case that the program Q has no precondition one
denotes it with true{Q}R [Hoa69].
Software model checking is another prominent technique which will be evaluated in this
thesis. Due to many years of research and development, model checking tools are able
to check software of remarkable size. But still, the problems of efficiency and scalability
are not solved completely. The main problem is the state space explosion. The amount
of states is correlated exponentially with the number of variables. For n variables in a
domain of k possible values there are kn possible states. Even small program have a
huge amount of states, for example a program with 10 locations, 4 boolean variables
and 3 integers with domain in {0, ..., 9} has 10× 24× 103 = 160.000 states [BK08]. The
state explosion problem can be handled by abstraction. The abstraction of a program is
usually defined by a function, which transforms a set of concrete states of the program
into an abstract state. A single abstract state might represent a set of various concrete
states. This leads to various problems in the adoption of the techniques in practical
use [BCG+09]. For example one needs a more complex formula to represent an abstract
state than for representing a concrete state, due to the fact, that an abstract state might
be a set of concrete states.
Research and development made it obvious that the use a of so-called abstract reacha-
bility tree (ART) and predicate abstraction can enhance the verification process. In first
approaches of using ARTs in software model checking tools every program operation is
described as single edge in the ART. This method is called single-block encoding (SBE),
which leads to very big control flow automata during realistic application. Due to this,
the ART, which is unrolled from the CFA, is very big as well. For model checking a big
ART is a main problem. A control flow automaton (CFA) represents the control flow of
a program. This is why their size has to be reduced which can be done by large-block
encoding (LBE ). The thesis focuses on large-block encoding and the effect to model
checking algorithms. This approach does not represent a single program operation in
a one edge, but rather contains entire parts of the program at once. This is how the
number of nodes is reduced potentially exponentially [BCG+09].
Using large-block encoding instead of single-block encoding has two main consequences.
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1 Introduction

On the one hand, a more general representation of the abstract states is required for
large-block encoding. In this thesis there are three standard rules [BCG+09] and one
new rule. The advanced sequence rule was developed during this thesis. Each rule aims
at the minimization of a given control flow automaton. After a rule application the
CFA is smaller, regarding the number of states or the number of edges depending the
applied rule, than before. For representing the abstract state one needs an arbitrary
boolean combination of predicates, which defines an abstract state. The other conse-
quence is that for the abstract-successor computations in large-block encoding a more
accurate abstraction is required. An abstract edge represents several paths of the pro-
gram [BCG+09].
When using large-block encoding with boolean abstraction in addition to traditional
techniques one can observe two main points: First, the large-block encoding approach
can reduce the amount of successor computations up to exponentially. Second, the ab-
straction which is used for large-block encoding is more expensive than the one which is
used for single-block encoding. The large-block encoding abstraction needs more time
and memory, because all satisfiable assignments are required [BCG+09].
To make use of counterexample-guided abstraction refinement one also has to take into
account how the control-flow automaton is labelled. As label for the control flow au-
tomaton the guarded command language of Dijkstra, which is explained in Sec. 4.3, is
used. By using the guarded command language the weakest precondition can be cal-
culated very efficiently. The weakest precondition needs to be calculated for using the
counterexample-guided abstraction refinement.

After providing the introduction and a short overview about related work, this the-
sis starts with giving the necessary background information for large-block encoding. In
Section 3 the rules of large-block encoding and its termination and runtime are described.
Section 4 gives an overview over special details of implementation and problems during
implementation and testing. The results of performances tests are topic of section 5.
Finally, Section 6 concludes this thesis.

1.1 Related Work

There are two typical examples for model checkers that use the single-block encod-
ing approach: BLAST and SLAM [BHJM07, BR02]. Both of them are based on the
counterexample-guided abstraction refinement (CEGAR) [CGJ+00]. Model checking,
however, also uses several other approaches; for instance lazy abstraction can be found
in SATabs [HJMS02]. Instead of using predicate abstraction, [McM06] proposes an
approach based on Craig interpolants from infeasible error paths.

Another way of minimizing a control flow automaton is adjustable-block encoding
(ABE) [BKW10]. ABE fills the gap of missing configurations and unifies single-block en-
coding and large-block encoding. Formulas for large blocks of the control flow automaton
are constructed on the fly during the analysis. The number of operations summarized in
a block is given by a special parameter. Therefore it is possible to construct completely
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1.1 Related Work

new blocks, which are not possible with single-block encoding or large-block encoding.
Even bigger blocks than summarized with large-block encoding are possible by using
ABE. In comparison to large-block encoding an abstract state has to store different
formulas. First, there is the abstraction formula, which is result of the the abstraction
computation. Second, the path formula representing the strongest postcondition since
the last computation of an abstract state [BKW10].
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2 Background

This chapter provides the theoretical background of software model checking via large-
block encoding. Given a program in a language, we start by constructing the control flow
automaton via standard construction rules. On top of that the predicate abstraction,
which is necessary to represent abstract states, is explained. Finally bounded model
checking, the counterexample-guided abstraction refinement and the fixpoint theorem
of Tarski and Knaster are topics of this subsection.

2.1 Control Flow Automaton

Definition 1 (Operations). The operations which are used in a control flow automaton
are defined by the language

basic op = x := c | x ◦ c with c variable or value or expression ◦ ∈ {=,≤,≥, 6=, <,>}
op = basic op | op1; op2 | op1 || op2

Definition 2 (Program). A sequential program P with the operation set Ops is defined as
a finite sequence P = op0, op1, ..., opn with opi ∈ Ops. A program location is represented
by the index its subsequent operation.
Definition 3 (Control Flow Automaton). A Control Flow Automaton (CFA) A is de-
fined as the four tuple A = (L,G, l0, LE), where L is a finite set of locations, G is a set
L× Ops× L, l0 ∈ L is a unique initial location and LE ⊆ L is a set of error locations.
The initial location l0 has no ingoing edges.

The set L models the program counter l and G represents the edges in the CFA. We
distinguish between two different types of basic ops. First, an operation in a program
can be an assignment such as x := y. Second, an operation can be an assumption like
x > y which is evaluated either to true or false. This definition of edge labels is more
general but after applying large-block encoding one can not distinguish between assume
and assign edges. When moving from location lx ∈ L to location ly ∈ L, where lx = ly
is allowed due to self-loops, one operation opx ∈ Ops is executed. The set of all used
variables in at least one operation is called VAR.

Definition 4 (Function on a Control Flow Automaton). To use a Control Flow Au-
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tomaton easier in applications the following functions are defined:

Let lx ∈ L
succ(lx) := {ly|(lx, opx, ly) ∈ G ∧ opx ∈ Ops ∧ ly ∈ L}
pred(lx) := {ly|(ly, opy, lx) ∈ G ∧ opy ∈ Ops ∧ ly ∈ L}

outdegree(lx) := |{(lx, opx, ly) ∈ G}|
indegree(lx) := |{(ly, opx, lx) ∈ G}|

connecting edges(lx, ly) := {(lx, opx, ly) ∈ G}

In the following, initial locations shown in figures are marked with dashed borders,
error location with a red filling.

An function c : VAR → Z that assigns an integer value to every variable is called a
concrete data state, where Z is the domain of integer values. All concrete data states are
in the set denoted by C. A region is a subset of concrete data states and is represented
with a first-order formula ϕ. This formula ϕ defines a set S of all data states c that
model ϕ. A concrete data state is a set of all concrete states with {(l, c) | c |= ϕ}.
The strongest postcondition operator SPop defines the concrete semantics of an opera-
tion op ∈ Ops. SPop indicates the set consisting of all states that are reachable from the
region, given by the formula ϕ, after executing an operation op. For a given formula ϕ
and an assignment operation s := e we have SPs:=e(ϕ) = ∃s′ : ϕ{s 7−→s′} ∧ (s = e{s 7−→s′})
as well as for an assume operation assume(p) we have SPassume(o)(ϕ) = ϕ ∧ p. The
notation s 7−→ s′ says that s is replaced by s′ [BCG+09].

A path σ is a sequence 〈(op0, l1), ..., (opn−1, ln)〉 of operations (∀i ∈ {0, n−1}.opi ∈ Ops)
and locations (li ∈ L ∀i ∈ {1, n}). If G contains edges (li−1, opi−1, li) s.t. there is a path
from l0 to a terminating location lt ∈ L σ is a program path. The successive application
of the strongest postoperator for path SPσ(ϕ) = SPopn−1(...SPop0(ϕ)...) defines the con-
crete semantics for a program path σ = 〈(op0, l1), ..., (opn−1, ln)〉. If SPσ(true) is satisfied
the program path σ is feasible. A concrete state (li, ci) of a path σ is reachable if the
path σ is feasible and ends in the location li such that ci |= SPσ(true). An arbitrary
location l can be reached if there is a reachable concrete state (l, c). In case the location
lE is not reachable the program is safe [BCG+09].

Sample Transformation As mentioned in the introducing lines of this section programs
can be transformed into CFAs. This will be performed on the following example code.
The code checks if z is the greatest common divisor of x and y. When reaching a
”return true” the program terminates successfully, when reaching ”return false” the
program terminates with exception. The first step by transforming code into a CFA is
creating an initial location. Second, the program lines are read one by one. For each
assignment a new edge to the next location is created. For an if statement the CFA
is divided into branches which are merged at the end of the if statement. Loops are
also represented by branches in the CFA, where one branch ends in the start location of
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2.2 Predicate Abstraction

the branch and the other branch proceeds to the next location in the program. In this
example it can be seen at location l4.

x:=12
y:=6
z :=6
i f ( x=0) then

i f ( y=z ) then
re turn true

e l s e
re turn f a l s e

e l s e
whi l e ( y !=0) do begin

i f (x>y ) then
x:=x−y

e l s e
y:=y−x

end
i f ( x=z ) then

re turn true
e l s e

re turn f a l s e

(a) Code

l0

l1

l2

l3 l4 l5

l6 l7

l8

l9 l10

l11l12

x′ = 12

y′ = 6

z′ = 6

x 6= 0 y 6= 0

x > y

x <= y

x′ = x− y

y′ = y − x
true

y = 0x = 0

y = z

y 6= z x = z
x 6= z

(b) CFA

Figure 2.1: Sample transformation

2.2 Predicate Abstraction

Predicates can be seen as boolean expressions. A theory T is defined over a set of
variables, a quantifier-free theory has no quantifiers, i.e. ∃ or ∀ in the formula [KS08].
Therefore, the predicates in T are only expressions over the variables in the program.
One cannot use variables which do not occur in the program. The predicates over
program variables in a quantifier-free theory T are in a set P . A formula ϕ is a Boolean
combination (with boolean operator ∨,∧,¬) of predicates from P . A precision of a
formula is a finite subset π ⊂ P of predicates.

2.2.1 Cartesian Predicate Abstraction

The basic idea of Cartesian predicate abstraction is ignoring dependencies between com-
ponents of tuples. For example, the set {< 0, 1 >,< 1, 0 >} is abstracted by the Carte-
sian predicate abstraction with < ∗, ∗ > where ∗ is a do not care value. Therefore the
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2 Background

abstracted set contains four elements in total, where the original set does only contain
two elements.

The Cartesian predicate abstraction ϕπC of the formula ϕ is the strongest conjunction of
predicates in π that is caused by ϕ : ϕπC :=

∧
{p ∈ π|ϕ⇒ p} [BCG+09]. This abstraction

for a formula ϕ representing a region of concrete program states is used in program
verification to represent an abstract state. The Cartesian predicate abstraction for a
given formula ϕ and a given precision π can also be computed by |π| SMT-Solver queries.
The abstract strongest postoperator SP π for a predicate abstraction with precision π
transforms the abstract state ϕπC into its successor ϕ∗πC for a program operation op ∈ Ops.
This is written as follows: ϕ∗πC = SP π

op(ϕ
π
C). In case that ϕ∗πC is a Cartesian predicate

abstraction of SPop(ϕ
π
C) then ϕ∗πC = (SP π

op(ϕ
π
C))πC [BPR03].

2.2.2 Boolean Predicate Abstraction

The abstract states are separated into different classes depending on the evaluation under
a finite set of predicates, so called Boolean expressions. Let P = {p1, ..., pn} be a finite
set of predicates. Each py for y ∈ {1...n} denotes a set of states s.t. {s ∈ L | s |= py}.
The set P defines two things, first an abstract transition system and second the strongest
postoperator. The abstract transition system creates an equivalence relation between
the states, these equivalences partition the state space. Two states are in the same
equivalence class, if they satisfy the same set P ′ ⊆ P [BPR03]. Following the previous
example, the set {< 0, 1 >,< 1, 0 >} is abstracted by the Boolean predicate abstraction
with ¬(x∧y)∧(x∨y). The Boolean abstraction is much more precise than the Cartesian
abstraction, because it only in contains two elements instead of four elements.
The Boolean predicate abstraction ϕπB of the formula ϕ is the strongest combination
of predicates from π that is entailed by ϕ. For a given precision π and a formula ϕ
querying the SMT solver results in the Boolean predicate abstraction ϕπB. The SMT
solver does it in the following way: A new propositional variable vi gets introduced for
every predicate pi ∈ π. The SMT solver is asked to enumerate all satisfying assignments
of v1...v|π| in the formula ϕ ∧

∧
pi∈π(pi ⇔ vi). A conjunction of all predicates from

π whose corresponding propositional variable occurs not negative in the assignment is
computed for each satisfying assignment. The Boolean predicate abstraction for ϕ is the
disjunction over all such conjunctions. The abstract strongest postoperator SP π for a
predicate abstraction with precision π transforms the abstract state ϕπB into its successor
ϕ∗πB for a program operation op ∈ Ops. This is written as follows: ϕ∗πB = SP π

op(ϕ
π
B). In

case that ϕ∗πB is a Boolean predicate abstraction of SPop(ϕ
π
B) then ϕ∗πB = (SP π

op(ϕ
π
B))πB

[LNO06].

2.3 Bounded Model Checking

The Bounded Model Checker (BMC) unrolls the program up to a given bound k, i.e.
the BMC does only check the first k steps in the program. The given property is only
checked up to the given bound k. If there is a counterexample in this part of the program
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2.4 Counterexample-Guided Abstraction Refinement

such that the property is violated, the bounded model checker finds this counterexample.
If the BMC does not find counterexample within the first k steps of the program, one
can not say that the program is safe or not. Due to the given bound, the BMC will
not find a counterexample with a path length > k. Even in case that the property is
violated at position k + 1 the counterexample will not be detected. By using BMC the
returned counterexample is the minimal one that violates the property, if there exists a
violation up to bound k. The main disadvantage of BMC is caused by the given bound.
Therefore, the BMC can not proof the correctness of a program in general. Another
technique of checking if a program violates or satisfies a property is topic of the next
section [BCC+03].

2.4 Counterexample-Guided Abstraction Refinement

The counterexample-guided abstraction refinement is one of the used ways to model
check a program in this thesis. Counterexample-guided abstraction refinement checks
if a program abstraction contains any counterexample to prove that at least one as-
sertion is violated. Before checking the existence of a counterexample the abstraction
of the program has to be constructed. The abstraction of a program P is called P ′.
The abstraction function for a program P is a surjective function α : D → D′ where
D is the set of all possible concrete states in P and D′ the abstract domain of states
in P ′. After constructing the abstraction the algorithm checks the existence of a path
to a state le ∈ lE, a so called counterexample for a given assertion. If there does not
exist a counterexample, the program does not violate the assertion and can be called
safe. In case that there is a counterexample, one distinguishes between real and spurious
counterexamples. A real counterexample is feasible in the concrete program. Having a
real counterexample, the program is called not safe [CGJ+00].
Second, a counterexample can be spurious, i.e. the counterexample is not feasible in the
concrete program. In this case the abstraction of the program has to be refined. Dur-
ing the refinement process the locations, which are responsible for creating the spurious
counterexample, have to be found. The equivalence classes which are separated from
the abstracted states have to be modified as well. After the abstraction is refined, the
assertion is checked again. As long as the counterexample is spurious, one can not say if
the program is safe or unsafe. To decide if a program is safe or not, it has to be ensured,
that the found counterexample is not a result of a coarse abstraction of the program.
The progress of refining a program does not terminate in any case.
The following figure illustrates the run of the counterexample-guided abstraction refine-
ment algorithm.

9
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Initial Abstraction

Model Checker

Counterexample Analysis

Abstraction Refiniment

Safe

Unsafe

P’

P

Assertion is not violated

Assertion is violated, counterexample found

spurious

realP”

Figure 2.2: Counterexample Guided Abstraction Refinement

A sample abstraction as it is done in the counterexample-guided abstraction refinement
algorithm is performed on the following program shown in Fig. 2.3.

red green yellow

Figure 2.3: Original program representing a simplified traffic light

The shown program M represents a simplified traffic light. Every run of the program
contains a sequence < red, green, yellow >. Let ψ = AGAF(state = red) be a property
to check [CGJ+00]. The property says that on every path one will eventually reach a
red state. Obviously M |= ψ. The abstraction function α constructs the abstraction of
the initial program as follows:

α(red) = red

α(green) = α(yellow) = go

This leads to the abstraction M ′ shown in Fig. 2.4.

red go

Figure 2.4: Quotient transition system of a simplified traffic light program

10
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States are summarized in an equivalence class if they satisfy the same property. If
two states of the same equivalence class are connected in the original program one gets
a self-loop for this equivalence class in the abstraction. Two equivalences classes are
connected if the states are connected in the original program.

By using this abstraction an infinite sequence like < red, go, go, go, ... > can be taken.
Such a sequence violates the given property, therefore M ′ 6|= ψ. The counterexample-
guided abstraction refinement algorithm checks the counterexample if it is real or spuri-
ous. This counterexample can never be taken in the original program shown in Fig. 2.3.
Therefore, the abstraction causes a spurious counterexample has to be refined. Ev-
ery other abstraction, which differs from the original program, will return a spurious
counterexample.

2.5 Fixpoint Theorem by Tarski and Knaster

The termination of large-block encoding will be shown using the Fixpoint Theorem by
Tarski and Knaster [Tar55]. To be able to show the termination in the next section the
needed preliminaries are provided in the following paragraph [Nol12]. At first the partial
order is introduced and is needed to be able to compare analysis results.
Definition 5 (Partial order). A partial order (PO) (D,D) consists of a domain D and
a relation D⊆ D ×D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 D d1

transitivity: d1 D d2 and d2 D d3 ⇒ d1 D d3

antisymmetry: d1 D d2 and d2 D d1 ⇒ d1 = d2

To define a point of no further improvement the fact of a least upper bound for a
partial order has to be introduced.
Definition 6 ((Least) upper bound). Let (D,D) be a partial order and S ⊆ D.

(1) An element d ∈ D is an upper bound

of S if s D d for every s ∈ S.

(2) An upper bound d of S is least upper bound

of S if d D d’ for every upper bound d’ of S.

Definition 7 (Complete lattice). A complete lattice is a partial order (D,D) such that
all subsets of D have least upper bounds. In this case

⊥:= t∅

denotes the least element of D.
Definition 8 (Ascending Chain Condition). A sequence (di)i∈N is called an ascending
chain in D if di D di+1 for each i ∈ N.
A partial order (D,D) satisfies the Ascending Chain Condition(ACC) if each ascending
chain d0 D d1 D ... eventually stabilizes, i.e. there exists n ∈ N such that dn = dn+1 = ...

11
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After defining the partial order and least upper bound for each arbitrary subset of a
partial order. It is already said, that a partial can satisfy the ascending chain condition.
To ensure that the ascending chain condition is not violated, there must be a monotonic
function.
Definition 9 (Monotonicity). Let (D,D) and (D′,D′) be partial orders, and let Φ :
D → D′. Φ is called monotonic if, for every d1, d2 ∈ D,

d1 D d2 ⇒ Φ(d1) D
′ Φ(d2)

After all preliminaries which are required for the application of the Fixpoint Theorem
by Tarski and Knaster are mentioned and defined, the fixpoint theorem can be defined
in the next step.
Theorem 1 (Fixpoint Theorem by Tarski and Knaster). Let (D,D) be a complete lattice
satisfying Ascending Chain Condition and Φ : D → D monotonic. Then

fix(Φ) := t{Φk(⊥)|k ∈ N}
is the least fixpoint of Φ where

Φ0(d) := d and Φk+1(d) := Φ(Φk(d))

12



3 Large-Block Encoding

In this section we use the definition of a program and a CFA as given in Section 2.1. At
first this section gives the explanation of the three standard rules of large-block encoding
and the advanced sequence rule. Later on the termination of the advanced large-block
encoding version is shown. Finally, the runtime of large-block encoding is analysed.

3.1 Error Sink Rule

Given a location le ∈ LE with outdegree(le) ≥ 1 and outgoing edgesGout = {(le, opx, lx) ∈
G}. The error sink rule removes all edges g ∈ Gout.

The error sink rule is executed once at the beginning of large-block encoding. By
applying this rule all outgoing edges for all locations in the set of error location (lE) are
removed. This is valid, because every model checking algorithm will immediately stop
when reaching an error location. So there is no reason to keep these edges in the CFA,
see Fig. 3.1.

Before After
...

errl2 l3
op2 op3

...

err

Figure 3.1: Example for error sink rule

3.2 Sequence Rule

Given a location lx ∈ L\LE with indegree(lx) = 1, outdegree(lx) ≥ 1 ,lx 6∈ succ(lx) and
the edge (ly, opy, lx) ∈ G, Gout = {(lx, opx, lz) ∈ G}. The sequence rule adds new edges
with (ly, opy; opx, lz) ∀g ∈ Gout to the CFA and removes all edges g ∈ {(ly, opy, lx) ∈
G} ∪Gout.

The basic sequence rule of large-block encoding can only be applied if there is a location
which has an in-degree of one. In that case G contains an edge (lx, opx, ly) and further
edges {(ly, opy, lz)|lz ∈ succ(ly)} the sequence rule can be applied. By applying the rule
all ingoing and outgoing edges of location ly will be combined. Therefore new edges from
lx to lz are added to the CFA and the edges (lx, opx, ly) and {(ly, opy, lz)|lz ∈ succ(ly)}
are deleted. The edge label of the new edges is the sequential execution of opx and opy.

13



3 Large-Block Encoding

Figure 3.2 shows that every run of the program or part of the program that visits location
l1 and is going to location l3 or l4 is forced to visit location l2. Therefore location l2 can
be removed and the operation which is executed before reaching location l2 is added to
the operations executed before reaching location l3 or l4.

Before After
...

l1

l2l3 l4

... ...

op1

op2 op3

...

l1

l3 l4

... ...

op1;op2 op1;op3

Figure 3.2: Example for sequence rule

3.3 Choice Rule

Given a location lx ∈ L \ LE with ly ∈ succ(lx), Gcon = connecting edges(lx, ly) and
| Gcon |= n > 1. The choice rule adds a new edge (lx, op, ly) with
op = op1 || op2 || ... || opn to the CFA and removes all edges g ∈ Gcon.

The CFA can be reduced by removing all edges (lx, op, ly) ∈ G and adding a new
edge (lx, opnew, ly) with opnew = op1 || op2 || ... || opn s.t (lx, opi, ly) ∈ G ∀i ∈ {1...n}.
opx || ... || opy formalises the non-deterministic choice, i.e. that either opx or opy has to
be executed. In case a part of the CFA contains two locations that are connected with
at least two different edges, all edge labels can be summarized in a single edge label, see
Fig. 3.3.

3.4 Advanced Sequence Rule

Given a location lx ∈ L \ LE with indegree(lx) > 1, outdegree(lx) > 1, lx 6∈ succ(lx)
and the edge sets Gin = {(ly, opy, lx) ∈ G}, Gout = {(lx, opx, lz) ∈ G}. The sequence rule
adds new edges with (ly, opy; opx, lz) for all possible connections of edges in Gin and Gout

to the CFA and removes all edges g ∈ Gin ∪Gout.

While working on large-block encoding and testing the three previous rules on some
sample CFAs the following question came up: can we apply a modified sequence rule
on locations which have more than one incoming edge? In case the location does not
have any self-loops we can apply an advanced sequence rule. All incoming edges will be
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Before After
...

l1

l2

...

op2op1

...

l1

l2

...

op1||op2

Figure 3.3: Example for choice rule

modified such that they will start in their original location and end in all successors of
the intermediate location li. The edge labels are connected by the sequential execution
operator ”; ”, such that the new edge label is the sequential execution of opx and opy.
By applying this rule one location and (indegree(li) + outdegree(li)) edges are removed
and (indegree(li)× outdegree(li)) edges are added to the CFA, see Fig. 3.4.

Before After
...

l1

l2 l3

l4

l5 l6

l7

...

op1

op2

op3

op4

op5

op6

op7

op8

op9 op10

op11 op12

...

l1

l2 l3

l5 l6

l7

...

op1

op2

op3;op6
op3;op5 op

4;
op
5

op4;op6

op7

op8

op9 op10

op11 op12

Figure 3.4: Example for advanced sequence rule

One application of large-block encoding does not change the reachability for at least
ons error state. Due to the error sink rule it might be the case that an error state which is
a successor of another error state is not reachable in the large-block encoding CFA. But
reaching one error state is enough for getting a valid result of the model checker. If one
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3 Large-Block Encoding

or more error states are reachable in the single-block encoding CFA, then at least one
error state is reachable in the large-block encoding CFA. If an error state is reachable in
the large-block encoding CFA then it is definitly reachable in the single-block encoding
CFA.

3.5 Termination for Large-Block Encoding

The termination proof of large-block encoding mentioned in the official paper can not
be applied any more. Due to the advanced sequence rule there is no monotonic function
on edges representing the LBE. To show the termination of this version of large-block
encoding the fixpoint theorem of Tarski and Knaster is used. Let (D,D) be a partial
order, where every element d of the domain D and the relation are defined as:

d = (|L|, |G|)
d1 D d2 = (a, b) D (c, d) ≡ c ≤ a ∧ (c < a ∨ d ≤ b)

Definition 10 (Rule application). The application of one of the four rules on a given
d = (|L|, |G|) is defined as

d′ = rulex(d), x ∈ {sink, sequence, choice, advanced}

If no rule can be applied the CFA is returned without any changes.
As mentioned in Sec. 2.5 there are properties to proof before applying the Fixpoint

Theorem. At first it is shown, that (D,D) is a partial order.

• reflexivity d1 D d1:

Let d1 = (a, b)

d1 D d1 = (a, b) D (a, b)

≡ a ≤ a ∧ (a < a ∨ b ≤ b)

obviously this holds
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3.5 Termination for Large-Block Encoding

• transitivity: d1 D d2 and d2 D d3 ⇒ d1 D d3

Let d1 = (a, b), d2 = (c, d) and d3 = (e, f)

(1) d1 D d2 = (a, b) D (c, d) ≡ c ≤ a ∧ (c < a ∨ d ≤ b)

(2) d2 D d3 = (c, d) D (e, f) ≡ e ≤ c ∧ (e < c ∨ f ≤ d)

From (1) and (2) it follows:

(3) e ≤ c ∧ c ≤ a⇒ e ≤ a

(4a) (c < a ∨ d ≤ b) ∧ (e < c ∨ f ≤ d)

(4b) ≡ ((c < a ∧ e < c) ∨ (c < a ∧ f ≤ d) ∨ (d ≤ b ∧ f ≤ d) ∨ (d ≤ b ∧ e < c))

(4c) → ((e < a) ∨ (c < a ∧ f ≤ d) ∨ (f ≤ b) ∨ (d ≤ b ∧ e < c))

(5) e ≤ a ≡ e < a ∨ e = a

(6) Because of (4c) e = a→ (f ≤ b)

Because of (3), (6) and (5):

⇒ e ≤ a ∧ (e < a ∨ f ≤ b) ≡ (a, b) D (e, f) = d1 D d3

• antisymmetry: d1 D d2 and d2 D d1 ⇒ d1 = d2

Let d1 = (a, b) and d2 = (c, d)

(1) d1 D d2 = (a, b) D (c, d) ≡ c ≤ a ∧ (c < a ∨ d ≤ b)

(2) d2 D d1 = (c, d) D (a, b) ≡ a ≤ c ∧ (a < c ∨ b ≤ d)

From (1) and (2) it follows:

(3) c ≤ a ∧ a ≤ c⇒ a = c

(4) (c < a ∨ d ≤ b) ∧ (a < c ∨ b ≤ d)

≡ ((c < a ∧ a < c) ∨ (c < a ∧ b ≤ d) ∨ (d ≤ b ∧ a < c) ∨ (d ≤ b ∧ b ≤ d))

≡ ((c 6= a) ∨ (c < a ∧ b ≤ d) ∨ (d ≤ b ∧ a < c) ∨ (d = b))

From (3) it follows:

((c 6= a) ∨ (c < a ∧ b ≤ d) ∨ (d ≤ b ∧ a < c) ∨ (d = b))
sat≡ (d = b)

⇒ (a, b) = (c, d) = d1 = d2

The next paragraph shows that there exists an upper bound of (D,D).
Let u = (|L|, |G|) with |L| = 2 and |G| = 1, then u is the upper bound of the partial order
D. The CFA represented by u, see Fig. 3.5, has an initial location with one outgoing
edge. In a given Domain D there exists an upper bound s.t. ¬∃c ∈ D.c 6= u ∧ u D c.

After showing that (D,D) has a least upper bound, the existence of a least upper
bound for every subset is shown.

The least upper bound of S ⊆ D is the element with the minimal amount of loca-
tions and edges. Formally it is defined as smax ∈ S, such that ∀s ∈ S. s D smax.
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3 Large-Block Encoding

l1

l2

op1

Figure 3.5: Minimal CFA represented by u

The next property which has to been shown is the ascending chain condition. This
is done in the following. As shown before every rule decreases the tuple d. Therefore
the following is defined as d1 = rulex(d0), x ∈ {sink, sequence, choice, advanced} and
dn = rulex(dn−1), n ∈ N+ where d0 is the initial control flow automaton. The partial
order (D,D) satisfies the ascending chain condition if each ascending chain d0 D d1 D ...
eventually stabilizes, i.e. for some n ∈ N, dn = dn+1 holds. Finally, the monotonicity
of the functions is shown. The monotonicity for every of the four rules is shown in the
following paragraph.

• d D rulesink(d)

Let d = (|L|, |G|) and d′ = (|L′|, |G′|) = rulesink(d)
The application of the error sink rule does not change the amount of
locations
⇒ L′ = L
⇒ |L′| = |L|
Outgoing edges from all lx ∈ LE are removed
G′ = G \ {(lx, opx, ly)|lx ∈ LE}
⇒ G′ ⊂ G
⇒ |G′| ≤ |G|
⇒ d D rulesink(d)

• d D rulesequence(d)

Let d = (|L|, |G|) and d′ = (|L′|, |G′|) = rulesequence(d)
The application of the sequence rule removes one location lx
⇒ L′ = L \ {lx}
⇒ |L′| < |L|
⇒ d D rulesequence(d)

• d D rulechoice(d)

Let d = (|L|, |G|) and d′ = (|L′|, |G′|) = rulechoice(d)
The application of the choice rule does not change the amount of loca-
tions
⇒ L′ = L
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⇒ |L′| = |L|
All edges between lx and ly are replaced by one single edge
Gint = {{(lx, opx, ly)|opx ∈ Ops}
Due to the description of the sequence rule Gint has at least two ele-
ments.
G′ = G \Gint

G′′ = G′ ∪ {(lx, opnew, ly)|opnew =
∨
∀opx s.t. (lx, opx, ly) ∈ Gint}

⇒ |G′| < |G|
⇒ d D rulechoice(d)

• d D ruleadvanced(d)

Let d = (|L|, |G|) and d′ = (|L′|, |G′|) = ruleadvanced(d)
The application of the advanced sequence rule removes one location lx
⇒ L′ = L \ {lx}
⇒ |L′| < |L|
⇒ d D ruleadvanced(d)

This section has shown that (D,D) with D = (|L|, |G|), and d1 D d2 = (a, b) D (c, d) ≡
c ≤ a ∧ (c < a ∨ d ≤ b) is a complete lattice that satisfies the ascending chain condition
and rulex is a monotonic function.
Thus by the fixpoint theorem of Tarski and Knaster and the given preconditions espe-
cially the ascending chain condition large-block encoding will eventually reach a fixpoint
and this fixpoint is in fact the least fixpoint.

3.6 Runtime

After explaining the four rules to minimize a CFA, the following paragraph focuses on
the runtime for each rule and the large-block encoding overall. The error sink rule is
only applied on states which are in LE. For every location in this set, all outgoing edges
are deleted. Therefore one can say, that the runtime is defined as follows:

| LE | ·max(outdegree(le)),∀le ∈ LE

The error sink rule is only applied once at the beginning of large-block encoding. Af-
terwards the three remaining rules are applied. The sequence rule focuses on the inter-
mediate location lx. For each outgoing edge of the intermediate location a new edge is
added to the CFA. Therefore the runtime of the sequence rule is defined as follows:

max(outdegree(lx)),∀lx ∈ L

The choice rule merges all edges between two given locations. Between two locations are
at least k edges where k is the outdegree of the first location lx. In general the runtime
for one application of the choice rule is defined as:

max(outdegree(lx)),∀lx ∈ L
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3 Large-Block Encoding

The advanced sequence can also be applied if the intermediate locations has more than
one ingoing edge. Therefore, the runtime of one application of the advanced sequence
rule gets extended by the indegree of the intermediate location lx. In general the runtime
can be defined as:

max(outdegree(lx)) ·max(indegree(lx)),∀lx ∈ L

Except for the error sink rule, all other rules can be applied to every location lx ∈ (L\LE).
By focusing on a single location all ingoing and outgoing edges have to be taken into
account. Therefore the runtime of checking on which location which rule can be applied
is done in | G | · | L |. The maximum runtime of a single rule application is given by the
advanced sequence rule with a runtime of k ·m where k = max(outdegree(lx),∀lx ∈ L)
and m = max(indegree(lx),∀lx ∈ L). Thus the whole process of large-block encoding is
performed in O(| G | · | L | · k ·m). One can see that large-block encoding is performed
in polynomial time.

20



4 Implementation

This section provides details about the implementation the large-block encoding in a
current verification project. At first the control flow automaton and large-block encoding
implementation are explained. Afterwards this section deals with some difficulties which
occured during implementation and testing. Following the convention of the project the
implementation is done in the functional programming language OCaml. There exists
an own module for representing the CFA and performing the large-block encoding.

4.1 Control Flow Automaton Module

The implementation of the control flow automaton module builds up on the graph li-
brary of Ocaml. Unused functions of the graph library are not visible in the control flow
automaton module. Some functions are edited to make them more efficient for appli-
cation during the large-block encoding. Functions like indegree or outdegree of a given
location are not changed in this implementation, therefore the result of the graph library
is immediately forwarded as result of the control flow automaton module. Some other
functions are edited and explained in the following list, while the use of these functions
will be mentioned in the next section.

• predecessor edges
This function returns a list of three tuples which contain all ingoing edges of a
given location.

• successor edges
This function returns a list of three tuples which contain all outgoing edges of a
given location.

• find all connections
Returns an edge label list of all edges between two given locations.

All functions listed above, usually return a list of edges, for the implementation it was
decided to change the returned lists of some functions as follows. The functions prede-
cessor edges and successor edges return a list of three tuples as follows. At first there
is the source location, than the edge label and the last component is the destination
location of the edge. The advantages of having a list of three tuples will be discussed in
the next section. All functions in the control flow automaton module work on a generic
location and edge label type. It is possible to use the same module to work on different
edge label types. In this implementation the control flow automaton will work with
instructions from a guarded command language as edge labels.
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The control flow automaton module provides in detail four different location types.
At first there is an initial state in every control flow automaton. Second, a location
can be an error location as defined in Sec. 2.1. For optimization of the model checkers
there exist stop locations to represent the successful termination of a program. An error
location is introduced through the presence of a property to be verified. Such an error
state indicates the unsuccessful termination of the program. The fourth location type
is a default state which does not represent a termination of the program, these states
represent the program counter. The large-block encoding is performed in a separate
module, which is explained in the following section.

4.2 Large-Block Encoding Module

The large-block encoding module provides the function to perform large-block encoding
on a given control flow automaton. A recursive function performs the large-block en-
coding until the fixpoint is reached. This function is divided into two parts. The first
performs the standard large-block encoding until the fixpoint is reached in this part.
After reaching a fixpoint, the advanced sequence rule is applied, if possible. In case the
advanced sequence rule was able to do any minimization on the control flow automaton,
the two standard rules (sequence and choice rule) are checked for application again. The
recursive function stops if the standard rules and the advanced sequence can not be
applied any more.

The application of the sequence rule uses the function predecessor edges to get the
ingoing edge of the intermediate location. Of the returning three tuple the function
extracts the edge’s source location and the edge label. In the following step all outgoing
edges of the intermediate location are returned by the successor edges function of the
control flow automaton module. The ingoing edge is connected with each edge in the
successor list. Due to the list of three tuples as returned list the destination location
and edge label can be extracted quite simple.

The choice rule checks at first if all conditions are satisfied to apply the rule (see
Sec. 3.3). Afterwards the function merges all edges between two given location in a
single edge. The function find all connnections of the control flow automaton module
returns a list of all edge labels between two locations. The implementation is able to
create a new edge from a list of edge labels, therefore we only need one application of
the choice rule to merge edges between two locations.

The advanced sequence rule uses the predecessor edges and successor edges function
to merge each edge in the list with each edge in the other list. Even in this function the
advantage of the three tuples in the list becomes clear. One does not need to transform
the return lists any more, one is already able to extract the needed components from
the lists and generate a new edge.
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4.3 Guarded Command Language

4.3 Guarded Command Language

In an early version of the implementation, terms were used as edge labels in the CFA.
By developing test cases it became obviously that there are some problems with the
propagation of unused variables in an OR statement. By choosing a specific branch of
an OR statement it might happen that an assignment of a variable to a new value is
skipped. A way to handle this problem is topic of Sec. 4.5. By deciding to extend the
project by the counterexample-guided abstraction refinement the weakest preconditions
needed to be computed. Therefore it was decided to replace terms as edge labels by
the guarded command language. By using the guarded command language one is able
to calculate the weakest precondition without using ∀ or ∃ in the solver queries [JB10].
The guarded command language has the following syntax.

x := e Assign variable x to the value of e
assume b Only continues if evaluation b is true
S1;S2 Execute first S1 then S2

S1�S2 Execute either S1 or S2

Figure 4.1: Guarded Command Language [JB10]

A list of guarded command statements as it can be found in edge labels in our control
flow automaton, can be translated into terms such that the bounded model checker is
able to check the whole program.

The weakest precondition is build bottom up, syntax driven and automatic calculated.
It can be calculated from a given program in guarded command language. For a given
postcondition and a statement, the precondition is calculated, such that the postcon-
dition is satisfied after executing the given statement. The calculation of the weakest
precondition for a given statement S and a given variable setting Q is shown in the
following figure.

S wp(S,Q)
x := e Q[e/x]

assume b b⇒ Q
S1;S2 wp(S1, wp(S2, Q))
S1�S2 wp(S1, Q) ∧ wp(S2, Q)

Figure 4.2: Weakest Preconditions [JB10]

4.4 Variable Substitution

By using large-block encoding for bounded model checking there is one problem that
has to be solved.
In case that an edge label is an assignment, it is interpreted as a function
f : VAR → VAR′ where var ∈ VAR is the value before executing the assignment
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and var′ ∈ VAR′ the value afterwards. As long as the edge label contains only one
assignment there is no problem. As soon as there are more than one assignments, which
is caused by the (advanced) sequence rule of large-block encoding and they use the same
variables, a substitution has to be performed. When connecting the assignments with
the sequential execution operator ”; ” without doing a variable substitution the result
of the first assignment is not taken into account for the second assignment. Without
performing the substitution an abstracted view of the sequential execution looks as
follow f1(x); f2(x). Both assignment functions use the same value of x without respect
to the other function. By performing the substitution one gets an abstracted view of
f2(f1(x)). In the case f2 uses the result of f1 as input value for it’s assignment. For
variable substitution six sets are calculated, for each side there is a set that contains all
variables in the formula and for each side a set that contains all primed variables. The
fifth set contains variables that are only primed on the left side. The last set contains
variables, that are primed on both sides. The pseudo code in Fig. 4.3 shows how the
substitution function works.

1 sequence term1 term2
2 v a r s l e f t := {v | v ∈ term1}
3 v a r s r i g h t := {v | v ∈ term2}
4 p r i m e d l e f t := {pv | pv′ ∈ term1}
5 pr imed r ight := {pv | pv′ ∈ term2}
6 p r i m e d o n l y l e f t := p r i m e d l e f t \ pr imed r ight
7 pr imed inboth := p r i m e d l e f t ∪ pr imed r ight
8
9 ∀pv ∈ primed inboth s u b s t i t u t e with pvi in term1

10
11 ∀v ∈ vars right ∩ primed inboth s u b s t i t u t e with vi in term2
12
13 ∀v ∈ vars right ∩ primed onlyleft s u b s t i t u t e with v′ in term2

Figure 4.3: Pseudo code for variable substitution

The variable substitution while applying the sequence rule is demonstrated on the
following example, see Fig. 4.4.

... l1 l2 l3 l4 l5 ...x′ = x+ 1 x′ = x+ 2 y′ = y + 2 x > 2

Figure 4.4: Example for variable substitution before Step 1

Step 1: Merge x′ = x+ 1 and x′ = x+ 2
vars left={x}
vars right={x}
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primed left={x}
primed right={x}
primed onlyleft=∅
primed inboth={x}
In this scenario all primed variables on the left side of the formula (x′ = x + 1) are
replaced by a new, unique and primed variable. To ensure that we introduce a new
unused variable there is a global index that is incremented after every application of the
sequence rule. As new variable name we choose x′a where a is current value of the global
index and x is the primed variable, see Fig. 4.3 line 9. On the right side of the formula
all primed variables have to be replaced by the newly introduced variable on the left
side, see Fig. 4.3 line 11. After this the assignment on the left side sets the new variable
which is used for the assignment on the right side.

... l1 l3 l4 l5 ...
x′1 = x+ 1;x′ = x′1 + 2 y′ = y + 2 x > 2

Figure 4.5: Example for variable substitution after Step 1

Step 2: Merge x′1 = x+ 1;x′ = x′1 + 2 and y′ = y + 2
vars left={x}
vars right={y}
primed left={x}
primed right={y}
primed onlyleft={x}
primed inboth={}
In this step there is no substitution necessary. None of the primed variables does occur
on the other side.

... l1 l4 l5 ...
x′1 = x+ 1;x′ = x′1 + 2; y′ = y + 2 x > 2

Figure 4.6: Example for variable substitution after Step 2

Step 3: Merge x′1 = x+ 1;x′ = x′1 + 2; y′ = y + 2 and x > 2
vars left={x}
vars right={x}
primed left={x, y}
primed right={}
primed onlyleft={x, y}
primed inboth={}
According to the pseudo code in Fig. 4.3 only line 13 needs to be executed.
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... l1 l5 ...
x′1 = x+ 1;x′ = x′1 + 2; y′ = y + 2;x′ > 2

Figure 4.7: Example for variable substitution after Step 3

The cases that are not shown in this example do not require any substitution. In case
that only assumptions get connected by the sequential operator, they all work on the
same value of the variables. In case that the left side is an assumption and the right
side is an assignment there is also no substitution necessary, because the assumption is
executed before the assignment.

4.5 Variable Propagation

The previous section pointed out how the edge labels have to be modified when applying
the (advanced) sequence rule. Even when applying the choice rule the edge labels have
to be modified. To ensure that the model checking does not skip an unused variable by
taking a specific branch of OR statement the variables from all other statements have
to be propagated. Figure 4.8 shows an example for corrupted dataflow after applying
the variable substitution caused by the sequence rule.

...

l1

l2

...

((x <= y;x′ = x− y) || (x > y; y′ = y − x));x′ = y′ + 1

Figure 4.8: Example for corrupted dataflow

By choosing the x <= y;x′ = x−y branch the assignment of y to a new values will be
skipped by the model checker. The data-flow of the program gets corrupted by choosing
a specific path in the control flow automaton, which leads to invalid result of the model
checker. In this case the solver can choose an arbitrary value for y′ because it is not
defined before.

Primed variables of all parallel edge labels are collected in a list. Afterwards each
variable which does not occur in the edge label gets propagated into the edge label. Let
ϕ an arbitrary edge label between locations lx and ly. Φ is the set of all parallel edges
between lx and ly. Let primed vars(ϕ) = {x} and primed vars(Φ) = {x, y, z}. The
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variable propagation is defined by the function: Π : Φ→ Φpropagated with
∀ϕ ∈ Φ : ϕpropageted = (ϕ; {a′ = a | ∀a ∈ (primed vars(Φ) \ primed vars(ϕ)})

This is shown in the following example.

... l1 l2 ...

x = 1; z′ = 3

x = 2; y′ = 5

x = 3;w′ = 7

Figure 4.9: Before performing variable propagation

According to the definitions above one gets to following sets:

Φ = {ϕ, ψ, ϑ} with

ϕ := x = 3;w′ = 7, primed vars(ϕ) = {w}
ψ := x = 2; y′ = 5, primed vars(ψ) = {y}
ϑ := x = 1; z′ = 3, primed vars(ϑ) = {z}

thus primed vars(Φ) = {w, y, z}.

The application of the variable propagation on ϕ is shown in detail and the results for
ψ and ϑ will be given without further details.

Π(ϕ) = ϕpropagated = (ϕ; {a′ = a | ∀a ∈ (primed vars(Φ) \ primed vars(ϕ)})
= (ϕ; {a′ = a | ∀a ∈ (primed vars(w, y, z) \ primed vars(w)})
= (x = 3;w′ = 7; {a′ = a | ∀a ∈ {y, z}})
= (x = 3;w′ = 7; y′ = y; z′ = z)

ψpropagated = (x = 2; y′ = 5;w′ = w; z′ = z)

ϑpropagated = (x = 3;w′ = 7; y′ = y; z′ = z)

After performing the propagation the example looks as follows:

... l1 l2 ...
x = 1; z′ = 3;w′ = w; y′ = y || x = 2; y′ = 5;w′ = w; z′ = z ||

x = 3;w′ = 7; y′ = y; z′ = z

Figure 4.10: After performing variable propagation
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4 Implementation

After performing the variable substitution and the variable propagation, there are no
more conflicts regarding the values of variables.
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5 Evaluation

This section provides the evaluation of large-block encoding. In the first subsection
single-block encoding and large-block encoding are compared. Afterwards this section
focuses on the effect of the summarization. At the end the effect on the model checker’s
runtime is evaluated.

5.1 Comparison between Single-Block Encoding and
Large-Block Encoding

In single-block encoding, there is a one-to-one correspondence between the syntax of
the program and the edges/nodes in the ART. By transfering single-block encoding into
large-block encoding this one-to-one correspondence is destroyed. In large-block encod-
ing a set of paths between source and target location is represented by a single CFA
edge. Thus one ART path corresponds to a set of program paths. The two following
observations are induced by these differences.
First, large-block encoding may have substantially smaller ARTs than single-block en-
coding. The factor of minimization can be up to exponentially. Even the amounts of
necessary successor computations and of abstraction refinement steps for infeasible error
paths can be reduced significant, with respect to the number of locations. The formula
for representing a state are more complex in large-block encoding than in single-block
encoding, therefore every single operation is more expensive than before. Depending on
the structure of the CFA even huge CFAs can be summarized into small CFAs. The size
of large-block encoding CFAs is not influenced by the size of the single-block encoding
CFA but more by the structure of the CFA. Therefore one gets more complex formulas
which have to be solved by the solver. The efficiency is evaluated in Sec. 5.3.
The second observation is about the summarization of states. In single-block encoding
an abstract state can be described as a set or conjunction of predicates. This is precise
enough, because an abstract state represents a data region which is reachable by a single
program path. Such a program path can be encoded as a conjunction of atomic formulas.
In large-block encoding an abstract state represents a data region which is reachable by
multiple program paths. Therefore the Cartesian abstraction is too coarse and one uses
the more precise Boolean abstraction for representing abstract states. [BCG+09].
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5 Evaluation

5.2 Summarization Performance

Program |CFA| | CFALBE+ | | CFALBE |
Case01 8 4 4
Case02 8 4 4
Case03 5 3 3
Case04 10 4 4
Case05 13 5 6
Case06 19 7 9
Case07 13 4 4
Case08 6 4 4
Case09 5 5 5
Case10 8 4 4

incorrect gcd minus.ivl 23 4 5
incorrect array record mix.ivl 19 3 3
incorrect records mix.ivl 15 3 3
correct array record mix.ivl 27 3 3
correct funcalls.ivl 13 3 3
incorrect sort2 16.ivl 15 3 3
correct casting.ivl 15 3 3
correct records mix.ivl 15 3 3
correct loop.ivl 11 4 4
incorrect loop.ivl 11 4 4
correct sort2 32.ivl 15 3 3
correct endianness.ivl 8 3 3
incorrect sort2 32.ivl 15 3 3

test locks 05.bc 2489 3 3
test locks 06.bc 3352 3 3
test locks 07.bc 4343 3 3
test locks 08.bc 5462 3 3
test locks 09.bc 6709 3 3
test locks 10.bc 8804 3 3
test locks 11.bc 9587 3 3
test locks 12.bc 11218 3 3
test locks 13.bc 12977 3 3
test locks 14.bc 14864 3 3
test locks 15.bc 16879 3 3

Table 5.1: CFA reduction by large-block encoding

Table 5.1 shows the reduction of the CFA by using large-block encoding. The first
column represents the used CFA example. The second column shows the size of the
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5.3 Performance Evaluation on Model Checkers

CFA before applying large-block encoding. The third column contains the size of the
CFA after applying large-block encoding including the advanced sequence rule and the
last column after applying the standard version of large-block encoding. The maximal
minimization factor in this setting was about 6. In case that the advanced sequence rule
was applied the minimization factor increases slightly. Due to the fact that the advanced
sequence only has noticeable effect in rare occourions it is not perform in every iteration.
The application of the advanced sequence rule is checked after the standard rules have
been performed. The rest section evaluates whether the time overhead for applying the
advanced sequence rule gets outperformed by the time to check the program.

5.3 Performance Evaluation on Model Checkers

Table 5.2 shows the effect of large-block encoding on CEGAR. The times given were
in seconds. The tests are divided into several classes. The first class of tests (Case*)
are developed during the implementation of the project to check the absence of specific
bugs. The second class uses the a method to generate a CFA from IVL Code. These
small tests are designed to check the correctness of the translation. The last class of test
is designed to cause an expontential blowup od the state space [BCG+09]. The given
examples are evaluated on CEGAR exclusively, as the effect on BMC is not constant
and largely depends on the memory model. Due to the result of large-block encoding
shown in Tab. 5.1 only the standard version of large-block encoding is shown in the
table, if not mentioned differently. As expected, the runtimes of the advanced large-
block encoding version are slightly higher than for the normal version of large-block
encoding. As mentioned before the advanced large-block encoding does not have effect
on most of the examples. For the first three examples of the test locks series large-block
encoding does not have positive effect. One reason for this might be the complexity
of the formulas. In such cases the solver can use less time to solve a certain amount
of simple formulas instead of solving only a few complex formulas. For the following
seven examples a positive effect can be observed. The saved time increases with the
amount of locations in the single-block encoding CFA. The best result can be found
in the last example. On average over the whole test cases for test locks* large-block
encoding achieves a time saving of 20%. By using large-block encoding one reduces
the search for counterexample paths, but creates more complex queries for the solver.
Therefore the total runtime increases with a smaller factor.
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5 Evaluation

CEGAR
Program LBE LBE SBE Σ LBE Saving
Case01 0.0027 0.1875 0.3879 0.1902 49%
Case02 0.0003 0.3874 1.8821 0.3877 21%
Case03 0.0003 0.0424 TO 0.0427 -
Case04 0.0004 TO 0.2395 TO -
Case05 0.0004 TO TO TO -
Case05 LBE+ 0.0009 TO TO TO -
Case06 0.0007 8.7159 TO 8.7166 -
Case06 LBE+ 0.0016 11.3575 TO 11.3591 -
Case07 0.0005 TO 4.4192 TO -
Case08 0.0002 TO TO TO -
Case09 0.0001 1.6386 3.0652 1.6387 53%
Case10 0.0007 2.9593 3.9136 2.9600 76%

incorrect gcd minus.ivl 0.0018 11.2494 TO 11.2513 -
incorrect array record mix.ivl 0.0002 0.0086 0.0734 0.0089 12%
incorrect records mix.ivl 0.0025 0.0501 TO 0.0526 -
correct array record mix.ivl 0.0025 TO TO TO -
correct funcalls.ivl 0.0005 TO TO TO -
incorrect sort2 16.ivl 0.0002 0.0050 0.0081 0.0052 64%
correct casting.ivl 0.0066 TO TO TO -
correct records mix.ivl 0.0002 TO TO TO -
correct loop.ivl 0.0002 TO TO TO -
incorrect loop.ivl 0.0004 TO TO TO -
correct sort2 32.ivl 0.0007 TO 79.7497 TO -
correct endianness.ivl 0.0003 0.6167 0.8597 0.6170 72%
incorrect sort2 32.ivl 0.0000 0.0224 0.0144 0.0224 -155%

test locks 5.c 3.10 0.27 3.27 3.37 -3%
test locks 6.c 5.17 0.52 5.22 5.69 -9%
test locks 7.c 9.18 0.71 9.61 9.89 -3%
test locks 8.c 15.76 1.05 17.49 16.81 4%
test locks 9.c 22.76 1.51 27.81 24.27 13%
test locks 10.c 36.05 2.21 43.04 38.26 11%
test locks 11.c 48.87 2.91 63.6 51.78 19%
test locks 12.c 69.46 3.87 92.54 73.33 21%
test locks 13.c 98.35 5.48 130.25 103.83 20%
test locks 14.c 129.91 6.93 174.19 136.84 21%
test locks 15.c 165.05 9.26 235.09 174.26 26%

Table 5.2: Effect of large-block encoding on model checkers
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Figure 5.1: CEGAR runtime on test locks*

Figure 5.1 shows the runtime of CEGAR on the third class of the test cases (test locks*.c).
The beige zone illustrates the CEGAR runtime with single-block encoding. The blue
area is the runtime of large-block encoding and red represents total runtime of CEGAR
with large-block encoding. The beige area gets bigger with more complex programs
(see Tab. 5.1). The relatively long runtime of large-block encoding and the runtime of
CEGAR are in total significant lower than the runtime of CEGAR with single-block
encoding.
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6 Conclusion

The aim of this thesis was to reduce the runtime of model checking in particular CEGAR.
Therefore large-block encoding was introduced as alternative to single-block encoding.
The standard version of large-block encoding contains three rules, as extension to this
version a new rule, the advanced sequence rule, was introduced in this thesis. The ad-
vanced sequence rule does not have such strict restrictions than the standard sequence
rule. Du to this the original fixpoint proof was not suitable for the new version of large-
block encoding, therefore it was proven that advanced large-block encoding will also
eventually reach a fixpoint. In single-block encoding there exists an one-to-one corre-
spondence between edge and syntax of the program code. After applying the rules of
large-block encoding there is no one-to-one correspondence overall any more. In large-
block encoding edges are summarized in a single one and one edge corresponds to a set
of edges in the single-block encoding CFA. Therefore large-block encoding needs a more
expensive and precise abstraction than single-block encoding.
One can not say, that large-block encoding has a positive effect on programs in general
but rather depends on the complexity of the formulas in the program. Section 5.3 pro-
vides some examples where large-block encoding is not faster than single-block encoding,
but the time saving of up to 25% in the examples shows that large-block encoding is
usable for many programs. The negative results on comparable small programs can be
neglected, because real world programs are usually quite large. Therefore the possibility
of negative effects in real world applications is very low, which makes large-block encod-
ing attractive.

In future work one could analyse how a pre-selection of locations for each iteration
of large-block encoding would perform. A pre-selection of locations could be executed
in a way such, that not every location has to be checked for a rule application, because
some locations might not satisfy any pre-conditions for the standard rules. Another
optimization could be the adaptation of a a the work list algorithm for summarizing
single-block encoding CFAs into large-block encoding CFAs.
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