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Abstract. The last decade brought us a whole range of over-approxima-
tive algorithms for the reachability analysis of hybrid automata, a widely
used modeling language for systems with combined discrete-continuous
behavior. Besides theoretical results, there are also some tools available
for proving safety in the continuous time domain. However, if a given
set of critical states is found to be reachable, these tools do not provide
counterexamples for models beyond timed automata.
This paper investigates the question whether and how available tools
can be used to generate counterexamples, even if this functionality is
not directly supported. Using the tools SpaceEx and Flow*, we discuss
possibilities to solve our task with and without modifying the tools’
source code, report on the effort and the efficiency of implementation, and
propose a simulation-based approach for the validation of the resulting
(possibly spurious) counterexamples.

1 Introduction

Hybrid systems are systems that exhibit both continuous and discrete behavior.
Typical examples are physical systems regulated by discrete controllers, e. g., au-
tomotive control systems or controlled chemical plants. Hybrid systems are often
modeled as hybrid automata [1], for which the reachability problem is undecid-
able. Despite undecidability and driven by the fact that most hybrid systems
in industrial context are safety-critical, a lot of effort was put into the devel-
opment of reachability analysis techniques for hybrid automata. State-of-the-art
tools like SpaceEx [2] and Flow* [3] try to compute an over-approximation of
the reachable state space and can therefore be used to prove safety, i. e., that
a given set of unsafe states cannot be reached from a set of initial states in a
given model. However, if the over-approximation of the reachable states contains
unsafe states then no conclusive answer can be given.

Counterexamples in form of system runs leading to unsafe states would be
extremely valuable, even if they are spurious, i. e., if they were considered in
the analysis but are not possible in the given model. For safe models they could
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help to reduce the approximation error in the analysis efficiently, whereas for
unsafe models they could provide important information about the source of
the critical system behavior. Counterexamples would enable the application of
counterexample-guided abstraction refinement (CEGAR) techniques and could
also play an important role in controller synthesis.

Unfortunately, none of the available tools for hybrid automata reachability
analysis with continuous time domain computes counterexamples. It is surprising
since internally they possess sufficient information to generate at least a coarse
over-approximation of a counterexample in form of a sequence of jumps (i. e.,
changes in the discrete part of the system state), augmented with time intervals
over-approximating the time durations between the jumps. In this paper we

1. examine whether it is possible to either use augmented system models or to
extract information from the output of the SpaceEx tool such that we can
synthesize over-approximations of counterexamples;

2. study how the efficiency can be improved by extending the functionality of
the Flow* tool internally, i. e., by making modifications to the source code;

3. develop a simulation-based approach to validate the counterexample over-
approximations, i. e., to determine unsafe paths in the over-approximation.

We have chosen SpaceEx and Flow* for our experiments because on the one
hand SpaceEx is one of the most popular hybrid automata reachability analysis
tools and on the other hand some of the authors belong to the implementation
team of Flow*, i. e., the modification of the source code of Flow* could be
done safely. Unfortunately, counterexample generation without tool extension is
unsatisfactory: we need either expensive additional analysis runs for enlarged
systems or parsing hidden information from debug output. The results demon-
strate the need to extend the functionality of available analysis tools to gener-
ate counterexamples internally. However, even if that task is done, the results
strongly over-approximate counterexamples, whose existence can be indicated
but not proven. Thus we need novel methods to refine and validate the results,
posing highly challenging problems in both theory and practice.

Related work In this paper we focus on reachability analysis techniques for
continuous-time hybrid automata that apply a fixed-point-based forward-reach-
ability iteration [1]. Such algorithms need two main ingredients: (a) A tech-
nique to represent state sets and to compute certain operations on them like
union, intersection, Minkowski sum, etc. All the available tools work with over-
approximative representations and computations. Popular approaches use either
geometric objects like hyperrectangles [4], polyhedra [5–9], zonotopes [10, 11],
orthogonal polyhedra [12] or ellipsoids [13], or symbolic representations like sup-
port functions [14, 15] or Taylor models [16, 17]. The choice of the representation
is crucial, as it strongly influences the approximation error and the efficiency
of the computations. (b) A method to compute one-step-successors of state sets
both for continuous flow and discrete jumps. A flowpipe is an over-approximation
of the states that are reachable from a given initial set of states by letting time
progress within a certain maximal time horizon. To compute a flowpipe, the



maximal time horizon is often divided into smaller intervals and the flowpipe is
represented as a (finite) union of state sets (flowpipe segments), each covering
one of the smaller intervals [5].

The analysis tools HyTech [6], PHAVer [7] and the Multi-Parametric Tool-
box [8] use convex polyhedra for the over-approximative representation of state
sets, SpaceEx [2] additionally allows the usage of support functions. In [18], the
state sets are over-approximated by level sets. The tool d/dt [19] uses grid paving
as over-approximations. MATISSE [20] over-approximates state sets by zono-
topes. The MATLAB Ellipsoidal Toolbox [21] supports the over-approximative
representation of sets by ellipsoids, Flow* by Taylor models. In Ariadne [22],
the state sets may be over-approximated by Taylor models or grid pavings. In
contrast to the other tools, Flow*, HyTech, PHAVer, Ariadne and d/dt also
support the analysis of non-linear hybrid automata (with non-linear differential
equations).

None of these tools supports the generation of counterexamples. There are
some works [23, 24] related to counterexample generation for hybrid systems, but
they are mostly devoted to CEGAR approaches for restricted classes of hybrid
automata like, e. g., (initialized) rectangular automata.

Outline After some preliminaries in Section 2, we describe in the Sections 3
and 4 how we can compute over-approximations of counterexamples for unsafe
models, whose validation is discussed in Section 5. Section 6 concludes the paper.

2 Preliminaries
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Fig. 1. The thermostat example

By N, Z and R we denote the set of all natu-
ral (with 0), integer and real numbers, respec-
tively, by R≥0 the non-negative reals, and use
N>0 = N\{0}. For some n ∈ N>0, let Var =
{x1, . . ., xn} be an ordered set of variables over
R. We use the notation x = (x1, . . ., xn), and
denote by Var ′ and ˙Var the renamed vari-
able sets {x′1, . . ., x′n} and {ẋ1, . . ., ẋn}, respec-
tively. Given a real-arithmetic formula φ over
Var, its satisfaction set is JφK = {v ∈ Rn | φ[v/x] = true}; we call φ convex if JφK
is convex. Let Φ(Var) be the set of all quantifier-free convex real-arithmetic for-
mulas (so-called predicates) over Var. A predicate is linear if it can be expressed
in linear real arithmetic.

Definition 1 (Syntax of hybrid automata). A hybrid automaton (HA) is
a tuple H = (Loc,Var,Edge,Dyn, Inv, Init) with the following components:

– Loc is a finite set of locations or modes.
– Var = {x1, . . ., xn} is a finite ordered set of variables over R. A valuation
v = (v1, . . ., vn) ∈ Rn defines for each i = 1, . . ., n the value vi for xi. A
state is a mode-valuation pair σ = (l, v) ∈ Loc× Rn = Σ.
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with b1, b2 as specified inside the location, c = 0.7017

`1
b1 = 1 b2 = 0
x1 ∈ [0, 1]
∧x2 ∈ [0, 1]

`2
b1 = −1 b2 = 0
x1 ∈ [2, 3]
∧x2 ∈ [0, 1]

`3
b1 = −1 b2 = 0
x1 ∈ [3, 4]
∧x2 ∈ [0, 1]

`4
b1 = 0 b2 = 1
x1 ∈ [0, 1]
∧x2 ∈ [1, 2]

`5
b1 = −c b2 = c
x1 ∈ [1, 2]
∧x2 ∈ [1, 2]

`6
b1 = −c b2 = −c

x1 ∈ [2, 3]
∧x2 ∈ [1, 2]

`7
b1 = −c b2 = −c

x1 ∈ [3, 4]
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`8
b1 = −1 b2 = 0
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∧x2 ∈ [2, 3]

`9
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x1 ∈ [3, 3.8],
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Fig. 2. The navigation benchmark

– Edge ⊆ Loc × Φ(Var ∪Var ′) × Loc is a finite set of edges. For an edge
e = (l, φ, l′) ∈ Edge we call l (l′) the source (target) mode of e and φ its
transition relation.

– Dyn : Loc→ Φ(Var ∪ ˙Var) assigns a dynamics to each mode.
– Inv : Loc→ Φ(Var) assigns an invariant to each mode.
– Init : Loc→ Φ(Var) specifies the initial valuations for each mode.

Since we do not use the parallel composition of hybrid automata in this paper,
for simplicity we skipped composition-relevant parts in the above definition.

A toy example of a thermostat is depicted graphically in Figure 1. The rect-
angles represent modes; their names, dynamics and invariants are specified inside
the rectangle. Initial valuations are specified on an incoming edge of a given mode
without a source mode; a missing incoming edge stays for the initial condition
false. Figure 2 shows the navigation benchmark [25], used later for experiments.
It models an object moving in the R2 plane. The velocity (v1, v2) of the object
depends on its position (x1, x2) in a grid. For some experiments we add a param-
eter ε to the navigation benchmark to enlarge the satisfaction sets of guards and
invariants by replacing all upper bounds ub (lower bounds lb) by ub + ε (lb− ε).



l ∈ Loc v, v′ ∈ Rn t ∈ R≥0 f : [0, t]→ Rndifferentiable ḟ = df
dt

f(0) = v f(t) = v′ ∀t′ ∈ [0, t]. f(t′) ∈ JInv(l)K ∧ (f(t′), ḟ(t′)) ∈ JDyn(l)K
Time

(l, v)
t→ (l, v′)

l, l′ ∈ Loc v, v′ ∈ Rn v ∈ JInv(l)K v′ ∈ JInv(l′)K e = (l, φ, l′) ∈ Edge (v, v′) ∈ JφK
Jump

(l, v)
e→ (l′, v′)

Fig. 3. Operational semantics rules for hybrid automata

Definition 2 (Semantics of hybrid automata). The operational semantics
of a HA H = (Loc,Var,Edge,Dyn, Inv, Init) with Var = {x1, . . ., xn} is given by
the rules of Figure 3. The first rule specifies time evolution (time steps), the
second one discrete mode changes (jumps).

Let →=
⋃

t∈R≥0

t→ ∪
⋃

e∈Edge
e→. A path of H is a (finite or infinite) se-

quence (l0, v0) → (l1, v1) → . . .. For an initial path we additionally require
v0 ∈ JInit(l0)K. A state (l, v) ∈ Σ is called reachable in H if there is an initial
path (l0, v0)→ (l1, v1)→ . . . of H and an index i ≥ 0 such that (li, vi) = (l, v).

Please note that each reachable state (l, v) of H can be reached via an initial

path of H of the form (l0, v0)
t0→ (l0, v

′
0)

e0→ . . .(ln−1, vn−1)
tn−1→ (ln−1, v

′
n−1)

en−1→
(ln, vn)

tn→ (ln, v
′
n) = (l, v) with alternating time steps and jumps for some n ∈ N.

In the following we consider only paths of this form.
A trace e0, e1, . . . describes a sequence of jumps with ei ∈ Edge such that the

target mode of ei equals the source mode of ei+1 for all i ∈ N. If we can assume
that there is at most one jump between each mode pair, we also identify traces
by the sequence l0, l1, . . . of modes visited. Such a trace represents the set of all

paths (l0, v0)
t′′0→ (l0, v

′
0)

e0→ (l1, v1)
t′′1→ (l1, v

′
1)

e1→ . . .. We say that those paths are
contained in the symbolic path.

A timed trace e0, [t0, t
′
0], e1, [t1, t

′
1], . . . annotates a trace e0, e1, . . . with time

intervals and represents the set of all paths (l0, v0)
t′′0→ (l0, v

′
0)

e0→ (l1, v1)
t′′1→

(l1, v
′
1)

e1→ . . . with t′′i ∈ [ti, t
′
i] for all i ∈ N. We say that e0, [t0, t

′
0], e1, [t1, t

′
1], . . .

is a timed trace of the represented paths, which are contained in the timed trace.
Given a HA H and a set B of unsafe states of H, the reachability problem

poses the question whether the intersection of B with the reachable state set
of H is empty, i. e., whether H is safe. If H is unsafe, a counterexample is an
initial path of H leading to an unsafe state from B. For models with weaker
expressivity, for example hybrid automata defined by linear predicates and con-
stant derivatives (i. e., dynamics of the form

∧
x∈Var ẋ = cx with cx ∈ Z for all

x ∈Var), the bounded reachability problem is decidable and, for unsafe models,
counterexamples can be generated (e. g., by bounded model checking using SMT
solving with exact arithmetic). However, the computation of counterexamples
for general hybrid automata is hard. Theoretically, it could be done by (incom-
plete) under-approximative reachability computations, but currently there are
no techniques available for this task.



We propose an approach to generate and refine presumable counterexam-
ples, which are timed traces that might contain a counterexample; presumable
counterexamples that do not contain any counterexample are called spurious.

3 Generating Traces for Presumable Counterexamples

Existing hybrid automata analysis tools like SpaceEx offer as output options
either the computed over-approximation of the reachable state space, its in-
tersection with the unsafe states, or just the answer whether unsafe states are
reachable or not (in the over-approximation). However, in contrast to tools for
discrete automata, none of the tools for hybrid automata provides counterexam-
ples.

In this section we show how a trace explaining the reachability of unsafe states
can be computed. We present three different approaches: The first approach aug-
ments hybrid automata with auxiliary variables to make observations about the
computation history of the analysis. The second approach can be used if the
analysis tool outputs sufficient information about the paths that have been pro-
cessed during the analysis. The third approach suggests to implement some new
functionalities efficiently in existing tools. In our experiments we used SpaceEx
v0.9.7c, VMware server, and the latest Flow* version but with the proposed
extensions.

3.1 Approach I: Model Augmentation

We extend the model with new variables to make book-keeping about traces
that lead to unsafe states in the reachability analysis. First we augment the
model and analyze the augmented system to observe the number of jumps until
an unsafe state is reached. Then we augment and analyze an unrolled model to
observe unsafe traces.

Determining the counterexample length We augment the model and analyze it to
gain information about the length of paths leading to unsafe states. We introduce
a counter tr with initial value 0, define ṫr=0 in each mode, and let each jump
increase the counter value by one.

However, the unboundedness of tr would render the fixed-point analysis to
be non-terminating. To bound tr from above, we define a constant maxtr and
either extend the invariants or the edge guards to forbid higher values.

The value of maxtr should be guessed, and in case the analysis of the aug-
mented model reports safety, increased. A possible guess could be the number of
iterations during the fixed-point analysis of the original model, which is reported
by SpaceEx and specifies how many times the tool computed a (time+jump) suc-
cessor of a state set. To get a smaller value (and thus shorter counterexamples
with less computational effort), the reachability analysis could be stopped when
an unsafe state is reached. Unfortunately, SpaceEx does not offer this option.



on
ṫ=1 ∧ ṫr=0

t≤22

off
ṫ=− 0.5 ∧ ṫr=0

t≥18

t≥21 ∧ tr≤maxtr−1 ∧ tr′=tr+1
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tr=0
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ṫ=1 ∧ ṫr=0

t≤22 ∧ tr≤maxtr

off
ṫ=− 0.5 ∧ ṫr=0
t≥18 ∧ tr≤maxtr

t≥21 ∧ tr′=tr+1
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tr=0

Fig. 4. The guard (left) and the invariant (right) augmentation of the thermostat model

Definition 3 (Guard and invariant augmentation). Let H = (Loc,Var,
Edge, Dyn, Inv, Init) be a HA and maxtr ∈ N. The guard augmentation of H is
the HA Hguard = (Loc,Var ∪ {tr},Edge′,Dyn′, Inv, Init ′) with

– Edge′ = {(l, (φ ∧ tr ≤ maxtr − 1 ∧ tr′=tr+1), l′) | (l, φ, l′) ∈ Edge};
– Dyn′(l) = (Dyn(l) ∧ ṫr=0) for each l ∈ Loc;

– Init ′(l) = (Init(l) ∧ tr=0) for each l ∈ Loc.

The invariant augmentation of H is the HA Hinv = (Loc,Var ∪ {tr},Edge′′,
Dyn′, Inv ′′, Init ′) with Dyn′ and Init ′ as above and

– Edge′′ = {(l, (φ ∧ tr′=tr+1), l′) | (l, φ, l′) ∈ Edge};
– Inv ′′(l) = (Inv(l) ∧ tr ≤ maxtr) for each l ∈ Loc.

Figure 4 illustrates the augmentation on the thermostat example. Note that,
apart from restricting the number of jumps, the above augmentation does not
modify the original system behavior. The size of the state space is increased
by the factor maxtr+1, since the value domain of tr is [0,maxtr] ⊆ N for the
constant maxtr.

When we analyze the augmented model, SpaceEx returns for each mode in
the over-approximated set of reachable unsafe states an over-approximation [l, u]
for the values of tr.

Since tr takes integer values only, the lower and upper bounds are not ap-
proximated, i. e., during analysis both after l and after u (over-approximative)
jump computations unsafe states were reached, but we do not have any infor-
mation about the values in between. Therefore we fix the number k, describing
the length of counterexamples we want to generate, to be either l or u.

We made some experiments for the thermostat example with unsafe states t ≤
19, and for the navigation benchmark with unsafe states (x1, x2) ∈ [1, 2]× [0, 1].
Table 1 compares for different maxtr values the number of SpaceEx iterations, the
running times, and the resulting tr values for the original models, the guard and
the invariant augmentations. For the same number of iterations, the augmented
models need in average some more (but still comparable) time for the analysis
than the original models; the invariant and guard augmentations seem to be
similar in terms of running time.



Table 1. Evaluation of the guard and invariant augmentations with a sampling time
of 0.1 and a time horizon of 30

model augment. maxtr #iter. fixed point running time [secs] tr

thermostat none - 5/11/31 no/no/no 0.11/0.24/0.69 -
example guard 4/10/30 5/11/31 yes/yes/yes 0.25/0.65/2.15 [1, 4]/[1, 10]/[1, 30]

invar. 4/10/30 5/11/31 yes/yes/yes 0.30/0.78/2.53 [1, 4]/[1, 10]/[1, 30]

navigation none - 29/168/3645 no/no/no 1.54/8.63/1598.63 -
benchmark guard 4/10/30 29/168/3645 yes/yes/yes 1.92/12.25/2088.88 [4, 4]/[4, 10]/[4, 30]

invar. 4/10/30 29/168/3160 yes/yes/yes 2.06/13.02/1466.08 [4, 4]/[4, 10]/[4, 30]

navigation2 none - 32/524 no/no 7.55/254.91 -
benchmark, guard 4/10 32/524 yes/yes 7.55/284.19 [4, 4]/[4, 10]
ε = 0.1 invar. 4/10 32/524 yes/yes 7.35/293.88 [4, 4]/[4, 10]

Trace encoding In order to observe the traces leading to unsafe states, we need
to remember the jumps in the order of their occurrences. We achieve this by
unrolling the transition relation of the original model k times, where k is the
counterexample length determined in the previous step.

We could define the unrolling by copying each mode k + 1 and each edge k
times, and let the ith copy of an edge connect the ith-copy of the source mode
with the (i + 1)st copy of the target mode. To remember the jumps taken, we
introduce k auxiliary variables tr1, . . ., trk and store on the ith copy of an edge
the edge’s identity in tri. Such an unrolling would cause a polynomial increase
in the size of the model.

However, in such an unrolling there might be different traces leading to the
same mode. SpaceEx would over-approximate these trace sets by a mode-wise
closure, such that we cannot extract them from the result. E. g., for two traces
l1, l2, l4, l5, l7 and l1, l3, l4, l6, l7, resp., also the trace l1, l2, l4, l6, l7 would be in-
cluded in the over-approximation. Therefore, we copy each mode as many times
as the number of different traces of length up to k leading to it. This yields an
exponential growth in k for the number of locations and transitions.

We augment the unrolled model to observe the traces to unsafe states. In a
naive encoding, we identify edges e1, . . ., ed by numbers 1, . . ., d, and introduce
new variables tri for i=1, . . ., k to store the edges taken.

We also define an advanced encoding which needs less auxiliary variables. If
the domain of a variable includes [0, |Edge|n] for some n ∈ N then we can use
it to store a sequence of n edges: Each time an edge is taken, we multiply the
current value by |Edge| and add the identity of the taken edge. This way we need⌈
k
n

⌉
auxiliary variables to encode a path of length k.

Definition 4 (k-unrolling, trace encoding). Assume a HA H = (Loc,Var,
Edge,Dyn, Inv, Init) with an ordered set {e1, . . ., ed} of edges. The k-unrolling of
H is the HA Hu = (Locu,Varu,Edgeu,Dynu, Invu, Initu) with

– Locu =
⋃

i=1,...,k+1 Loci;
– Varu =Var;
– Edgeu = {((l1, . . ., li), φ, (l1, . . ., li, li+1)) | 1 ≤ i ≤ k ∧ (li, φ, li+1) ∈ Edge};
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ṫ = 1 ∧

∧
i∈{1,2,3} ṫri = 0
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Fig. 5. Naive trace encoding of the thermostat example with depth 3

– Dynu(l1, . . ., li) = Dyn(li) for all (l1, . . ., li) ∈ Locu;
– Invu(l1, . . ., li) = Inv(li) for all (l1, . . ., li) ∈ Locu;
– Initu(l1, . . ., li) = Init(li) for i = 1 and false otherwise, for all (l1, . . ., li) ∈

Locu.

The naive trace encoding of H with depth k is the HA H1 = (Locu,Var1,Edge1,
Dyn1, Invu, Init1) with

– Var1 =Var ∪ {tr1, . . ., trk};
– Edge1 = {((l1, . . ., li), φ ∧ tr′i=j, (l1, . . ., li, li+1)) | 1 ≤ i ≤ k∧ej=(li, φ, li+1)
∈ Edge};

– Dyn1(l1, . . ., li) = Dynu(l1, . . ., li) ∧
∧k

j=1 ṫrj = 0 for all (l1, . . ., li) ∈ Locu;

– Init1(l1, . . ., li) = Initu(l1, . . ., li) ∧
∧k

j=1 trj = 0 for all (l1, . . ., li) ∈ Locu.

Let n ∈ N>0 such that [0, dn] is included in the domain of each tri and let
z=d kne. The advanced trace encoding of H with depth k is the HA H2 =
(Locu,Var2,Edge2,Dyn2, Invu, Init2) with

– Var2 =Var ∪ {tr1, . . ., trz};
– Edge2 = {((l1, . . ., li), φ ∧ tr′di/ne=trdi/ne · d+j, (l1, . . ., li, li+1)) | 1 ≤ i ≤
k ∧ ej=(li, φ, li+1) ∈ Edge;

– Dyn2(l1, . . ., li) = Dynu(l1, . . ., li) ∧
∧z

j=1 ṫrj = 0 for all (l1, . . ., li) ∈ Locu;

– Init2(l1, . . ., li) = Initu(l1, . . ., li) ∧
∧z

j=1 trj = 0 for all (l1, . . ., li) ∈ Locu.

An example unrolled model for the thermostat with naive trace encoding is
shown in Figure 5. Note that depending on the chosen trace encoding, up to k
auxiliary variables are added to the system.

Using our implementation for the proposed trace encodings, in Table 2 we
compare the model sizes and the analysis running times for the thermostat exam-
ple and the navigation benchmark. Compared to the original model, the analysis
running times for the trace encodings increase only slightly. The last column lists
the computed traces, which are (as expected) the same for both encodings.

3.2 Approach II: Parsing the Output of SpaceEx

The approach introduced above does not scale for large systems, since the un-
rolling blow up the models too strongly. If the verification tool offers enough



Table 2. Evaluation of the naive and advanced trace encodings for the thermostat
example and the navigation benchmark (k = 4, time step 0.1, time horizon 30) using
π1=l14, l13, l9, l6, l2, π2=l14, l10, l7, l6, l2, π3=l14, l10, l7, l3, l2 and π4=l14, l10, l9, l6, l2

model trace #locs #trans #vars n time [secs] solutions

thermostat none 2 2 1 - 0.136 -
example naive 5 4 5 4 0.312 on, off, on, off, on

adv. 5 4 2 4 0.147 on, off, on, off, on

navigation none 14 36 5 - 1.372 -
benchmark naive 81 80 9 3 1.777 π1;π2;π3;π4

adv. 81 80 7 3 1.503 π1;π2;π3;π4

information about the analyzed system traces, it is perhaps also possible to
extract from the tool’s output the same information we gathered by system aug-
mentation and additional analysis runs. We are interested in determining traces
that lead to unsafe states during the analysis, since they are candidates for pre-
sumable counterexamples. Without loss of generality, we assume that unsafe
states are restricted to a single mode.

(l0, P0)
3

(l1, P1)
3

(l2, P2)
2

(l4, P4)
0

(l3, P3)
0

(l5, P5)
1

(l6, P6)
0

(l7, P7)
0

Fig. 6. SpaceEx search tree

SpaceEx stores in a FIFO list a
sequence of symbolic states, each of
them consisting of a mode and a
state set, whose successors still have
to be computed in the forward reach-
ability analysis algorithm. This so-
called waiting list contains initially
each mode with its initial valuation
set (if not empty). In each iteration,
the next element from the list is taken.
Its flowpipe for a user-defined time
horizon and all possible (non-empty)
jump successors of the flowpipe seg-
ments are computed and those that were not yet processed are added to the
list. As illustrated in Figure 6, this computation hierarchy corresponds to a tree
whose nodes are processed in a breadth-first manner. Each node corresponds to
a mode and a set of valuations, which was found to be reachable. The upper
indices on the nodes show the number of computed successor sets, whereas gray
nodes in the figure represent successors that are contained in another already
processed set in the same mode and are therefore not added to the tree.

SpaceEx does not output the structure of this tree. However, using debug
level 2, we can make use of more verbose console outputs to get additional
informations.

– When an iteration starts, SpaceEx outputs a text from which we can extract
the iteration number i (“Iteration 5...”).

– SpaceEx starts the flowpipe computation and outputs the mode of the cur-
rent symbolic state (“applying time elapse in location loc()==l14”).



– The computation of jump successors follows, which is edge-wise. For each
edge, whose source is the current mode, its label, source, target is printed
(“applying discrete post of transition with label navigation.trans

from location loc()==l14 to location loc()==l13”).

– SpaceEx determines, which of the previously computed flowpipe segments
intersect with the guard (“found 1 intervals intersecting with guard”).

– The jump successors for the intersecting flowpipe segments are computed
and, if not yet processed, put to the waiting list. Before switching to the
next outgoing edge, some information on the computation time is given
(“Discrete post done after 0.098s, cumul 0.098s”).

– When all outgoing edges are handled, the iteration is done, and the following
output gives us the total number of processed symbolic states and the current
size of the waiting list (“1 sym states passed, 2 waiting”).

– After termination of the analysis some general analysis results are printed,
e. g., the number of iterations, whether a fixed point was found or not, the
analysis time, and whether unsafe states were reached.

If we would succeed to re-construct the search tree (or at least the involved
mode components and their hierarchy) using the above information, we could
extract traces that lead to unsafe states in the tree.

The good news is that from the above outputs we can extract quite some
information regarding the search tree, such that in some cases we can construct
counterexamples. The bad news is that it is not sufficient to reconstruct all
details. E. g., since the waiting list size is reported after each iteration, we can
determine the number of new waiting list elements added during the last iteration
(the new list size minus the old list size minus 1). If this number equals the
total number of all intersecting intervals over all analyzed edges then we can
determine the mode components of the waiting list elements. However, if some
of the successors are already processed and therefore not added to the queue
then we cannot know for sure which sets were added. For example, if out of two
sets having the same mode component only one was added to the queue, then
we cannot know which of them. To avoid wrong guesses, those cases are skipped
and not considered further in our implementation.

Without model augmentation, it is not possible to restrict the SpaceEx search
to paths of a given length, therefore we cannot directly compare this method
to the results of Table 2. We made experiments with the navigation benchmark
using the debug output D2 of SpaceEx. For 50 iterations, with a computation
time of 32.28 seconds we found 11 traces leading to unsafe states in l2. When
considering only 25 iterations, the computation time is 12.69 seconds and only
4 traces are found. The increase of running time for using SpaceEx with debug
level D2 instead of the default value medium was negligible in our experiments.

A single analysis run suffices to extract traces of counterexamples thus this
method seems to be superior to the augmentation approaches if the analysis tool
communicates enough information about the system traces. However, if not all
relevant details are accessible, not all traces can be rebuilt safely.



Table 3. Trace generation using Flow* (k = 4, time step 0.1, time horizon 30,
π1=l14, l13, l9, l6, l2, π2=l14, l10, l7, l6, l2 and π3=l14, l10, l7, l3, l2)

model running time [secs] solutions

thermostat example 0.23 on, off, on, off, on

navigation benchmark 8.37 π1, π2, π3

3.3 Approach III: Extending the Functionality of Flow*

Extracting information from the textual output of a tool is an overhead, since
the information was already computed during analysis. Moreover, it might be
imprecise if we do not have access to all needed information.

Instead, we could generate counterexample traces on-the-fly by attaching to
each symbolic state in the waiting queue the trace that lead to it during the
search. The waiting queue initially contains initial symbolic states, to which we
attach themselves. If we add a new symbolic state with location l as a successor
of another symbolic state, then we attach to the new state the path of the
predecessor state extended with the jump whose successor the new state is. The
reachability computation will stop when the tree is complete till depth k (the
maximal jump depth). Next, Flow* intersects each tree node with the unsafe
set. If a non-empty intersection is detected, the tool dumps the trace attached
to the unsafe node.

To implement the above functionality, only minor changes had to be made
in Flow*, but it saves us the time of augmenting the system or parsing tool
output. We made experiments in line with Table 2 for the thermostat example
and the navigation benchmark. The results are shown in Table 3. Please note
that Flow* does not compute the trace l14, l10, l9, l6, l2, which is spurious.
We additionally analyzed the navigation benchmark with k = 8, where Flow*
generated 8 traces to unsafe states in l2 with initial valuation x1 ∈ [3, 3.5],
x2 ∈ [3, 4], v1 ∈ [−0.1, 0.1] and v2 ∈ [−0.8,−0.5].

4 Generating a Presumable Counterexample

In this section we show how we can generate presumable counterexamples by
extending the previously computed traces to timed traces. Given a trace, we
compute a reduced model that has the jumps of the trace only. This model is
augmented with a clock timer and variables tstampi, i = 1, . . ., k, one for each
jump in the trace. The clock is initialized to 0 and has derivative 1. Whenever
a jump is taken, the clock value is stored in the timestamp of the jump and the
clock is reset to 0. Figure 7 illustrates the above transformation.

Definition 5 (Trace model). Given a hybrid automaton H = (Loc,Var,Edge,
Dyn, Inv, Init) and a finite trace e1, . . ., ek of H with ei = (li, φi, li+1), the trace
model of H for e1, . . ., ek is the HA H′ = (Loc′,Var′,Edge′,Dyn′, Inv′, Init′) with

– Loc′ = {(l1, 0), . . . , (lk, k), (lk+1, k + 1)};



on0

t ≤ 22

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,3}

˙tstampi = 0

off1

t ≥ 18

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,3}

˙tstampi = 0

on2

t ≤ 22

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,3}

˙tstampi = 0

off3

t ≥ 18

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,n}

˙tstampi = 0

t ≥ 21 ∧ tstamp′1 = timer

∧timer′ = 0

t ≤ 19 ∧ tstamp
′
2

= timer

∧timer
′ = 0

t ≥ 21 ∧ tstamp′3 = timer

∧timer′ = 0

t = 20 ∧ timer = 0∧∧
i∈{1,...,n} tstampi = 0

Fig. 7. Trace model of the thermostat example for k = 3

Table 4. Comparison of the timed traces for the navigation benchmark computed by
SpaceEx and Flow* (k = 4, time step 0.1, time horizon 30, traces from Table 2 and
3)

Initial states: l14, x1 ∈ [3.0, 3.8], x2 ∈ [3.0, 4.0], v1 ∈ [−0.1, 0.1], v2 ∈ [−0.8,−0.5]

SpaceEx result in 6.46s:
π1 : l14, [0.0, 0.6], l13, [0.0,1.4], l9, [1.5,1.8], l6, [2.3, 2.5], l2
π2 : l14, [0.0, 1.9], l10, [1.5, 1.9], l7, [0.2, 2.5], l6, [0.0, 2.4], l2
π3 : l14, [0.0, 1.9], l10, [1.5, 1.9], l7, [2.3, 2.5], l3, [0.0, 1.0], l2
π4 : l14, [0.0, 1.9], l10, [0.0, 0.6], l9, [0.9, 1.4], l6, [0.0, 0.0], l2
Flow* result in 8.37s:
π1 : l14, [0.000,0.566], l13, [0.000, 1.420], l9, [1.531, 1.880], l6, [2.421,2.422], l2
π2 : l14, [0.000,1.854], l10, [1.534,1.836], l7, [0.310,2.371], l6, [0.000,2.385], l2
π3 : l14, [0.000,1.854], l10, [1.534,1.836], l7, [2.415,2.416], l3, [0.000,0.912], l2

– Var′ =Var ∪ {timer, tstamp1, . . ., tstampk};
– Edge′ = {((li, i), φi ∧ tstamp′i = timer ∧ timer′ = 0, (li+1, i + 1)) | i ∈
{1, . . ., k}};

– Dyn′(l, i) = Dyn(l) ∧ ˙timer = 1 ∧
∧

i=1,...,k
˙tstampi = 0 for all (l, i) ∈ Loc′;

– Inv′(l, i) = Inv(l) for all (l, i) ∈ Loc′;
– Init′(l, i) = Init(l) ∧ timer = 0 for all (l, i) ∈ Loc′.

Another method to get timing information is as follows. Both in SpaceEx
and in Flow*, the time horizon [0, T ] of a flowpipe is divided into smaller time
intervals [0, δ], [δ, 2δ], . . ., [(n−1)δ, nδ] with nδ = T . The flowpipe is computed as
a union of flowpipe segments, one for each smaller interval. Thus the tools have
internal information about the timestamps of the symbolic states in the waiting
list. We make use of this fact and label the symbolic states in Flow* with the
timed traces which lead to them. This way we get the timing information for
free. Please note that this would also be possible for SpaceEx. In Flow* an
additional backward refinement of the time intervals of the timed trace would
be also possible, which we cannot describe here due to space limitations.

Table 4 shows some experimental results for the navigation benchmark. We
compute timed extensions of the previously computed counterexample traces to
build presumable counterexamples. The running times include for Flow* a com-
plete reachability analysis up to jump depth 4, and for SpaceEx the generation of
the traces with Approach II and extracting timing information by building and



analyzing the trace models. Both tools have their advantages: SpaceEx computes
the results faster, Flow* gives sometimes better refinements.

5 Simulation

To gain counterexamples, we identifying some suitable candidate initial states
(CIS ) from the initial state set and refine the timed trace separately for each
CIS by restricting the timing informations.

Then we apply simulation to each CIS to find concrete counterexamples
starting in the given CIS and being contained in the corresponding refined timed
trace. Based on the refined timed trace of a CIS, each jump can take place
within a bounded but dense time interval. We let the simulation branch on a
finite set of jump time points chosen from those intervals. The choice is guided
by the invariant and guard satisfaction and uses a heuristics, which iteratively
discretizes time intervals with dynamic step sizes to drive the selection towards
hitting conditions, e. g., in the presence of strict equations. Furthermore, the
heuristics tries to abort simulation paths that do not lead to a counterexample
as early as possible.

Finding candidate initial states The task of identifying CISs for simulation is
non-trivial, since the timed traces over-approximate counterexamples, such that
not all initial states lead to unsafe states within the given time bounds. W. l. o. g.,
we assume that the initial set is given as a hyperrectangle (otherwise we over-
approximate the initial set by a hyperrectangle and use in the following the
conjunction of the hyperrectangle with the initial set). We obtain CISs by ap-
plying a binary search on the initial set combined with a reachability analysis
run to check whether the unsafe states are still reachable. As long as unsafe
states are detected to be reachable from a hyperrectangle, the corner points of
the hyperrectangle are added to the set of CISs. If in at least one dimension the
width of the hyperrectangle is larger than a specified parameter ε, the interval
is splitted (in this dimension) in the middle and both halves are analyzed again.
The binary search stops if either the specified number of CISs are computed or
if all hyperrectangles reach the minimal width in each dimension.

The user can choose between a depth- (DFS) and a breadth-first search
(BFS) to generate CISs. DFS computes closely lying points fast, BFS searches
for widely spread points at a higher computation time.

For the trace l14, l10, l7, l6, l2 of the navigation benchmark, our implementa-
tion needs 19ms to create the trace model. For the DFS, SpaceEx has to be run
42 times until 10 CISs are computed from which the unsafe state l2 is reach-
able in the SpaceEx over-approximation. The corresponding computation time
is 7.14s. The BFS finds the first 10 CISs within 29.90s and with 133 SpaceEx
calls.

For each selected CIS we determine a refined timed trace using the same
method as before for computing presumable counterexamples, but now restricted
to the given CIS as initial state.



Simulating the dynamics For linear differential equations the initial value prob-
lem is solvable, i. e., we can compute for each state the (unique) state reachable
from it in time t. Thus, for linear differential equations we use the matrix expo-
nential (e. g. in the homogeneous case, ẋ = Ax is solved by x(t) = x0e

At, where
t is the time and x0 is the initial value of x), whereas for non-linear differential
equations numerical methods (e. g. Runge-Kutta) can be used. However, since
either exponential function values must be determined or numerical methods are
used, the computation is not exact.

Checking invariants Along a simulated timed trace, time can pass in a location
only as long as the location’s invariant is satisfied. The timed trace provides us
for each location li a time interval [ti, t

′
i], within which a jump to a successor

location should be taken. We have to assure that the invariant is constantly
fulfilled from the time where a location was entered till the time point where the
jump is taken. Therefore, we compute the time successors for a set of sample
time points homogeneously distributed (with a user-defined distance δ) within
the time interval [0, t′i]. We check the invariant for those sample time points in
an increasing order. If the invariant is violated at a sample time point t ∈ [0, t′i],
no further time can elapse in the current location. Thus all simulation paths via
time points from [t, t′i] are cut off and the time interval for jumps is restricted
to [ti, t

′′
i ], where t′′i is the time point before t.

Dynamic search for suitable jump time points Non-determinism (at which time
point a jump is taken) is handled by branching the simulation for those previously
selected sample time points that lie inside [ti, t

′
i]. If the edge’s guard is fulfilled at

a given sample, the jump successor is computed and the corresponding simulation
branch is explored in a depth-first search. The first steps of a simulation are
shown in Figure 8.

The naive discretization of the dense time intervals has sometimes problems
to hit guard conditions. Especially hard for the simulation are guards containing
equations. To allow simulation for guards defined by equations, we enlarge the
model behavior be replacing the guard equations by inequations, allowing values
from a small box around a point instead of hitting the point exactly.

However, even with such an enlarging it can happen that the guard is not
fulfilled at any of the selected sample time points, or from the states after the
jump no counterexamples can be simulated. In this case we dynamically deter-
mine new sample time points for the jump as follows. We use two parameters, an
offset and a step size, specifying a set {ti +offset+ j · stepsize ∈ [ti, t

′
i] | j ∈ N} of

sample points. Initially (as described above), the offset is 0 and the step size has
the value δ. If the simulation for these sample time points does not succeed, we
set the offset to δ/2 and let the step size unchanged. If those points are also not
successful, we iteratively half both parameter values. This adaption terminates
if either the target location of the timed trace is reached (i. e., a counterexample
is found) or the step size reaches some predefined lower bound. The dynamic
step-size-adaption is visualized in Figure 9.
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Fig. 8. Simulation: 1) Checking the invariant for [0, t′0]; 2) Taking the enabled edges
within [t0, t

′′
0 ] to l1; 3) Expanding the next level

If a single counterexample suffices, the simulation can be stopped as soon as
the unsafe location was reached. However, by heuristically searching for further
counterexamples, it is also possible to provide additional information about a
counterexample: Instead of the time points of the jumps along the simulation
path, the biggest time intervals can be computed, such that the unsafe state is
still reachable.

Table 5 shows the simulation results for some timed traces, each with a single
initial state. Note that we find counterexamples (i. e., we reach the maximal jump
depth) only in the two middle cases. We additionally run SpaceEx analyses with
the given initial point for the first trace and could not reach the bad state with
a time step of 0.001, i. e., the first timed trace is spurious. The last trace was
not computed by Flow* and is therefore also spurious.

6 Conclusion and Future Work

In this paper we described an approach to find presumable counterexamples for
hybrid automata based on existing reachability tools. Next we plan to improve
our method by (1) a backward refinement of the time intervals on timed paths,
(2) a rigorous simulation technique for hybrid automata, (3) giving a better
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Table 5. Simulation results for the navigation benchmark with ε-enlarging
π1 = l14, [0.0, 0.2], l13, [0.0, 0.4], l9, [1.5, 1.6], l6, [2.4, 2.5], l2

with initial state (3.0084472656250005, 3.21875,−0.1,−0.8)
π2 = l14, [1.834, 1.835], l10, [1.779, 1.78], l7, [1.934, 1.936], l6, [0.511, 0.514], l2

with initial state (3.2, 4.0, 0.1,−0.5)
π3 = l14, [0.000, 0.001], l10, [1.569, 1.570], l7, [2.429, 2.431], l3, [0.514, 0.517], l2

with initial state (3.8, 3.0,−0.1,−0.8)
π4 = l14, [0.0, 0.1], l10, [0.0, 0.5], l9, [1.0, 1.3], l6, [2.3, 2.5], l2

with initial state (3.0125, 3.0,−0.1,−0.8)

timed trace step size ε reached jump depth simulated paths unsafe time [secs]

π1 0.0005 0.0005 2 128 · 108 0 20.91
0.05 0.5 3 128 0 04.26

π2 0.0005 0.5 4 964 > 50 14.82

π3 0.0005 0.05 4 96 > 50 14.44
0.0005 0.0005 4 96 50 10.51

π4 0.0005 0.0005 2 480 · 108 0 15.46
0.05 0.05 3 480 0 07.88

heuristics to select the initial points for simulation and (4) use several tools
and take the best results to minimize the overestimation in a presumable coun-
terexample. Preliminary results suggest that the function calculus of the tool
Ariadne can be used to validate counterexamples.
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