Controller Synthesis for Hybrid Systems using SMT Solving

Ulrich Loup

AlgoSyn (GRK 1298)
Hybrid Systems Group
Prof. Dr. Erika Ábrahám

GRK Workshop 2009, Schloss Dagstuhl
Our model: hybrid system

- Discrete controller in a continuous setting
- Simple example:

\[\dot{v} \in [0, 2] \]
Our model: hybrid system

- **Discrete** controller in a **continuous** setting
- Simple example:

\[\dot{x} = v \]
\[\dot{v} \in [0, 2] \]
\[v \leq v_{\text{max}} \]

\[\ell_0 \]

\[v = 0 \]
\[x = 0 \]

"accelerate"

\[\dot{x} = v \]
\[\dot{v} \in [-2, 0] \]
\[v \geq 0 \]

\[\ell_1 \]

"brake"
Our model: hybrid system

- Discrete controller in a continuous setting
- Simple example:

\[
\begin{align*}
\ell_0 & \quad \dot{x} = v \\
& \quad \dot{v} \in [0, 2] \\
& \quad v \leq v_{\text{max}} \\
\ell_1 & \quad \dot{x} = v \\
& \quad \dot{v} \in [-2, 0] \\
& \quad v \geq 0
\end{align*}
\]

“accelerate”

Parameter synthesis:

How is v_{max} to be chosen such that the car can always be stopped in ≤ 0.2 meters?
Our model: hybrid system

- **Discrete controller in a continuous setting**
- **Simple example:**

\[
\ell_0 \\
\begin{aligned}
\dot{x} &= v \\
v &\in [0, 2] \\
v &\leq v_{\text{max}}
\end{aligned}
\]

"accelerate"

\[
\ell_1 \\
\begin{aligned}
\dot{x} &= v \\
v &\in [-2, 0] \\
v &\geq 0
\end{aligned}
\]

"brake"

Parameter synthesis:

\[\exists v_{\text{max}} \exists v_0 \ldots \exists v_4 \ldots \left(\ldots \land x_4 - x_3 \leq 0.2 \land v_4 = 0 \land \ldots \right)\]
Satisfiability checking over the reals

<table>
<thead>
<tr>
<th>Given:</th>
<th>First-order formula φ over $(\mathbb{R}, +, \cdot, <)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>Is φ satisfiable?</td>
</tr>
</tbody>
</table>

Theoretical results

- decidable [Tarski1948]
- upper bound for time complexity 2^{2^n} where n is the number of variables [BrownDavenport2007]
Satisfiability checking over the reals

Given: First-order formula \(\varphi \) over \((\mathbb{R}, +, \cdot, <)\).
Question: Is \(\varphi \) satisfiable?

Theoretical results
- decidable [Tarski1948]
- upper bound for time complexity \(2^{2^n} \) where \(n \) is the number of variables [BrownDavenport2007]

Approach
- exploit practical experience in satisfiability checking in propositional logic (SAT solving)
Satisfiability modulo theories (SMT)

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land \left(x - y + 1 = 0 \lor x + y - 1 = 0 \right) \right) \]
Satisfiability modulo theories (SMT)

\[a \land b \land c \land (d \lor e) \]

SAT solver

Theory solver

\[\exists x \ \exists y \ (x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land \left(x - y + 1 = 0 \lor x + y - 1 = 0 \right)) \]
Satisfiability modulo theories (SMT)

∃x ∃y (x^2 - 1 = 0 ∧ y^2 - 1 = 0 ∧ x - 1 = 0 ∧ (x - y + 1 = 0 ∨ x + y - 1 = 0))?

a ∧ b ∧ c ∧ (d ∨ e)?

SAT solver

Theory solver

∃x ∃y (x^2 - 1 = 0 ∧ y^2 - 1 = 0 ∧ x - 1 = 0 ∧ (x - y + 1 = 0 ∨ x + y - 1 = 0))?
Satisfiability modulo theories (SMT)

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land (x - y + 1 = 0 \lor x + y - 1 = 0) \right) ? \]

SAT solver

\[a \land b \land c \land (d \lor e) ? \]

Theory solver

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land (x - y + 1 = 0 \lor x + y - 1 = 0) \right) ? \]

- incremental
- minimal infeasible subset
Satisfiability modulo theories (SMT)

∃x ∃y (x^2 - 1 = 0 ∧ y^2 - 1 = 0 ∧ x - 1 = 0 ∧ (x - y + 1 = 0 ∨ x + y - 1 = 0))?

SAT solver

a ∧ b ∧ c ∧ (d ∨ e)?

Theory solver

∃x ∃y (x^2 - 1 = 0 ∧ y^2 - 1 = 0 ∧ x - 1 = 0 ∧ x + y - 1 = 0)

unsat

b ∧ c ∧ e

▷ incremental
▷ minimal infeasible subset
▷ backtracking
Satisfiability modulo theories (SMT)

\[
\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land (x - y + 1 = 0 \lor x + y - 1 = 0) \right)
\]

- SAT solver
- Theory solver
- incremental
- minimal infeasible subset
- backtracking

unsat, unsatisfiability proof
Theory solver: existing implementations

Cylindrical algebraic decomposition (CAD)

- QEPCAD, Reduce, ...

Gröbner bases

- Maple, Mathematica, Singular, Maxima, CoCoA, Reduce, ...

Other methods

- Virtual substitution (Reduce)
- Interval arithmetic (Ariadne)

More on computer algebra: [Kaplan2005]
Theory solver: CAD

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \right) \]
Theory solver: CAD

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land x - y + 1 = 0 \right) ? \]

- incremental
Theory solver: CAD

\[\exists x \exists y \ (x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land x + y - 1 = 0)? \]

- incremental
- minimal infeasible subset
- backtracking
Theory solver: CAD

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land x + y - 1 = 0 \right) ? \]

- incremental ∨
- minimal infeasible subset ?
- backtracking ∨
Theory solver: \textit{Gröbner} bases

Mathematical background

\[p_1 = 0 \land \ldots \land p_k = 0 \]

has no solution \iff \[q_1 p_1 + \cdots + q_k p_k = 1 \text{ for some polynomials } q_1, \ldots, q_k \]
Theory solver: **Gröbner bases**

Mathematical background

\[p_1 = 0 \land \ldots \land p_k = 0 \quad \text{has no solution} \iff q_1 p_1 + \cdots + q_k p_k = 1 \quad \text{for some polynomials } q_1, \ldots, q_k \]

\[\exists x \exists y \left(x^2 - 1 = 0 \land \{ x^2 - 1 \} \right) ? \]
Theory solver: *Gröbner* bases

Mathematical background

\[p_1 = 0 \land \ldots \land p_k = 0 \]

has no solution \iff

\[q_1 p_1 + \cdots + q_k p_k = 1 \]

for some polynomials \(q_1, \ldots, q_k \)

\[\exists x \exists y \; (x^2 - 1 = 0 \land y^2 - 1 = 0) \]

\{\(x^2 - 1, y^2 - 1 \)\}

\[\text{incremental } \checkmark \]
Theory solver: \textsc{Gröbner} bases

Mathematical background

\[p_1 = 0 \land \ldots \land p_k = 0 \ \text{has no solution} \iff q_1 p_1 + \cdots + q_k p_k = 1 \text{ for some polynomials } q_1, \ldots, q_k \]

\[\exists x \ \exists y \ (x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land \)? \]

\[
\begin{align*}
\{x - 1, y^2 - 1\} \\
x^2 - 1 = (x + 1)(x - 1)
\end{align*}
\]

\[\text{incremental } \checkmark \]
Theory solver: GRÖBNER bases

Mathematical background

\[p_1 = 0 \land \ldots \land p_k = 0 \]
has no solution \(\iff \) \(q_1 p_1 + \cdots + q_k p_k = 1 \) for some polynomials \(q_1, \ldots, q_k \)

\[\exists x \exists y \ (x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land x - y + 1 = 0)? \]

- incremental ✓
- minimal infeasible subset · ·

\[
1 = \frac{1}{3}(y^2 - 1) - \frac{1}{3}(y + 2)(x - 1) + \frac{1}{3}(y + 2)(x - y + 1)
\]

\{1\}
Theory solver: \texttt{GRÖBNER} bases

Mathematical background

\begin{align*}
& p_1 = 0 \land \ldots \land p_k = 0 \\
& \text{has no solution} \iff q_1 p_1 + \cdots + q_k p_k = 1 \text{ for some polynomials } q_1, \ldots, q_k
\end{align*}

\[\exists x \exists y \ (x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land x + y - 1 = 0) \]

\begin{itemize}
 \item incremental \checkmark
 \item minimal infeasible subset \checkmark
 \item backtracking \checkmark
\end{itemize}

\{x - 1, y^2 - 1\}
Theory solver: Gröbner bases

Mathematical background

\[p_1 = 0 \land \ldots \land p_k = 0 \text{ has no solution} \iff q_1 p_1 + \cdots + q_k p_k = 1 \text{ for some polynomials } q_1, \ldots, q_k \]

\[\exists x \exists y \left(x^2 - 1 = 0 \land y^2 - 1 = 0 \land x - 1 = 0 \land x + y - 1 = 0 \right) ? \]

- incremental ✓
- minimal infeasible subset · ·
- backtracking · ·

\[1 = -(y^2 - 1) - y(x - 1) + y(x + y - 1) \]
Future work

- Enhance theory solver:
 - Adjust the methods to the SMT framework (Redlog, Thomas Sturm, Universidad de Cantabria; Singular, Viktor Levandovskyy, RWTH Aachen).
 - Manage differential equations.
 - Generate unsatisfiability proofs.
 - Integrate interval arithmetic (Ariadne, Pieter Collins, CWI Amsterdam).

- Work on the applications:
 - Termination analysis (Computer science 2, RWTH Aachen)
 - SFB 686 “Niedertemperaturverbrennung”
References

