Comparing Different Projection Operators in the Cylindrical Algebraic Decomposition for SMT Solving

Tarik Viehmann, **Gereon Kremer**, Erika Ábrahám

SC² Workshop | Juli 29th
Outline

1 Preliminaries

2 CAD

3 Experiments
 Projections
 SMT solving
 Incompleteness of McCallum / Brown
 Effects of squarefree basis

4 Conclusion
Definition (Nonlinear arithmetic)

Boolean combinations of polynomial constraints over reals

Example:
\[\exists x, y. x^2 + y^2 - 4 \leq 0 \land \left(x^2 - y + 0 < 0 \lor x^2 + 5 \cdot y + 5 < 0 \right) \]

Also:
- With quantifiers (NRA)
- Over integers (QF_NIA)
Definition (Nonlinear arithmetic)

Boolean combinations of polynomial constraints over reals

Example

\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]
Definition (Nonlinear arithmetic)

Boolean combinations of polynomial constraints over reals

Example

$$\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

Also:

- With quantifiers (NRA)
- Over integers (QF_NIA)
SMT Solving

Boolean abstraction
Tseitin’s transformation

quantifier-free FO formula

propositional logic formula in CNF

SAT solver

SAT or UNSAT

boolean assignment

theory constraints

SAT + model

or

UNSAT + reason

Theory solver
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]
∃x, y. \(x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

Where are solutions?
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

Where are solutions?
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
$\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$

- Where are solutions?
- What would a human do?
\(\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

- Where are solutions?
- What would a human do?
∃x, y. \(x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

- Where are solutions?
- What would a human do?
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

Where are solutions?
What would a human do?
∃x, y. \[x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
\(\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

- Where are solutions?
- What would a human do?
- What would CAD do?
∃x, y. \(x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)

Cylindrical Algebraic Decomposition
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension x
Cylindrical Algebraic Decomposition

\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)
∃x, y. \(x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

Where are solutions?
What would a human do?
What would CAD do?
 - First dimension \(x \)
 - Second dimension \(y \)
∃x, y. \(x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

Where are solutions?

What would a human do?

What would CAD do?

First dimension \(x \)

Second dimension \(y \)
∃x, y. \(x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \)

Where are solutions?

What would a human do?

What would CAD do?

- First dimension \(x \)
- Second dimension \(y \)
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)
 - Second dimension \(y \)
$\exists x, y. \; x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension x
 - Second dimension y
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)
 - Second dimension \(y \)
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)
 - Second dimension \(y \)
\[\exists x, y. \quad x^2 + y^2 - 4 \leq 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0) \]

- Where are solutions?
- What would a human do?
- What would CAD do?
 - First dimension \(x \)
 - Second dimension \(y \)
 - Test sample points
Cylindrical Algebraic Decomposition

\[P_n \subseteq \mathbb{Z}[x_1, \ldots, x_n] \]

project

\[P_{n-1} \subseteq \mathbb{Z}[x_1, \ldots, x_{n-1}] \]

project

\[\vdots \]

project

\[P_1 \subseteq \mathbb{Z}[x_1] \]
Cylindrical Algebraic Decomposition

\[P_n \subseteq \mathbb{Z}[x_1, \ldots, x_n] \]

\[P_{n-1} \subseteq \mathbb{Z}[x_1, \ldots, x_{n-1}] \]

\[P_1 \subseteq \mathbb{Z}[x_1] \]

\[Z_2 \subseteq \mathbb{Z}_1 \times \mathbb{R} \]

\[Z_1 \subseteq \mathbb{R} \]

\[Z_n \subseteq \mathbb{Z}_{n-1} \times \mathbb{R} \]

roots(\(P_n \) at \(Z_{n-1} \))

roots(\(P_3 \) at \(Z_2 \))

roots(\(P_2 \) at \(Z_1 \))

roots(\(P_1 \))

Comparing Different Projection Operators in the CAD for SMT Solving

Tarik Viehmann, Gereon Kremer, Erika Ábrahám | SC² Workshop | Juli 29th
Cylindrical Algebraic Decomposition

\[P_n \subseteq \mathbb{Z}[x_1, \ldots, x_n] \]

projection \[P_{n-1} \subseteq \mathbb{Z}[x_1, \ldots, x_{n-1}] \]

projection \[\vdots \]

projection \[P_1 \subseteq \mathbb{Z}[x_1] \]

\[Z_n \subseteq \mathbb{Z}_{n-1} \times \mathbb{R} \]

\[\text{roots}(P_n \text{ at } Z_{n-1}) \]

\[\vdots \]

\[\text{roots}(P_3 \text{ at } Z_2) \]

\[Z_2 \subseteq Z_1 \times \mathbb{R} \]

\[\text{roots}(P_2 \text{ at } Z_1) \]

\[Z_1 \subseteq \mathbb{R} \]

\[\text{roots}(P_1) \]
Intuition

Cylinders in \mathbb{R}^n based on the roots of P_{n-1} form proper stacks. Substitute a sample from \mathbb{R}^{n-1} into P_n, the roots cover all cylinders.
Intuition

Cylinders in \mathbb{R}^n based on the roots of P_{n-1} form proper stacks. Substitute a sample from \mathbb{R}^{n-1} into P_n, the roots cover all cylinders.

We consider:

- Collins
- Hong
- McCallum
- Brown
Intuition

Cylinders in \mathbb{R}^n based on the roots of P_{n-1} form proper stacks. Substitute a sample from \mathbb{R}^{n-1} into P_n, the roots cover all cylinders.

We consider:
- Collins
- Hong
- McCallum
- Brown

Not considered or specific use case:
- Lazard (improvement of McCallum)
- Seidl & Sturm (based on Hong for partial CAD)
- Strzeboński („local projection“)
- Brown & Košta („OneCell CAD“)
- ...

Comparing Different Projection Operators in the CAD for SMT Solving
Notation

Definition (Polynomials)

\[p = \sum_{i=0}^{m} a_i \cdot x_i \text{ in main variable } x_n \text{ and } a_i \in \mathbb{R}[x_1, \ldots, x_{n-1}] \]

Definition (Simple properties)

\[\text{coeffs}(p) := \{a_0, \ldots, a_m\} \quad \text{lcf}(p) := a_m \]

\[\text{red}_k(p) := \sum_{i=0}^{m-k} a_i \cdot x_i \quad \text{red}(p) := \{\text{red}_k(p) \mid k = 0 \ldots m\} \]
Building blocks

\[Syl(p, q) := \begin{vmatrix} a_k & \cdots & a_0 \\ a_k & \cdots & a_0 \\ \vdots & \ddots & \vdots \\ b_l & \cdots & b_0 \\ b_l & \cdots & b_0 \\ \vdots & \ddots & \vdots \\ b_l & \cdots & b_0 \end{vmatrix} \]

Definition (Principal subresultant coefficients)

\[PCS(p, q) := \{ pcs_i \mid i = 0, \ldots, \min(k, l) \} \]
Building blocks

\[M_j(p, q) := \begin{pmatrix}
 a_k & \cdots & a_0 \\
 a_k & \cdots & a_0 \\
 \vdots & \ddots & \vdots \\
 b_l & \cdots & b_0 \\
 b_l & \cdots & b_0 \\
 \vdots & \ddots & \vdots \\
 b_l & \cdots & b_0
\end{pmatrix} \]

\[\left\{ \begin{array}{c}
l - j \\
k - j
\end{array} \right. \]
Building blocks

$M_j(p, q) := \begin{pmatrix} a_k & \cdots & a_0 \\ a_k & \cdots & a_0 \\ \vdots & \ddots & \vdots \\ b_l & \cdots & b_0 \\ b_l & \cdots & b_0 \\ \vdots & \ddots & \vdots \\ b_l & \cdots & b_0 \end{pmatrix}$

Definition (Principal subresultant coefficients)

$pcs_i(p, q) := \det(M_i)$

$PCS(p, q) := \{pcs_i \mid i = 0 \ldots \min(k, l)\}$
Definition (Resultant)

\[
res(p, q) := \det(Syl(p, q))
\]

\(p, q\) have a **common root** ⇔ \(res(p, q)\) has a root

Definition (Discriminant)

\[
disc(p) := res(p, p')
\]

\(p\) has a **multiple root** ⇔ \(disc(p)\) has a root
Definition (Collins' operator / Hong's operator)

\[
\begin{align*}
proj_1^C & := \bigcup_{p \in P} \bigcup_{r \in \text{red}(p)} \{ldcf(r)\} \cup \text{PSC}(r, r') \\
proj_2^C & := \bigcup_{p,q \in P} \bigcup_{r_p \in \text{red}(p)} \bigcup_{r_q \in \text{red}(q)} \text{PSC}(r_p, r_q) \\
proj_C & := \text{proj}_1^C \cup \text{proj}_2^C
\end{align*}
\]
Definition (Collins’ operator / Hong’s operator)

\[
\text{proj}_C^1 := \bigcup_{p \in P} \bigcup_{r \in \text{red}(p)} \{ldcf(r)\} \cup PSC(r, r')
\]

\[
\text{proj}_H^2 := \bigcup_{p, q \in P} \bigcup_{r_p \in \text{red}(p)} PSC(r_p, q)
\]

\[
\text{proj}_H := \text{proj}_C^1 \cup \text{proj}_H^2
\]
Definition (McCallum’s operator / Brown’s operator)

Let P be a squarefree basis.

\[
\begin{align*}
\text{proj}_1^M & := \bigcup_{p \in P} \{\text{disc}(p)\} \cup \text{coefs}(p) \\
\text{proj}_2^M & := \bigcup_{p,q \in P} \{\text{res}(p, q)\} \\
\text{proj}^M & := \text{proj}_1^M \cup \text{proj}_2^M
\end{align*}
\]
Definition (McCallum’s operator / Brown’s operator)

Let \(P \) be a squarefree basis.

\[
\begin{align*}
\text{proj}_B^1 &:= \bigcup_{p \in P} \{\text{disc}(p)\} \cup \{\text{lcf}(p)\} \\
\text{proj}_M^2 &:= \bigcup_{p,q \in P} \{\text{res}(p,q)\} \\
\text{proj}_B &:= \text{proj}_B^1 \cup \text{proj}_M^2
\end{align*}
\]

Incomplete!
Experiments

- **SMT-RAT**
 - Projections: SAT + CAD
 - Solving: SAT + VS + CAD
 - No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
 - But: fully incremental, early abort
Experiments

- **SMT-RAT**
 - Projections: SAT + CAD
 - Solving: SAT + VS + CAD
 - No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
 - But: fully incremental, early abort

- **QF_NRA from SMT-COMP 2014**

- **Timeout 60s**
Experiments

- **SMT-RAT**
 - Projections: SAT + CAD
 - Solving: SAT + VS + CAD
 - No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
 - But: fully incremental, early abort

- **QF_NRA from SMT-COMP 2014**

- **Timeout 60s**

- **Analyzed:**
 - Different projection operators
 - Different projection orders
Experiments

- **SMT-RAT**
 - Projections: SAT + CAD
 - Solving: SAT + VS + CAD
 - No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
 - But: fully incremental, early abort

- **QF_NRA from SMT-COMP 2014**

- **Timeout 60s**

- **Analyzed:**
 - Different projection operators
 - Different projection orders

- **Not analyzed:**
 - Different variable orderings
 - Different lifting orders
Projection sizes

- Project **all polynomials**, ignore boolean structure
- 5698 benchmarks where all projections terminated
Projection sizes

- Project all polynomials, ignore boolean structure
- 5698 benchmarks where all projections terminated
- On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables
Project all polynomials, ignore boolean structure
5698 benchmarks where all projections terminated
On average 6.4 polynomials of degree 5.2 (total degree 6.1)
Rarely more than 5 variables

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td>10.9 / 7.8</td>
<td>783.1 / 26.4</td>
<td>117.0 / 11.9</td>
<td>15.6 / 5.3</td>
</tr>
<tr>
<td>Hong</td>
<td>8.6 / 7.8</td>
<td>158.8 / 26.2</td>
<td>20.2 / 11.7</td>
<td>10.3 / 5.1</td>
</tr>
<tr>
<td>McCallum</td>
<td>6.1 / 6.7</td>
<td>16.7 / 13.3</td>
<td>5.1 / 5.3</td>
<td>7.9 / 3.8</td>
</tr>
<tr>
<td>Brown</td>
<td>5.3 / 6.7</td>
<td>11.6 / 13.5</td>
<td>4.7 / 5.1</td>
<td>5.5 / 3.5</td>
</tr>
</tbody>
</table>
Comparing Different Projection Operators in the CAD for SMT Solving

Projection sizes

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td>10.9 / 7.8</td>
<td>783.1 / 26.4</td>
<td>117.0 / 11.9</td>
<td>15.6 / 5.3</td>
</tr>
<tr>
<td>Hong</td>
<td>8.6 / 7.8</td>
<td>158.8 / 26.2</td>
<td>20.2 / 11.7</td>
<td>10.3 / 5.1</td>
</tr>
<tr>
<td>McCallum</td>
<td>6.1 / 6.7</td>
<td>16.7 / 13.3</td>
<td>5.1 / 5.3</td>
<td>7.9 / 3.8</td>
</tr>
<tr>
<td>Brown</td>
<td>5.3 / 6.7</td>
<td>11.6 / 13.5</td>
<td>4.7 / 5.1</td>
<td>5.5 / 3.5</td>
</tr>
</tbody>
</table>

▶ Theory: $\text{proj}_B \subseteq \text{proj}_M \subseteq \text{proj}_H \subseteq \text{proj}_C$
Projection sizes

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td>10.9 / 7.8</td>
<td>783.1 / 26.4</td>
<td>117.0 / 11.9</td>
<td>15.6 / 5.3</td>
</tr>
<tr>
<td>Hong</td>
<td>8.6 / 7.8</td>
<td>158.8 / 26.2</td>
<td>20.2 / 11.7</td>
<td>10.3 / 5.1</td>
</tr>
<tr>
<td>McCallum</td>
<td>6.1 / 6.7</td>
<td>16.7 / 13.3</td>
<td>5.1 / 5.3</td>
<td>7.9 / 3.8</td>
</tr>
<tr>
<td>Brown</td>
<td>5.3 / 6.7</td>
<td>11.6 / 13.5</td>
<td>4.7 / 5.1</td>
<td>5.5 / 3.5</td>
</tr>
</tbody>
</table>

- **Theory:** \(\text{proj}_B \subseteq \text{proj}_M \subseteq \text{proj}_H \subseteq \text{proj}_C \)

- **Hong** improves a lot upon Collins

- **McCallum** improves a lot upon Hong
Comparing Different Projection Operators in the CAD for SMT Solving

Projection sizes

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td>10.9 / 7.8</td>
<td>783.1 / 26.4</td>
<td>117.0 / 11.9</td>
<td>15.6 / 5.3</td>
</tr>
<tr>
<td>Hong</td>
<td>8.6 / 7.8</td>
<td>158.8 / 26.2</td>
<td>20.2 / 11.7</td>
<td>10.3 / 5.1</td>
</tr>
<tr>
<td>McCallum</td>
<td>6.1 / 6.7</td>
<td>16.7 / 13.3</td>
<td>5.1 / 5.3</td>
<td>7.9 / 3.8</td>
</tr>
<tr>
<td>Brown</td>
<td>5.3 / 6.7</td>
<td>11.6 / 13.5</td>
<td>4.7 / 5.1</td>
<td>5.5 / 3.5</td>
</tr>
</tbody>
</table>

- Theory: \(\text{proj}_B \subseteq \text{proj}_M \subseteq \text{proj}_H \subseteq \text{proj}_C \)
- **Hong** improves a lot upon Collins
- **McCallum** improves a lot upon Hong
- **Brown** improves a bit, but more speedups in lifting phase
- Hong may be viable if **incompleteness** of McCallum is an issue
SMT solving performance

- 5698 benchmarks from before
- Incremental calls from SAT module
- Incremental projection, early abort if satisfying solution is found
5698 benchmarks from before

Incremental calls from SAT module

Incremental projection, early abort if **satisfying solution** is found

⇒ Size of projection may not be that crucial
SMT solving performance

- 5698 benchmarks from before
- Incremental calls from SAT module
- **Incremental projection**, early abort if **satisfying solution** is found
- ⇒ Size of projection may not be that crucial

<table>
<thead>
<tr>
<th>Operator</th>
<th>Solved</th>
<th>Timeout</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td>5041</td>
<td>657</td>
<td>≈ 452.80</td>
</tr>
<tr>
<td>Hong</td>
<td>5125</td>
<td>573</td>
<td>≈ 233.30</td>
</tr>
<tr>
<td>McCallum</td>
<td>5284</td>
<td>414</td>
<td>≈ 216.38</td>
</tr>
<tr>
<td>Brown</td>
<td>5299</td>
<td>399</td>
<td>≈ 220.11</td>
</tr>
</tbody>
</table>
McCallum vs. Brown

- Similar behaviour, but some outliers in both directions
Similar behaviour, but some outliers in both directions
Make behaviour different (run in parallel)
McCallum vs. Brown

- Similar behaviour, but some outliers in **both directions**
- Make behaviour different (run in parallel)
- Modify Brown: Consider **resultants last** for projection
Similar behaviour, but some outliers in both directions
Make behaviour different (→ run in parallel)
Modify Brown: Consider resultants last for projection
Incompleteness of McCallum / Brown

- McCallum and Brown are *incomplete*
- Is this a problem in *practice*?
Incompleteness of McCallum / Brown

- McCallum and Brown are **incomplete**
- Is this a problem in **practice**?
- 510 out of 5889 benchmarks
 (may be fixed by delineating polynomials or additional points)
Incompleteness of McCallum / Brown

- McCallum and Brown are **incomplete**
- Is this a problem in **practice**?

- 510 out of 5889 benchmarks
 (may be fixed by delineating polynomials or additional points)
- 353 were found to be satisfiable
- 157 were found to be unsatisfiable
Incompleteness of McCallum / Brown

- McCallum and Brown are incomplete
- Is this a problem in practice?

- 510 out of 5889 benchmarks
 (may be fixed by delineating polynomials or additional points)

- 353 were found to be satisfiable
- 157 were found to be unsatisfiable

- All are correct!
Incompleteness of McCallum / Brown

- McCallum and Brown are **incomplete**
- Is this a problem in **practice**?

- **510 out of 5889 benchmarks**
 (may be fixed by delineating polynomials or additional points)
- **353** were found to be satisfiable
- **157** were found to be unsatisfiable

- **All are correct!**

- ⇒ not a pressing issue **on our SMT benchmarks**
Effects of squarefree basis

- McCallum / Brown require P_k to be a squarefree basis
- Difficult to compute ignored until now
Effects of squarefree basis

- McCallum / Brown require P_k to be a **squarefree basis**
- **Difficult** to compute ignored until now

- Using CoCoALib
Effects of squarefree basis

- McCallum / Brown require P_k to be a **squarefree basis**
- **Difficult** to compute ignored until now

- Using CoCoALib
- Overall solving is about **10% slower**
- **Less timeouts!** McCallum: 889 → 739, Brown: 842 → 739
Effects of squarefree basis

- McCallum / Brown require P_k to be a squarefree basis
- Difficult to compute ignored until now

- Using CoCoALib
- Overall solving is about 10% slower
- Less timeouts! McCallum: 889 → 739, Brown: 842 → 739

⇒ usually detrimental, sometimes essential
required for correctness!
Conclusion

- Overall trend matches theoretical expectation
- Individual examples **may vary wildly**
- ⇒ Portfolio?
Conclusion

- Overall trend matches theoretical expectation
- Individual examples **may vary wildly**
- ⇒ Portfolio?

- **Incompleteness** is not a pressing issue (for us)
- Computing squarefree basis is rather **expensive**
Conclusion

- Overall trend matches theoretical expectation
- Individual examples **may vary wildly**
- \(\Rightarrow \) Portfolio?

- **Incompleteness** is not a pressing issue (for us)
- Computing squarefree basis is rather **expensive**

- Adapt variable ordering?
- Effects of delineating polynomials and additional points?