A Weakest Pre–Expectation Semantics for Mixed–Sign Expectations

Benjamin Lucien Kaminski Joost-Pieter Katoen

32nd Annual Symposium on Logic in Computer Science 2017

June 22, 2017, Reykjavík, Iceland
Example of a Probabilistic Program

\[
\begin{align*}
\{c := 0\} & \left[\frac{1}{2}\right] \{c := 1\}; \\
\text{if} (c = 1) & \{x := 1\} \text{ else } \{x := 2x + 1\}; \\
\text{skip}
\end{align*}
\]
Example of a Probabilistic Program

```cpp
{c := 0} \ [1/2] \ {c := 1};  // coin flip

if (c = 1) \{x := 1\} else \{x := 2x + 1\};

skip
```

What does a probabilistic program \(C \) do?
Run \(C \) on initial state \(\sigma \in \Sigma \)
Obtain probability distribution \(J_{C K} \sigma \) over final states

Formal verification of probabilistic programs!
Example of a Probabilistic Program

\[
\begin{align*}
\{ c := 0 \} & \text{[1/2]} \{ c := 1 \}; \\
\text{if } (c = 1) & \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \\
\text{skip}
\end{align*}
\]

// coin flip

What does a probabilistic program \(C \) do?
Example of a Probabilistic Program

\{ c := 0 \} [1/2] \{ c := 1 \};

// coin flip

if (c = 1) \{ x := 1 \} else \{ x := 2x + 1 \};

skip

What does a probabilistic program C do?

- Run C on initial state $\sigma \in \Sigma$
Example of a Probabilistic Program

\[
\{c := 0\} \frac{1}{2} \{c := 1\}; \quad // \text{coin flip}
\]

\[
\text{if} \ (c = 1) \ \{x := 1\} \ \text{else} \ \{x := 2x + 1\};
\]

\text{skip}

What does a probabilistic program C do?

- Run C on initial state $\sigma \in \Sigma$
- Obtain probability distribution $[C]_\sigma$ over final states
Example of a Probabilistic Program

```plaintext
{c := 0} [1/2] {c := 1}; // coin flip
if (c = 1) {x := 1} else {x := 2x + 1};
skip
```

What does a probabilistic program C do?

- Run C on initial state $\sigma \in \Sigma$
- Obtain probability distribution $[C]_\sigma$ over final states

Formal verification of probabilistic programs!
Classical Weakest Pre–Expectations

The Non–Negative Case
Classical Weakest Pre–Expectations

Weakest Pre–Expectations

Expectation is a non–negative random variable $f : \Sigma \rightarrow \mathbb{R}_{\geq 0}$, where $\mathbb{E}[f] \neq$ expected value.

What we are interested in:

Given a post–expectation f to be evaluated in the final states after termination of a probabilistic program C on input σ.

Expected value of f after termination of C on σ:

$\lambda_{\sigma} \cdot EV_{J}^{C}(f)$
Classical Weakest Pre–Expectations

Expectations:
Classical Weakest Pre–Expectations

Expectations:

- **Expectation is a non-negative random variable** $f : \Sigma \to \mathbb{R}_{\geq 0}$
Classical Weakest Pre–Expectations

Expectations:

- **Expectation** is a non-negative random variable \(f : \Sigma \to \mathbb{R}_{\geq 0} \)
- expectation \(\neq \) expected value
Classical Weakest Pre–Expectations

Expectations:

- Expectation is a non–negative random variable $f: \Sigma \rightarrow \mathbb{R}_{\geq 0}$
- expectation \neq expected value

What we are interested in:
Classical Weakest Pre–Expectations

Expectations:

- Expectation is a non-negative random variable $f : \Sigma \rightarrow \mathbb{R}_{\geq 0}$
- expectation \neq expected value

What we are interested in:

- Given an expectation f to be evaluated in the final states after termination of a probabilistic program C on input σ
Classical Weakest Pre–Expectations

Expectations:

- **Expectation** is a non-negative random variable $f : \Sigma \rightarrow \mathbb{R}_{\geq 0}$
- **expectation** \neq **expected value**

What we are interested in:

- Given a post–expectation f to be evaluated in the final states after termination of a probabilistic program C on input σ
Classical Weakest Pre–Expectations

Expectations:

- **Expectation** is a non–negative random variable $f : \Sigma \rightarrow \mathbb{R}_{\geq 0}$
- expectation \neq expected value

What we are interested in:

- Given a post–expectation f to be evaluated in the final states after termination of a probabilistic program C on input σ
- Expected value of f after termination of C on σ:

 \[\text{EV} (f) \]
Classical Weakest Pre–Expectations

Expectations:

- **Expectation** is a non–negative random variable \(f : \Sigma \rightarrow \mathbb{R}_{\geq 0} \)
- expectation \(\neq \) expected value

What we are interested in:

- Given a post–expectation \(f \) to be evaluated in the final states after termination of a probabilistic program \(C \) on input \(\sigma \)
- Expected value of \(f \) after termination of \(C \) on \(\sigma \):

\[
\text{EV}_{[C]_{\sigma}}(f)
\]
Classical Weakest Pre–Expectations

Expectations:

- Expectation is a non–negative random variable $f : \Sigma \rightarrow \mathbb{R}_{\geq 0}$
- expectation \neq expected value

What we are interested in:

- Given a post–expectation f to be evaluated in the final states after termination of a probabilistic program C on input σ
- Expected value of f after termination of C on σ:
 \[\lambda\sigma \cdot \text{EV}_{[C]}(f) \]
Classical Weakest Pre–Expectations

The Standard wp Transformer [Kozen, McIver & Morgan]
Classical Weakest Preexpectations

The Standard wp Transformer [Kozen, McIver & Morgan]

Use a **backward moving** expectation transformer \(\text{wp}[C] : \mathbb{E} \rightarrow \mathbb{E} \).
The Standard wp Transformer [Kozen, McIver & Morgan]

Use a backward moving expectation transformer wp[C]: \(E \rightarrow E \).
The Standard wp Transformer [Kozen, McIver & Morgan]

Use a **backward moving** expectation transformer \(\text{wp}[C] : \mathbb{E} \rightarrow \mathbb{E} \).

\[
\begin{align*}
C & \quad f \\
\uparrow & \quad \uparrow \\
\text{post–expectation } f & \quad \text{evaluated in final states} \\
& \quad \text{after termination of } C
\end{align*}
\]
Classical Weakest Preexpectations

The Standard \(wp \) Transformer [Kozen, Mclver & Morgan]

Use a **backward moving** expectation transformer \(wp[C]: E \rightarrow E \).

\[
C \quad f
\]

post–expectation \(f \)
evaluated in final states
after termination of \(C \)
Classical Weakest Preexpectations

The Standard \(wp \) Transformer [Kozen, McIver & Morgan]

Use a **backward moving** expectation transformer \(wp[C] : \mathbb{E} \to \mathbb{E} \).

\[
wp[C](f) \quad C \quad f
\]

post–expectation \(f \)
evaluated in final states
after termination of \(C \)
Classical Weakest Pre–Expectations

The Standard wp Transformer [Kozen, McIver & Morgan]

Use a backward moving expectation transformer $wp[C] : \mathbb{E} \rightarrow \mathbb{E}$.

$$\lambda \sigma. \text{EV}_{[C]}(f) \triangleright wp[C](f)$$

post–expectation f evaluated in final states after termination of C

evaluated in initial states before executing C
Classical Weakest Pre–Expectations

The Standard wp Transformer [Kozen, McIver & Morgan]

Use a **backward moving** expectation transformer \(wp[C] : E \rightarrow E \).

\[
\lambda \sigma . \ EV_{[C]}_{\sigma} (f) \overset{!}{=} wp [C] (f)
\]

- weakest pre–expectation of \(C \) with respect to \(f \) evaluated in initial states before executing \(C \)
- post–expectation \(f \) evaluated in final states after termination of \(C \)
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\{ c : = 0 \} \left\lceil \frac{1}{2} \right\rceil \{ c : = 1 \} ;
\]

\[
\text{if} \ (c = 1) \{ x : = 1 \} \text{ else } \{ x : = 2x + 1 \};
\]

\text{skip}
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\{ c := 0 \} [1/2] \{ c := 1 \};
\]

if \((c = 1)\) \{ \(x := 1\) \} else \{ \(x := 2x + 1\) \};

skip

\(x\)
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\{c := 0\} \left[\frac{1}{2} \right] \{c := 1\} ;
\]

\[
\text{if} (c = 1) \{x := 1\} \text{ else } \{x := 2x + 1\};
\]

\[
\text{wp}[\text{skip}](x)
\]

\[
\text{skip}
\]

\[
x
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\{ c := 0 \} \frac{1}{2} \{ c := 1 \} ;
\]

\[
\text{if} \ (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \} ;
\]

\[
\begin{align*}
&x \\
&\text{skip} \\
&x
\end{align*}
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\{ c := 0 \} \frac{1}{2} \{ c := 1 \} ; \\
wp [\text{if} (c = 1) \ldots] (x) \\
\text{if} (c = 1) \{ x := 1 \} \text{else} \{ x := 2x + 1 \}; \\
x \\
\text{skip} \\
x
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\{c := 0\} \frac{1}{2} \{c := 1\};
\]

\[
[c = 1] \cdot 1 + [c = 0] \cdot (2x + 1)
\]

\[
\text{if } (c = 1) \{x := 1\} \text{ else } \{x := 2x + 1\};
\]

\[
x
\]

\[
\text{skip}
\]

\[
x
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\begin{align*}
\{ c := 0 \} & \quad [1/2] \quad \{ c := 1 \} ; \\
1 + [c = 0] \cdot 2x & \\
\text{if} \ (c = 1) \{ x := 1 \} \quad \text{else} \quad \{ x := 2x + 1 \}; \\
x & \\
\text{skip} & \\
x &
\end{align*}
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\text{wp} \{\ldots\} \left[\frac{1}{2}\right] \{\ldots\} (1 + \llbracket c = 0 \rrbracket \cdot 2x)
\]

\[
\{ c := 0 \} \left[\frac{1}{2}\right] \{ c := 1 \};
\]

\[
1 + \llbracket c = 0 \rrbracket \cdot 2x
\]

\[
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \};
\]

\[
x
\]

skip

\[
x
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
\frac{1}{2} \cdot (1 + [0 = 0] \cdot 2x) + \frac{1}{2} \cdot (1 + [1 = 0] \cdot 2x)
\]

\[
\{ c := 0 \} [1/2] \{ c := 1 \};
\]

\[
1 + [c = 0] \cdot 2x
\]

\[
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \};
\]

\[
x
\]

\[
\text{skip}
\]

\[
x
\]
Weakest Pre–Expectation Reasoning

Example of wp Reasoning

\[
1 + x \\
\{c := 0\} [1/2] \{c := 1\} ; \\
1 + [c = 0] \cdot 2x \\
\text{if} (c = 1) \{x := 1\} \text{ else } \{x := 2x + 1\} ; \\
x \\
\text{skip} \\
x
\]
The \(\text{wp}\) Transformer for While Loops

Use least fixed point construct:
The wp Transformer for While Loops

Use least fixed point construct:

$$\text{wp[while } (\xi) \{C\}](f) = \text{lfp } F_f(X)$$
The wp Transformer for While Loops

Use least fixed point construct:

$$\text{wp}[\text{while } (\xi) \{C\}](f) = \text{lfp } F_f(X)$$

$$\begin{align*}
\text{[\neg \xi]} \cdot f & + \text{[\xi]} \cdot \text{wp}[C](X)
\end{align*}$$
The wp Transformer for While Loops

Use least fixed point construct:

\[
\text{wp}[\text{while } (\xi) \{ C \}](f) = \text{lfp } F_f(X) = \sup_n F^n_f(0)
\]

\[
\left([\neg \xi] \cdot f + [\xi] \cdot \text{wp}[C](X) \right)
\]
The wp Transformer for While Loops

Use least fixed point construct:

\[
\text{wp}[\text{while } (\xi) \{ C \}] (f) = \text{lfp } F_f(X) = \sup_n F^n_f(0)
\]

\[
= [\neg \xi] \cdot f + [\xi] \cdot \text{wp}[C](X)
\]
The wp Transformer for While Loops

Use least fixed point construct:

\[
\text{wp} \left[\text{while} (\xi) \{ C \} \right] (f) = \text{lfp} F_f(X) = \sup_n F_f^n(0)
\]

\[
\text{Kleene Fixed Point Theorem}
\]

\[
\lbrack \neg \xi \rbrack \cdot f + \lbrack \xi \rbrack \cdot \text{wp}[C](X)
\]

Complete partial order on expectations:

\[
f_1 \preceq f_2 \iff \forall \sigma : f_1(\sigma) \leq f_2(\sigma)
\]
The Motivation

Example of wp Reasoning

\[
\begin{align*}
1 + x \\
\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \}; \\
1 + [c = 0] \cdot 2x \\
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \\
x \\
\text{skip} \\
x
\end{align*}
\]
The Motivation

Example of wp Reasoning

\[1 + x \notin E \]
\[\text{if } (\frac{1}{2}) \{ c := 0 \} \text{ else } \{ c := 1 \}; \]
\[1 + [c = 0] \cdot 2x \notin E \]
\[\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \]
\[x \notin E \]
\[\text{skip} \]
\[x \notin E \]
The Motivation

Example of wp Reasoning

\[1 + x \not\in E \]
if \((1/2) \{ c := 0 \} \) else \(\{ c := 1 \} \);

\[1 + [c = 0] \cdot 2x \not\in E \]
if \((c = 1) \{ x := 1 \} \) else \(\{ x := 2x + 1 \} \);

\[x \not\in E \]

skip

\[x \not\in E \]

Neither post–expectation \(x \) nor any of the pre–expectations are proper expectations!
Mixed–Sign Weakest Pre–Expectations

The Non–Non–Negative Case
Our Solution: Integrability–Witnessing Expectations
Our Solution: Integrability–Witnessing Expectations

Define set of mixed–sign expectations $\mathbb{E}^* = \{ f \mid f : \Sigma \to \mathbb{R} \}$
Our Solution: Integrability–Witnessing Expectations

- Define set of mixed-sign expectations \(E^* = \{ f \mid f : \Sigma \to \mathbb{R} \} \)

- \(\text{EV}(f) \) is well-defined if and only if \(\text{EV}(|f|) < \infty \)
Our Solution: Integrability–Witnessing Expectations

- Define set of mixed–sign expectations $\mathbb{E}^* = \{ f | f : \Sigma \rightarrow \mathbb{R} \}$
- $\text{EV}(f)$ is well–defined if and only if $\text{EV}(|f|) < \infty$
 - In probability theory terms: f should be integrable
Our Solution: Integrability–Witnessing Expectations

- Define set of mixed–sign expectations $\mathbb{E}^* = \{ f \mid f : \Sigma \rightarrow \mathbb{R} \}$

- $EV(f)$ is well–defined if and only if $EV(|f|) < \infty$
 - In probability theory terms: f should be integrable

- Integrability–witnessing pairs:

 $$(f, g)$$

 such that $f \in \mathbb{E}^*$, $g \in \mathbb{E}$, and $|f| \leq g$
Our Solution: Integrability–Witnessing Expectations

\[\mathbb{R}^{\pm \infty} \]

\[\sum \]
Our Solution: Integrability–Witnessing Expectations
Our Solution: Integrability–Witnessing Expectations

\[\mathbb{R}^{\pm \infty} \]

\[\Sigma \]

\[f, g, -g \]
Our Solution: Integrability–Witnessing Expectations
Our Solution: Integrability–Witnessing Expectations

\[\mathbb{R}^{\pm \infty} \]

\[(f, g) \]

\[\Sigma \]

\[f \]

\[g \]

\[-g \]
Our Solution: Integrability–Witnessing Expectations

\[\mathbb{R}^{\pm \infty} \]

\[(f, g) \]

\[g \]

\[f \]

\[\Sigma \]

\[-g \]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[
\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \}; \\
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \\
\text{skip}
\]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[
\begin{align*}
\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \}; \\
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \\
\text{skip} \quad (x, \, |x|)
\end{align*}
\]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[
\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \};
\]
\[
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \};
\]
\[
\text{(wp [skip]} (x), \text{wp [skip]} (|x|))
\]
\[
\text{skip}
\]
\[
(x, |x|)
\]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \}; \]

\[\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \]

\[(x, |x|) \]

\textbf{skip}

\[(x, |x|) \]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[
\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \}; \\
(wp[\text{if}(c = 1) \ldots](x), wp[\text{if}(c = 1) \ldots](|x|))
\]

\[
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \\
(x, |x|)
\]

skip

\[
(x, |x|)
\]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[
\begin{align*}
\text{if } (1/2) \{ c := 0 \} \text{ else } \{ c := 1 \}; \\
(1 + [c = 0] \cdot 2x, [c = 1] + [c = 0] \cdot |2x + 1|) \\
\text{if } (c = 1) \{ x := 1 \} \text{ else } \{ x := 2x + 1 \}; \\
(x, |x|) \\
\text{skip} \\
(x, |x|)
\end{align*}
\]
wp with Integrability–Witnessing Pairs

Example of Integrability–Witnessing Pair Reasoning

\[
\left(1 + x, \frac{1}{2} + \left| x + \frac{1}{2} \right| \right)
\]

if \((1/2) \{ c := 0 \} \text{ else } \{ c := 1 \} \);

\((1 + [c = 0] \cdot 2x, [c = 1] + [c = 0] \cdot |2x + 1|)\)

if \(c = 1\) \{ \(x := 1\) \} else \{ \(x := 2x + 1\) \};

\((x, |x|)\)

skip

\((x, |x|)\)
What about Loops?

- Consider $\texttt{while} (\xi) \{ C \}$
What about Loops?

- Consider while $(\xi)\{C\}$
- Recall $wp[\text{while } (\xi) \{C\}] (f) = \sup_n F^n_f (0)$ (KFPT)
What about Loops?

- Consider \(\text{while} (\xi) \{C\} \)
- Recall \(\text{wp} [\text{while} (\xi) \{C\}](f) = \sup_n F^n_f(0) \) (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?
What about Loops?

- Consider \(\text{while} (\xi) \{ C \} \)

- Recall \(\text{wp} [\text{while} (\xi) \{ C \}] (f) = \sup_n F^n_f(0) \) (KFPT)

- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \omega} \left(F^n_f(0), F^n_{|f|}(0) \right)
\]
What about Loops?

- Consider \texttt{while} $\langle \xi \rangle \{ C \}$
- Recall $\text{wp} \left[\texttt{while} \langle \xi \rangle \{ C \} \right] (f) = \sup_{n} F_{f}^{n}(0)$ (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

$$\lim_{n \to \omega} \left(F_{f}^{n}(0), F_{\|f\|}^{n}(0) \right)$$

- Consider the program

\[
C_{\text{geo2}} \triangleright \texttt{while} \left(\frac{1}{2} \right) \{ \\
\quad x := -2 \cdot x \}
\]
What about Loops?

- Consider \(\text{while} (\xi) \{ C \} \)
- Recall \(\text{wp} [\text{while} (\xi) \{ C \}] (f) = \sup_n F^n_f (0) \) (KFPT)

- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \omega} \left(F^n_f (0), F^n_{|f|} (0) \right)
\]

- Consider the program

\[
C_{geo2} \triangleright \text{while } (1/2) \{ \\
\quad x := -2 \cdot x \\
\}
\]

- According sequence:
What about Loops?

- Consider while (ξ) $\{C\}$
- Recall $wp[\text{while } (\xi) \{C\}] (f) = \sup_n F^n_f(0)$ (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

$$\lim_{n \to \omega} \left(F^n_f(0), F^n_{|f|}(0) \right)$$

- Consider the program

$$C_{geo2} \triangleright \text{while } (1/2) \{ \text{ } \}
\text{ } \text{ } \text{ } x := -2 \cdot x$$

- According sequence:

$$\left(\frac{x}{2}, \frac{|x|}{2} \right)$$
What about Loops?

- Consider while \((\xi) \{ C \}\)

- Recall \(\text{wp}[\text{while} (\xi) \{ C \}](f) = \sup_n F^n_f(0)\) (KFPT)

- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \infty} \left(F^n_f(0), F^n_{|f|}(0) \right)
\]

- Consider the program

\[
C_{geo2} \triangleright \text{while } (1/2) \{ \text{x := } -2 \cdot \text{x} \}\]

- According sequence:

\[
\left(\frac{x}{2}, \frac{|x|}{2} \right) \quad \left(0, |x| \right)
\]
What about Loops?

- Consider \(\text{while } (\xi) \{ C \} \)
- Recall \(\text{wp } [\text{while } (\xi) \{ C \}] (f) = \sup_n F^n_f(0) \) (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \omega} \left(F^n_f(0), F^n_{|f|}(0) \right)
\]

- Consider the program

\[
C_{geo2} \triangleright \text{ while } (1/2) \{ \\
\quad x := -2 \cdot x \}
\]

- According sequence:

\[
\left(\frac{x}{2}, \frac{|x|}{2} \right) \quad \left(0, |x| \right) \quad \left(\frac{x}{2}, \frac{3|x|}{2} \right)
\]
What about Loops?

- Consider `while (ξ) {C}`
- Recall `wp [while (ξ) {C}] (f) = sup_n F^n_f (0)` (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \omega} \left(F^n_f (0), F^n_{|f|} (0) \right)
\]

- Consider the program

\[
C_{geo2} \triangleright \text{ while } (1/2) \{ \text{ } x := -2 \cdot x \text{ } \}
\]

- According sequence:

\[
\left(\frac{x}{2}, \frac{|x|}{2} \right) \quad \left(0, |x| \right) \quad \left(\frac{x}{2}, \frac{3|x|}{2} \right) \quad \left(0, 2|x| \right)
\]
What about Loops?

- Consider $\text{while } (\xi) \{ C \}$
- Recall $\text{wp [while } (\xi) \{ C \}] (f) = \sup_n F^n_f (0)$ (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

$$\lim_{n \to \omega} \left(F^n_f (0), F^n_{|f|} (0) \right)$$

- Consider the program

$$C_{geo2} \triangleright \text{while } (1/2) \{ \begin{align*} x &:= -2 \cdot x \end{align*} \}$$

- According sequence:

$$\left(\frac{x}{2}, \frac{|x|}{2} \right) \quad \left(0, |x| \right) \quad \left(\frac{x}{2}, \frac{3|x|}{2} \right) \quad \left(0, 2|x| \right) \quad \cdots$$
What about Loops?

- Consider \(\text{while}(\xi) \{ C \} \)
- Recall \(\text{wp}[\text{while}(\xi) \{ C \}](f) = \sup_n F^n_f(0) \) (KFPT)
- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \omega} \left(F^n_f(0), F^n_{|f|}(0) \right)
\]

- Consider the program

\[
C_{geo2} \triangleright \text{while}(1/2) \{ \quad x := -2 \cdot x \}
\]

- According sequence:

\[
\left(\frac{x}{2}, \frac{|x|}{2} \right) \quad \left(0, |x| \right) \quad \left(\frac{x}{2}, \frac{3|x|}{2} \right) \quad \left(0, 2|x| \right) \quad \ldots
\]
What about Loops?

- Consider while \((\xi) \{C\}\)

- Recall \(wp[while(\xi)\{C\}](f) = \sup_n F^n_f(0)\) (KFPT)

- Can we do KFPT–style approximations of loop semantics using integrability–witnessing pairs?

\[
\lim_{n \to \omega} \left(F^n_f(0), F^n_{|f|}(0) \right)
\]

- Consider the program

\[
C_{geo2} \triangleright \text{while } (1/2) \{ x := -2 \cdot x \}
\]

- According sequence:

\[
\left(\frac{x}{2}, \frac{|x|}{2}\right) \quad \left(0, |x|\right) \quad \left(\frac{x}{2}, \frac{3|x|}{2}\right) \quad \left(0, 2|x|\right) \quad \cdots \quad \ddots
\]
Our Solution: Integrability–Witnessing Expectations

\[\mathbb{R}^{\pm \infty} \]

\[f \]

\[g \]

\[-g \]
Our Solution: Integrability–Witnessing Expectations

equivalence relation \approx on pairs: $(f_1, g_1) \approx (f_2, g_2)$ iff $\forall \sigma: g(\sigma) \neq \infty$ implies $f_1(\sigma) = f_2(\sigma)$

Integrability–witnessing expectation (IWE): \approx–equivalence class $H_{f, g}$ of (f, g)

partial order on IWEs: $H_{f, g} \sqsubseteq H_{f', g'}$ iff $\forall \sigma: g'(\sigma) \neq \infty$ implies $f(\sigma) \leq f'(\sigma)$ and $g(\sigma) \leq g'(\sigma)$

\sqsubseteq is not a cpo. No least element!

In particular: $H_{0, 0} \not\sqsubseteq H_{-1, 1}$

Still we can define a wp transformer acting on IWEs
Our Solution: Integrability–Witnessing Expectations

- equivalence relation \approx on pairs: $(f_1, g) \approx (f_2, g)$ iff
 \[\forall \sigma: g(\sigma) \neq \infty \text{ implies } f_1(\sigma) = f_2(\sigma) \]
Our Solution: Integrability–Witnessing Expectations

- equivalence relation \(\approx \) on pairs: \((f_1, g) \approx (f_2, g)\) iff

\[\forall \sigma : g(\sigma) \neq \infty \text{ implies } f_1(\sigma) = f_2(\sigma) \]

- Integrability–witnessing expectation (IWE):

\(\approx \)-equivalence class \(\langle f, g \rangle \) of \((f, g)\)
Our Solution: Integrability–Witnessing Expectations

- equivalence relation \sim on pairs: $(f_1, g) \sim (f_2, g)$ iff

 $$\forall \sigma : g(\sigma) \neq \infty \text{ implies } f_1(\sigma) = f_2(\sigma)$$

- Integrability–witnessing expectation (IWE):

 \sim–equivalence class $\ll f, g \rr$ of (f, g)

- partial order on IWEs: $\ll f, g \rr \sqsubseteq \ll f', g' \rr$ iff

 $$\forall \sigma : g'(\sigma) \neq \infty \text{ implies } f(\sigma) \leq f'(\sigma) \text{ and } g(\sigma) \leq g'(\sigma)$$
Our Solution: Integrability–Witnessing Expectations

- equivalence relation \(\approx\) on pairs: \((f_1, g) \approx (f_2, g)\) iff
 \[\forall \sigma: \ g(\sigma) \neq \infty \implies f_1(\sigma) = f_2(\sigma)\]

- Integrability–witnessing expectation (IWE): \(\approx\)-equivalence class \(\langle f, g \rangle\) of \((f, g)\)

- partial order on IWEs: \(\langle f, g \rangle \sqsubseteq \langle f', g' \rangle\) iff
 \[\forall \sigma: \ g'(\sigma) \neq \infty \implies f(\sigma) \leq f'(\sigma) \text{ and } g(\sigma) \leq g'(\sigma)\]

- \(\sqsubseteq\) is not a cpo. No least element! In particular:
 \(\langle 0, 0 \rangle \not\sqsubseteq \langle -1, 1 \rangle\)
Our Solution: Integrability–Witnessing Expectations

- equivalence relation \(\approx \) on pairs: \((f_1, g) \approx (f_2, g)\) iff
 \[
 \forall \sigma : g(\sigma) \neq \infty \text{ implies } f_1(\sigma) = f_2(\sigma)
 \]

- Integrability–witnessing expectation (IWE):
 \(\approx\)–equivalence class \(\langle f, g \rangle_I\) of \((f, g)\)

- partial order on IWEs: \(\langle f, g \rangle_I \sqsubseteq \langle f', g' \rangle_I\) iff
 \[
 \forall \sigma : g'(\sigma) \neq \infty \text{ implies } f(\sigma) \leq f'(\sigma) \text{ and } g(\sigma) \leq g'(\sigma)
 \]
 \(\sqsubseteq\) is not a cpo. No least element! In particular:
 \[
 \langle 0, 0 \rangle \not\sqsubseteq \langle -1, 1 \rangle
 \]

- Still we can define a wp transformer acting on IWEs
IWEs and Loops

\[
wp[\text{while } (\xi) \{C\}]_{f, g} = \lim_{n \to \omega} F^n_{f, g} \langle 0, 0 \rangle
\]

\[
F_{f, g} \langle X, Y \rangle = [\neg \xi] \cdot \langle f, g \rangle + [\xi] \cdot wp[C] \langle X, Y \rangle
\]
IWEs and Loops

\[
\text{wp[while } (\xi) \{ C \}] f, g = \lim_{n \to \omega} F^n_{f, g} [0, 0]
\]

\[
F_{f, g} [X, Y] = [\neg \xi] \cdot f, g + [\xi] \cdot \text{wp}[C] [X, Y]
\]

- Reconsider the program

\[
C_{geo2} \triangleright \text{ while } (1/2) \{ \\
\hspace{1cm} x := -2 \cdot x \}
\]
IWEs and Loops

\[\text{wp[while } (\xi) \{ C \}] f, g J = \lim_{n \to \omega} F^n_{f, g} J 0, 0 J \]

\[F_{f, g} J X, Y J = [\neg \xi] \cdot \ll f, g J + [\xi] \cdot \text{wp}[C] J X, Y J \]

- Reconsider the program

\[C_{geo2} \triangleright \text{while } (1/2) \{ \]
\[x := -2 \cdot x \}

- According sequence \(F^n_{f, g} J 0, 0 J \):
IWEs and Loops

\[
\text{wp[while } (\xi) \{ C \}] \ll f, g \rr = \lim_{n \to \omega} F^n_{\ll f, g \rr} \ll 0, 0 \rr
\]

\[
F_{\ll f, g \rr} \ll X, Y \rr = [\neg \xi] \cdot \ll f, g \rr + [\xi] \cdot \text{wp}[C] \ll X, Y \rr
\]

- Reconsider the program

\[
C_{\text{geo2}} \triangleright \text{while } (1/2) \{ \\
\quad x := -2 \cdot x \}
\]

- According sequence \(F^n_{\ll f, g \rr} \ll 0, 0 \rr: \)

\[
\ll \frac{x}{2}, \frac{|x|}{2} \rr
\]
IWEs and Loops

\[
wp[\text{while} (\xi) \{C\}] \ll f, g \rr = \lim_{n \to \omega} \mathcal{F}_{\ll f, g \rr}^n \ll 0, 0 \rr
\]

\[
\mathcal{F}_{\ll f, g \rr}^n \ll X, Y \rr = \ll \neg \xi \rr \cdot \ll f, g \rr + \ll \xi \rr \cdot wp[C] \ll X, Y \rr
\]

- Reconsider the program

\[
C_{\text{geo2}} \triangleright \text{while } (1/2) \{ \\
\quad x := -2 \cdot x \}
\]

- According sequence \(\mathcal{F}_{\ll f, g \rr}^n \ll 0, 0 \rr \):

\[
\ll x/2, |x|/2 \rr \ll 0, |x| \rr
\]
IWEs and Loops

\[
\text{wp[while}(\xi)\{C\}]\{f, g\} = \lim_{n \to \omega} F^n_{\xi, f, g} \{0, 0\}
\]

\[
F_{\xi, f, g} \{X, Y\} = [\neg \xi] \cdot \{f, g\} + [\xi] \cdot \text{wp}[C] \{X, Y\}
\]

- Reconsider the program

\[
\text{while } (1/2) \{ \quad x := -2 \cdot x \quad \}\]

- According sequence \(F^n_{\xi, f, g} \{0, 0\} \):

\[
\left\{ \frac{x}{2}, \frac{|x|}{2} \right\} \quad \left\{ 0, |x| \right\} \quad \left\{ \frac{x}{2}, \frac{3|x|}{2} \right\}
\]
IWEs and Loops

\[\text{wp[while } (\xi) \{ C \}] \langle f, g \rangle = \lim_{n \to \omega} F^n_{\langle f, g \rangle} \langle 0, 0 \rangle \]

\[F_{\langle f, g \rangle} \langle X, Y \rangle = \lbrack -\xi \rbrack \cdot \langle f, g \rangle + \lbrack \xi \rbrack \cdot \text{wp}[C] \langle X, Y \rangle \]

■ Reconsider the program

\[C_{geo2} \triangleright \text{ while } (1/2) \{ \]

\[x := -2 \cdot x \}

■ According sequence \(F^n_{\langle f, g \rangle} \langle 0, 0 \rangle \):

\[\langle x, \frac{|x|}{2} \rangle \langle 0, |x| \rangle \langle x, \frac{3|x|}{2} \rangle \langle 0, 2|x| \rangle \]
IWEs and Loops

\[\text{wp[while } (\xi) \{ C \}] f, g \cap \xi = \lim_{n \to \omega} F^n_{\xi} f, g \cap 0, 0 \cap \xi \]

\[F_{\xi} f, g \cap X, Y \cap \xi = [\neg \xi] \cdot f, g \cap \xi + [\xi] \cdot \text{wp}[C] \cap X, Y \cap \xi \]

- Reconsider the program

\[C_{\text{geo2}} \triangleright \text{while } (1/2) \{ \]
\[\quad x := -2 \cdot x \}

- According sequence \(F^n_{\xi} f, g \cap 0, 0 \cap \xi \):
IWEs and Loops

\[wp[\text{while } (\xi) \{C\}] \prec f, g \prec = \lim_{n \to \omega} F^n_{\prec f, g} \prec 0, 0 \prec \]

\[F_{\prec f, g} \prec X, Y \prec = [\neg \xi] \cdot \prec f, g \prec + [\xi] \cdot wp[C] \prec X, Y \prec \]

Reconsider the program

\[C_{\text{geo2}} \triangleright \text{while } (1/2) \{ \]
\[x := -2 \cdot x \} \]

According sequence \(F^n_{\prec f, g} \prec 0, 0 \prec \):

\[\left\lfloor \frac{x}{2}, \left| \frac{x}{2} \right| \right\rfloor \left\lfloor 0, |x| \right\rfloor \left\lfloor \frac{x}{2}, \left| \frac{3x}{2} \right| \right\rfloor \left\lfloor 0, 2|x| \right\rfloor \cdots \xrightarrow{\omega} \left\lfloor 0, \infty \cdot |x| \right\rfloor \]
IWEs and Loops

\[wp[\text{while } (\xi) \{ C \}]\{ f, g \} = \lim_{{n \to \omega}} F_n^{\{ f, g \}} \{ 0, 0 \} \]

\[F^{\{ f, g \}} \{ X, Y \} = [\neg \xi] \cdot \{ f, g \} + [\xi] \cdot wp[C] \{ X, Y \} \]

- Reconsider the program

 \[C_{geo2} \triangleright \text{while } (1/2) \{ \]

 \[x := -2 \cdot x \} \]

- According sequence \[F_n^{\{ f, g \}} \{ 0, 0 \}: \]

 \[\{ x/2, |x|/2 \} \{ 0, |x| \} \{ x/2, 3|x|/2 \} \{ 0, 2|x| \} \ldots \omega \rightarrow \{ x/2, \infty \cdot |x| \} \]
IWEs and Loops

\[\text{wp[while}(\xi) \{C\}]f, g \succeq \lim_{n \to \omega} F^n_{f, g} \langle 0, 0 \rangle \]

\[F_{f, g} \langle X, Y \rangle = [\neg \xi] \cdot f, g \succeq + [\xi] \cdot \text{wp}[C] \langle X, Y \rangle \]

- Reconsider the program

\[C_{geo2} \triangleright \text{while } (1/2) \{ \]
\[x := -2 \cdot x \}

- According sequence \(F^n_{f, g} \langle 0, 0 \rangle : \)

\[
\begin{align*}
\langle x, \frac{|x|}{2} \rangle & \langle 0, |x| \rangle \\
\langle x, \frac{3|x|}{2} \rangle & \langle 0, 2|x| \rangle \\
& \cdots \xrightarrow{\omega} \langle 17 \cdot x, \infty \cdot |x| \rangle
\end{align*}
\]
Well-definedness of while-loop semantics:
\[
\lim_{n \to \omega} F_n H f, g I_{H 0, 0} \]
always exists and is unique.

Soundness:
If \(\text{wp}[C_{H f, |f| I}] = H f, g' I_{\sigma} \neq \infty \),
then \(f'(\sigma) = \text{EV}_{J_{C_K \sigma}}(f) \).

Monotonicity:
If \(H f, g I \sqsubseteq H f', g' I_{\sigma} \),
then \(\text{wp}[C_{H f, g I}] \sqsubseteq \text{wp}[C_{H f', g' I}] \).
Properties of wp Transformer Acting on IWEs

Well-definedness of while-loop semantics:
\[\lim_{n \to \omega} F_n H_f, g I H_0, 0 I \] always exists and is unique.

Soundness:
If \(\text{wp}[C] H_f, |f| I = H_f', g' I \), \(\sigma \neq \infty \), then
\[f'(\sigma) = \text{EV}_J C K \sigma (f) \].

Monotonicity:
If \(H_f, g I \sqsubseteq H_f', g' I \), then \(\text{wp}[C] H_f, g I \sqsubseteq \text{wp}[C] H_f', g' I \).
Properties of wp Transformer Acting on IWEs

- **Well-definedness of while-loop semantics:**

 \[
 \lim_{n \to \omega} F_n^{f, g} \langle 0, 0 \rangle \text{ always exists and is unique.}
 \]
Properties of wp Transformer Acting on IWEs

- **Well-definedness of while-loop semantics:**
 \[\lim_{n \to \omega} F^n \{ f, g \} \{ 0, 0 \} \text{ always exists and is unique.} \]

- **Soundness:**
 If \(\text{wp}[C]\{f, |f|\} = \{ f', g' \}, g'(\sigma) \neq \infty \),
Properties of wp Transformer Acting on IWEs

- **Well-definedness of while-loop semantics:**
 \[
 \lim_{n \to \omega} F_n f, g \downarrow 0, 0 \]
 always exists and is unique.

- **Soundness:**
 If \(wp[C] f, |f| \downarrow f', g' \downarrow \), \(g'(\sigma) \neq \infty \), then
 \[
 f'(\sigma) = EV_{[C] \sigma}(f).
 \]
Properties of \(\text{wp} \) Transformer Acting on IWEs

- **Well–definedness of while–loop semantics:**
 \[
 \lim_{n \to \omega} F^n_{f, g} \langle 0, 0 \rangle \text{ always exists and is unique.}
 \]

- **Soundness:**
 If \(\text{wp}[C] \langle f, |f| \rangle = \langle f', g' \rangle, \ g'(\sigma) \neq \infty \), then
 \[
 f'(\sigma) = \text{EV}_{[C]}(f).
 \]

- **Monotonicity:**
 If \(\langle f, g \rangle \sqsubseteq \langle f', g' \rangle \)
Properties of wp Transformer Acting on IWEs

- **Well-definedness of while-loop semantics:**
 \[
 \lim_{n \to \omega} F^n_{f,g}[0,0] \text{ always exists and is unique.}
 \]

- **Soundness:**
 If \(\text{wp}[C][f,|f|] = [f',g'], g'(|\sigma|) \neq \infty\), then
 \[
 f'(\sigma) = \text{EV}_{[C]|\sigma}(f).
 \]

- **Monotonicity:**
 If \([f,g] \subseteq [f',g']\), then \(\text{wp}[C][f,g] \subseteq \text{wp}[C][f',g']\).
Reasoning about While–Loops
Reasoning about While–Loops

Invariant Rule for While–Loops

Let $I, G \in \mathbb{E}$ and $\{H_n\}_{n \in \mathbb{N}} \subseteq \mathbb{E}$. If

\[
F_{|f|+f}(I) \leq I, \quad F_g(G) \leq G, \\
H_0 \leq F_{|f|}(0), \quad \text{and} \quad H_{n+1} \leq F_{|f|}(H_n),
\]

then

\[
\text{wp}[\text{while} (\xi) \{C'\}] f, g \trianglelefteq \bigcup_{n} I - \sup_{H_n, 2 \cdot G}.
\]
Example

Geometric distribution with alternating sign:

\[C_{\text{altgeo}} : \quad \text{while } (1/2) \{ x := -x - \text{sign}(x) \} \]
Example

Geometric distribution with alternating sign:

\[C_{altgeo} : \quad \text{while } (1/2) \{ x := -x - \text{sign}(x) \} \]

- Expected value of \(x \) after execution of \(C_{altgeo} \) is \(\frac{x}{3} - \frac{\text{sign}(x)}{9} \)
Example

Geometric distribution with alternating sign:

\[C_{\text{altgeo}} : \text{while } (1/2) \{ x := -x - \text{sign}(x) \} \]

- Expected value of \(x \) after execution of \(C_{\text{altgeo}} \) is \(\frac{x}{3} - \frac{\text{sign}(x)}{9} \)

- Our technique yields \(\left\lfloor \frac{x}{3} - \frac{\text{sign}(x)}{9}, |x| + 1 \right\rfloor \)
Example

Geometric distribution with alternating sign:

\[C_{altgeo} : \quad \text{while } (1/2) \{ x := -x - \text{sign}(x) \} \]

- Expected value of \(x \) after execution of \(C_{altgeo} \) is \(\frac{x}{3} - \frac{\text{sign}(x)}{9} \)
- Our technique yields \(\left\lfloor \frac{x}{3} - \frac{\text{sign}(x)}{9}, |x| + 1 \right\rfloor \)
- Traditional wp does not allow mixed–sign post expectation \(x \)
Example

Geometric distribution with alternating sign:

\[C_{altgeo} : \text{ while } (1/2) \{ x := -x - \text{sign}(x) \} \]

- Expected value of \(x \) after execution of \(C_{altgeo} \) is \(\frac{x}{3} - \frac{\text{sign}(x)}{9} \)

- Our technique yields \(\left\lfloor \frac{x}{3} - \frac{\text{sign}(x)}{9} \right\rfloor, |x| + 1 \)

- Traditional wp does not allow mixed–sign post expectation \(x \)
 - Workaround: Jordan decomposition of \(x \) into \(+x \) and \(-x \)
Example

Geometric distribution with alternating sign:

\[C_{altgeo} : \text{while } (1/2) \{ x := -x - \text{sign}(x) \} \]

- Expected value of \(x \) after execution of \(C_{altgeo} \) is \(\frac{x}{3} - \frac{\text{sign}(x)}{9} \)
- Our technique yields \(\left\{ \frac{x}{3} - \frac{\text{sign}(x)}{9}, |x| + 1 \right\} \)
- Traditional wp does not allow mixed–sign post expectation \(x \)
 - Workaround: Jordan decomposition of \(x \) into \(+x \) and \(-x \)
 - Takes about twice the effort for \(C_{altgeo} \) with standard wp
Example

Geometric distribution with alternating sign:

\[C_{\text{altgeo}} : \quad \text{while} \ (1/2) \ \{x := -x - \text{sign}(x)\} \]

- Expected value of \(x \) after execution of \(C_{\text{altgeo}} \) is \(\frac{x}{3} - \frac{\text{sign}(x)}{9} \)

- Our technique yields \(\left\{ \frac{x}{3} - \frac{\text{sign}(x)}{9}, \ |x| + 1 \right\} \)

- Traditional wp does not allow mixed–sign post expectation \(x \)
 - Workaround: Jordan decomposition of \(x \) into \(+x \) and \(-x \)
 - Takes (me) about twice the effort for \(C_{\text{altgeo}} \) with standard wp
Summary
Our transformer allows for reasoning about mixed–sign expectations at source code level.
Summary

- Our transformer allows for reasoning about mixed–sign expectations at source code level
- Future work: Connection to an operational semantics
Summary

- Our transformer allows for reasoning about mixed–sign expectations at source code level
- Future work: Connection to an operational semantics
- Future work: Come up with nicer proof rules for loops!
Summary

- Our transformer allows for reasoning about mixed-sign expectations at source code level
- Future work: Connection to an operational semantics
- Future work: Come up with nicer proof rules for loops!
- What could all this be useful for (i.e. the actual motivation)?
Summary

- Our transformer allows for reasoning about mixed-sign expectations at source code level
- Future work: Connection to an operational semantics
- Future work: Come up with nicer proof rules for loops!
- What could all this be useful for (ie. the actual motivation)?
 - Expected values of signed program variables
Summary

- Our transformer allows for reasoning about mixed–sign expectations at source code level
- Future work: Connection to an operational semantics
- Future work: Come up with nicer proof rules for loops!
- What could all this be useful for (ie. the actual motivation)?
 - Expected values of signed program variables
 - Calculus for amortized expected run–times
Summary

- Our transformer allows for reasoning about mixed–sign expectations at source code level
- Future work: Connection to an operational semantics
- Future work: Come up with nicer proof rules for loops!
- What could all this be useful for (ie. the actual motivation)?
 - Expected values of signed program variables
 - Calculus for amortized expected run–times

Thank you for your kind attention!
Backup Slides: Rules for wp Acting on IWEs

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>(\text{wp}[C] \langle f, g \rangle)</td>
</tr>
<tr>
<td>\text{skip}</td>
<td>(\langle f, g \rangle)</td>
</tr>
</tbody>
</table>
Rules for the `wp` Transformer Acting on \mathbb{P}/\approx

<table>
<thead>
<tr>
<th>C</th>
<th>$\text{wp}[C] \downarrow f, g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>$\downarrow f, g$</td>
</tr>
<tr>
<td>$x := E$</td>
<td>$\downarrow f[x/E], g[x/E]$</td>
</tr>
</tbody>
</table>
Backup Slides: Rules for wp Acting on IWEs

Rules for the wp Transformer Acting on \mathbb{P}/\sim

<table>
<thead>
<tr>
<th>C</th>
<th>$\text{wp} [C] \langle f, g \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>$\langle f, g \rangle$</td>
</tr>
<tr>
<td>$x := E$</td>
<td>$\langle f [x/E], g [x/E] \rangle$</td>
</tr>
<tr>
<td>$C_1; C_2$</td>
<td>$\text{wp} [C_1] (\text{wp}[C_2]\langle f, g \rangle)$</td>
</tr>
</tbody>
</table>
Backup Slides: Rules for wp Acting on IWEs

Rules for the wp Transformer Acting on \mathbb{P}/\approx

<table>
<thead>
<tr>
<th>C</th>
<th>$\text{wp }[C] \langle f, g \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>$\langle f, g \rangle$</td>
</tr>
<tr>
<td>$x := E$</td>
<td>$\langle f[x/E], g[x/E] \rangle$</td>
</tr>
<tr>
<td>$C_1; C_2$</td>
<td>$\text{wp }[C_1] (\text{wp}[C_2] \langle f, g \rangle)$</td>
</tr>
<tr>
<td>if $(\xi) {C_1} \text{ else } {C_2}$</td>
<td>$[[\xi]] \cdot \text{wp}[C_1] \langle f, g \rangle + [[\neg \xi]] \cdot \text{wp}[C_2] \langle f, g \rangle$</td>
</tr>
</tbody>
</table>
Backup Slides: Rules for \(\text{wp} \) Acting on IWEs

Rules for the \(\text{wp} \) Transformer Acting on \(\mathbb{P}/\approx \)

<table>
<thead>
<tr>
<th>(C)</th>
<th>(\text{wp}[C] \ll f, g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>(\ll f, g)</td>
</tr>
<tr>
<td>(x := E)</td>
<td>(\ll f \left[x/E \right], g \left[x/E \right])</td>
</tr>
<tr>
<td>(C_1; C_2)</td>
<td>(\text{wp}[C_1] \left(\text{wp}[C_2] \ll f, g \right))</td>
</tr>
<tr>
<td>if ((\xi)) { (C_1) } else { (C_2) }</td>
<td>(\ll \xi \cdot \text{wp}[C_1] \ll f, g + \ll \neg \xi \cdot \text{wp}[C_2] \ll f, g)</td>
</tr>
<tr>
<td>while ((\xi)) { (C') }</td>
<td>(\lim_{n \to \omega} F_{\ll f, g}^n \ll 0, 0)</td>
</tr>
</tbody>
</table>

\[
F_{\ll f, g} \ll X, Y \\ll = \ll \neg \xi \cdot \ll f, g + \ll \xi \cdot \text{wp}[C'] \ll X, Y
\]
Basic idea:

If \(\sum a_i \) absolutely convergent, then

\[
\sum a_i = \sum (|a_i| + a_i) - \sum |a_i|
\]

Apply this principle to \(f, g \):

\[
F_n H f, g I H 0, 0 I = H F_n |f| + f(0) - F_n |f|(0), F_n g(0) I
\]

So how to over-approximate \(\lim_{n \to \omega} F_n H f, g I H 0, 0 I \) w.r.t. \(\preceq \)?
Backup Slides: Reasoning about While–Loops

- Basic idea: \(\sum a_i \) absolutely convergent if \(\sum |a_i| \) convergent
Backup Slides: Reasoning about While–Loops

- Basic idea: $\sum a_i$ absolutely convergent if $\sum |a_i|$ convergent
- If $\sum a_i$ abs. conv., then $\sum a_i = \sum (|a_i| + a_i) - \sum |a_i|$
Backup Slides: Reasoning about While–Loops

- Basic idea: $\sum a_i$ absolutely convergent if $\sum |a_i|$ convergent
- If $\sum a_i$ abs. conv., then $\sum a_i = \sum (|a_i| + a_i) - \sum |a_i|$
- Apply this principle to $F_{\ell f, g}^{n}$:

$$F_{\ell f, g}^{n}(0, 0) = \bigcup F_{|f|+f}^{n}(0) - F_{|f|}^{n}(0), \quad F_{g}^{n}(0)$$
Backup Slides: Reasoning about While–Loops

- Basic idea: $\sum a_i$ absolutely convergent if $\sum |a_i|$ convergent
- If $\sum a_i$ abs. conv., then $\sum a_i = \sum (|a_i| + a_i) - \sum |a_i|
- Apply this principle to $F_{f,g}^n$:

$$F_{f,g}^n(0, 0) = \{ F_{|f|+f(0)}^n(0), F_g^n(0) \}$$

- So how to over–approximate $\lim_{n \to \omega} F_{f,g}^n(0, 0)$ w.r.t. \sqsubseteq?
Backup Slides: Reasoning about While–Loops

- Basic idea: $\sum a_i$ absolutely convergent if $\sum |a_i|$ convergent
- If $\sum a_i$ abs. conv., then $\sum a_i = \sum (|a_i| + a_i) - \sum |a_i|
- Apply this principle to $F_{f,g}^n$: $F_{f,g}^n(0,0) = \mathcal{L} F_{|f|+f}^n(0) - F_{|f|}^n(0), F_g^n(0) \mathcal{L}$
- So how to over–approximate $\lim_{n \to \omega} F_{f,g}^n(0,0) \mathcal{L}$ w.r.t. \sqsubseteq?
- Over–approximate $\sup_n F_{|f|+f}^n(0)$
Backup Slides: Reasoning about While–Loops

- Basic idea: $\sum a_i$ absolutely convergent if $\sum |a_i|$ convergent.
- If $\sum a_i$ abs. conv., then $\sum a_i = \sum (|a_i| + a_i) - \sum |a_i|$
- Apply this principle to $F_{f,g}^\ell$:

$$F_{f,g}^\ell(0, 0) = \bigcap F_{|f| + f}(0) - F_{|f|}(0), \quad F_g(0)$$

- So how to over–approximate $\lim_{n \to \omega} F_{f,g}^\ell(0, 0)$ w.r.t. \sqsubseteq?
 - Over–approximate $\sup_n F_{|f| + f}(0)$
 - Under–approximate $\sup_n F_{|f|}(0)$
Backup Slides: Reasoning about While–Loops

- Basic idea: \(\sum a_i \) absolutely convergent if \(\sum |a_i| \) convergent
- If \(\sum a_i \) abs. conv., then \(\sum a_i = \sum (|a_i| + a_i) - \sum |a_i| \)
- Apply this principle to \(F_{\ell f, g}^n I H 0, 0 I \):

\[
F_{\ell f,g}^n \lhd 0, 0 \rhd = \bigcup \left[F_{|f| + f(0)}^n - F_{|f|}^n(0) , F_g^n(0) \right]
\]

- So how to over–approximate \(\lim_{n \to \omega} F_{\ell f,g}^n \lhd 0, 0 \rhd \) w.r.t. \(\sqsubseteq \)?
 - Over–approximate \(\sup_n F_{|f| + f(0)}^n \)
 - Under–approximate \(\sup_n F_{|f|}^n(0) \)
 - Over–approximate \(\sup_n F_g^n(0) \)
Backup Slides: Reasoning about While–Loops

Reminder: \(F^n_{\xi f, g}(0, 0) = \left\{ F^n_{|f|+f}(0) - F^n_{|f|}(0), F^n_g(0) \right\} \)
Reminder: \(F^n_{l_f, g} (\{0, 0\}) = \bigcap F^n_{|f|+f} (0) - F^n_{|f|} (0), F^n_{g} (0) \bigcap \)

Invariant Rule for While–Loops

Let \(I, G \in \mathbb{E} \) and \(\{H_n\}_{n \in \mathbb{N}} \subseteq \mathbb{E} \). If

\[
F_{|f|+f} (I) \leq I, \quad F_{g} (G) \leq G,
\]

\[
H_0 \leq F_{|f|} (0), \quad \text{and} \quad H_{n+1} \leq F_{|f|} (H_n),
\]

then

\[
\wp[\text{while} (\xi) \{C'\}] \{ f, g \} \subseteq \bigcap I - \sup_n H_n, 2 \cdot G \bigcap .
\]
Recall the definition of \(\text{wp} \):

\[
\text{wp}\left[C \right] (X) = \text{lfp} (X \cdot J \neg \xi K \cdot f + J \xi K \cdot \text{wp}\left[C \right] (X))
\]

Theorem: Upper Bounds from Upper Invariants

Let \(I \in \mathcal{E} \).

\[
F f(I) \leq I \implies \text{wp}\left[\text{while} (\xi) \{ C \} \right] (f) \leq I.
\]
Backup Slides: Upper Bounds for \(\text{wp} \) of While–Loops

Recall the definition of \(\text{wp} [\text{while} (\xi) \{ C \}] (f) \):

\[
\text{lfp} \ X \cdot [\neg \xi] \cdot f + [\xi] \cdot \text{wp} [C] (X)
\]
Backup Slides: Upper Bounds for wp of While–Loops

Recall the definition of \(\text{wp} \left[\text{while} (\xi) \{ C \} \right] (f) \):

\[
\text{lfp } X \cdot \left[\neg \xi \right] \cdot f + \left[\xi \right] \cdot \text{wp} [C] (X) =: F_f (X)
\]
Backup Slides: Upper Bounds for wp of While–Loops

Recall the definition of \(\text{wp} [\text{while} (\xi) \{C\}] (f) \):

\[
\text{lfp } X \cdot \underbrace{\lnot \xi \cdot f + \llbracket \xi \rrbracket \cdot \text{wp}[C](X)}_{=: F_f(X)}
\]

Theorem: Upper Bounds from Upper Invariants

Let \(I \in \mathbb{E} \).
Recall the definition of $\text{wp} \left[\text{while} \left(\xi \right) \{C\} \right] (f)$:

$$\text{lfp} X \cdot \lfloor \neg \xi \rfloor \cdot f + \lfloor \xi \rfloor \cdot \text{wp} \left[C \right] (X) =: F_f(X)$$

Theorem: Upper Bounds from Upper Invariants

Let $I \in \mathbb{E}$. Then

$$F_f(I) \leq I$$
Recall the definition of \(\text{wp} [\text{while} (\xi) \{ C \}] (f) \):

\[
\text{lfp } X \cdot \lbrack \neg \xi \rbrack \cdot f + \lbrack \xi \rbrack \cdot \text{wp} [C] (X) =: F_f(X)
\]

Theorem: Upper Bounds from Upper Invariants

Let \(I \in \mathbb{E} \). Then

\[
F_f(I) \leq I \implies \text{wp} [\text{while} (\xi) \{ C \}] (f) \leq I.
\]
Backup Slides: Lower Bounds for \(wp \) of While–Loops

Reasoning on lower bounds is more involved:
Find an argument for being below a least fixed point!

Theorem: Lower Bounds from Lower \(\omega \)–Invariants

Let
\[
\{ I_n \}_{n \in \mathbb{N}} \subseteq E
\]

Then
\[
I_0 \leq F(f)(0) \quad \text{and} \quad I_{n+1} \leq F(f)(I_n)
\]

implies
\[
\sup_{n \in \mathbb{N}} I_n \leq wp[while(\xi)\{C\}](f).
\]
Backup Slides: Lower Bounds for wp of While–Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point!
Reasoning on lower bounds is more involved:

Find an argument for being **below a least fixed point**!

Theorem: Lower Bounds from Lower ω–Invariants

Let $\{I_n\}_{n \in \mathbb{N}} \subseteq \mathbb{E}$.
Backup Slides: Lower Bounds for wp of While–Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point!

Theorem: Lower Bounds from Lower \(\omega \)–Invariants

Let \(\{I_n\}_{n \in \mathbb{N}} \subseteq \mathbb{E} \). Then

\[
I_0 \leq F_f(0) \quad \text{and} \quad I_{n+1} \leq F_f(I_n)
\]
Backup Slides: Lower Bounds for wp of While–Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point!

Theorem: Lower Bounds from Lower ω–Invariants

Let $\{I_n\}_{n \in \mathbb{N}} \subseteq \mathcal{E}$. Then

$$I_0 \leq F_f(0) \quad \text{and} \quad I_{n+1} \leq F_f(I_n)$$

implies

$$\sup_{n \in \mathbb{N}} I_n \leq \text{wp}[\text{while}(\xi)\{C\}](f).$$
Backup Slides: Park’s Lemma
Backup Slides: Park’s Lemma

\[lfp F \leq I \]

\[F(I) \leq I \]

\[gfp F \]

\[\infty \]

\[0 \]

\[I \]
Backup Slides: Park’s Lemma

The diagram illustrates the concept of fixed points in the context of Park’s Lemma. The notation "\(F(I) \)" and "\(I \)" are used to denote specific values, and the fixed points are represented as "lfp \(F \)" and "gfp \(F \)". The diagram visually propagates these values through a series of mapped points, indicating the flow of information or state changes in the context of the lemma.
Backup Slides: Park’s Lemma

\[F(I) \leq I \quad \text{implies} \quad \text{lfp } F \leq I \]
Backup Slides: Park’s Lemma

\[F(I) \leq I \quad \text{implies} \quad \text{lfp } F \leq I \]
Backup Slides: Park’s Lemma

\[F(I) \leq I \quad \text{implies} \quad \text{lfp } F \leq I \]
PPDL’s While Rule [Kozen ’85, p. 168]

\[\neg B \cdot f + B \cdot \langle C \rangle I \preceq I \text{ implies } \langle \text{while}(B)\{C\}\rangle f \preceq I , \]

for \(f \geq 0 \).