Introduction to IC3 & IC3CFA

Tim Lange

Software Modeling and Verification Group, RWTH Aachen

MOVES Seminar, September 23, 2016
Outline

Inductive Invariants

Finite State Inductive Strengthening

IC3

IC3 on Control Flow Automata
Inductive Invariants

Inductivity

A property P is inductive if it satisfies initiation and consecution:

- **Initiation:** $I \Rightarrow P$
- **Consecution:** $P \land T \Rightarrow P'$

Inductive invariant

Given a property P of a system, if P is inductive on S it is an invariant on S.

Inductive Invariants

Inductivity

A property P is inductive if it satisfies initiation and consecution:

Initiation: $I \Rightarrow P$

Consecution: $P \land T \Rightarrow P'$

Inductive invariant

Given a property P of a system, if P is inductive on S it is an invariant on S.

Not vice versa

Even if P is an invariant on S, it may not be inductive.

Finite State Inductive Strengthening

Proving a property P on a system S

Proving that P holds on S in general is hard. But if P would be inductive, it would be trivial. If we only had a way to make P inductive ...

Inductive Strengthening

Try to find a formula F that is an inductive strengthening of P, i.e.

Initiation: $I \Rightarrow P \land F$

Consecution: $P \land F \land T \Rightarrow P' \land F'$

Finite State Inductive Strengthening

The bad guys

An F-state that has a transition to a $\neg F$-state is called *Counterexample to Induction* (CTI) and is a direct witness for why F is not inductive.

Finding CTIs

A CTI can be found using a simple satisfiability query

\[\text{sat}(F \land T \land \neg F). \]

If the query is sat, there exists a CTI and we can extract the state from the model of the solver (satisfying variable assignment).
Handling CTIs

After finding a CTI s we check whether there exists a *minimal inductive subclause* for $\neg s$. If not, we update P that we have to prove that s is not reachable. Otherwise we can add $\neg s$ to the strengthening F.

Finite State Inductive Strengthening
Handling CTIs

After finding a CTI s we check whether there exists a *minimal inductive subclause* for $\neg s$. If not, we update P that we have to prove that s is not reachable. Otherwise we can add $\neg s$ to the strengthening F.

Happy End?

FSIS terminates if either

- $P \land F$ becomes inductive, or
- $\not I \Rightarrow P$ anymore.
Finding F is hard

In many cases it can be pretty hard to come up with such a strengthening. Especially finding a minimal inductive subclause e that is inductive relative to $P \land F$ is hard.

Solution

Instead of computing F directly, compute a sequence F_0, \ldots, F_k, called frames, to find an inductive strengthening within these F_i.

Frames

For a frame sequence F_0, \ldots, F_k to be an inductive strengthening, the following must hold:

1. $I \Rightarrow F_0$
2. $F_i \Rightarrow F_{i+1}$
3. $F_i \Rightarrow P$
4. $F_i \land T \Rightarrow F'_{i+1}$
Algorithm 1 Outer loop

```plaintext
function bool prove
    Check 0- and 1-step counterexamples
    Initialise frames $F_0 = I$, $F_1 = P$
    for $k = 1$ to ...
        Blocking phase
        Propagation phase
        Check termination
```

IC3

Handling CTIs

Given a CTI c in the last frame F_k, we check whether c is reachable from F_{k-1} in one step.

Thinking inductive:

From an F_{k-1} state that is not c, do we stay in not c after one step? In other words: Is $\neg c$ inductive relative to F_k:

$$F_k \land \neg c \land T \Rightarrow \neg c$$

How to check validity

Validity of the implication can be solved as $\text{unsat}(F_k \land \neg c \land T \land c)$.
Termination

If for any frame F_i, $0 \leq i < k$ it holds that $F_i = F_{i+1}$ then

$$F_i \land T \Rightarrow F_{i+1}$$

$$\Leftrightarrow F_i \land T \Rightarrow F_i$$
Consider the transition system $\mathcal{M} = (X, I, T)$
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
Consider the transition system \(\mathcal{M} = (X, I, T) \) and the property \(P(X) \).
Consider the transition system \(\mathcal{M} = (X, I, T) \) and the property \(P(X) \).
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.

![Diagram of a transition system with nodes a, b, c, d, e, v, and w, and edges connecting them with labels F_0, F_1, and $F_2 = P$.]
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.

\[F_0 \leq F_1 \leq F_2 \leq F_3 = P \]
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.

![Diagram showing states and transitions related to the transition system \mathcal{M}.]
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.

\[F_3 = P \]

\[F_0 \rightarrow F_1 \rightarrow F_2 \rightarrow F_3 \]
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
Consider the transition system $\mathcal{M} = (X, I, T)$ and the property $P(X)$.
IC3 on Control Flow Automata

Motivation

Lifting to software model checking

- IC3 had a deep impact in hardware model checking
- Showed much better performance than known techniques
- Nowadays employed in most major hardware model checking tools

Challenges

- Domain in hardware model checking finite (bit-level)
- How to handle infinite state spaces?
- How to encode finite control flow?
Control Flow Automaton (CFA)

A CFA $A = (L, G, l_0, l_E)$ consists of a set of locations $L = \{0, \ldots, n\}$ and edges in $G \subseteq L \times QFFO \times L$ labeled with quantifier-free first-order formulas, an initial location l_0, and an error location l_E.

1. CG12.
IC3 on Control Flow Automata

Control Flow Automaton (CFA)

A CFA $\mathcal{A} = (L, G, l_0, l_E)$ consists of a set of locations $L = \{0, \ldots, n\}$ and edges in $G \subseteq L \times QFFO \times L$ labeled with quantifier-free first-order formulas, an initial location l_0, and an error location l_E.

Idea

- Encoding of control flow using special pc variable not efficient\(^1\)
- Extraction of control flow advantageous
- Instead of unrolling into ART [CG12] apply IC3 directly on CFA
- For every location in the CFA construct frames F_0, \ldots, F_k
- Frames represent overapproximations of i-step reachability in location
- Explicit control flow locations allow to take only single transitions into account

\(^1\)CG12.
IC3 on Control Flow Automata

Example

Initial location: l_0
Error location: l_E
Terminating location: 2
IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>$i:$</th>
<th>l_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>$i:$</th>
<th>$l:$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

CTI $(1,x \neq y)$, level 1
IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>i</th>
<th>l</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

CTI $(1,x \neq y)$, level 1

$SAT(F_{(0,1)} \land \neg (x \neq y) \land T_{1 \rightarrow 1} \land x' \neq y')$
IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>i</th>
<th>l_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

CTI $(1, x \neq y)$, level 1

$\text{SAT}(F_{(0,1)} \land \neg(x \neq y) \land T_{1 \rightarrow 1} \land x' \neq y') \times$
IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>i</th>
<th>l</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>l_0</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

CTI $(1, x \neq y)$, level 1

\[SAT(F_{(0,1)} \land \neg(x \neq y) \land T_{1 \rightarrow 1} \land x' \neq y') \times \]
\[SAT(F_{(0,l_0)} \land T_{l_0 \rightarrow 1} \land x' \neq y') \]
IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>i</th>
<th>l</th>
<th>l_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

CTI $(1, x \neq y)$, level 1

$SAT(F_{(0,1)} \land \neg(x \neq y) \land T_{1 \rightarrow 1} \land x' \neq y')$

$SAT(F_{(0, l_0)} \land T_{l_0 \rightarrow 1} \land x' \neq y')$

IC3 on Control Flow Automata

Example

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>l:</th>
<th>l_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>i:</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>$x = y$</td>
</tr>
</tbody>
</table>

CTI $(1, x \neq y)$, level 1

$SAT(F_{(0,1)} \land \neg(x \neq y) \land T_{1\to1} \land x' \neq y') \times$

$SAT(F_{(0,l_0)} \land T_{l_0\to1} \land x' \neq y') \times$
IC3 on Control Flow Automata

Example

I: l_0

\[x++; \]
\[y++; \]

Frames $F_{(i,l)}$

<table>
<thead>
<tr>
<th>i</th>
<th>l_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td>$x = y$</td>
</tr>
</tbody>
</table>
Example

A control flow automaton with transitions:
- $x++$ and $y++$ transitions to state 1 from l_0.
- $x \neq y$ transitions to l_E from 1.
- $x = y$ transitions from 1 to 2.

Frames $F(i,l)$

<table>
<thead>
<tr>
<th>$i:$</th>
<th>$l:$</th>
<th>l_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>true</td>
<td></td>
<td>$x = y$</td>
</tr>
<tr>
<td>2</td>
<td>true</td>
<td></td>
<td>$x = y$</td>
</tr>
</tbody>
</table>
References

Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In: VMCAI. 2011, pp. 70–87.

Alessandro Cimatti and Alberto Griggio. “Software Model Checking via IC3”. In: CAV. 2012, pp. 277–293.