Analyzing Expected Outcomes and (Positive) Almost-Sure Termination of Probabilistic Programs is Hard

Benjamin Kaminski Joost-Pieter Katoen

27.2.2015
Motivation

- Probabilistic Programs are like ordinary programs, except:
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p
- **Analysis problems** we consider:
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- Analysis problems we consider:
 - Determine the value of a variable after program execution
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Decide whether the program terminates
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine **expected** values
 - Decide whether the program terminates
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p
- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates
 - Decide almost–sure termination
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates (in an expected finite number of steps)
 - Decide almost–sure termination
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates (in an expected finite number of steps)
 - Decide (positive) almost–sure termination
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates (in an expected finite number of steps) [on all inputs]
 - Decide (positive) almost–sure termination
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates (in an expected finite number of steps) [on all inputs]
 - Decide [universal] (positive) almost–sure termination
Motivation

- Probabilistic Programs are like ordinary programs, except:
 - Allow for random choice on how to continue the execution
 - Random choice is done with some specified probability p

- **Analysis problems** we consider:
 - Determine the value of a variable after program execution
 - Determine expected values (expected outcomes)
 - Decide whether the program terminates (in an expected finite number of steps) [on all inputs]
 - Decide [universal] (positive) almost–sure termination

How hard is it to solve these analysis problems?
Dissent in the Literature

[Morgan 1996]

“[...] probabilistic reasoning for partial correctness [...] is not much more complex than standard reasoning.”
Dissent in the Literature

[Morgan 1996]

“[...] probabilistic reasoning for partial correctness [...] is not much more complex than standard reasoning.”

[Esparza et al. 2012]

“[Ordinary] termination is a purely topological property [...], but almost–sure termination is not. [...] proving almost–sure termination requires arithmetic reasoning not offered by termination provers.”
The Arithmetical Hierarchy

Definition

Class Σ_0^n is defined as $\Sigma_0^n = \{ A \mid A = \{ \vec{x} \mid \exists y_1 \forall y_2 \exists y_3 \cdots \exists y_n : (\vec{x}, y_1, y_2, y_3, \ldots, y_n) \in R \}$, R is a decidable relation.

Class Π_0^n is defined as $\Pi_0^n = \{ A \mid A = \{ \vec{x} \mid \forall y_1 \exists y_2 \forall y_3 \cdots \exists y_n : (\vec{x}, y_1, y_2, y_3, \ldots, y_n) \in R \}$, R is a decidable relation.

Class Δ_0^n is defined as $\Delta_0^n = \Sigma_0^n \cap \Pi_0^n$.

Benjamin Kaminski
Analyzing Probabilistic Programs is Hard 27.2.2015
The Arithmetical Hierarchy

- Class Σ^0_n is defined as

$$\Sigma^0_n = \left\{ A \mid A = \left\{ \vec{x} \mid \exists y_1 \forall y_2 \exists y_3 \cdots \exists / \forall y_n : (\vec{x}, y_1, y_2, y_3, \ldots, y_n) \in R \right\}, R \text{ is a decidable relation} \right\}$$
The Arithmetical Hierarchy

- Class \(\Sigma^0_n \) is defined as

\[
\Sigma^0_n = \left\{ A \mid A = \{ \overline{x} \mid \exists y_1 \forall y_2 \exists y_3 \cdots \exists /\forall y_n : (\overline{x}, y_1, y_2, y_3, \ldots, y_n) \in R \} \right\},
\]

where \(R \) is a decidable relation.

- Class \(\Pi^0_n \) is defined as

\[
\Pi^0_n = \left\{ A \mid A = \{ \overline{x} \mid \forall y_1 \exists y_2 \forall y_3 \cdots \exists /\forall y_n : (\overline{x}, y_1, y_2, y_3, \ldots, y_n) \in R \} \right\},
\]

where \(R \) is a decidable relation.
The Arithmetical Hierarchy

- Class Σ^0_n is defined as
 \[\Sigma^0_n = \left\{ A \mid A = \{ \vec{x} \mid \exists y_1 \forall y_2 \exists y_3 \cdots \exists /\forall y_n : (\vec{x}, y_1, y_2, y_3, \ldots, y_n) \in R \} \right\}, \]
 R is a decidable relation

- Class Π^0_n is defined as
 \[\Pi^0_n = \left\{ A \mid A = \{ \vec{x} \mid \forall y_1 \exists y_2 \forall y_3 \cdots \exists /\forall y_n : (\vec{x}, y_1, y_2, y_3, \ldots, y_n) \in R \} \right\}, \]
 R is a decidable relation

- Class Δ^0_n is defined as $\Delta^0_n = \Sigma^0_n \cap \Pi^0_n$
The Arithmetical Hierarchy — The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

\[
\begin{align*}
\Sigma^0_3 & \subseteq \Delta^0_3 & \subseteq \Pi^0_3 \\
\Sigma^0_2 & \subseteq \Delta^0_2 & \subseteq \Pi^0_2 \\
\Sigma^0_1 & \subseteq \Delta^0_1 & \subseteq \Pi^0_1 \\
\vdots & & \vdots \\
\end{align*}
\]
The Arithmetical Hierarchy — The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

\[
\begin{align*}
\Sigma^0_0 & \subset \Pi^0_0 & \Delta^0_0 \\
\Sigma^0_1 & \subset \Pi^0_1 & \Delta^0_1 \\
\Sigma^0_2 & \subset \Pi^0_2 & \Delta^0_2 \\
\Sigma^0_3 & \subset \Pi^0_3 & \Delta^0_3 \\
\vdots & & \vdots \\
\end{align*}
\]

decidable problems
The Arithmetical Hierarchy — The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

\[\ldots \]

\[\Sigma^0_3 \quad \Delta^0_3 \quad \Pi^0_3 \]

\[\ldots \]

\[\Sigma^0_2 \quad \Delta^0_2 \quad \Pi^0_2 \]

\[\ldots \]

\[\Sigma^0_1 \quad \Delta^0_1 \quad \Pi^0_1 \]

\[\ldots \]

decidable problems
The Arithmetical Hierarchy — The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

\[\begin{align*}
\Sigma^0_1 & \subseteq \Pi^0_1 \\
\Sigma^0_2 & \subseteq \Pi^0_2 \\
\Sigma^0_3 & \subseteq \Pi^0_3 \\
\ldots & \\
\Sigma & \subseteq \Pi \\
\text{decidable problems} & \\
\end{align*} \]
Some Notation

The expected outcome of variable \(v \) after executing \(P \):
\[E_{P}(v) \]

The probability that \(P \) terminates on input \(\eta \):
\[\Pr_{P,\eta}(\downarrow) \]

The expected number of steps until \(P \) terminates on input \(\eta \):
\[E_{P,\eta}(\downarrow) \]
Some Notation

- The expected outcome of variable v after executing P:

$$E_P(v)$$
Some Notation

- The expected outcome of variable v after executing P:
 \[E_P(v) \]

- The probability that P terminates on input η:
 \[\Pr_{P,\eta}(\downarrow) \]
Some Notation

- The expected outcome of variable v after executing P:
 \[E_P(v) \]

- The probability that P terminates on input η:
 \[\Pr_{P,\eta}(\downarrow) \]

- The expected number of steps until P terminates on input η:
 \[E_{P,\eta}(\downarrow) \]
Decision Problems We Analyzed
Decision Problems We Analyzed

<table>
<thead>
<tr>
<th>Lower and Upper Bounds, and Exact Expected Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(P, v, q) \in LEXP :\iff q < E_P(v)]</td>
</tr>
<tr>
<td>[(P, v, q) \in UEXP :\iff q > E_P(v)]</td>
</tr>
<tr>
<td>[(P, v, q) \in EXP :\iff q = E_P(v)]</td>
</tr>
</tbody>
</table>
Decision Problems We Analyzed

Lower and Upper Bounds, and Exact Expected Outcomes

\[(P, v, q) \in \mathcal{L}\mathcal{E}\mathcal{X}\mathcal{P} :\iff q < \mathbb{E}_P(v)\]

\[(P, v, q) \in \mathcal{U}\mathcal{E}\mathcal{X}\mathcal{P} :\iff q > \mathbb{E}_P(v)\]

\[(P, v, q) \in \mathcal{E}\mathcal{X}\mathcal{P} :\iff q = \mathbb{E}_P(v)\]

Almost–Sure Termination \(\mathcal{A}\mathcal{S}\mathcal{T}\)

\[(P, \eta) \in \mathcal{A}\mathcal{S}\mathcal{T} :\iff \Pr_{P,\eta}(\downarrow) = 1\]
Variations of \textit{AST}
Variations of \(\mathcal{AST} \)

Positive Almost–Sure Termination \(\mathcal{PAST} \)

\[(P, \eta) \in \mathcal{PAST} \iff E_{P,\eta}(\downarrow) < \infty\]
Variations of \mathcal{AST}

Positive Almost–Sure Termination \mathcal{PAST}

$$(P, \eta) \in \mathcal{PAST} \iff \mathbb{E}_{P,\eta}(\downarrow) < \infty$$

Notice $\mathcal{PAST} \subsetneq \mathcal{AST}$.
Variations of AST

Positive Almost–Sure Termination \mathcal{PAST}

$$(P, \eta) \in \mathcal{PAST} \iff E_{P,\eta}(\downarrow) < \infty$$

Notice $\mathcal{PAST} \subsetneq AST$.

Universal Versions of AST and \mathcal{PAST}

$$P \in UAST \iff \forall \eta: (P, \eta) \in AST$$

$$P \in U\mathcal{PAST} \iff \forall \eta: (P, \eta) \in \mathcal{PAST}$$
A (very) Simple Example Program

Consider the program P_{geo}:

\[
x := 0;
\{continue := 0\} [0.5] \{continue := 1\};
while (continue \neq 0)\{
 x := x + 1;
 \{continue := 0\} [0.5] \{continue := 1\}
\}\
\]
A (very) Simple Example Program

Consider the program \(P_{geo} \):

\[
\begin{align*}
 x &:= 0; \\
 \{ \text{continue} := 0 \} & [0.5] \{ \text{continue} := 1 \}; \\
 \text{while} (\text{continue} \neq 0) \{ \\
 x &:= x + 1; \\
 \{ \text{continue} := 0 \} & [0.5] \{ \text{continue} := 1 \} \\
 \}
\end{align*}
\]

\[\mathbb{E}_{P_{geo}}(x) = 2 \]
A (very) Simple Example Program

Consider the program \(P_{geo} \):

\[
x := 0; \\
\{\text{continue} := 0\} \text{[0.5]} \{\text{continue} := 1\}; \\
\text{while (continue \neq 0)}\{
 x := x + 1;
 \{\text{continue} := 0\} \text{[0.5]} \{\text{continue} := 1\}
\}
\]

\(E_{P_{geo}}(x) = 2 \)

\(E_{P_{geo}}(\text{continue}) = 0 \)
A (very) Simple Example Program

Consider the program P_{geo}:

\[
\begin{align*}
x &:= 0; \\
\{ \text{continue} := 0 \} &\ [0.5] \ \{ \text{continue} := 1 \}; \\
\text{while} \ (\text{continue} \neq 0) \{} \\
\quad &x := x + 1; \\
\quad &\{ \text{continue} := 0 \} \ [0.5] \ {\text{continue} := 1} \\
\} \\
\end{align*}
\]

- $E_{P_{geo}}(x) = 2$
- $E_{P_{geo}}(\text{continue}) = 0$
- P_{geo} terminates almost–surely on all inputs
A (very) Simple Example Program

Consider the program P_{geo}:

\[
x := 0;
\{\text{continue := 0} \ [0.5] \ \{\text{continue := 1}\};
\text{while (continue \neq 0)}\{
 x := x + 1;
 \{\text{continue := 0} \ [0.5] \ \{\text{continue := 1}\}
\}
\]
\]

- $E_{P_{geo}}(x) = 2$
- $E_{P_{geo}}(\text{continue}) = 0$
- P_{geo} terminates almost–surely on all inputs
- Expected runtime of P_{geo} is $\mathcal{O}(E_{P_{geo}}(x))$ on all inputs
Summary of Results

...
Summary of Results

\[
\begin{align*}
\Sigma_3^0 & \quad \Delta_3^0 & \quad \Pi_3^0 \\
\Sigma_2^0 & \quad \Delta_2^0 & \quad \Pi_2^0 \\
\mathcal{H} & \quad \Delta_1^0 & \quad \Pi_1^0 \\
\overline{\mathcal{H}} & \quad \mathcal{LExp} & \quad \overline{\mathcal{H}}
\end{align*}
\]
Summary of Results

...:

\[\sum_3^0 \quad \Delta_3^0 \quad \Pi_3^0 \]

\[\sum_2^0 \quad \Delta_2^0 \quad \Pi_2^0 \]

\[\sum_1^0 \quad \mathcal{L}_{EXP} \quad \Pi_1^0 \]

\[\sum_0^0 \quad \Delta_0^0 \quad \Pi_0^0 \]

\[\sum \quad \Pi \quad \Delta \]

...:

semi-decidable

Thank you for your kind attention :-)

Benjamin Kaminski

Analyzing Probabilistic Programs is Hard 27.2.2015
Summary of Results

\[\Sigma_3^0 \quad \Delta_3^0 \quad \Pi_3^0 \]

\[\Sigma_2^0 \quad \mathcal{UEXP} \quad \Pi_2^0 \]

\[\mathcal{UH} \quad \Delta_2^0 \quad \mathcal{UH} \]

\[\Sigma_1^0 \quad \mathcal{LEXP} \quad \Pi_1^0 \]

\[\mathcal{H} \quad \Delta_1^0 \quad \overline{\mathcal{H}} \]

semi-decidable

Thank you for your kind attention :-)

Benjamin Kaminski

Analyzing Probabilistic Programs is Hard 27.2.2015
Summary of Results

- Σ_0 semi-decidable
- Π_0 semi-decidable
- Δ_0 semi-decidable

- Σ_2 \mathcal{UEXP}
- Π_2 \mathcal{UEXP}
- Δ_2 \mathcal{UEXP}

- Σ_3 \mathcal{EXP}
- Π_3 \mathcal{EXP}
- Δ_3 \mathcal{EXP}

with access to \mathcal{H}-oracle:
- semi-decidable
Summary of Results

with access to \mathcal{H}–oracle: semi–decidable

semi–decidable

Thank you for your kind attention :-)

Benjamin Kaminski
Summary of Results

with access to \mathcal{H}–oracle: semi–decidable

semi–decidable
Summary of Results

with access to \mathcal{H}–oracle: semi–decidable

semi–decidable

Thank you for your kind attention :-)

Benjamin Kaminski
Summary of Results

with access to \(H \)-oracle: semi-decidable

semi-decidable

not semi-decidable; even with access to \(H \)-oracle

Thank you for your kind attention :-)

Benjamin Kaminski

Analyzing Probabilistic Programs is Hard 27.2.2015
with access to \mathcal{H}–oracle: semi–decidable

semi–decidable

not semi–decidable; even with access to \mathcal{H}–oracle
Summary of Results

with access to \mathcal{H}–oracle: semi–decidable

semi–decidable

not semi–decidable; even with access to \mathcal{H}–oracle

Thank you for your kind attention :-)

Benjamin Kaminski
Summary of Results

with access to \mathcal{H}–oracle: semi–decidable

semi–decidable

not semi–decidable; even with access to \mathcal{H}–oracle

not semi–decidable; even with access to $\mathcal{U}\mathcal{H}$–oracle

Thank you for your kind attention :-)

Benjamin Kaminski
Summary of Results

Thank you for your kind attention :-)

with access to \mathcal{H}–oracle: semi-decidable

semi-decidable

not semi-decidable; even with access to \mathcal{UH}–oracle

not semi-decidable; even with access to \mathcal{H}–oracle