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Abstract

Formalmethods initially focused on themathematically precise speci�cation, design and
analysis of functional aspects of so�ware and hardware systems. In this context, model

checking has proved to be tremendously successful in analyzing qualitative properties
of distributed systems. �is observation has encouraged people in the �eld of perfor-

mance and dependability evaluation to extend existing model checking techniques to
also account for quantitative measures. As a result, nowadays, the automatic analysis of
Markovian models has become an indispensable tool for the design and evaluation of

safety and performance critical systems.
Markovian models are classi�ed according to their underlying notion of time, being

either discrete or continuous. In the discrete-time setting, Markov decision processes

are a nondeterministic model which is widely known in mathematics, computer science
and operations research. Moreover, e�cient algorithms are available for their analysis.

�is stands in sharp contrast to the continuous-time setting, where no techniques exist
to analyze models that combine stochastic timing and nondeterminism. In the present
thesis, we bridge this gap and propose quanti�ably precise model checking algorithms

for a variety of nondeterministic and stochastic models.
We�rst consider continuous-timeMarkov decision processes (CTMDPs). To uniquely

determine the quantitative properties of a CTMDP, all its nondeterministic choices must

be resolved according to some strategy. �erefore, we propose a hierarchy of scheduler
classes and investigate their impact on the achievable performance and dependability

measures. In this context, we identify late schedulers, which resolve the nondetermin-
ism as neatly as possible. Apart from their interesting theoretical properties, they facili-
tate the analysis of locally uniform CTMDPs considerably. In a locally uniform CTMDP,

the timing in a state is independent of the scheduler. �is observation culminates in an
e�cient and quanti�ably precise approximation algorithm for locally uniform CTMDPs.
In contrast to CTMDPs which closely entangle nondeterminism and stochastic time,

interactive Markov chains (IMCs) are a highly versatile model that strictly uncouples the
two aspects. Due to this separation of concerns, IMCs are locally uniform by de�nition.

�is allows us to apply analysis techniques which are similar to those that we developed
for locally uniform CTMDPs, also to IMCs. In this way, we solve the open problem of
model checking arbitrary IMCs.
In the next step, we return to CTMDPs and prove that they can be transformed into

alternating IMCs in a measure preserving way. As our proof does not rely on local uni-

formity, it enables the analysis of quantitative measures on arbitrary CTMDPs by model
checking their induced IMCs. However, the underlying scheduler class slightly di�ers
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from the late schedulers that we used initially. In fact, it coincides with the time- and his-

tory dependent schedulers that are proposed in the literature. �us, our result for IMCs
also solves the long standing problem ofmodel checking arbitrary CTMDPs.
However, the applicability of model checking is limited by the infamous state space ex-

plosion problem: Even systems ofmoderate size o�en yieldmodelswith an exponentially
larger state space that foils their analysis. To tackle this problem, many techniques have

been developed that minimize the state space while preserving important properties of
the model. In process algebras, bisimulation minimization identi�es processes with the
same quantitative behavior and replaces equivalent ones by a single representative. De-

pending on the redundancy in the model, this can lead to enormous reductions in the
size of the state space. As IMCs have a process algebraic background, it is not surpris-

ing that bisimulation minimization is readily available for them. However, this is not the
case for CTMDPs. �at is why we introduce bisimulation minimization for CTMDPs
and prove that it preserves all quantitative measures.

Finally, we apply the achieved results and propose an alternative semantics for gener-
alized stochastic Petri nets (GSPN), which avoids the shortcomings of earlier de�nitions
that were needed to rule out nondeterministic choices. More precisely, we transform a

GSPN model into an equivalent IMC which can be model checked.
To show the applicability of our approach, we analyze the dependability of a worksta-

tion cluster which is modeled by a nondeterministic GSPN. �e comparison of our re-
sults with those that are available in the literature is illuminating: When the latter were
published, no analysis technique for nondeterministic and randomly timed systems was

available. �erefore, the nondeterministic choices in the GSPN model were replaced by
static probability distributions.
For measures that are mostly independent of the scheduling policy, our results coin-

cide with those in the literature. However, for other measures, choosing antagonistic
schedulers mitigates the inferred dependability characteristic of the system that we study

by up to 18%. �ese false positives in the earlier analyses clearly prove the necessity of
nondeterministic modeling in the �eld of performance and dependability analysis.



Samenvatting

Formele methoden worden van oudsher toegepast met een wiskundig rigoureuze bena-
dering van speci�catie, ontwerp en analyse van functionele aspecten in hard- en so�ware.

Met namemodel checking bleek enorm succesvol te zijn om kwalitatieve eigenschappen
van gedistribueerde systemen te analyseren. Dit moedigde onderzoekers in performan-

ce evaluatie en betrouwbaarheidsanalyse aan om diezelfde technieken te benutten voor
kwantitatieve analyses. Als gevolg daarvan is de automatische analyse van Markov mo-
dellen een onmisbaar middel geworden voor het ontwerp en evaluatie van betrouwbare

systemen.
Markovmodellen worden doorgaans geclassi�ceerd aan de hand van hun onderliggen-

de interpretatie van tijd, hetzij discreet of continu. Betre�ende het eerstgenoemde, zijn

Markov decision processes wijdverspreid in de wiskunde, informatica en operationele
research. Er zijn e�ciënte algoritmen beschikbaar om deze modellen te analyseren. Dit

staat in scherp contrastmet haar continue-tijdstegenhanger. Erwaren tot hedennog geen
technieken ontwikkeld voor modellen met stochastische timing en non-determinisme.
In dit proefschri� overbruggen we deze tekortkoming met onze behandeling van kwan-

titief precieze model checking algoritmes voor een scala van non-deterministische en
stochastische modellen.
We behandelen eerst Continuous-Time Markov Decision Processes (CTMDPs). Om

de kwantitatieve eigenschappen van een non-deterministisch model te bepalen moeten
alle non-deterministische keuzes vastgelegd worden volgens een strategie. Om die reden

presenteren wij een hierarchie van scheduler klasses en onderzoeken wij hun impact op
performance en betrouwbaarheidsmaten. In deze context identi�ceren we de klasse van
”late schedulers”. Naast hun interessante theoretische eigenschappen, faciliteren zij de

analyse van lokaal uniform CTMDPs. Voor deze schedulers en modellen presenteren we
namelijk een precies benaderingsalgoritme.

In tegenstelling tot CTMDPs, waarbij non-determinisme en stochastische tijd sterk
verstrengeld zijn, zijn Interactive Markov Chains (IMCs) een extreem veelzijdig forma-
lismewaarin deze twee aspecten zijn ontkoppeld. Door deze ontkoppeling zijn IMCs per

de�nitie lokaal uniform. De technieken die we hebben ontwikkeld voor lokaal uniform
CTMDPs zijn conceptueel vergelijkbaar met die voor IMCs. Op deze wijze hebben we
het openstaande model checking probleem van IMCs opgelost.

Vervolgens laten we zien hoe CTMDPs a2eeldbaar zijn op alternerende IMCs waarbij
de maten behouden blijven. Ons bewijs van dit resultaat vereist niet dat de CTMDP

lokaal uniform is. Dit maakt kwantitatieve analyses mogelijk voor algemene CTMDPs
door hun geinduceerde IMCs te analyseren. De scheduler klasse die hierbij nodig is wijkt
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enigszins af van die we gebruikten om lokaal uniform CTMDPs te analyseren. Sterker

nog, die afwijkende klasse valt samen met de tijds- en historie a8ankelijke schedulers
die bekend zijn in de literatuur. De resultaten lossen derhalve een langdurig openstaand
probleem op, namelijk het model checken van arbitraire CTMDPs.

De toepassing vanmodel checking is echter gelimiteerd door de fameuze explosie van
de toestandsruimte. Zelfs systemen van gemiddelde complexiteit leiden vaak tot een ex-

ponentieel groeiende toestandsruimte wat het model checken bemoeilijkt. Om dit pro-
bleem aan te pakken zijn er vele technieken ontwikkeld die de toestandsruimte minima-
liseren terwijl haar eigenschappen intact blijven. In proces algebra’s identi�ceert bisimu-

latie minimalisatie de processen die eenzelfde kwantitatief gedrag vertonen en vervangt
deze door een enkel representatief gedrag. A8ankelijk van de redundantie in het model

kan de toestandsruimte aanzienlijk reduceren. Aangezien IMCs als basis dienen voor
stochastische proces algebra’s is het niet verwonderlijk dat er reeds bisimulatie minimali-
satie technieken voor IMCs bestaan. Dit is echter niet het geval voor CTMDPs. Daarom

onderzochten wij tevens bisimulatie minimalisatie voor CTMDPs en bewijzen dat die
alle kwantitatieve maten intact houdt.
Ten slotte passen we onze resultaten toe en presenteren we een alternatieve semantiek

voor generalized stochastic Petri nets (GSPNs). Deze vermijdt de tekortkomingen van
voorgaande de�nities in de literatuur die nodig waren om non-deterministische keuzes

te omzeilen. Hiertoe beelden we een GSPNmodel af op haar equivalente IMCmodel die
vervolgens met onze technieken gemodelcheckt kan worden.
Ter demonstratie van onze aanpak, analyseren wij de betrouwbaarheid van een work-

station cluster die gemodelleerd is als een niet-deterministische GSPN. Een vergelijking
van onze resultaten met die uit de literatuur levert enkele interessante bevindingen op.
Hier dient vermeld te worden dat de eerder gepubliceerde resultaten verkregen zijn door

niet-deterministische keuzemomenten door uniforme kansverdelingen te vervangen.
Voor maten die grotendeels ona8ankelijk zijn van de scheduling tactiek, komen onze

resultaten overeen met de bestaande. Echter, voor andere maten leidt de keuze van anto-
gonistische schedulers tot een verslechtering van de verkregen betrouwbaarheidskarak-
teristieken met maar liefst 18%. Deze uitkomsten tonen de noodzaak van het meenemen

van niet-deterministische keuzes in de prestatie- en betrouwbaarheidsanalyse onomsto-
telijk aan.



Zusammenfassung

In der Informatik beschä�igt sich das Gebiet der formalen Methoden ursprünglich mit
der Spezi�kation, dem Design und der Analyse funktionaler Aspekte von Hard- und

So�ware. Vor diesem Hintergrund hat sich Model Checking als äußerst nützlich beim
Analysieren quantitativer Eigenscha�en verteilter Systeme erwiesen. Darau8in wurde

im Bereich der Leistungs- und Verlässlichkeitsbewertung begonnen, die existierenden
Model Checking Verfahren auf quantitative Eigenscha�en zu erweitern. Heute ist die
Analyse der entsprechendenMarkovmodelle ein unabdingbarer Bestandteil beimDesign

und der Evaluierung der Sicherheit und Leistung kritischer Systeme.
Es werden entsprechend dem zugrunde liegenden Zeitbegri� diskrete und kontinuier-

liche Markovmodelle unterschieden. Im zeitdiskreten Fall sind Markov-Entscheidungs-

prozesse (MDPs) ein weit verbreitetes nichtdeterministisches Modell in der Mathema-
tik und der Informatik. Für die Analyse von MDPs stehen e�ziente Algorithmen zur

Verfügung. Dagegen sind für den zeitkontinuierlichen Fall bisher keine Methoden für
die automatische Analyse vonModellen bekannt, die stochastisch quanti�ziertes Zeitver-
halten und Nichtdeterminismus verbinden. Die vorliegende Dissertation schließt diese

Lücke und führt präzise und quanti�zierbar korrekte Model Checking Algorithmen für
eine Vielzahl von nichtdeterministischen und stochastischen Modellen ein.
Anfangs betrachten wir sogenannte zeitkontinuierlicheMarkov-Entscheidungsprozes-

se (CTMDPs). Um die quantitativen Eigenscha�en einer CTMDP eindeutig zu bestim-
men, müssen zunächst alle in ihr vorkommenden nichtdeterministischen Wahlmöglich-

keiten anhand einer Strategie aufgelöst werden. Dazu führen wir eine Hierarchie von
Schedulerklassen ein und untersuchen ihren Ein�uss auf die erzielbaren Leistungs- und
Verlässlichkeitsanforderungen. In diesem Zusammenhang beschreiben wir sogenannte

verzögerte Scheduler, die den Nichtdeterminismus bestmöglich au�ösen. Neben ihren
interessanten theoretischen Eigenscha�en erleichtern sie die Analyse von lokal unifor-

men CTMDPs erheblich. Dabei bilden lokal uniforme CTMDPs eine Teilklasse, in der
das Zeitverhalten der Zustände unabhängig vom Scheduler ist. Diese Beobachtung ist
Grundlage für einen e�zienten und quanti�zierbar korrekten Approximationsalgorith-

mus für lokal uniforme CTMDPs.
ImGegensatz zu CTMDPs, die Nichtdeterminismen und stochastisches Zeitverhalten

eng miteinander verbinden, sind interaktive Markovketten (IMCs) ein Modell, das diese

beiden Aspekte strikt trennt. Aus diesem Grund sind IMCs per De�nition bereits lokal
uniform. Das ermöglicht es, Analysetechniken, die denen für lokal uniforme CTMDPs

ähneln, auch auf IMCs anzuwenden. Auf diese Weise lösen wir die o�ene Frage nach
einemModel Checking Algorithmus für IMCs.
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Im nächsten Schritt kehren wir zu CTMDPs zurück und beweisen, dass sie auf maß-

erhaltende Art und Weise in alternierende IMCs transformiert werden können. Da un-
ser Beweis nicht auf lokale Uniformität angewiesen ist, ermöglicht er die Analyse quan-
titativer Eigenscha�en von allgemeinen CTMDPs anhand ihrer induzierten IMCs. Je-

doch unterscheiden sich die zugrunde liegenden Schedulerklassen leicht von den bis-
her betrachteten verzögerten Schedulern. Tatsächlich stimmen sie mit den zeit- und ver-

laufsabhängigen Schedulern, die in der Literatur bekannt sind, überein. Damit lösen un-
sere Resultate auch das seit langem o�ene Problem der Analyse allgemeiner CTMDPs.
Im Allgemeinen wird die Anwendbarkeit von Model Checking durch das exponenti-

elle Anwachsen der Zustandsräume begrenzt. Viele Techniken sind entwickelt worden,
um den Zustandsraum unter Beibehaltung wichtiger Eigenscha�en zu minimieren. Im

Bereich der Prozessalgebren fasst Bisimulation Zustände zusammen, die die gleichen Ei-
genscha�en haben. Abhängig von der imModell enthaltenen Redundanz führt das o� zu
einer erheblichen Reduktion des Zustandsraums. Da IMCs aus Prozessalgebren hervor-

gehen, ist es nicht verwunderlich, dass Bisimulationsminimierung für sie bereits unter-
sucht wurde. Das tri jedoch nicht auf CTMDPs zu. Daher führen wir Bisimulation auf
CTMDPs ein und weisen nach, dass durch sie alle quantitativen Maße erhalten bleiben.

Abschließend wenden wir die erzielten Resultate an und entwickeln eine alternative
Semantik für GSPNs, die die Nachteile früherer Ansätze hinsichtlich der Berücksich-

tigung von Nichtdeterminismen umgeht. Dazu transformieren wir GSPN Modelle in
äquivalente IMCs, die anschließend analysiert werden.
Um die Anwendbarkeit unseres Ansatzes zu zeigen, analysieren wir so die Verlässlich-

keit einesWorkstation-Clusters, der als nichtdeterministischesGSPNmodelliert wird. In-
teressant ist dabei besonders derVergleich unserer Ergebnissemit früher veröffentlichten
Resultaten. Letztere wurden publiziert, als noch keine Analysetechniken für nichtdeter-

ministische Systeme mit stochastischem Zeitverhalten verfügbar waren. Daher wurden
die im GSPN-Modell au�retenden Nichtdeterminismen auf festgelegte Art und Weise

durch Wahrscheinlichkeitsverteilungen ersetzt.
Für Maße, die kaum von den Wahlmöglichkeiten des Schedulers abhängen, stimmen

unsere Resultate mit denen aus der Literatur überein. Für andereMaße jedoch liegen die

ableitbarenVerlässlichkeitscharakteristika des Systems für antagonistische Scheduler um
bis zu 18% unter den Vorhersagen frühererModelle. Diese falsch positiven früheren Ana-

lysen verdeutlichen die Notwendigkeit nichtdeterministischer Modellierung im Bereich
der Leistungs- und Verlässlichkeitsbewertung.
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Summary of Notation

We indicate here the basic notational conventions that are used throughout the thesis.

We use ◻ and ♢ to denote the end of proofs and examples, respectively.

Numbers

We use R≥0, R>0 and R to denote the sets of nonnegative, positive and the set of all real

numbers; similarly, the sets Q≥0, Q>0 and Q refer to the nonnegative, positive and all
rational numbers. Moreover, N = {0, 1, 2, . . .} denotes the set of natural numbers. If
T ⊆ R≥0 and t ∈ R≥0, we de�ne

T ⊕ t = {x + t ∣ x ∈ T} , and

T ⊖ t = {x − t ∣ x ∈ T , x ≥ t} .

Sets

Let Z be a set with subsets A and B. If A ∩ B = ∅, we use A ⊍ B to denote the disjoint
union of the sets A and B.�e indicator for a subset A of Z is de�ned as the function

IA ∶ Z → {0, 1} ∶ x ↦
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∈ A

0 otherwise.

If A1 ⊆ A2 ⊆ ⋯ is an increasing sequence of subsets of Z and limn→∞ An = A, we write
An ↑ A. Similarly, An ↓ A denotes a decreasing sequence with limit set A.

Functions

If f ∶ Z1×Z2×⋯×Zn → Z is an n-ary function, weuse f (z1, z2, . . . , zi−1, ⋅, zi+1, . . . , zn−1 , zn)
and, depending on the context, also f (z1, z2, . . . , zi−1 , [⋅] , zi+1, . . . , zn−1 , zn) to denote the
function zi ↦ f (z1, z2, . . . , zi−1 , zi , zi+1, . . . , zn−1 , zn).
Probability distributions

LetX = {x0, x1, x2 , . . . , xn} be a �nite set. Probability distributions onX are functions µ ∶
X → [0, 1] with∑x∈X µ(x) = 1. Moreover, we write µ = {x0 ↦ p0, x1 ↦ p1, . . . , xn ↦ pn}
to denote the probability distribution µ where µ(xi) = pi . If µ(x) = 1 for some x ∈ X , we
write µ = {x ↦ 1} and identify µ and x.�e set of all probability distributions over X is

denoted Distr(X ). If µ ∈ Distr(X ) and A ⊆ X , then µ(A) =∑x∈A µ(x).





1 Introduction

It is fair to state, that in this

digital era correct systems for

information processing are

more valuable than gold.

(Henk Barendregt)

When youwoke up today, the �rst thing that you perceivedwas probably themicrocon-
troller-driven bell of your alarm clock. On the way to your o�ce, you rely on the so�ware

that schedules your metro train while optimizing the metro system’s signal headway. At
work, you expect the operating system of your workstation to store and manipulate your
data correctly. And if you happen to be involved in an accident on your way back home,

you depend on an operational mobile phone network to call an ambulance that takes
you to the hospital. But even there, you are confronted with so�ware and hardware sys-

tems that monitor your pulse, provide oxygen to your lungs or compute the X-Ray dose
necessary for radiation therapy.

Today, the ubiquitous use of embedded systems in our daily lives makes us highly de-
pendent on their correctness.�e consequences of failures range from just getting up too

late to social and economic disasters. However, accompanied by the unmatched advance-
ments that have been achieved in the design of integrated circuits since the late 1960’s, the
realizable so�ware and hardware systems have become evermore complex. Today, this

growing complexity leads to serious errors in safety critical systems [Baa08] as witnessed
by prominent examples, such as the erroneous �ight control unit which destroyed the

Ariane-5 rocket, or the�erac-25 radiation therapy machine which killed at least three
patients due to a race condition in its control so�ware, which led to a lethal overdose of
X-Rays. Hence, it is fair to state thatmethodologies which assure the correctness of safety

critical systems are of vital importance.

1.1 System validation

In computer science, the �eld of formal methods focuses on techniques for the mathe-
matically precise design, modeling and veri�cation of functional aspects of safety critical

systems. Accordingly, the aim of system validation is to guarantee that the physical sys-
tem ful�lls its intended purpose.

In this context, model checking refers to the automatic veri�cation of a system model
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against a speci�cation that is usually given as a logic formula. As depicted in Fig. 1.1, the

model checking approach relies on at least three ingredients: the model, the property
speci�cation and the veri�cation algorithm that checks the validity of the property in the
model. We discuss each of them shortly.

Model checking can only guarantee that a mathematical model of the actual system—
where the model is usually given by a Kripke structure — conforms to the speci�cation.

Obviously, all results are void if the model does not accurately re�ect the behavior of the
system.�us, a fundamental requirement for formal validation is to derive a mathemat-

ically precise model so that the veri�cation results that are obtained on the model carry
over to its actual implementation.

If so�ware engineers used a formal modeling language during the design phase, the

systemmodel could be inferred automatically. However, in today’s practice, mostly semi-
formal approaches like the UML [BR04] or even informal natural language speci�ca-

tions are used. �is lack of mathematical rigor leads to ambiguities in the design and
impedes a formal validation of the system. �erefore, most people in the formal meth-
ods community favor the use of completely formal speci�cation languages like State-

charts [Har87, Jan03], queueing networks [CG89], Petri nets [Rei85] or process alge-
bras [Mil82, Hoa85, BW90, Mil99]. In this way, the system speci�cation automatically

translates into a precise system model, which allows us to formally validate the system.

Having a formal model at hand, the next step is to identify the properties that need to
be checked. Usually, logics like LTL [Pnu77] and CTL [CES86] are used for the property
speci�cation.�ey permit to express functional aspects of the model such as “Two trains
never collide in the metro system” or “�e routing algorithm stabilizes eventually a�er a

router has failed”.

Finally, given the model T of the system and a formula Φ which speci�es the desired
property, a model checking tool like Spin [Hol04] or NuSMV [CCGR00] automatically

veri�es whether the model satis�es the property. A positive outcome allows us to con-
clude that the system satis�es the corresponding property. Moreover, if the result is neg-

ative, model checking o�ers diagnostic feedback by identifying the faulty behaviors.

In this way, classical model checking veri�es qualitative system properties by provid-

ing a de�nite yes-or-no answer. However, it is o�en impossible to completely prove the
correctness of realistic systems, as they are embedded in an environment and therefore
subject to random phenomena. For example, a detailed model of a distributed system

should re�ect the probability that messages get lost or become garbled during transmis-
sion. Although this closely re�ects the physical behavior of the system, it is hard to guar-
antee its correctness by providing a de�nite yes-or-no answer.�erefore, we strive for a

less stringent notion of correctness, which enables us to quantify the degree at which the
model meets its speci�cation. For example, proving that the probability of a system fail-

ure is less than 0.1% might convince us to rely on that system despite the unlikely event
that it might fail.
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Figure 1.1: Verifying system correctness by model checking [BK08].

1.2 �e quantitative analysis of stochastic models

Applying model checking to analyze quantitative properties allows us to infer a variety
of performance and dependability measures automatically. Typical examples are the av-
erage throughput of a router, the expected round trip time of an IP-packet or the mean

time between failures of a hard disk drive. In all these scenarios, we do not expect a rigid
yes-or-no answer, but need to �nd quantitative measures that describe the system.

A plethora ofmodels has been proposed that incorporate probability distributions into
the classical transition system formalism; thereby, they permit to specify the quantitative
behavior of the underlying system. In the context of this thesis, we classify quantitative

models along two dimensions:

1. Discrete vs. continuous. Time can be measured either in discrete entities or contin-
uously: In probabilisticmodels, time is represented by a sequence of discrete steps
which are usually identi�ed with the natural numbers. Hence, the transitions in a

probabilistic model occur synchronously with its discrete time ticks.�e random-
ness of the system is determined by discrete probability distributions over succes-

sor states that specify the likelihood to move from one state to another and by a
probability distribution over initial states.

Unlike discrete-time models, stochastic models adopt a continuous notion of time.
In this setting, transitions are delayed by a random amount of time which is gov-

erned by a continuous probability distribution. Hence, time points are drawn from
the set of nonnegative real numbers. A continuous-time model moves from one

state to another according to the transition which executes �rst. In this way, prob-
abilistic and timed behaviors are closely entangled in stochastic models.
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2. Deterministic vs. nondeterministic: �e behavior of a deterministic model is com-

pletely speci�ed by its (discrete or continuous) probability distributions. Note that
we use the term deterministic, although the system behavior is only determined
quantitatively.

Accordingly, we call a system nondeterministic, if its probabilistic or stochastic be-
havior is not decided completely.�is situation can arise intentionally, for example,

if the modeler does not have enough information to estimate the probability distri-
bution that governs the system’s behavior in a speci�c state and therefore decides to
leave it unspeci�ed. Apart from the deliberate use of underspeci�cations, another
implicit source of nondeterminism is the scheduling freedom that occurs in ran-
domized distributed systems, where the order of executing is only partly speci�ed.
Moreover, nondeterminism occurs naturally in open systems that communicate

with other components in their environment.

We summarize the models that are used in the thesis in Table 1.1.�e most fundamen-
tal ones are discrete- and continuous-time Markov chains [KS76, Kul95]. Discrete-time
Markov chains (DTMC) were used as a dependability model for the �rst time in the sem-

inal work of Hansson and Jonsson [HJ94]. Due to their discrete notion of time, DTMCs
can be used to model randomized algorithms or hardware circuits which obey a global

clock pulse.
�e work in [Var85, HJ94] led to further research towards model checking of con-

tinuous-time Markov chains [Kul95, ASSB96] (CTMC), which had already been widely

accepted in the area of performance evaluation [Hav98]. However, an automatic analysis
technique for CTMC only became available with the corresponding model checking al-
gorithm in [BHHK03]. Nowadays, model checking tools like PRISM [KNP02, HKNP06]

and MRMC [Zap08, KZH+09] enable an e�cient analysis of CTMC models.�ey have
been successfully adopted for the performance evaluation of queueing systems and QoS

constraints, to name a few.
However, neither DTMCs nor CTMC are appropriate to model nondeterminism. In

e�ect, this shortcoming prevents the analysis of distributed systems, which is the tradi-

tional realm of model checking.
In the discrete-time setting, Markov decision processes (MDPs) [Put94] are a widely

known formalism in mathematics and discrete optimization which incorporates nonde-
terminism into DTMCs. In computer science, several extensions ofMDPs like probabilis-
tic automata [SL95, Seg95], ACP-style process algebras [And02] and interactive proba-

bilistic chains [CHLS09] have been considered. �ey all support nondeterminism and
have successfully been applied to study quantitative measures of randomized distributed
algorithms [Seg97, SV99].

In this thesis, we focus on the bottom right corner of Table 1.1: Whereas DTMCs
have successfully been extended to MDPs to account for nondeterministic choices, the

corresponding continuous-time model has received scant attention in computer science.
Continuous-timeMarkov decision processes have been studied in mathematics [Mil68b,
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discrete-time continuous-time

deterministic DTMC, Def. 3.5 CTMCs, Def. 3.7

non- MDPs, Def. 3.8 CTMDPs, Def. 3.11
deterministic IPCs, Def. 6.5 IMCs, Def. 6.1

Table 1.1:�e basic stochastic models used in this thesis.

Mil68a] and are mentioned shortly in [Put94, Chapter 11]. In [BHKH05], the authors

develop a �rst model checking algorithm that works on a narrow subclass of CTMDPs;
it has received quite some attention and was extended in [Joh07] to analyze interactive

Markov chains [HHK02], which are another prominent model for nondeterministic and
randomly timed systems. However, these approaches are severely restricted, as they as-
sume that all states of the system have the same timed behavior.

1.3 �e contribution of the thesis

Apart from the subclass of globally uniform CTMDPs, no model checking algorithms
exist for nondeterministic and randomly timed systems. �e aim of this thesis is to �ll
this gap in the theory of formal methods.

First, we investigate a hierarchy of scheduler classes which di�er in the information
that they can use to resolve nondeterministic choices. We compare their impact on the

achievable quantitative measures and introduce the new class of late schedulers, which
strictly improve upon those that are known from the literature.

Further, we introduce bisimulationminimization onCTMDPs and prove that all quan-
titative measures are preserved in the quotient. As a consequence, we are able to mini-

mize the state space of CTMDPs prior to their analysis.
However, the main contribution of this thesis are precise and e�cient model checking

algorithms for a variety of nondeterministic and randomly timed systems:

• We develop a quanti�ably precise model checking algorithm for locally uniform

CTMDPs and late schedulers. Compared to the earlier result [BHKH05], this en-
larges the class of analyzable CTMDPs considerably, as we only require that the

timing in each state is independent on the resolution of the nondeterminism in
that state.

• We extend the previous result to interactive Markov chains and obtain an e�cient
model checking algorithm. Most notably, our extension does no longer depend on
any kind of uniformity. To the best of our knowledge, this is the �rst time that a

model checking algorithm is available for arbitrary IMCs.

• By applying our results for IMCs, we succeed in model checking arbitrary CT-
MDPs.�is is achieved by transforming a given CTMDP into an equivalent IMC
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which we can analyse. However, compared to our native results on locally uniform

CTMDPs, we have to impose mild restrictions on the scheduler class: In fact, the
CTMDPmodel checking algorithm that we obtain computes the optimal quantita-
tivemeasures with respect to the classical de�nition of time- and history dependent

schedulers.

• Finally, we introduce a new semantics for generalized stochastic Petri nets (GSPNs),
which overcomes the shortcomings in the support of nondeterminism in the pre-
vious de�nitions. More precisely, we transform a nondeterministic GSPN into an

IMC which is subject to our analysis. In a case study, we compare the new GSPN
semantics to the previous one and show the necessity of nondeterministic model-
ing.

All algorithms are implemented in a prototypical model checker which has been used to
obtain the quantitative measures that can be found throughout the thesis.

1.4 Outline of the thesis

• In Chapter 2, we summarize the de�nitions and measure theoretic results that are
necessary for a deeper understanding of the forthcoming chapters. In fact, Chap-
ter 2 is a computer scientist’s summary of the excellent, but mathematically dense

textbook [ADD00].

• In Chapter 3, we formally introduce the probabilistic and stochastic models that
form the basis of this thesis. Further, we introduce the notation that is used in the
later chapters.

• In Chapter 4, we investigate a hierarchy of scheduler classes for CTMDPs and pro-
pose a technique to achieve local uniformity. We prove that local uniformization

preserves quantitative measures for important scheduler classes. Moreover, we in-
troduce the new class of late schedulers, which outperforms all previous scheduler

de�nitions on locally uniform CTMDPs.

• In Chapter 5, we apply those results and derive an approximation algorithm for

time-bounded reachability probabilities in locally uniform CTMDPs. Most no-
tably, our algorithm is quanti�ably precise, that is, we prove that the computed
results meet an a priori speci�ed precision. We show the applicability of our ap-

proach by analyzing a stochastic job scheduling problem.

• In Chapter 6, we build upon the time-bounded reachability algorithm for locally

uniform CTMDPs and develop a model checking algorithm that veri�es formulas
in the continuous stochastic logic [BHHK03] on IMCs. Again, the obtained analy-

sis technique is quanti�ably precise. In the last part of Chapter 6, we establish the
result that CTMDPs can be transformed into alternating IMCs.
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• In Chapter 7, we introduce bisimulation for CTMDPs and extend the continuous

stochastic logic (CSL) to CTMDPs. Moreover, we prove that all measures are pre-
served when considering the quotient.�is result justi�es to use bisimulationmin-
imization to reduce the size of the state space before applying the model checking

algorithm.

• In Chapter 8, we propose a new semantics for GSPNs which allows for nondeter-
ministic choices and conservatively extends stochastic activity networks. By ap-

plying our de�nition, we can transform GSPNs into IMCs, thereby making their
analysis feasible. In the second part of Chapter 8, we show the applicability of this
approach and study dependability characteristics of a workstation cluster. More-

over, we compare our results to those that are available in the literature.

• In Chapter 9, we mention some directions for further research and conclude.

1.5 Origins of the chapters and credits

�e results presented in Chapters 6, 5, 4 and 7 are based on the following work (in that
order):

• Lijun Zhang andMartin R. Neuhäußer.Model Checking InteractiveMarkov Chains.
Accepted at the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) 2010.

• Martin R. Neuhäußer and Lijun Zhang. Time-Bounded Reachability in Continuous-
TimeMarkovDecisionProcesses.Technical Report, RWTHAachenUniversity, 2009.
To be submitted.

• Martin R. Neuhäußer, Mariëlle I. A. Stoelinga and Joost-Pieter Katoen. Delayed
Nondeterminism in Continuous-TimeMarkov Decision Processes. In Proceedings of

the 12th International Conference on Foundations of So�ware Science andCompu-
tation Structures (FoSSaCS) 2009. Lecture Notes in Computer Science. Vol. 5504.
364–379. Springer Verlag.

• Martin R. Neuhäußer and Joost-Pieter Katoen. Bisimulation and Logical Preserva-
tion for Continuous-Time Markov Decision Processes. In Proceedings of the 18th In-
ternational Conference on Concurrency�eory (CONCUR) 2007. Lecture Notes

in Computer Science. Vol. 4703. 412–427. Springer Verlag.

Further publications not included in this thesis are

• Joost-Pieter Katoen, Daniel Klink and Martin R. Neuhäußer. Compositional Ab-
straction for Stochastic Systems. In Proceedings of the 7th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS) 2009. Lecture
Notes in Computer Science. Vol. 5813. 195–211. Springer Verlag.
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• Martin R. Neuhäußer and�omas Noll. Abstraction and Model Checking of Core
Erlang Programs in Maude. In Proceedings of the 6th International Workshop on
Rewriting Logic and its Applications (WRLA) 2007. Electronic Notes in�eoreti-
cal Computer Science. Vol. 176. 147–163. Elsevier.

�e results in Chapter 8 are new and not published yet.



2 Basics of measure & probability theory

The Axiom of Choice is

obviously true, the

well-ordering principle

obviously false, and who can

tell about Zorn’s lemma?

(Prof. Jerry Lloyd Bona)

�e focus of this thesis is on the analysis of stochastic systems that evolve in continuous
time, which is usuallymodeled by the nonnegative real numbers. In the later chapters, we
reason about the probability that an event occurs in a certain period of time; for example,

we could be interested in the probability to leave a certain state within the next 1.5 time
units.

�e advantage of modeling time in a continuous domain is pretty clear, as it allows us
to formalize phenomena that are best described by continuous probability distributions.

Examples include the probability that a failure occurs within a certain amount of time
(which usually is exponentially distributed) or the probability that a measurement error
deviates by a certain percentage from its average value (which can o�en be described by

the normal distribution).

However, we pay for this greater generality by a more complex mathematical frame-

work: Whereas for discrete probabilistic systems (like MDPs and DTMCs), it su�ces to
restrict to discrete probability theory, in our continuous setting, we need the concepts of

modern probability theory with its measure-theoretic background.

�erefore, this chapter provides an overview of the measure theoretic concepts which

are used throughout the thesis.

In Sec. 2.1, we give an abstract introduction to measure theory. In a journey of step-

wise extensions, we start with an abstract, uncountable set Ω and a measure on a class
of subsets of Ω which have a simple structure. By several extensions, we subsequently
increase the complexity of the sets that we are able to measure.

Section 2.2 applies the previously obtained results: Starting with the natural notion of

the length of a (time) interval, we arrive at a measure on the large class of so-called Borel
measurable sets.

To point out the limits of measure theory, Sec. 2.3 explains Vitali sets, which turn out
to be neither Borel nor Lebesgue measurable. Hence, they provide a barrier that we may
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not overcome in our extensions.

Section 2.4 explains the details of the Lebesgue integral, which allow us to integrate

Borelmeasurable functions over sets di�erent from the ordinary real numbers. Moreover,
it is much more versatile, as it mitigates many of the restrictions of the Riemann integral.

Finally, the �nite- and in�nite-dimensional product spaces that we discuss in Sec. 2.5
allow us to measure the probability of sets of (�nite and in�nite) paths that describe the

trajectories in our system models.

Most of the results presented here are taken from the excellent textbook “Probability
& Measure�eory” by Robert B. Ash and Catherine A. Doléans-Dade [ADD00].�ere-
fore, many of the concepts explained in this section are a reproduction of those that can

be found in [ADD00]. However, in contrast to Ash, we suppose a computer scientist’s
background on probability theory; therefore, we strive for a compromise between the

full complexity of some of the intricate measure theoretic constructions and an easier to
read introductory text, where we emphasize those aspects that are useful for an under-
standing of the subsequent chapters. Another introduction to measure and probability

theory can be found in [Bil95].

2.1 Basics of measure theory

Ameasure is a generalization of the concepts of “size”, “length” or “volume” which are in-
tuitively known from Euclidean space.�e aim in measure theory is to de�ne a measure,

that is, a function that assigns to each subsetAof a given set Ω a value which corresponds
to the size of A.

However, a measure has to satisfy certain constraints: Obviously, if A, B ⊆ Ω are sub-
sets of Ω which do not have any element of Ω in common and if µ(A) and µ(B) denote
their respective sizes, we naturally require their disjoint union A ⊍ B ⊆ Ω to have size
µ(A⊍ B) = µ(A) + µ(B).
Another requirement for a general de�nition of a measure is that if we know the size

of A ⊆ Ω, we should also de�ne the size of its complement, i.e. of Ac = Ω ∖ A.

Finally, it is a natural assumption to assume that the empty set should have size 0, as it

does not contain any element of Ω.

As long as Ω is a �nite or countably in�nite set, no measure theoretic arguments are
necessary. It su�ces to de�ne the size of each element ω ∈ Ω and to extend this to sub-
setsAof Ω by simply adding the elements’ sizes. Anymeasurede�ned in thisway satis�es

the above mentioned properties.

However, if Ω is an uncountable set, the existence of a measure that satis�es the above
properties for all subsets of Ω is not guaranteed. For example, it is impossible to con-

struct such a measure on all subsets of the real numbers. �e proof and the necessary
constructions can be found in Sec. 2.3.
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De�nition 2.1 (Field,σ-�eld). Let Ω be a set and F ⊆ 2Ω a class of subsets of Ω. �en F

is a �eld i� F satis�es the following conditions:

(a) Ω ∈ F,

(b) A ∈ F⇒ Ac ∈ F and

(c) A1,A2, . . . ,An ∈ F⇒⋃n
i=1 Ai ∈ F.

F is a σ-�eld i� F satis�es Cond. (a) and (b) and instead of Cond. (c) it holds

(d) A1,A2,A3, . . . ∈ F⇒⋃∞i=1 Ai ∈ F.

Hence, a �eld F is a σ-�eld i� for every countable family A1,A2,A3, . . . ∈ F it holds
that ⋃∞i=1 Ai ∈ F. If F ⊆ 2Ω is a σ-�eld of subsets of Ω, then the tuple (Ω,F) is called a
measurable space.

Example 2.1. Let Ω be a set. According to Def. 2.1, the smallest σ-�eld of subsets of Ω is
the set F = {∅, Ω}; the largest σ-�eld is the set F = 2Ω. ♢

�e link between measure and probability theory is established as follows: In probability
theory, the set Ω is called the sample space and interpreted as the set of all possible out-
comes (called samples) of a random experiment. Accordingly, the aim in probability the-

ory is to measure the probability of events, where an event is understood as a subset of Ω
which belongs to Ω’s associated σ-�eld F. Hence, measuring an event A ∈ F yields the

probability of A. In the context of probability theory, the closure properties that Def. 2.1
requires for a class of subsets of Ω to be a �eld, have the following informal justi�cation:
By Conditions (b) and (d), they permit to reason about the probability of the negation

(Ac) and (�nite and countably in�nite) conjunction (A∪B) of events.�e sample space Ω
is understood as the set of all possible outcomes of the random experiment; accordingly,
the probability that the outcome of a random experiment falls within Ω is 1.�erefore, Ω

is the certain event and included in F. As F is closed under complement, the set Ωc = ∅
is in F as well; it is the impossible event, which is assigned probability 0.

Example 2.2. LetΩ be a countably in�nite set and de�neF0 as the smallest class of subsets
of Ω such that for all A ⊆ Ω:

∣A∣ < +∞⇒ A ∈ F0 and A ∈ F0⇒ Ac ∈ F0.

Note that the de�nition is non-trivial, i.e. in general F0 ⊊ 2Ω: For example, if Ω = N, then
the set {2n ∣ n ∈ N} of even numbers is not in F0, as both {2n ∣ n ∈ N} and {2n + 1 ∣ n ∈ N}
are countably in�nite sets.
In order to show that F0 is a �eld, we check the properties required by Def. 2.1: By def-

inition, F0 is closed under complement; hence, Cond. (b) is satis�ed. For Cond. (a), note
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that ∣∅∣ = 0 < +∞ implies ∅ ∈ F0. As F0 is closed under complement, ∅ ∈ F0 implies
∅c = Ω ∈ F0; hence F0 satis�es Cond. (a). For Cond. (c), let A, B ∈ F0. If both ∣A∣ < +∞
and ∣B∣ < +∞, then ∣A∪ B∣ < +∞ and A∪ B ∈ F0. For the other cases, assume w.l.o.g. that∣A∣ = +∞. By de�nition of F0, ∣A∣ = +∞ implies ∣Ac ∣ < +∞ (otherwise, A ∉ F0). �erefore∣Ac ∩ Bc ∣ < +∞ and (Ac ∩ Bc) ∈ F0. As F0 is closed under complement, this implies that(Ac∩Bc)c ∈ F0 and by DeMorgan’s law, we conclude that (Ac∩Bc)c = (A∪ B) ∈ F0. Hence,
F0 is closed under �nite union.

Lemma 2.1 (Generated σ-�eld). Let J ⊆ 2Ω be a class of subsets of some set Ω and
de�ne

σ (J ) =⋂{F ⊆ 2Ω ∣ F is a σ-�eld,J ⊆ F} .
�en σ(J ) is the smallest σ-�eld which contains J . It is called the smallest σ-�eld
generated by J .

Proof. Let J = {F ⊆ 2Ω ∣ F is a σ-�eld,J ⊆ F}.
First, we prove that σ(J ) is a �eld:�erefore, we check Conditions (a), (b) and (d) of

Def. 2.1: For Cond. (a), note that Ω ∈ F for all F ∈ J; hence, Ω ∈ σ (J ). For Cond. (b),
let A ∈ σ (J ).�en A ∈ F for all F ∈ J, implying Ac ∈ F for all F ∈ J. Hence, Ac ∈ σ (J ).
Finally, σ (J ) satis�es Cond. (d): If A1,A2, . . . ∈ J, then A1,A2, . . . ∈ F for all F ∈ J; as
each F is a σ-�eld, it holds that⋃∞i=1 Ai ∈ F for all F ∈ J.�erefore⋃∞i=1 Ai ∈ σ (J ).�us,

σ (J ) is a σ-�eld.
By de�nition, J ⊆ 2Ω. Further, 2Ω is a σ-�eld. �is implies that 2Ω ∈ J so that J is

nonempty. Furthermore, J ⊆ F for all F ∈ J. Hence J ∈ σ(J ).
Finally, ifF′ is a σ-�eld of subsets of Ω withJ ⊆ F′, then F′ ∈ J and σ (J ) ⊆ F′. Hence,

σ(J ) is the smallest σ-�eld that contains J . ◻

De�nition 2.2 (Measure, probability measure). A measure µ on a measurable space(Ω,F) is a function µ ∶ F → R∞≥0 such that for all �nite or countably in�nite families{Ai}i∈I of pairwise disjoint sets Ai ∈ F (where I ⊆ N), it holds that

µ (⊍
i∈I

Ai) =∑
i∈I

µ(Ai). (2.1)

If µ(Ω) = 1, then µ is a probability measure.

Anymeasurable space (Ω,F) together with a measure µ forms ameasure space, denoted
by the triple (Ω,F, µ). If µ is a probability measure, the measurable space (Ω,F, µ) is a
probability space.
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For what follows, we generalize the notion of a measure to also account for �elds
(instead of σ-�elds as required in Def. 2.2): �erefore, let Ω be a set and F0 a �eld
of subsets of Ω. A set function µ ∶ F0 → R∞ on F0 is countably additive on F0 i�
µ (⊍i∈I Ai) = ∑i∈I µ(Ai) for all �nite or countably in�nite families {Ai}i∈I of pairwise
disjoint sets Ai ∈ F0 (where I ⊆ N) that satisfy⊍i∈I Ai ∈ F0. Observe the intricate point in
this de�nition: For µ to be countably additive on a �eld, it su�ces to consider only those

countably in�nite collections of disjoint sets, whose union actually belongs to F0: As F0
is only a �eld (and not a σ-�eld), there may exist countably in�nite collections A1,A2, . . .
of disjoint sets Ai ∈ F0 such that⊍∞i=1 Ai ∉ F0.
Accordingly, we extend Def. 2.2 and call a set function µ ∶ F0 → R∞ on a �eld F0 a

measure on the �eld F0 i� µ is countably additive on F0 and µ(A) ≥ 0 for all A ∈ F0.
Further, if µ(Ω) = 1, µ is called a probability measure on the �eld F0. Note that if F0 is

not only a �eld but also a σ-�eld and µ is countably additive and nonnegative, then µ is
a measure according to Def. 2.2.

Naturally, �nite additivity is a weaker condition than countable additivity: We say that

a set function µ ∶ F0 → R∞ is �nitely additive i� µ (⊍n
i=1 Ai) = ∑n

i=1 µ(Ai) for all �nite
collections A1,A2, . . . ,An of pairwise disjoint sets Ai ∈ F0.

Further, a set function µ ∶ F0 → R∞≥0 is σ-�nite on a �eld F0 i� there exists a collection

A1,A2, . . . ∈ F0 such that Ω = ⋃∞i=1 Ai and µ(Ai) < +∞ for all i ∈ N.�us, if µ is σ-�nite,
we can build Ω from an at most countably in�nite collection of sets in F0 that all have a
�nite measure.

Example 2.3. Reconsider the �eld F0 from Ex. 2.2 and de�ne the set function µ on F0
such that µ(A) = 0 if ∣A∣ < +∞ and µ(A) = 1, otherwise. �en µ is �nitely additive, but
not countably additive: Let A1,A2, . . . ,An be pairwise disjoint sets in F0. To show �nite
additivity, we consider two cases:
First, assume that ∣Ak∣ = +∞ for at least one k ∈ {1, 2, . . . , n}. �en µ (⊍n

i=1 Ai) = 1.
To show that ∑n

i=1 µ(Ai) = 1 holds as well, recall that by de�nition of F0, it holds that∣Ak ∣ = +∞ implies ∣Ac
k∣ < +∞. As Ai ⊆ Ac

k for all i /= k, we derive ∣Ai ∣ < +∞; thus
µ(Ai) = 0 for all i /= k by de�nition of µ and F0. Hence, ∑n

i=1 µ(Ai) = µ(Ak) = 1 and
therefore µ (⊍n

i=1 Ai) =∑n
i=1 µ(Ai).

For the second case, assume that ∣Ai ∣ < +∞ for all i ∈ {1, 2, . . . , n}. �en µ (⊍n
i=1 Ai) =

0 =∑n
i=1 µ(Ai). �us µ is �nitely additive.

On the other hand, it is easy to see that µ is not countably additive: Let ω1,ω2, . . . be
an enumeration of the elements in Ω and de�ne Ai = {ωi}. �en ∑∞i=1 µ(Ai) = 0, but
µ (⊍∞i=1 Ai) = µ(Ω) = 1. ♢

By de�nition, any σ-�eld F is closed under countable union; hence, if A1 ⊆ A2 ⊆ ⋯
is an increasing sequence of sets Ai ∈ F, its limit limi→∞ Ai = ⋃∞i=1 Ai is an element of F.

�erefore, σ-�elds are closed under increasing sequences. Moreover, σ-�elds are also
closed under decreasing sequences, i.e. if A1 ⊇ A2 ⊇ ⋯ are elements in F, then⋂∞i=1 Ai ∈ F.
To see this, note that any σ-�eld F is closed under complement and countable union.
Hence, it is also closed under countable intersection and ⋂∞i=1 Ai ∈ F.
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�e obvious next question is whether measures, or more generally, countably additive

set functions agree with these closure properties of σ-�elds:

Lemma 2.2 (Continuity of countably additive set functions). Let F be a σ-�eld of
subsets of some set Ω and let µ ∶ F→ R∞ be a countably additive set function on F.

(a) If A1 ⊆ A2 ⊆ A3 ⊆ ⋯ ∈ F and Ai ↑ A, then limi→∞ µ(Ai) = µ(A).
(b) If A1 ⊇ A2 ⊇ A3 ⊇ ⋯ ∈ F such that Ai ↓ A and −∞ < µ(Ai) < +∞ for all i ∈ N, then

limi→∞ µ(Ai) = µ(A).

Proof. For a proof, see [ADD00,�. 1.2.7]. ◻

Although Lemma 2.2 is stated in full generality, note that any measure µ on (Ω,F) is
a nonnegative, countable additive set function. Hence, the statements (a) and (b) in

Lemma 2.2 hold for any measure.

2.1.1 Extension from F0 to σ(F0)

In general, if Ω is an uncountable set like the set of real numbers, and we are to de�ne
a measure µ on all subsets of Ω, it turns out that this is impossible (see Sec. 2.3). More
precisely, if we insist on the natural assumption that a measure should be countably ad-

ditive (cf. Def. 2.2(2.1)), we cannot de�ne a measure on the σ-�eld 2Ω:�is is due to the
fact, that in general (for example, on 2R) there exist subsets of Ω such that no countably
additive set function can be de�ned on 2Ω.

As a consequence, if Ω is countably in�nite, we are forced to restrict ourselves to the
subclass of measurable subsets of Ω. �is can be achieved as follows: First, we identify

those subsets of Ω that we need to measure. In a second step, we need to �nd a �eld F0
which contains those desirable sets and allows us to de�ne the corresponding measure
on F0. Note that due to the simple structure of a �eld, this is usually an easy task.

However, there are important properties (like themeasure of the limit of in- or decreas-
ing sequences) that require to extend µ from the �eld F0 to the smallest σ-�eld σ(F0) that
is generated by F0. �is is a nontrivial task, as it turns out that the structure of the ele-
ments in the σ-�eld σ (F0) is much more complex than the structure of the elements of
its underlying �eld F0.

�erefore, this section introduces the measure theoretic results that guarantee the ex-
istence (and uniqueness) of the extension of µ from F0 to σ(F0). In what follows, we
obtain an easier description if we assume that µ is a �nite measure, that is, µ(A) < +∞
for all A ∈ F0. As we shall see later, this restriction is too strict; in fact, we already obtain
a unique extension of µ from F0 to σ(F0) if we assume that µ is σ-�nite on F0; however,

this result is easily established later, so that we do not loose anything if we restrict to �nite
measures �rst.
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In the following, we proceed stepwise and extend µ to more andmore complex classes

of subsets of Ω, until we arrive at σ(F0).�e �rst step is to extend µ to the class G of all
countable unions of elements in F0. Note that in contrast to the �rst impression, G is a
strict subset of σ(F0) and should not be confused with the latter!

Extension to countable unions of elements in F0.

To begin with, consider the class G ⊆ 2Ω of subsets of Ω which is de�ned such that

A ∈ G ⇐⇒ ∃A1,A2, . . . ∈ F0. Ai ↑ A.

�us, G is the set of all limits of increasing sequences of elements in F0; further, F0 ⊆ G,
as for any set A ∈ F0, the sequence which is obtained by de�ning Ai = A for all i ∈ N
increases to A.
Note that G is also the class of all countable unions of elements in F0: To see this, let

A1,A2, . . . ∈ F0 and de�ne the sets Bk = ⋃k
i=1 Ai and A = ⋃∞i=1 Ai . Each Bk is a �nite union

of elements in F0 and therefore, Bk ∈ F0. Moreover, Bk ↑ A by construction. �us, by
de�nition of G it holds that A ∈ G. Hence, G contains all countable unions of elements

inF0. To show thatG does not containmore, consider the reverse direction: IfA ∈ G, then
there exists an increasing sequence A1,A2 , . . . ∈ F0 such that Ai ↑ A. But then A = ⋃∞i=1 Ai

is a countable union of elements in F0.

Now that we have de�ned the class G of subsets of Ω, we extend the measure µ from
the �eld F0 to G:

Lemma 2.3 (Extension of µ to G). Let F0 be a �eld and µ a �nite measure on F0. Fur-
ther, let G be the class of all countable unions of elements in F0. �en µ′ ∶ G → R≥0 denotes
the extension of µ from F0 to G. For A ∈ G, we de�ne

µ′(A) = lim
n→∞

µ(An),
where A1,A2, . . . ∈ F0 are such that An ↑ A. �en it holds:

(a) µ′(A) = µ(A) for all A ∈ F0.

(b) If G1,G2, (G1 ∪G2) , (G1 ∩G2) ∈ G, then
µ′(G1 ∪G2) + µ′(G1 ∩G2) = µ′(G1) + µ′(G2).

(c) If G1,G2 ∈ G and G1 ⊆ G2, then µ′(G1) ≤ µ′(G2).
(d) If G1,G2, . . . ∈ G and Gn ↑ G, then G ∈ G and limn→∞ µ′(Gn) = µ′(G).

Proof. A proof can be found in [ADD00, Lemma 1.3.2]. ◻
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First, note that by de�nition of G, there exists a sequence A1,A2, . . . ∈ F0 that increases

to A; further, if A′1,A
′
2, . . . ∈ F0 is another sequence with A′n ↑ A, it can be shown that

limn→∞ µ(An) = limn→∞ µ(A′n) [ADD00, Lemma 1.3.1]. Hence, µ′ is well-de�ned.
Observe that µ′ satis�es the requirements that we expect from a measure, i.e. by (a) it

coincides with the original measure µ on F0, by (d) it preserves limits, by (b) it works as
expected for (not necessarily disjoint) set union and �nally, by (c) it obeys the ordering

on the measures of sets according to set inclusion.

However, at this stage the extension is not complete, as G is not a σ-�eld yet. Hence,

there are still sets in σ(F0) ∖ G that µ′ is unable to measure. As an example, note that
the class G is not closed under complement: We derive G by extending F0 to the class

of all countable unions of elements in F0; however, G is closed under complement only
with respect to elements in F0. More precisely, if A = ⋃∞i=1 Ai with Ai ∈ F0 is a countable
union that does not belong to F0, then A ∈ G still holds by de�nition of G. However, this
does not imply that Ac ∈ G. To see this, note that the set Ac cannot always be represented
as a countable union of elements in F0. �erefore, in general, Ac ∉ G so that G is not

closed under complement. We postpone the construction of a concrete counterexample
and refer the reader to Ex. 2.5 on page 26 for further details.

�erefore, although Lemma 2.3 considerably extends the domain of µ, we still do not
cover all desirable subsets of Ω.�is problem is overcome (only partly, as we will see) in
the next step:

Extension to an outer measure.

With µ′ ∶ G → R≥0 and the class G, we have extended themeasure µ on F0 to a larger class
of subsets of Ω. Now we aim at an extension of µ′ to an outer measure which is de�ned
on the entire power set 2Ω:

De�nition 2.3 (Outer measure). An outermeasure on a setΩ is a set function λ ∶ 2Ω →
R∞≥0 that satis�es

(a) λ(∅) = 0,
(b) if A, B ⊆ Ω and A ⊆ B, then λ(A) ≤ λ(B) and
(c) if A1,A2, . . . ⊆ Ω, then λ(⋃∞n=1 An) ≤ ∑∞n=1 λ(An).

It is important to note that Cond. (c) (which is also called countable subadditivity) does

neither require the sets An to be disjoint, nor does it state that λ(⊍∞n=1 An) = ∑∞n=1 λ(An)
holds if they happen to be pairwise disjoint (which is required inDef. 2.2 for λ to be amea-

sure)! Hence, we could suspect already here that something is wrong with extending µ′

to a measure on 2Ω.
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In fact, albeit its name, an outer measure is not a measure in general. In our case, it

will turn out that by extending µ′ to 2Ω, the extension loses important properties of a
measure. Before we address this issue, let us de�ne how to extend µ′ to an outer measure
on all subsets of Ω:

Lemma 2.4 (Extension to an outer measure). Let F0 be a �eld of subsets of some setΩ,
G the class of all countable unions of elements in F0 and µ′ the extension of a �nite mea-
sure µ on F0 to G. De�ne the set function

µ∗ ∶ 2Ω → R∞≥0 ∶ A↦ inf {µ′(B) ∣ B ⊇ A∧ B ∈ G} .
�en µ∗ is an outer measure on Ω with the additional properties that

(a) µ∗(A) = µ′(A) for all A ∈ G,
(b) µ∗(A∪ B) + µ∗(A∩ B) ≤ µ∗(A) + µ∗(B) for all A, B ⊆ Ω and

(c) if A1,A2, . . . ⊆ Ω with An ↑ A, then limn→∞ µ∗(An) = µ∗(A).

Proof. �e proof can be found in, e.g. [ADD00, p.16�]. ◻

�is de�nition of µ∗ provides an extension of µ′ to the whole power set of Ω. Note

however, that countable additivity which is required for µ∗ to be a measure on 2Ω (cf.
Eq. (2.1) of Def. 2.2) is replaced by the weaker property of subadditivity in Def. 2.3(c). In

fact, it turns out that in general, µ∗ is not countably additive on all subsets of Ω, that is,
there exist sequences A1,A2, . . . ⊆ Ω of pairwise disjoint sets An such that µ∗(⊍∞n=1 An) <
∑∞n=1 µ∗(An).
By the above argument, extending µ′ to the whole power set 2Ω is too ambitious.�ere-

fore, to still obtain a measure, we have to exclude certain elements in 2Ω and restrict to
a σ-�eld smaller than 2Ω. In the following, we identify a large (but proper) subset of 2Ω

that is a σ-�eld and allows an extension of µ that is countably additive:

Lemma 2.5 (Extension of �nite measures). Let F0 be a �eld of subsets of a set Ω, µ a
�nite measure on F0 and G the class of all countable unions of elements in F0. For the
outer measure µ∗ de�ned as above, let

H = {H ⊆ Ω ∣ µ∗(H) + µ∗(Hc) = µ(Ω)} .
�enH is a σ-�eld and µ∗ is a measure onH.

Proof. �e proof can be found in [ADD00,�m. 1.3.5]. ◻
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To see that the class H indeed extends G, let A ∈ G. By de�nition of G, there exists an
increasing sequence A1,A2, . . . ∈ F0 such that An ↑ A, implying that Ac ⊆ Ac

n for all n ∈ N.
As µ∗ is an outer measure, it holds by Def. 2.3(b) that µ∗(Ac) ≤ µ∗(Ac

n). Further, recall
that µ∗ agrees with µ′ on G and with µ on F0; hence

µ(An) + µ∗(Ac) ≤ µ(An) + µ(Ac
n) = µ(Ω). (2.2)

Further, limn→∞ µ′(An) = µ′(A) by Lemma 2.3(d). Hence, taking the limit for n → ∞
on both sides of Eq. (2.2) yields µ∗(A) + µ∗(Ac) ≤ µ(Ω).
On the other hand, Lemma 2.4(b) implies that µ∗(A ∪ Ac) + µ∗(A ∩ Ac) ≤ µ′(A) +

µ∗(Ac); as µ∗(A ∪ Ac) = µ(Ω) and µ∗(A ∩ Ac) = µ(∅) = 0, we obtain µ(Ω) ≤ µ′(A) +
µ∗(Ac). Further, µ′(A) = µ∗(A) by Lemma 2.4(a). Hence, µ∗(A) + µ∗(Ac) ≥ µ(Ω).
�erefore we have established that µ∗(A)+ µ∗(Ac) = µ(Ω) and A ∈ H. As this applies

to all A ∈ G, this proves that G ⊆ H.
�e class H has another important property: By transitivity of set inclusion, we con-

clude from the fact that G ⊆ H and F0 ⊆ G, that F0 ⊆ H. Moreover, by Lemma 2.5 we
know that H is a σ-�eld of subsets of Ω. But by de�nition, σ(F0) is the smallest σ-�eld
that contains F0. Hence, σ(F0) ⊆ H.
To summarize the di�erent steps in extending µ fromF0 to σ(F0), Table 2.1 depicts the

complete chain of inclusions (from le� to right) as well as the corresponding extensions

of µ and their properties.
As we have seen, σ(F0) and H are both σ-�elds that contain the �eld F0; further, we

are able to extend µ to ameasure on σ(F0) andH. Hence σ(F0) andH seem to be related

closely. In fact, it turns out that they di�er only in sets of measure zero. More precisely,
it can be shown (see [ADD00,�m. 1.3.8]) that any element A ∈ H can be decomposed

such that A = B ∪ M, where B ∈ σ(F0) and M ⊆ N is a subset of some set N ∈ σ(F0)
which has measure zero, i.e. µ∗(N) = 0. �erefore, we say that H is the completion of
σ(F0) with respect to µ∗ and sets of measure zero:

De�nition 2.4 (Completion of a measure space). Let (Ω,F, µ) be a measure space.
�en

Fµ = {A∪M ∣ A ∈ F,M ⊆ N ,N ∈ F, µ(N) = 0}
is the completion of Fwith respect to themeasure µ. Further, a measure space (Ω,F, µ)
is complete i� for all N ∈ F, µ(N) = 0 implies that M ∈ F for all M ⊆ N.

�erefore, we complete a measure space (Ω,F, µ) by extending any set A ∈ F with all
subsets of sets of measure zero which are in F. Further, it directly follows from Def. 2.4

that the completion of a measure space is indeed complete.
Using the construction outlined above (i.e. from F0 over G to 2Ω and back via H

to σ(F0)), we are now able to state the �rst important result regarding the extension
of a �nite measure µ on F0 to the smallest σ-�eld generated by F0:
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F0 G σ(F0) H 2Ω

�eld limit collection smallest σ-�eld completion of σ(F0) power set

µ µ′ µ∗
↾σ(F0)

µ∗
↾H

µ∗

measure set function measure measure not countably
on F0 additive

Table 2.1: Summary of the inclusions and the properties of the extensions of µ.

�eorem 2.1 (Existence of an extension). A �nite measure µ on a �eld F0 can be ex-
tended to a measure on σ(F0).

Proof. We have shown before that F0 ⊆ G ⊆ σ(F0) ⊆ H ⊆ 2Ω. Further, µ∗ is an extension

of µ to 2Ω. Hence, the domain of µ∗ covers σ(F0). Moreover µ∗ is a �nite measure onH
by Lemma 2.5 and σ(F0) ⊆ H. Hence, the restriction of µ∗ to σ(F0) is the desired �nite

measure on σ(F0). ◻

With this result, we are able to extend µ from F0 to σ(F0) and even more, toH. Recall
that it can be proved (see Sec. 2.3 for the details of the construction) that we cannot ex-
tend µ to ameasure on the σ-�eld 2Ω. However, the question whether there exist σ-�elds
that are larger than σ(F0) andH (but smaller than 2Ω), which allow for an extension, is

not answered by the preceding constructions. Within this thesis, we only refer to [Ben76,
p. 40] which provides links to the related literature.

Although�m. 2.1 allows us to extend any �nite measure µ to the σ-�eld σ(F0), we do
not know whether this extension is unique: More precisely, the question to be answered

is: Does there exist another measure λ on σ(F0) such that µ = λ on F0 but µ(A) /= λ(A)
for some set A ∈ σ(F0)?�e answer to this question will be the topic of the next section:

2.1.2 Uniqueness of the extension

Starting from a �nitemeasure µ on some�eldF0 of subsets of a set Ω, we have extended µ
to a set function µ′ on the class G that contains all limits of increasing sequences of sets

in F; then, we have shown that the outer measure µ∗ which is induced by µ′, is a �nite
measure on the class H of subsets of Ω. As σ(F0) is a subset of H, we can consider µ∗

as an extension of µ to the smallest σ-�eld generated by F0. What remains to discuss is

the uniqueness of our extension: Stated di�erently, does there exist another measure λ
de�ned on σ(F0) such that µ and λ agree on sets in F0 (i.e. µ∗(A) = λ(A) for all A ∈ F0)
while their extensions to σ(F0) di�er (i.e. ∃A ∈ σ(F0). µ∗(A) /= λ∗(A))?

At the end of this section, we will answer this question in the negative, that is, the

extension of µ is unique.�e following theorem, the so-called monotone class theorem,
is essential in proving this result. In fact, it provides the basis for a proof technique, where
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it su�ces to show a property on a monotone class to prove it for the entire σ-�eld. �e

only restriction is that themonotone class must be “large enough”, that is, it must contain
at least all elements of the underlying �eld:

De�nition 2.5 (Monotone class). Let X be a class of subsets of Ω. X is a monotone
class i� for all collections A1,A2, . . . ∈ X :

(a) An ↑ A⇒ A ∈ X and

(b) An ↓ A⇒ A ∈ X .

�us, any class of subsets of some set Ω which is closed under increasing and decreas-

ing sequences is a monotone class.

�eorem 2.2 (Monotone class theorem). Let X be a monotone class over subsets of
some set Ω and let F0 be a �eld of subsets of Ω. If F0 ⊆ X , then σ(F0) ⊆ X .

Proof. A proof can be found in [ADD00,�m. 1.6.2]. ◻

�e monotone class theorem is extremely useful: We use it in the proof of Lemma 4.7
in Sec. 4.2.2 as well as in the next theorem to show that properties which hold for all

elements in a �eld F0 also hold for all elements in σ(F0).
�e Carathéodory extension theorem is the main result of this section. It states that

the extension of a �nite measure µ from a �eld F0 to the measure µ∗ on σ(F) is unique.
Moreover, it relaxes the restriction to �nite measures that we have imposed so far:

�eorem 2.3 (Carathéodory extension theorem). Let µ be a σ-�nite measure on a
�eld F0 of subsets of some set Ω. �en µ has a unique extension to a measure on σ(F0).

Proof. As theCarathéodory extension theorem is essential tomeasure theory anddemon-
strates a basic proof technique, we give a detailed proof here. It is split in two parts:

• We relax the restriction of µ of being a �nite measure and allow µ to be σ-�nite.
�us, there exist sets A′1,A

′
2, . . . ∈ F0 such that⋃∞i=1 A′i = Ω and µ(A′i) < +∞ for all

i ∈ N. Now, de�ne An = A′n ∖⋃
n−1
i=1 A

′
i . �en the sets An are pairwise disjoint and

Ω = ⊍∞n=1 An and µ(An) ≤ µ(A′n) < +∞ for all n ∈ N.

Now, de�ne a family of measures µn on F0 (for n = 1, 2, . . .) such that µn(A) =
µ(A ∩ An). Each µn is a �nite measure (because µ(An) < +∞) and has an exten-
sion µ∗n to σ(F0). As the An are pairwise disjoint, it holds that µ(A) = µ(A∩Ω) =
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µ(⊍∞n=1(A ∩ An)) = ∑∞n=1 µ(A ∩ An) = ∑∞n=1 µn(A). Hence, the set function that is

obtained by de�ning µ∗(A) =∑∞n=1 µ∗n(A) for all A ∈ σ(F0) is an extension of µ. To
prove that it is ameasure, we check the condition of Def. 2.2: Let B1, B2, . . . ∈ σ(F0)
be a sequence of pairwise disjoint sets in F.�en

µ∗(∞⊍
i=1

Bi) = ∞∑
n=1

µ∗n(∞⊍
i=1

Bi) = ∞∑
n=1

∞

∑
i=1

µ∗n(Bi) = ∞∑
i=1

∞

∑
n=1

µ∗n(Bi) = ∞∑
i=1

µ∗(Bi).
�erefore, µ∗ is a measure on σ(F0).

• It remains to prove that the extension is unique: �erefore, suppose there exists
another measure λ on σ(F0) such that µ(A) = λ(A) for all A ∈ F0. Let λn(A) =
λ(A∩An) for all A ∈ σ(F0). Note that we can de�ne each λn directly on σ(F0) and
not only on F0 as it was the case for the measures µn! Moreover, each λn is a �nite
measure on σ(F0), as it is bounded by λ(An) = µ(An), which is �nite.

Our aim is to prove that λ and µ∗ agree on σ(F0): For each An, consider the class
Cn = {A ∈ σ(F0) ∣ λn(A) = µ∗n(A)}, i.e. the class of all sets A ∈ σ(F0) for which λn
and the extension of µn agree: First, we prove that each class Cn is amonotone class:
�erefore, let C1,C2, . . . ∈ Cn such that Ci ↑ C. Each Ci is an element of σ(F0) and
as a σ-�eld, σ(F0) is closed under increasing sequences; hence C ∈ σ(F0). �us,

in order to show that C ∈ Cn, it remains to prove that λn(C) = µ∗n(C). Now Ci ↑ C
implies that

lim
i→∞

µ∗n(Ci) = µ∗n(C) and lim
i→∞

λn(Ci) = λn(C).
But µ∗n(Ci) = λn(Ci) for all i ∈ N, as Ci ∈ C.�us limi→∞ µ∗n(Ci) = limi→∞ λn(Ci).
As the limits are equal, i.e. µ∗n(C) = λn(C), we conclude that C ∈ Cn.
Having established that each Cn is a monotone class, it is easy to see that F0 ⊆ Cn:
From the extension, we know that µn = µ∗n on F0; hence µn(A) = µ∗n(A) = λn(A)
for all A ∈ F0 and F0 ⊆ Cn. By�m. 2.2, we conclude that σ(F0) ⊆ Cn and thus,
λn(A) = µ∗n(A) for all A ∈ σ(F0). But then λ(A) = ∑∞n=1 λn(A) = ∑∞n=1 µ∗n(A) =
µ∗(A). Hence λ = µ on σ(F0), proving uniqueness. ◻

2.1.3 Approximate representations of elements in F

�e di�erence between a �eld F0 of subsets of Ω and the smallest σ-�eld σ(F0) generated
by F0 is that elements of σ(F0) may be obtained by taking countably in�nite combina-

tions of unions and intersections of elements in F0. In contrast to σ(F0), the elements
in F0 are structurally simple, as they are constructed using only �nitely many unions

and intersections. Nevertheless, there is no bound on the number of such unions and
intersections.
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Intuitively, this leads to the following observation: If F is the σ-�eld generated by a

�eld F0, and A ∈ F, we can construct a set B ∈ F0 which approximates the set A arbitrarily
closely by just taking enough unions and intersections of elements in F0 when building
the set B.
To make this precise, let X ,Y ⊆ Ω and de�ne the set di�erence X △ Y of X and Y by

X △ Y = (X ∖ Y) ∪ (Y ∖ X). Given a set A ∈ F, we can construct a set B ∈ F0 by taking

�nitely many unions and intersections of elements in F0 such that µ(A△ B) < ε for any
prede�ned ε > 0.
Note however, that in general, the smaller ε is chosen, the more complex the unions

and intersections needed for the construction of B become. �e possibility of approxi-
mating elements in F by those in F0 is made precise in the following theorem:

�eorem 2.4 (Approximation theorem). Let (Ω,F, µ) be a measure space and F0 be
a �eld of subsets of Ω with σ(F0) = F. Further, let µ be σ-�nite on F0. For all ε > 0 and
A ∈ F with µ(A) < +∞, there exists B ∈ F0 such that µ(A△ B) < ε.

Proof. A proof can be found in [ADD00,�m. 1.3.11]. ◻

�e approximation theorem is used in Chapter 5 to construct �nite representations of

Borel-measurable functions.

2.2 �e Borel σ-�eld and the Lebesgue measure

In this thesis, we consider systems that evolve in continuous-time, where time points are
modeled by the set of nonnegative real numbers.�e aim of this section is to construct a

measure that allows us to quantify the “size” or “length” of any set of time-points, i.e. of
any subset A ⊆ R≥0.
In the following, we apply the extension technique fromSec. 2.1 to derive a σ-�eldB(R)

over the set of real numbers R. Further, we de�ne the Lebesgue measure, which corre-
sponds to the natural notion of “size” or “length” of subsets of R.

2.2.1 �e size of intervals

We strive to de�ne a measure on (measurable) subsets of R≥0. A natural requirement is
that the measure of any interval (a, b] with a, b ∈ R≥0 and a < b is its length, that is, we
expect the measure of (a, b] to be b − a.
Note that in the following, we use right-semiclosed intervals of the form (a, b] to de-

rive the Borel σ-�eld B(R); however, as will become clear in the next paragraph, we

also could have used any other type of interval (closed or open, or intervals of the form(−∞, a]).
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De�nition 2.6 (Right-semiclosed interval). For a, b ∈ R∞, the set (a, b] ={x ∈ R ∣ a < x ≤ b} is a right-semiclosed interval in R.

Now, let µ be a set function de�ned on right-semiclosed intervals such that if I = (a, b],
then µ(I) = b − a. In this way, µ formalizes the length of right-semiclosed intervals.

�ere is one subtle point in Def. 2.6: It states that any right-semiclosed interval on R is
a subset ofR; as +∞,−∞ ∉ R, we identify the set (a,+∞]with the set {x ∈ R ∣ a < x} and
de�ne this set to be right-semiclosed. Similarly, we de�ne (−∞, a] = {x ∈ R ∣ x ≤ a} to be
right-semiclosed.�is convention is necessary, as it makes the class of right-semiclosed

intervals closed under complement, which is required in Lemma 2.6.

Right-semiclosed intervals are a very restricted class of subsets ofR; for example, given

a right-semiclosed interval (a, b], we are not able to measure its complement (a, b]c =(−∞, a] ⊍ (b,+∞] or any other disjoint union of right-semiclosed intervals. To address

this, we strive to extend the set function µ to a larger class of subsets of R. In a �rst
step, we therefore consider the class F0 that consists of all �nite disjoint unions of right-
semiclosed intervals:

By de�nition, all elements A of F0 have the form A = (a1, b1] ⊍ (a2, b2] ⊍⋯⊍ (an , bn]
for some n ∈ N and ai , bi ∈ R∞.�us, it su�ces to de�ne µ(A) = ∑n

i=1 µ ((ai , bi]) for all
A ∈ F0. �en the class F0 of �nite disjoint unions of right-semiclosed intervals forms a
�eld:

Lemma 2.6. Let F0 be the class of �nite disjoint unions of right-semiclosed intervals in R.
�en F0 is a �eld.

Proof. Let Ω = R. To show that F0 is a �eld, we verify the conditions of Def. 2.1:

(a) Ω ∈ F0 is satis�ed as R = (−∞,+∞] ∈ F0. Note that by Def. 2.6, intervals of the form{x ∈ R ∣ a < x ≤ +∞} = (a,+∞] are right-semiclosed.

(b) Let A = ⊍n
i=1 Ai with Ai = (ai , bi] be a �nite disjoint union of right-semiclosed inter-

vals. Without loss of generality, we may assume that the Ai are ordered according to
their lower interval bounds, i.e. let ai ≤ ai+1 for i = 1, 2, . . . , n− 1. First, we prove that
A∪ (a, b] ∈ F0 for any right-semiclosed interval (a, b]:
If A ∩ (a, b] = ∅, then A ⊍ (a, b] ∈ F0 and we are done. Otherwise, there exist
j, k ∈ {1, . . . , n}, j ≤ k with (ai , bi] ∩ (a, b] /= ∅ for all i ∈ { j, j + 1, . . . , k} and(ai , bi] ∩ (a, b] = ∅ for all other i. (see Fig. 2.1, where j = 2 and k = 4). To obtain a
disjoint decomposition of the set (⊍n

i=1 (ai , bi]) ∪ (a, b], set amin = min{a, a j} and
bmax = max {bk , b} and replace (⊍k

i= j Ai) ∪ (a, b] ⊆ A with the interval (amin, bmax]:
�erefore, de�neCi = Ai for i < j, C j = (amin, bmax] and for i > j, de�ne Ci = Ai+(k− j) .
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Figure 2.1:�e union of an interval and a disjoint union of right-semiclosed intervals.

By construction it then follows that Ci ∩ C j = ∅ for i /= j and (⊍n
i=1 Ai) ∪ (a, b] =

⊍n−(k− j)
i=1 Ci ∈ F0.

Now, let A, B ∈ F0, i.e. A = ⊍n
i=1 Ai and B = ⊍m

i=1 Bi for some n,m ∈ N. To complete
the proof, we show that A ∪ B ∈ F0: �erefore, let C1 = A and Ci+1 = Ci ∪ Bi for
i = 1, 2, . . . ,m. We prove that Ci ∈ F0 by induction on i: By de�nition, C1 = A ∈ F0.

For the induction step, let Ci ∈ F0. By the above argument, Ci+1 = Ci∪Bi ∈ F0. Hence,
Cm+1 ∈ F0; now the claim follows, as Cm+1 = A∪ B.

(c) Let A = ⊍n
i=1 Ai ∈ F0 be de�ned as before and set Bi = (bi−1 , ai] for 1 ≤ i ≤ n + 1 with

b0 = −∞ and an+1 = +∞.�en Ac = ⊍n+1
i=1 Bi and hence, Ac ∈ F0. ◻

With this result, we know that by extending µ from single intervals to the elements in F0,
we can already measure the complement and union of any �nite combination of right-
semiclosed intervals.

It can even be proved (cf. [MP90, p. 23] and [ADD00, Lemma 1.4.3]) that µ is count-
ably additive on F0, that is, if A1,A2 , . . . ∈ F0 is a countably in�nite sequence of disjoint

sets in F0 with the property that their union ⊍∞i=1 Ai is again in F0, then µ (⊍∞i=1 Ai) =
∑∞i=1 µ(Ai). Hence, countable additivity on F0 allows us to reason even about countably
in�nite unions of intervals, provided they do belong to F0. However, such countable

unions obviously are an exception, as F0 is not a σ-�eld but just a �eld.

Example 2.4. As an example of a countably in�nite union which is in F0 and can be mea-
sured by µ without further extensions, let Ai = ( 12i , 1

2i−1
] for i = 1, 2, . . . be a countably

in�nite sequence of disjoint right-semiclosed intervals. �en (⊍∞i=1 Ai) = (0, 1] ∈ F0 and
therefore, µ (⊍∞i=1 Ai) = µ((0, 1]) = 1. However, this obviously does not hold in general: If
Bi = (1 − 1

2i−1
, 1 − 1

2i
], then Bi ∈ F0 for all i = 1, 2, . . . and ⊍∞i=1 Bi = (0, 1). But (0, 1) is not

right-semiclosed; hence, it is not in F0 and therefore, not in the domain of µ. ♢

As can be seen from the example, the structure of the elements in F0 is too restricted. In

the general case (cf. Sec. 2.1.1), the next step is to de�ne the set function µ′ (see Lemma2.3),
which extends µ to the classG = {⋃∞i=1 Ai ∣ Ai ∈ F0} of countable unions of elements inF0.
Although we do not go into the details here, note that the class G is still restricted; more

speci�cally, it is not closed under complement:
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Example 2.5. Reconsider the sequence of sets Bi ∈ F0 as de�ned in Ex. 2.4 and let G =(0, 1). If we de�ne Gn = ⋃n
i=1 Bi for n = 1, 2, . . ., then Gn ↑ G and G ∈ G. �erefore,

with the extension of µ to µ′, we can measure the set G = (0, 1). However, its complement
Bc = (−∞, 0]∪[1,+∞] is still not inG: To see this, note that by de�nition, the le�-semiclosed
interval [1,+∞] is not in F0. Further, no increasing sequence {Cn}n∈N ∈ F0 converges to a
le�-semiclosed interval. Hence [1,+∞] ∉ G. ♢

In order to extend µ to a larger class of subsets of R, we now develop an extension to

the smallest σ-�eld σ(F0) that is generated by F0. To motivate this extension, observe
that in contrast to F0, the σ-�eld σ(F0) is closed under all countable unions and under
complements.

2.2.2 Distribution functions and Lebesgue-Stieltjes measures

So far, µ is a measure on the �eld F0 of �nite disjoint unions of right-semiclosed intervals.
Now, we apply the extension described in Sec. 2.1.1 to derive a measure on σ(F0):
De�nition 2.7 (Borel σ-�eld). �e Borel σ-�eld B(R) is the smallest σ-�eld generated
by the �eld F0 of �nite disjoint unions of right-semiclosed intervals, that is, B(R) =
σ (F0).
Any σ-�eld is closed under countable union and complement (cf. Def. 2.1).�erefore,

we can imagineB(R) also as the smallest σ-�eld that contains all right-semiclosed inter-
vals. Moreover, the choice of right-semiclosed intervals for the constructionofB(R) is ar-
bitrary. For example,B(R) contains all closed intervals i� it contains all right-semiclosed
intervals. To see this, note that

[a, b] = ∞⋂
n=1

(a − 1

n
, b] and (a, b] = ∞⋃

n=1

[a + 1

n
, b] .

Similarly, it canbeproved thatB(R) is the smallest σ-�eld that contains all le�-semiclosed
as well as all open intervals.
�e extension of the measure µ from the �eld F0 to the Borel σ-�eld B(R) = σ(F0) is

based on Carathéodory’s extension theorem (�m. 2.3). In the following, we generalize
the idea of extending µ to B(R) such that it also applies to cases, where the measure of
an interval (a, b] is not de�ned as the di�erence b − a:

Example 2.6 (Measure of the exponential distribution). Let λ ∈ R≥0 and de�ne the func-
tion µλ ((a, b]) = e−λa − e−λb for all right-semiclosed intervals (a, b]. As we will see
later, µλ turns out to be the measure induced by the negative exponential distribution with
rate λ. ♢

To achieve greater �exibility, we do no longer de�ne µ ((a, b]) = b − a directly, but use a
distribution function F ∶ R→ R instead, where we set µ ((a, b]) = F(b) − F(a):
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De�nition 2.8 (Distribution function). A distribution function on R is a mapping F ∶
R→ R such that

(a) F is increasing, i.e. F(a) ≤ F(b) for all a ≤ b and

(b) F is right-continuous, i.e. limx→a+ F(x) = F(a).

By the formula µ ((a, b]) = F(b) − F(a), a distribution function F de�nes a mea-

sure µ on the Borel σ-�eld: For example, the distribution function F(x) = x de�nes the
measure µ that we have investigated so far, i.e. µ ((a, b]) = b − a = F(b) − F(a). Fur-
ther, the negative exponential distribution with rate λ is Fλ(x) = 1 − e−λx . Hence, the set
function µλ in Ex. 2.6 is obtained directly by Fλ(x).
In general, there is a one-to-one correspondence between distribution functions and

the so-called class of Lebesgue-Stieltjes measures:

De�nition 2.9 (Lebesgue-Stieltjesmeasure). A measure µ ∶ B(R) → R≥0 on(R,B(R)) is a Lebesgue-Stieltjes measure i� µ(I) < +∞ for all bounded intervals I ⊆ R.

�e class of Lebesgue-Stieltjes measures is the most prominent class of measures on
the Borel σ-�eld. It is related to the de�nition of distribution functions in the following
sense: Any measure that is de�ned by a distribution function is a Lebesgue-Stieltjes mea-

sure, and reversely, for any Lebesgue-Stieltjesmeasure, we can construct a corresponding
distribution function:

�eorem 2.5 (Lebesgue-Stieltjesmeasures induce distribution functions). Let µ ∶
B(R)→ R≥0 be a Lebesgue-Stieltjesmeasure and let F ∶ R→ R be such that F(b)−F(a) =
µ ((a, b]). �en F is a distribution function.

Proof. Let a, b ∈ R and a < b.�en F(b)−F(a) = µ ((a, b]) ≥ 0.�is implies that F(b) ≥
F(a) and therefore, F is increasing. For right-continuity, let x ∈ R and let x1 > x2 > x2 > ⋯
be a decreasing sequence such that limn→∞ xn = x. �en F(xn) − F(x) = µ ((x , xn]);
further, as µ is a measure, it holds that limn→∞ µ ((x , xn]) = 0. To see this, note that

limn→∞ (x , xn] = ∅, which has measure 0. �is implies that limn→∞ F(xn) − F(x) = 0
and limn→∞ F(xn) = F(x).�erefore, F is right-continuous. ◻

For the proof of the reverse direction, we apply the extension results from Sec. 2.1.1:
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�eorem 2.6 (Distribution functions induce Lebesgue-Stieltjesmeasures). Let F ∶
R → R be a distribution function and let µ be a function on right-semiclosed intervals
such that µ ((a, b]) = F(b) − F(a). �en µ extends uniquely to a measure on B(R).

Proof. As before, set µ ((a, b]) = F(b) − F(a) to obtain a measure for right-semiclosed

intervals.�e �rst step in the extension is to de�ne µ on F0; therefore, let A1,A2, . . . ,An

be disjoint right-semiclosed intervals in R and de�ne µ (⊍n
i=1 Ai) = ∑n

i=1 µ(Ai). �is
extends µ to a measure on the �eld F0. To be able to apply Carathéodory’s extension

theorem that extends µ to σ(F0), we need to prove that µ is a σ-�nite measure on the
�eld F0. First, note that µ is �nitely additive on F0; moreover, it can be proved that µ
is also countably additive on F0 (cf. [ADD00, Lemma 1.4.3]). To see that µ is σ-�nite,
note that R = ⋃∞n=1 (−n, n] and that µ ((−n, n]) = F(n) − F(−n) < +∞. Hence, by
Carathéodory’s extension theorem (�m. 2.3), there exists a unique extension of µ to a

measure on σ(F0) =B(R). ◻

With�m. 2.5 and�m. 2.6, we have established a one-to-one correspondence between
Lebesgue-Stieltjes measures and distribution functions. �us, the measure µ on right-
semiclosed intervals, that we de�ned by µ ((a, b]) = b − a has a unique extension to the

Borel σ-�eld. In fact, it is important enough to get its own name:

De�nition 2.10 (Lebesgue measure). �e Lebesgue measure on B(R) is the Lebesgue-
Stieltjes measure induced by the distribution function F(x) = x.

We slightly extend the de�nition of the Lebesgue measure: Let B(R) be the comple-

tion of B(R) i.e. any element A ∈ B(R) can be expressed as a union A = B ∪M, where
B ∈B(R) and M ⊆ N is a subset of a set N ∈B(R) that has Lebesgue measure 0.

De�nition 2.11 (Borel and Lebesgue measurable sets). Let B(R) the Borel σ-�eld, µ
the Lebesgue measure and B(R) the completion of B(R) w.r.t. µ. �e elements in B(R)
are the Borel measurable sets. If A ∈B(R), then A is a Lebesgue measurable set.

To extend the Lebesgue measure µ to B(R), let A ∈ B(R). �en A = B ∪M, where
B,N ∈ B(R), µ(N) = 0 and M ⊆ N . �erefore, we extend the Lebesgue measure µ
from B(R) to a measure on B(R) by setting µ(A) = µ(B). As the di�erence between µ
on B(R) and B(R) is only w.r.t. sets of measure zero, we do not distinguish between µ
and its extension to B(R); instead, we refer to both as the Lebesgue measure.

Another important property of the Lebesgue measure is translation invariance. It will
be essential to prove the existence of sets that are not measurable.
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Lemma 2.7 (�e Lebesgue measure is translation invariant). Let µ be the Lebesgue
measure, A ∈B(R) and b ∈ R. �en A⊕ b ∈B(R) and µ(A⊕ b) = µ(A).

Proof. First, let A = ⊍n
i=1 Ai ∈ F0 with pairwise disjoint right-semiclosed intervals Ai .

�en A ⊕ b = ⊍n
i=1 Ai ⊕ b with each Ai ⊕ b being a right-semiclosed interval. Hence,

A⊕ b ∈ F0. Further, for each Ai = (ai , bi] it holds that µ(Ai) = F(bi)− F(ai) = bi − ai =(bi + b) − (ai + b) = F(bi + b) − F(ai + b) = µ(Ai ⊕ b).�erefore µ(A) = µ (⊍n
i=1 Ai) =

∑n
i=1 µ(Ai) = ∑n

i=1 µ(Ai ⊕ b) = µ (⊍n
i=1 (Ai ⊕ b)) = µ(A⊕ b), proving that the Lebesgue

measure µ is translation invariant on F0.

To extend this result to theBorel σ-�eld, weuse themonotone class theorem (�m. 2.2)
and a proof technique which is also used in�m. 4.7; in [ADD00], Ash calls it the “good
sets principle”.�e idea is as follows: Let

C = {A ∈B(R) ∣ A⊕ b ∈B(R) ∧ µ(A⊕ b) = µ(A)}
be the class of good sets. First, we have to prove that C is a monotone class:

• Let A1 ⊆ A2 ⊆ ⋯ ∈ C be such that An ↑ A. By de�nition of C, it follows that

An ⊕ b ∈ B(R) for all n ∈ N. Further, A1 ⊕ b ⊆ A2 ⊕ b ⊆ ⋯. Hence, An ⊕ b ↑
A⊕ b. But as σ-�elds are closed under increasing sequences (to see this, note that
A⊕ b = ⋃∞n=1 An ⊕ b and that B(R) is closed under countable union), it follows

that A⊕ b ∈B(R). Further, µ is a measure, hence µ(A⊕ b) = limn→∞ µ(An ⊕ b).
By de�nition of C, µ(An ⊕ b) = µ(An).�erefore µ(A⊕ b) = limn→∞ µ(An ⊕ b) =
limn→∞ µ(An) = µ(A).�us µ(A⊕ b) = µ(A) and A ∈ C.

• Let A1 ⊇ A2 ⊇ ⋯ ∈ C such that An ↓ A. Again, An + b ∈B(R) and An ⊕ b ↓ A⊕ b.
Further, σ-�elds are closed under decreasing sequences as A⊕b = ⋂∞n=1 (An ⊕ b) =
(⋃∞n=1 (An ⊕ b)c)c. Hence A⊕b ∈B(R). Further, µ(A⊕b) = limn→∞ µ(An⊕b) =
limn→∞ µ(An) = µ(A). Hence, A ∈ C.

�us, C is a monotone class. Further, F0 ⊆ C, as for each A ∈ F0, it holds that A⊕ b ∈ F0
and µ(A) = µ(A ⊕ b). By the monotone class theorem (�m. 2.2), we conclude that
σ(F0) ⊆ C. Hence, A⊕ b ∈B(R) and µ(A) = µ(A⊕ b) for all A ∈B(R) and b ∈ R. ◻

2.3 A set that is not Lebesgue measurable

Now that we have discussed the technical details that allow to derive Lebesgue-Stieltjes

measures from distribution functions and right-semiclosed intervals, we now construct
an example of a set that is not Lebesgue measurable.

�erefore, this section partly answers the question that we posed in the discussion
following �m. 2.1 in a more general setting. It turns out that 2R ∖ B(R) /= ∅; hence,
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although the extensions that we have discussed in Sec. 2.1.1 cover a very large class of

subsets (namely B(R)) of the real line, there exist sets that are not Lebesgue measurable.
Even worse, there are uncountably many of them. However, the construction of these
Vitali sets is nonconstructive and relies on the axiom of choice.

Let us start slowly with the de�nition of an equivalence relation:

Lemma 2.8. Let Q denote the rationals and de�ne a relation ∼ ⊆ R × R such that

∀x , y ∈ R. x ∼ y⇐⇒ x − y ∈ Q.

�en ∼ is an equivalence relation.

Proof. Re�exivity follows directly as x − x = 0 and 0 ∈ Q for all x ∈ R. For symmetry, let

x , y ∈ R such that x ∼ y. �en x − y = z for some z ∈ Q. Equivalently, y − x = −z. But
−z ∈ Q and therefore y ∼ x. For transitivity, let x , y, z ∈ R≥0 with x ∼ y and y ∼ z. Further,
let x − y = u and y − z = v.�en x − z = (u + y) − (y − v) = u + v. Now u, v ∈ Q; hence,
x − z = u + v ∈ Q and therefore x ∼ z. ◻

As usual, let [x]∼ = {y ∈ R ∣ x ∼ y} denote the equivalence class of x ∈ R. Further, let
R = {[x]∼ ∣ x ∈ R} be the set of all equivalence classes of ∼.�en R partitions the set of
real numbers, i.e. ⊍R = R.

Example 2.7. Let x ∈ Q. Its equivalence class [x]∼ is the set of all rational numbers, i.e.[x]∼ = Q as x − y ∈ Q for all y ∈ Q. As an example for an irrational number, consider the
constant π ∈ R. It holds [π]∼ = {y ∈ R ∣ ∃u ∈ Q. y = π + u} and [x]∼ /= [π]∼. ♢

As it can be seen from the examples above, the de�nition of ∼ is not trivial; in fact, the

setR contains uncountably many equivalence classes, each of which consists of in�nitely
many elements.
For the construction of Vitali sets, we restrict to the subset of real numbers in (0, 1].

�e idea is to pick from each equivalence class [x]∼ ∈ R exactly one representative; any
set that contains a representative from each equivalence class is a Vitali set. Formally:

De�nition 2.12 (Vitali set). A Vitali set is a set V ⊆ (0, 1] such that ∣V ∩ [x]∼∣ = 1 for
all x ∈ R.

Some remarks are in order: First, it turns out that there are uncountably many equiva-
lence classes inR (for a discussion, see [Kan91]). Second, each equivalence class is count-

ably in�nite: To see this, note that all elements y of any equivalence class [x]∼ di�er in a
rational number. Hence, the cardinality of [x]∼ is that of the rationals.
Hence, there are uncountably many possibilities to select a combination of representa-

tives for each equivalence class so that we can construct uncountably many Vitali sets.
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However, in this intuitive reasoning, we implicitly assume that it is possible to choose

exactly one representative from each of the uncountably many equivalence classes in R.
However, this assumption is not so clear: In fact, the existence of Vitali sets depends on
the axiom of choice:

Axiom 2.1 (Axiom of choice). Let X be a set. For any set X ⊆ 2X with X /= ∅, there
exists a choice function f ∶ X→ X such that f (X) ∈ X for all X ∈ X.

�erefore, if we setX = (0, 1] andX = {([x]∼ ∩ (0, 1]) ∣ [x]∼ ∈R}, the axiomof choice
states that we may select a representative in ([x]∼ ∩ (0, 1]) for each equivalence class[x]∼ ∈R.
To prove that V ∉ B(R), we have to investigate the Vitali sets a bit closer: �erefore,

let V be a Vitali set, v ∈ V an element of the Vitali set V and q ∈ Q.�en [v]∼ = [v + q]∼
as (v + q) ∼ v. Moreover, if q1, q2 ∈ Q with q1 /= q2 and V ⊕ qi = {v + qi ∈ R ∣ v ∈ V} for
i = 1, 2, then V ⊕ q1 and V ⊕ q2 are both Vitali sets.

Furthermore it holds that (V ⊕ q1) ∩ (V ⊕ q2) = ∅: To prove this, let x ∈ (V ⊕ q1).
�en there exists v ∈ V such that x = v + q1. Now assume that x ∈ V ⊕ q2. �is implies
that x = v′ + q2 for some v′ ∈ V ; further, v /= v′ as q1 /= q2. But v′ = x − q2 = v + q1 − q2 and
q1 − q2 ∈ Q; thus v ∼ v′. �erefore V ∩ [v]∼ ⊇ {v , v′}, contradicting the de�nition of V .
Hence, x ∉ V ⊕ q2. �e same argument applies for the reverse direction, i.e. y ∈ V ⊕ q2
implies y ∉ V ⊕ q1. Hence, the two Vitali sets V ⊕ q1 and V ⊕ q2 are disjoint.
Another property used in the proof of the next theorem is that (0, 1] ⊆ ⊍q∈Q (V ⊕ q).

To establish this, �x some x ∈ (0, 1] and consider its equivalence class [x]∼. By de�nition,
there exists v ∈ V such that v ∈ [x]∼. But then x ∼ v and x = v + q for some q ∈ Q. Hence,
x ∈ (V ⊕ q) for some q ∈ Q. �erefore it holds that (0, 1] ⊆ ⊍q∈Q (V ⊕ q). We are now

ready for the proof that Vitali sets are not Lebesgue measurable:

�eorem 2.7 (Vitali sets are not Lebesgue measurable). Let B(R) be the Borel σ-
�eld, completed w.r.t. the Lebesgue measure µ and let V be a Vitali set. �en V ∉B(R).
Proof. Let µ be the Lebesgue measure on B(R) and assume that V ∈ B(R). Consider
the sets V ⊕ 1

n for n ∈ N>0. By de�nition, it holds that (V ⊕ 1
n
) ⊆ (0, 2] for all n ∈ N>0.

Moreover, we have proved above, that the setsV⊕ 1
n andV⊕

1
m are disjoint for n,m ∈ N>0

and n /= m.�erefore⊍∞n=1 (V ⊕ 1
n
) ⊆ (0, 2].�us

0 ≤
∞

∑
n=1

µ (V ⊕
1

n
) = µ (∞⊍

n=1

(V ⊕
1

n
)) ≤ µ((0, 2]) = 2. (2.3)

By Lemma 2.7, the Lebesguemeasure µ is translation invariant. Hence µ(V⊕ 1
n
) = µ(V)

for all n ∈ N>0. �us ∑∞n=1 µ (V ⊕ 1
n) = ∑∞n=1 µ(V) and (2.3) implies 0 ≤ ∑∞n=1 µ(V) ≤ 2.

�e only solution to this inequality is µ(V) = 0.
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Applying Lemma 2.7 (translation invariance of µ) again, we obtain that µ(V ⊕ c) = 0
for all c ∈ R. But as shown before, (0, 1] ⊆ ⊍q∈Q (V ⊕ q).�is implies

1 = µ((0, 1]) ≤ µ(⊍
q∈Q

(V ⊕ q)) =∑
q∈Q

µ(V ⊕ q) = 0,
which is a contradiction. Hence V ∉B(R). ◻

As a consequence of�m. 2.7, wemay conclude that although the extension techniques

that we have developed in Sec. 2.1.1 extend a measure µ from a �eld F0 to its generated
σ-�eld σ(F) and moreover, to the completion of σ(F) w.r.t. µ, there generally remain
uncountably many sets (like the Vitali sets in the case of the Borel σ-�eld), that are not
measurable.

2.4 �e Lebesgue integral

In order to de�ne a path-based semantics of randomly timed systems like CTMDPs and

IMCs, we need to integrate over uncountable sets of paths. Further, CTMDPs and IMCs
are systems that evolve in continuous-time; hence, we needmeasures on the Borel σ-�eld
to measure their behavior in the continuous-time domain.
To achieve this generality, we mostly do not use the Riemann integral, which only per-

mits to integrate functions that map from the reals to the real numbers. Instead, we con-

sider themore general Lebesgue integral, which accounts for Borelmeasurable functions
that map from an arbitrary measurable space to the extended real numbers.
Although the set of Lebesgue integrable functions is a proper superset of Riemann

integrable functions, we have to impose certain measurability conditions.

2.4.1 Measurable functions

To motivate the concept of measurable functions, let (Ω,F, µ) be a measure space and

let h ∶ Ω → R∞. �us, the function h assigns to each element in Ω an extended real
number. Now, assume that we are interested in the measure of the set of all ω ∈ Ω for
which h(ω) ∈ B for some interval B ⊆ R∞. �at is, we aim to compute the measure

µ (h−1(B)) of the set h−1(B) = {ω ∈ Ω ∣ h(ω) ∈ B}. As µ is a measure on (Ω,F), it is a
function µ ∶ F → R∞≥0; hence, in order for µ (h−1(B)) to be well-de�ned, the set h−1(B)
must be measurable, that is, it must hold that h−1(B) ∈ F.
If we generalize this idea, we arrive at the de�nition ofmeasurable functions:

De�nition 2.13 (Measurable function). Let (Ω1,F1) and (Ω2 ,F2) be measurable
spaces. Any function f ∶ Ω1 → Ω2 that satis�es f −1(B) ∈ F1 for all B ∈ F2 is measur-
able with respect to the σ-�elds F1 and F2.
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We use the notation f ∶ (Ω1,F1) → (Ω2,F2) to denote the fact that f is a measurable

function with respect to the measurable spaces (Ω1,F1) and (Ω2,F2).
Measurable functions share many nice properties: For example, the composition of

two measurable functions is again measurable:

�eorem 2.8 (Composition of measurable functions). Let f ∶ (Ω1,F1) → (Ω2,F2)
and g ∶ (Ω2,F2)→ (Ω3,F3). �eir composition g ○ f is de�ned such that (g ○ f ) (ω1) =
g( f (ω1)) for all ω1 ∈ Ω1. �en, the function g ○ f ∶ Ω1 → Ω3 is measurable with respect
to F1 and F3.

Proof. �e proof can be found in [ADD00, Lemma 1.5.7]. ◻

In the general setting above, we let h be de�ned between two measurable spaces; to
link the de�nition to the Lebesgue integral, let (Ω1,F1) be some measurable space and

set (Ω2,F2) = (R∞,B(R∞)). �en h ∶ Ω → R∞ is measurable with respect to (Ω,F)
and (R∞,B(R∞)) i� h−1(B) ∈ F for all sets B ∈B(R∞).
De�nition 2.14 (Borel measurable function). Let (Ω,F) be a measurable space. A
function f ∶ (Ω,F)→ (R∞,B(R∞)) is Borel measurable.

In probability theory, Borel measurable functions are called random variables, i.e. a
Borel measurable function X ∶ (Ω,F) → (R,B(R)) is a random variable. Note that the
Lebesgue integral also permits to integrate functions that map to {+∞,−∞}; however,
within probability theory and also throughout this thesis, it su�ces to consider the Borel

σ-�eld B(R) instead of the Borel σ-�eld B(R∞) over the extended reals.

Example 2.8 (A function that is not Borel measurable). With theVitali set construction
from Sec. 2.3, it is straightforward to derive a function that is not Borel measurable: Let V
be a Vitali set (hence, V ∉ B(R)) and de�ne h ∶ (R,B(R)) → (R,B(R)) such that
h(x) = 1 if x ∈ V and h(x) = 0, otherwise. �en h−1(1) = V ∉B(R); hence, h is not Borel
measurable. ♢

Before we de�ne the Lebesgue integral of Borel measurable functions, let us consider
some properties of Borel measurable functions. As we have already seen, they are closed

under composition. Moreover:

�eorem 2.9 (Pointwise limit of Borel measurable functions). Let (Ω,F) be a mea-
surable space. If h1, h2, . . . are Borel measurable functions such that hn(ω) → h(ω) for
all ω ∈ Ω and n ∈ N, then the function h (i.e. the pointwise limit of the hn) is also Borel
measurable.
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Proof. For a proof, see [ADD00,�m. 1.5.4]. ◻

Further, the class of Borel measurable functions is closed under algebraic operations:

�eorem 2.10. Let h and h′ be Borel measurable functions from (Ω,F) to (R,B(R)).
Provided they are well-de�ned, the functions h + h′, h − h′, h ⋅ h′ and h/h′ are Borel
measurable.

Proof. For a proof, see [ADD00,�m. 1.5.6]. ◻

2.4.2 �e Lebesgue integral

With the introduction of Borel measurable functions, we are now ready to de�ne the

Lebesgue integral. Ultimately, we will de�ne the Lebesgue integral of any Borel measur-
able function h ∶ (Ω,F)→ (R∞,B(R∞)) over somemeasure space (Ω,F, µ).�erefore,

we proceed stepwise; for the beginning, let us consider simple functions:

De�nition 2.15 (Simple function). Any Borel measurable function h ∶ (Ω,F) →(R∞,B(R∞)) with a �nite image is simple i� ∣{h(ω) ∣ ω ∈ Ω}∣ < +∞.

As a consequence, a simple function h takes on only �nitely many values x1, x2 , . . . , xn,
say. Hence, we can partition the domain Ω of h into �nitely many disjoint sets, denoted

A1,A2, . . . ,An ∈ F, such that the elements in each set Ai map to the �xed value xi . For-
mally, let {x1, x2 , . . . , xn} = {h(ω) ∣ ω ∈ Ω} be the image of a simple function h and let
Ai = {ω ∈ Ω ∣ h(ω) = xi}.�en h can be written as the �nite sum

h(ω) = n

∑
i=1

xi ⋅ IAi(ω), (2.4)

where we use the indicator function I, which is de�ned for any subset X of a set X such
that

IX ∶ X → {0, 1} ∶ x ↦
⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ X

0 otherwise.

Hence, in Eq. (2.4), all summands with ω ∉ Ai are 0, whereas for the (uniquely deter-
mined) set Ai with ω ∈ Ai , we return the value xi .
�e idea to de�ne the abstract Lebesgue integral of a simple function h ∶ (Ω,F) →(R∞,B(R∞))with respect to a measure space (Ω,F, µ) is as follows: Let µ be ameasure

on (Ω,F) and assume that as before, the sets A1,A2, . . . ,An partition the set Ω according
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to the �nitely many values x1, x2, . . . , xn that h takes on. �en we de�ne the abstract

Lebesgue integral of h as follows:

∫
Ω
h(ω) µ(dω) = n

∑
i=1

xi ⋅ µ(Ai). (2.5)

First, let us �x some notation: If ω is clear from the context (and µ is unary), we also use

∫Ω h dµ to denote the Lebesgue integral as de�ned in Eq. (2.5).

According to Eq. (2.5), in order to compute ∫Ω h dµ, we multiply each value xi that the
simple function h can take on with the measure of its preimage under h.

Example 2.9 (Interpretation of the Lebesgue integral). Informally, Fig. 2.2 depicts the
construction of the abstract Lebesgue integral: In contrast to the Riemann integral, the
Lebesgue integral computes the area under a curve bymeasuring each subset Ai ofΩ, where
the step function h takes on value xi ; Fig. 2.2(a) depicts this partitioning of Ω according to
the values that h takes on. Informally, the area that is under those segments of the graph
of h, where h takes on, say value xi , is given by the product of the measure of the segment
and the height of xi , that is, by µ(Ai) ⋅ xi . Consequently we obtain the area under the curve
of h (cf. Fig. 2.2(b)) by adding up the corresponding products for all values x1, x2, . . . , xn.♢

One further remark is in order here:�e Lebesgue integral is de�ned w.r.t. an arbitrary
measurable space (Ω,F, µ). More concretely, notwithstanding its name, it is not limited
to the Lebesgue measure or to the class of Lebesgue-Stieltjes measures!

Up to now, we have de�ned the abstract Lebesgue integral for simple functions only. To
li� this restriction, wenow strive for an extensionof the de�ningEquation (2.5) to a larger

class of functions. As a �rst step, consider the class of nonnegative Borel measurable
functions: �e idea is to approximate any nonnegative Borel measurable function h by
a sequence of simple functions s that converges pointwise from below to h. Accordingly,
we set

∫
Ω
h dµ = sup{ ∫

Ω
s dµ ∣ s is a simple function and 0 ≤ s ≤ h} .

�is de�nition is justi�ed by the following theorem:

�eorem 2.11 (Limit of simple functions). Any nonnegative Borel measurable func-
tion is the limit of an increasing sequence of simple functions.

Proof. A proof can be found in, e.g. [ADD00,�m. 1.5.5]. ◻

Although within this thesis, we only need to consider the Lebesgue integral of nonnega-

tive Borel measurable functions, the extension to arbitrary (also negative) Borel measur-
able functions is straightforward:
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Figure 2.2: Deriving the Lebesgue integral of a simple function.

Let h ∶ (Ω,F)→ (R∞,B(R∞)) be an arbitrary Borel measurable function. De�ne the

functions h+ and h− such that

h+(ω) = ⎧⎪⎪⎨⎪⎪⎩
h(ω) if h(ω) ≥ 0
0 otherwise

h−(ω) = ⎧⎪⎪⎨⎪⎪⎩
−h(ω) if h(ω) < 0
0 otherwise.

Obviously, this yields a decomposition of h into two nonnegative functions, i.e. h =
h+(ω) − h−(ω). Further, the functions h+ and h− are Borel measurable: To see this, we
�rst show a more general result:

Lemma 2.9 (Maximum and minimum of Borel measurable functions). Let (Ω,F)
be a measurable space and h1 ∶ Ω → R and h2 ∶ Ω → R be Borel measurable functions.
�en their pointwise maximum and minimum are Borel measurable.

Proof. We only prove the claim for the pointwise maximum, as the proof for the point-

wiseminimum is completely analogous. Formally, the pointwisemaximumof h1 and h2 is
the functionmax (h1, h2) ∶ Ω → R ∶ ω ↦max {h1(ω), h2(ω)}. To prove thatmax (h1, h2)
is Borel measurable, it su�ces to prove that M = {ω ∈ Ω ∣ max {h1(ω), h2(ω)} ≤ c} ∈
F. To see this, note that the class {(−∞, c] ∣ c ∈ R} is a generator of B(R). But M ={ω ∣ h1(ω) ≤ c} ∩ {ω ∣ h2(ω) ≤ c}; from the fact that h1 and h2 are Borel measurable, we
directly conclude that {ω ∣ h1(ω) ≤ c} ∈ F and {ω ∣ h2(ω) ≤ c} ∈ F. As F is closed under

intersection, we derive thatM ∈ F. ◻

To extend the Lebesgue integral to a Borel measurable function h = h+(ω)−h−(ω) given
as above, note that h+ = max(h, 0) and h− = −min(h, 0), where 0 denotes the constant
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(hence Borel measurable) function 0 ∶ Ω → R∞ ∶ ω ↦ 0. With the result of Lemma 2.9,

h+ and h− are Borel measurable. �us, we can de�ne the Lebesgue integral of h as the
di�erence

∫
Ω
h dµ = ∫

Ω
h+ dµ − ∫

Ω
h− dµ,

as long as the term does not have the form (+∞) − (+∞), in which case the Lebesgue

integral of h does not exist.

2.4.3 Properties of the Lebesgue integral

Even though it is much more general than the Riemann integral (cf. Sec. 2.4.4), the
Lebesgue integral shares most of the properties that are commonly known from classi-
cal integration theory:

�eorem 2.12. Let (Ω,F, µ) be a measure space and h ∶ (Ω,F) → (R∞,B(R∞)) be a
Borel measurable function. �e Lebesgue integral w.r.t. µ satis�es the following properties:

(a) If c ∈ R is a constant and h a Borel measurable function such that ∫Ω h dµ exists, then
∫Ω c ⋅ h dµ exists and ∫Ω c ⋅ h dµ = c ⋅ ∫Ω h dµ.

(b) If h is nonnegative and A ∈ F, then

∫
A
h dµ = sup{ ∫

A
s dµ ∣ s is a simple function and 0 ≤ s ≤ h} .

(c) If ∫Ω h dµ exists, then ∫A h dµ exists for all A ∈ F.

Proof. �e proof can be found in [ADD00,�m. 1.5.9]. ◻

Note, that with the property stated in�m. 2.12(b) and�m. 2.12(c), we obtain a means

to compute the integral of a Borel measurable function over any set A ∈ F.�us, we are
no longer restricted to the abstract Lebesgue integral over the entire set Ω.

�eorem 2.13 (Monotone convergence). Let h1 ≤ h2 ≤ ⋯ be an increasing sequence of
nonnegative Borel measurable functions from (Ω,F) to (R∞,B(R∞)). Further, de�ne
h(ω) = limn→∞ hn(ω) for all ω ∈ Ω. �en ∫Ω hn dµ → ∫Ω h dµ for n →∞.

Proof. �e proof can be found in [ADD00,�m. 1.6.2]. ◻
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In order to prove properties of the Lebesgue integral of a Borel measurable function, it

is o�en useful to start with nonnegative simple functions; if we manage to prove the
property for all simple functions, we know by�m. 2.11, that any nonnegative Borel mea-
surable function is the limit of an increasing sequence of nonnegative simple functions.

Now, the monotone convergence theorem (�m. 2.13) states that the Lebesgue integral
of an increasing sequence of nonnegative simple functions converges to the integral of

their limit.�us, we have established the property on all nonnegative Borel measurable
functions. What remains is the extension to arbitrary Borel measurable functions. �is
can o�en be done as in Sec. 2.4.2 by decomposing the function h in question into a pos-

itive and a negative part, i.e. h = h+ − h−. Within the thesis, we make use of this proof
strategy in, for example, Lemma 4.2 on page 95.

Finally, to support the intuitive reasoningwith Lebesgue integrals, we remark that they
satisfy the usual additivity property:

�eorem 2.14 (Additivity). Let h and g be Borel measurable functions on (Ω,F). If
g + h is well de�ned (i.e. not of the form +∞−∞), then

∫
Ω
(g + h) dµ = ∫

Ω
g dµ + ∫

Ω
h dµ.

Proof. �e proof can be found in [ADD00,�m. 1.6.3]. ◻

2.4.4 Comparison between the Lebesgue and Riemann integral

As we will see in this section, the Lebesgue integral is more versatile than the classical
Riemann integral. More precisely, it will turn out that any Riemann integrable function
is Lebesgue integrable w.r.t. the Lebesgue measure; hence, the Lebesgue integral extends

the Riemann notion of integrability. Moreover, it is more versatile in the sense that it
permits to integrate any Borel measurable function; moreover, the domain of integration
and the corresponding measure may be given as an arbitrary measure space (Ω,F, µ).
�ese arguments justify the use of Lebesgue integration within this thesis: We need

to allow the domain of integration to be, e.g. the set of paths that describe the evolution

of a system, and not just the real numbers. Further, we make heavy use of measurable
functions which appear in the integral, but which are not Riemann integrable in general.
Figure 2.3(a) depicts the idea for the derivation of the Riemann integral: Let [a, b) ⊆ R

be the domain of integration and let x1 < x2 < x3 < ⋯ < xn with x1 = a and xn = b induce
the partitioning P = ⊍n−1

i=1 {[xi , xi+1)} of [a, b). For i = 1, 2, . . . , n − 1, the upper and lower
Riemann sums are de�ned as

Mi = sup{h(x) ∣ x ∈ [xi , xi+1)} and
mi = inf {h(x) ∣ x ∈ [xi , xi+1)} , respectively.
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functions de�nes the Lebesgue integral.

Figure 2.3:�e derivations of the Riemann and the Lebesgue integral.

Now, let α(x) = Mi and β(x) = mi for x ∈ [xi , xi+1).�us, α and β are simple functions

so thatU(P) = ∫ b

a α dµ and L(P) = ∫ b

a β dµ form the upper and lower sums given h and
a partitioning P (see Fig. 2.3(a)).
Let P1, P2, . . . be a sequence of partitions of [a, b) such that Pk+1 re�nes Pk and let

α1, α2, . . . and β1, β2, . . . be the corresponding simple functions. Moreover, let ∣∣Pk ∣∣ =
max0<i<∣Pk ∣ (xi+1 − xi) be the maximum length of the intervals in Pk. If we assume that
the re�nement from Pk to Pk+1 is such that limk→∞ ∣∣Pk∣∣ = 0, i.e. if the length of all blocks

of the re�ned partitions become in�nitesimally small, then α1 ≥ α2 ≥ ⋯ ≥ h ≥ ⋯ ≥ β2 ≥ β1.
Hence, limk→∞ αk = α and limk→∞ βk = β, for the pointwise limits α and β. Further, from
the de�nition of α and β one can derive that h is continuous (that is, limx→c h(x) = h(c))
i� α(x) = β(x) (to see this, consider the limit of a sequence of re�ned partitions).
With these preliminaries, the function h is Riemann integrable on [a, b) i�

∫
b

a
α dµ = ∫

b

a
β dµ

holds independent of the partitions chosen to construct α and β. Accordingly, the Rie-

mann integral of h on [a, b) is thende�ned as the value ∫ b

a α dµ (or equivalently, ∫
b

a β dµ).
�e next theorem provides another characterization of Riemann integrability. More-

over, it states that for bounded intervals, every Riemann integrable function is also Le-

besgue integrable w.r.t. the Lebesgue measure:

�eorem 2.15. Let I = [a, b) be an interval with a, b ∈ R, a < b and h ∶ I → R.

(a) h is Riemann integrable on I i� h is continuous almost everywhere on I with respect
to the Lebesgue measure.
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(b) If h is Riemann integrable on I, then h is Lebesgue integrable on I. In this case

∫
I
h(x) dx = ∫

I
h dµ,

where µ is the Lebesgue measure.

Proof. �e proof can be found in [ADD00,�m. 1.7.1]. ◻

In�m. 2.15, the term “almost everywhere” needs some explanation: If (Ω,F, µ) is a
measurable space (in the case of�m. 2.15, set Ω = R, F = B(R) and µ the Lebesgue

measure) a property holds almost everywhere on a set A ∈ F w.r.t. measure µ i� the set
B ⊆ Aof elements where it fails hasmeasure 0. We denote this by stating that the property

holds a.e. [µ]. Note that when it comes to Lebesgue integration over a domain A ∈ F, it
does notmatter whether a property holds on all or almost all elements of A: In both cases,
for the exceptional set B where the property is violated, it holds µ(B) = 0. Hence, albeit
the di�erence, the integrals are equal.

Now consider the converse direction:�eDirichlet function is an example of a function

that is Lebesgue integrable w.r.t. the Lebesgue measure, but not Riemann integrable: Let
h ∶ R→ {0, 1} be such that

h(x) = ⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ Q

0 otherwise.

�en h is a nonnegative simple function and hence, it is Lebesgue integrable. Moreover,
if B ∈B(R), we have that ∫B h dµ = µ(B∩Q), where µ is the Lebesgue measure. Further,
the rationals are a measurable set inB(R) and their Lebesguemeasure is 0, i.e. µ(Q) = 0.
�us ∫B h dµ = 0 for all B ∈B(R).
Further, h is not Riemann integrable, as it is discontinuous on any interval [a, b) with

a < b. To see this, note that for each block I = [xi , xi+1) of a partition P of [a, b) and
all x ∈ I it holds that α(x) = 1 as I ∩Q /= ∅; further, β(x) = 0 as I ∖Q /= ∅.
Hence αk /= βk, no matter how �ne the partition P is chosen. �us, the upper and

lower sums of the Riemann integral do not converge to the same limit.

2.5 Product σ-�elds

�e scope of this thesis is on �nite-state systems. �eir behavior is fully described by

the path (or trajectory) along which they evolve. Among other things, on such a path
we record which states have been visited and how long the system sojourned in each of

those states. For example, the latter information (i.e. the sojourn time) is obtained as
the outcome of a random experiment with a continuous probability distribution. As we
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might expect, it turns out that any single such path has probability zero; therefore, we

need measure theoretic arguments to measure sets of paths.
Now, a path may lead through arbitrarily many states, each of which involves random

experiments. Hence, from ameasure theoretic perspective, a path describes one outcome
of a compound experiment which is composed of multiple stages.

�is section is divided into four parts: First, we discuss in Sec. 2.5.1 how to construct
multi-dimensional measurable spaces that capture events in compound random experi-
ments.

With these results, the next natural question is: How can we measure these higher-
dimensional events? We approach the technicalities slowly in Sec. 2.5.2, where we only

describe the construction of 2-dimensional measures. A�er that, we extend these results
in Sec. 2.5.3 and de�ne measures on higher-dimensional product spaces.

Finally, in our systems, we also need to consider in�nite paths. To formalize them,
Sec. 2.5.4 introduces the cylinder set construction and the necessary tools to extend �nite-

dimensional product measures to the in�nite case.

2.5.1 �e construction of �nite-dimensional product spaces

To obtain �nite-dimensional product spaces, the starting point aremeasurable rectangles:
Assume that two measurable spaces (Ω1,F1) and (Ω2,F2) are given. A natural �rst step
to describe their product is to consider Cartesian products of the form A1×A2, where A1
and A2 are elements of the σ-�elds F1 and F2, respectively.

As long as only �nitelymanymeasurable spaces are involved in this construction, these

Cartesian products are (�nite) measurable rectangles:

De�nition 2.16 (Measurable rectangle). For i = 1, 2, . . . , n, let (Ωi ,Fi) be measurable
spaces. A Cartesian product ⨉n

i=1 Ai = A1 × A2 ×⋯× An with Ai ∈ Fi for i = 1, 2, . . . , n is
ameasurable rectangle. We use

n⊗
i=1

Fi = F1 ⊗ F2 ⊗⋯⊗ Fn = {A1 × A2 ×⋯× An ∣ Ai ∈ Fi}
to denote the set of all measurable rectangles over the measurable spaces (Ωi ,Fi).

So far, the class ofmeasurable rectangles is severely restricted: For example, it is neither
closed under complement nor under any (�nite or countably in�nite) union.

Hence, we strive for an extension of the measurable rectangles to obtain a class of
subsets of the entire space Ω = Ω1 × Ω2 ×⋯ ×Ωn that is closed under complement and

countable union. Hence, we consider the smallest σ-�eld generated by the measurable
rectangles:



2.5 Product σ-�elds 43

De�nition 2.17 (Product σ-�eld). For i = 1, 2, . . . , n, let (Ωi ,Fi) be measurable spaces.
�e product σ-�eld is the smallest σ-�eld generated by the measurable rectangles. It is
denoted σ (⊗n

i=1 Fi).
Similar to the construction of the Borel σ-�eld B(R), which is obtained as the small-

est σ-�eld generated by the �eld of �nite disjoint unions of right-semiclosed intervals

(cf. Sec. 2.2), we can identify the �eld of �nite disjoint unions of measurable rectangles
as a generator of σ (⊗n

i=1 Fi). Hence, all results obtained in Sec. 2.1, and most notably,
Carathéodory’s extension theorem and the monotone class theorem carry over to the

�nite-dimensional case. In the next lemma, we prove that the class of �nite disjoint
unions of measurable rectangles is indeed a �eld; moreover, the lemma states that it gen-

erates the smallest σ-�eld over the measurable rectangles:

Lemma 2.10. Let (Ωi ,Fi) for i = 1, 2, . . . , n be measurable spaces and de�ne U as the
collection of �nite disjoint unions of measurable rectangles in ⊗n

i=1 Fi . �en U is a �eld
and σ (⊗n

i=1 Fi) = σ (U).
Proof. To prove that U is a �eld, it is useful to �rst establish that U is closed under �nite
intersection:�erefore, note that the set⊗n

i=1 Fi is already closed under �nite intersection,

for if A, B ∈ ⊗n
i=1 Fi , then A = ⨉n

i=1 Ai and B = ⨉n
i=1 Bi and A ∩ B = ⨉n

i=1 (Ai ∩ Bi). As
each Fi is a σ-�eld, it follows that (Ai ∩ Bi) ∈ Fi . Hence, A∩ B ∈⊗n

i=1 Fi .
With this observation we are ready to show that also U is closed under �nite inter-

section: Let A, B ∈ U. �en A = ⊍m
k=1 Ak and B = ⊍m′

k′=1 Bk′ , where Ak = ⨉n
i=1 Ak,i and

Bk′ = ⨉n
i=1 Bk′ ,i with Ak,i , Bk′ ,i ∈ Fi .�en

A∩ B = ( m⊍
k=1

n

⨉
i=1

Ak,i) ∩ ( m′

⊍
k′=1

n

⨉
i=1

Bk′ ,i) = m

⊍
k=1

m′

⊍
k′=1

n

⨉
i=1

(Ak,i ∩ Bk′ ,i) = m

⊍
k=1

m′

⊍
k′=1

Ak ∩ Bk′ . (2.6)

As shown before, Ak , Bk′ ∈ ⊗
n
i=1 Fi implies that Ak ∩ Bk′ ∈ ⊗

n
i=1 Fi . Hence, the disjoint

union of the sets (Ak ∩ Bk′) is also in U; but then Eq. (2.6) implies that A∩ B ∈ U.
Now we come to the proof that U is a �eld. �erefore we verify properties (a), (b)

and (c) of Def. 2.1:

(a) For all i ∈ {1, 2, . . . , n} it holds that Ωi ∈ Fi .�us, the set Ω = ⨉n
i=1Ωi is in U.

(b) To show that U is closed under complement, let A ∈ U.�en there existsm ∈ N such
that A = ⊍m

k=1 Ak and Ak ∈ ⊗n
i=1 Fi for all k ∈ {1, 2, . . . ,m}. Hence, each set Ak is a

Cartesian product of the form Ak = Ak,1 × Ak,2 × ⋯ × Ak,n , where Ak,i ∈ Fi for all

i = 1, 2, . . . , n. Moreover, the complement Ac
k of each Ak has the form

Ac
k = (Ac

k,1 × Ak,2 ×⋯ × Ak,n) ⊍ (Ak,1 × Ac
k,2 × Ak,3 ×⋯× Ak,n)
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⊍⋯⊍ (Ak,1 × Ak,2 × Ak,3 ×⋯× Ac
k,n)

⊍ (Ac
k,1 × Ac

k,2 × Ak,3 ×⋯× Ak,n) ⊍ (Ac
k,1 × Ak,2 × Ac

k,3 × Ak,4 ×⋯× Ak,n)
⊍⋯⊍ (Ac

k,1 × Ac
k,2 × Ac

k,3 ×⋯× Ac
k,n) .

Now, Ak,i ∈ Fi implies that Ac
k,i ∈ Fi . Hence, each Ac

k is a �nite disjoint union of
measurable rectangles.�us Ac

k ∈ U for all k = 1, 2, . . . ,m.

With these preliminaries, the proof that Ac ∈ U is easy: By de Morgan’s law, we have

Ac = (⊍m
k=1 Ak)c = ⋂m

k=1 A
c
k. But as shown in the beginning, U is closed under �nite

intersection. As each Ac
k is an element of U, we conclude that Ac ∈ U.

(c) To prove that U is closed under �nite union, let A, B ∈ U.�en there exist constants
m,m′ ∈ N such that A = ⊍m

k=1 Ak and B = ⊍m′

k′=1 Bk′ for sets Ak , Bk′ ∈⊗n
i=1 Fi .

Now, let C = A∪B.�enC = ⋃m+m′

k=1 Ck , where for k = 1, 2, . . . ,m+m′, we letCk = Ak

for k ≤ m and Ck = Bk−m, otherwise.�en each Ck is a measurable rectangle.

By de Morgan’s law, C = (⋂m+m′

k=1 Cc
k)c and by part (b), it holds that Cc

k ∈ U. As shown

in the beginning, U is closed under �nite intersection, hence ⋂m+m′

k=1 Cc
k ∈ U. Now

C ∈ U follows again by part (b).

�us U is a �eld.�e fact that⊗n
i=1 Fi ⊆ U directly implies that σ (⊗n

i=1 Fi) ⊆ σ (U). For
the reverse direction, note that U ⊆ σ (⊗n

i=1 Fi). Hence, σ(U) ⊆ σ (⊗n
i=1 Fi). ◻

Another property of product σ-�elds that is used in this thesis is the following: If(Ωi ,Fi) is a measurable space for i = 1, 2, . . . , n, then σ (σ (⊗n−1
i=1 Fi)⊗ Fn) = σ (⊗n

i=1 Fi).
Hence, we may “append” a σ-�eld Fn to a product σ-�eld σ (⊗n−1

i=1 Fi) by constructing the
set of 2-dimensional measurable rectangles, where the �rst component is an element in

⊗n−1
i=1 Fi and the second component is in Fn. �en, the smallest σ-�eld they generate

coincides with the n-dimensional σ-�eld which we would have obtained if we began
the construction right from the beginning with the class of n-dimensional measurable

rectangles.

2.5.2 Measures on two-dimensional product spaces

We start the de�nition of measures on product spaces with the simple case of a two-
dimensional σ-�eld. �erefore, let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measure spaces and
let A ∈ σ (F1 ⊗ F2) be an element of the product σ-�eld.
In probability theory, the event A corresponds to a set of outcomes (ω1,ω2) ∈ A of a

two-stage experiment, where ω1 is the outcome of the �rst and ω2 the outcome of the

second experiment. If the two experiments are independent (that is, the outcome ω1 of
the �rst experiment does not alter the probability distribution of the second experiment)

and A = A1 ×A2 is a measurable rectangle, we expect the measure of A to be the product
of the measures of A1 and A2, that is, µ(A) = µ1(A1) ⋅ µ2(A2).
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�is idea transfers to arbitrary elements A ∈ σ (F1 ⊗ F2) (i.e. elements in σ (F1 ⊗ F2)
that are not Cartesian products):

Example 2.10. Consider the two-stage random experiment where two fair dice are thrown.
�en Ω1 ×Ω2 = {1, . . . , 6}2 serves as the sample space and Fi = 2Ωi ( for i = 1, 2) form the
corresponding σ-�elds.
An event such as A = {(ω1,ω2) ∣ ω1 + ω2 ≥ 6} is not ameasurable rectangle; for example,(1, 5) , (5, 1) ∈ A but (1, 1) ∉ A. �us, depending on the outcome ω1 of the �rst experiment,

we are interested in di�erent events in F2: If ω1 = 1, we are only interested in outcomes ω2
of the second experiment that are in A2 = {5, 6}; if ω1 = 2, we only measure those ω2 which
are in A2 = {4, 5, 6}, etc. ♢

If A ∈ σ (F1 ⊗ F2), we call the function A(ω1) = {ω2 ∣ (ω1,ω2)} the section of A at ω1.
Intuitively, for any given outcome ω1 of the �rst experiment, the section A(ω1) is the
set of those outcomes ω2 of the second stage, that make the “product outcome” (ω1,ω2)
admissible with respect to the event A.
Hence, the general idea to obtain a measure µ on σ (F1 ⊗ F2) from independent mea-

sures µ1 and µ2 is to multiply the measure µ(dω1) of any possible outcome of the �rst

experiment with the measure of the section A(ω1) of admissible outcomes ω2 ∈ A(ω1).
Formally, we obtain

µ(A) = ∫
Ω1

µ2 (A(ω1)) µ1(dω1). (2.7)

To motivate the next step, we come back to the special case of probability measures:
Up to now, we have assumed that the outcome ω1 of the �rst experiment does not alter

the way we measure the events that occur in the second experiment. Now we drop this
assumption and consider compound experiments where the probability measure for the
second stage depends on the outcome of the �rst stage’s random experiment.

Formally, instead of a single measure µ2 on (Ω2,F2) (as in (2.7)), we now assume that
for each ω1 ∈ Ω1, we are given a separate measure µ2(ω1, ⋅) ∶ F2 → R∞≥0 on (Ω2 ,F2). In
this setting, we obtain a measure of the event A ∈ σ (F1 ⊗ F2) by multiplying the mea-
sure µ(dω1) with the measure of the intersection A(ω1). Formally, we obtain

µ(A) = ∫
Ω1

µ2 (ω1,A(ω1)) µ1(dω1). (2.8)

Note that for each A2 ∈ F2, the measures in {µ2(ω1, ⋅) ∣ ω1 ∈ Ω1} induce a function on Ω1,

namely µ2(⋅,A2) ∶ Ω1 → R∞≥0 ∶ ω1 ↦ µ2(ω1,A2). Further, note that for the integral in
Eq. (2.8) to be well-de�ned, the function ω1 ↦ µ2 (ω1,A(ω1))must be Borel measurable.
It can be proved, that this is the case if we require the functions µ2(⋅,A2) ∶ Ω1 → R∞≥0 to

be Borel measurable for all A2 ∈ F2, i.e. if µ2(⋅,A2) is Borel measurable for all A2 ∈ F2,
then µ2 (ω1,A(ω1)) is Borel measurable w.r.t. (Ω1,F1) for all A ∈ σ (F1 ⊗ F2).
�e construction of a 2-dimensional measure on σ (F1 ⊗ F2) from the measure µ1 and

the measures µ2(ω1, ⋅) is described formally in the next theorem:
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�eorem 2.16 (Two-dimensional product measure theorem). Let (Ω1,F1, µ1) be a
measure space with σ-�nite measure µ1 and let (Ω2,F2) be a measurable space. More-
over, for each ω1 ∈ Ω1, let µ2(ω1, ⋅) ∶ F2 → R∞≥0 be a measure on (Ω2 ,F2) such that for
each A2 ∈ F2, the induced function µ2(⋅,A2) ∶ Ω1 → R∞≥0 ∶ ω1 ↦ µ2(ω1,A2) is Borel
measurable.

If the µ2(ω1, ⋅) are uniformly σ-�nite1, then

µ ∶ σ(F1 ⊗ F2)→ R∞≥0 ∶ A↦ ∫
Ω1

µ2 (ω1,A(ω1)) µ1(dω1)
is the uniquemeasure such that for measurable rectangles (A1 × A2) ∈ F1 ⊗ F2 it holds

µ(A1 × A2) = ∫
A1

µ2(ω1,A2) µ1(dω1).
�e measure µ is σ-�nite; it is a probability measure if µ1 and each of the µ2(ω1, ⋅) are
probability measures.

Proof. �e proof can be found in [ADD00,�m. 2.6.2]. ◻

As we mostly consider probability measures (which are uniformly σ-�nite), we can con-

clude from the above theorem, that given a probability space (Ω1,F1, µ1) and a family
of probability measures {µ2(ω1, ⋅)}ω1∈Ω1

on the measurable space (Ω2,F2) such that the
induced functions µ(⋅,A2) are Borel measurable for all A2 ∈ F2, the integral

µ(A) = ∫
Ω1

µ2(ω1,A(ω1)) µ1(dω1)
is the uniquely determined probability measure on the product σ-�eld σ (F1 ⊗ F2).
With�m. 2.16, we have a means to construct measures on two-dimensional prod-

uct σ-�elds. Moreover, it enables us to de�ne the Lebesgue integral in two dimensions.
�erefore, let Ω = Ω1 × Ω2 and F = σ (F1 ⊗ F2) as before. Analogous to the derivation

of the (one-dimensional) Lebesgue integral, if we are to derive the (abstract) Lebesgue
integral of a two-dimensional function h ∶ Ω → R∞, we have to assume that h is Borel

measurable, i.e.

h ∶ (Ω,F)→ (R∞,B(R∞)) .
�en

∫
Ω
h(ω1,ω2) µ(dω1, dω2) (2.9)

1�e class of measures µ2(ω1 , ⋅) is uniformly σ-�nite i� there exist B1 , B2 , . . . ∈ F2 and corresponding
k1 , k2 , . . . such that Ω2 = ⋃∞i=1 B i and µ(ω1 , B i) ≤ k i for all ω1.
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is the abstract Lebesgue integral of h. However, Eq. (2.9) does not give a clue of how to

compute with such integrals. More precisely, from an algebraic point of view, it is useful
to express the integral ∫Ω h(ω1,ω2) µ(dω1, dω2) as an iterated integral (in this case, as
two integrals w.r.t. Ω1 and Ω2, respectively). Furthermore, for algebraic reasoning it is

o�en useful if we can exchange the order of integration. In the remainder of this thesis,
we make heavy use of both techniques; this is backed up by Fubini’s theorem, which is

stated next:

�eorem 2.17 (Fubini’s theorem). Let (Ω1,F1) and (Ω2 ,F2) be measurable spaces,
Ω = Ω1 × Ω2, F = σ (F1 ⊗ F2). Further, let µ1 ∶ F1 → R∞≥0 be a σ-�nite measure and
let µ2(ω1, ⋅) ∶ F2 → R∞≥0 be uniformly σ-�nite measures for each ω1 ∈ Ω1 such that
µ2(⋅,A) ∶ (Ω1,F1)→ (R∞≥0,B(R∞≥0)) for all A ∈ F2.
If h ∶ (Ω,F) → (R∞,B(R∞)) is a Borel measurable function such that the integral

∫Ω h(ω1,ω2) µ(dω1, dω2) exists, then the integrals ∫Ω2
h(ω1,ω2) µ2(ω1, dω2) also exist

for almost all ω1 ∈ Ω1 [µ1]. Further, the function h(ω1) = ∫Ω2
h(ω1,ω2) µ2(ω1, dω2) is

Borel measurable and

∫
Ω
h(ω1,ω2) µ(dω1, dω2) = ∫

Ω1
∫
Ω2

h(ω1,ω2) µ2(ω1, dω2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

h(ω1)

µ1(dω1).

Proof. For a proof, we refer the reader to [ADD00,�m. 2.6.4]. ◻

In the case that the measures µ2(ω1, ⋅) do not depend on ω1, i.e. if the measures µ2(ω1, ⋅)
in�m. 2.17 are all equal and independent of ω1, we use µ = µ1 × µ2 to denote their
product measure on σ (F1 ⊗ F2). In the special case that µ = µ1 × µ2, Fubini’s theorem
permits to change the order of integration:

Corollary 2.1 (Changing the order in iterated integration). Let (Ω1,F1, µ1) and(Ω2 ,F2, µ2) bemeasure spaces with σ-�nite measures µ1 and µ2. Further, letΩ = Ω1×Ω2,
F = σ (F1 ⊗ F2) and µ = µ1 × µ2. If h ∶ (Ω,F) → (R∞,B(R∞)) is a Borel measurable
function such that ∫Ω h(ω1,ω2) µ(dω1, dω2) exists, then

∫
Ω
h(ω1,ω2) µ(dω1, dω2) = ∫

Ω1
∫
Ω2

h(ω1,ω2) µ2(dω2) µ1(dω1) (2.10)

= ∫
Ω2
∫
Ω1

h(ω1,ω2) µ1(dω1) µ2(dω2). (2.11)

Proof. To see that Eq. (2.10) holds, apply�m. 2.17 with µ2(ω1, ⋅) = µ2 for all ω1 ∈ Ω1.
�en Eq. (2.11) follows by symmetry. ◻
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2.5.3 Measures on �nite-dimensional product spaces

In the previous section, we have introduced the construction of a measure for two-di-

mensional product spaces and established the theory necessary to extend Lebesgue inte-
gration to those product spaces. With these preliminaries, the next step is rather straight-

forward; in fact, we only generalize the ideas of the two-dimensional case to all �nite-
dimensional product spaces:

�eorem 2.18 (Finite-dimensional product measure and Fubini’s theorem). Let(Ωi ,Fi), i = 1, 2, . . . , n be measurable spaces, Ω = ⨉n
i=1Ωi , F = σ (⊗n

i=1 Fi) and
let µ1 ∶ Ω1 → R∞≥0 be a σ-�nite measure. For each j ∈ {2, 3, . . . , n − 1} and tuple(ω1,ω2, . . . ,ω j) ∈ ⨉n

i=1Ωi , let µ j(ω1,ω2, . . . ,ω j , ⋅) ∶ F j+1 → R∞≥0 be a measure. Moreover,
assume that the induced function

µ j(⋅, ⋅, . . . , ⋅,C) ∶ Ω1 ×Ω2 ×⋯×Ω j × F j+1 → R∞≥0

is Borel measurable for each C ∈ F j+1, i.e. {(ω1,ω2, . . . ,ω j) ∣ µ(ω1,ω2, . . . ,ω j,C) ∈ B} ∈
σ (⊗ j

i=1 Fi) for all B ∈B(R∞≥0). Let Ω = ⨉n
i=1Ωi and F = σ (⊗n

i=1 Fi).
(a) Product measure theorem:

�ere exists a unique measure µ on F such that for each measurable rectangle A1 ×
A2 ×⋯× An ∈⊗n

i=1 Fi it holds:

µ (A1 × A2 ×⋯× An) = ∫
A1

µ1(dω1) ∫
A2

µ2(ω1, dω2)
⋯ ∫

An−1

µn−1(ω1,ω2, . . . ,ωn−2 , dωn−1) ∫
An

µn(ω1,ω2, . . . ,ωn−1 , dωn).
(b) Fubini’s theorem:

If h ∶ (Ω,F) → (R∞,B (R∞)) is a Borel measurable function such that the integral
∫Ω h(ω1,ω2, . . . ,ωn) µ(dω1, dω2, . . . , dωn) exists, then
∫
Ω
h dµ = ∫

Ω1

µ1(dω1) ∫
Ω2

µ2(ω1, dω2)⋯ ∫
Ωn−1

µn−1(ω1,ω2, . . . ,ωn−2 , dωn−1)
∫
Ωn

h(ω1,ω2, . . . ,ωn) µn(ω1,ω2, . . . ,ωn−1, dωn)
and each of the integrals w.r.t. µ j(ω1,ω2, . . . ,ω j , ⋅), j = 1, 2, . . . , n exists for al-

most all (ω1,ω2, . . . ,ω j) and is a Borel measurable function (⨉ j
i=1Ωi ,⊗ j

i=1 Fi) →(R∞,B(R∞)).

Proof. �e proof can be found in, e.g. [ADD00,�m. 2.6.7]. ◻
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So far, the product measure theorem (�m. 2.18(a)) only states how to de�ne the mea-

sure µ onmeasurable rectangles in⊗n
i=1 Fi . To obtain themeasure of an arbitrary element

in their product σ-�eld F = σ (⊗n
i=1 Fi), we use Fubini’s theorem: Obviously, if A ∈ F,

then the indicator function IA is Borel measurable with respect to F. If we set h = IA
in�m. 2.18(b), we obtain an explicit representation of the measure of A in form of the
iterated integral

µ(A) = ∫
Ω1

µ1(dω1) ∫
Ω2

µ2(ω1, dω2)⋯ ∫
Ωn−1

µn−1(ω1,ω2, . . . ,ωn−2 , dωn−1)
∫
Ωn

h(ω1,ω2, . . . ,ωn) µn(ω1,ω2, . . . ,ωn−1 , dωn).
Similar to the two-dimensional case and Corollary 2.1, Fubini’s theorem also permits

to change the order of integration in the n-dimensional case provided that the measures

µ j(ω1,ω2, . . . ,ω j−1, ⋅) do not depend on the values of ω1,ω2, . . . ,ω j−1, i.e. if for each j =
1, 2, . . . , n there exists a measure µ j on F j such that µ j(ω j) = µ j(ω1,ω2, . . . ,ω j−1, ⋅) for all(ω1, . . . ,ω j−1) ∈ ⨉ j−1

i=1 Ωi : If this is the case, we denote by µ = µ1 × µ2 ×⋯× µn the product

measure on F.
Now, let µ = µ1 × µ2 ×⋯ × µn be such a measure and let h ∶ (Ω,F) → (R∞,B(R∞))

be a Borel measurable function such that the integral ∫Ω h dµ exists.�en

∫
Ω
h dµ = ∫

Ωi1

µi1(dωi1) ∫
Ωi2

µi2(dωi2)⋯ ∫
Ωin

h(ωi1 ,ωi2 , . . . ,ωin) µin(dωin)
for any permutation (i1, i2 , . . . , in) of {1, 2, . . . , n}.
2.5.4 In�nite product spaces

In this section, we extend the construction of the product σ-�eld and the correspond-
ing productmeasure theorem to countably in�nite products and the correspondingmea-
sures. A fundamental tool in this construction are the so-called cylinder sets:

De�nition 2.18 (Cylinder set). For i = 1, 2, . . ., let (Ωi ,Fi) be measurable spaces. �en
Ω = ⨉∞i=1Ωi is the set of all tuples of the form (ω1,ω2, . . .), where ωi ∈ Ωi for all i ∈ N.
For a set Bn ⊆ ⨉n

i=1Ωi , let

Bn = {(ω1,ω2, . . .) ∈ ∞⨉
i=1

Ωi ∣ (ω1,ω2, . . . ,ωn) ∈ Bn}
be the cylinder set induced by the base Bn. �e cylinder set Bn is measurable i� Bn ∈
σ (⊗n

i=1 Fi). If Bn ∈ ⨉n
i=1Ωi is a Cartesian product, its induced cylinder Bn is an in�nite

rectangle; moreover, if Bn ∈⊗n
i=1 Fi , then Bn is an in�nite measurable rectangle. We use

⊗∞i=1 Fi and σ (⊗∞i=1 Fi) to denote the class of in�nite measurable rectangles, respectively
the smallest σ-�eld they generate.
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Informally, a cylinder set Bn with base Bn ⊆ ⨉n
i=1Ωi can be constructed as follows:

Take each �nite sequence (ω1,ω2, . . . ,ωn) in the base Bn and extend it in all possible
ways, that is, by all in�nite extensions (ωn+1,ωn+2 , . . .) ∈ ⨉∞i=n+1 Ωi . �e result is a set
of in�nite sequences {(ω1,ω2, . . . ,ωn ,ωn+1,ωn+2 , . . .) ∈ ⨉∞i=1 ∣ (ωn+1 ,ωn+2 , . . .) ∈ ⨉∞i=n+1}
that have (ω1,ω2, . . . ,ωn) as a common pre�x. �en the cylinder set Bn is the union of
all those extensions of n-tuples in Bn. Figure 2.4 depicts the cylinder set construction. To

ease notation, we sometimes also use Cyl(Bn) to denote the cylinder Bn induced by the
base Bn.
Cylinder sets are the building block of in�nite product spaces. �erefore, let us con-

sider their properties in more detail: For the moment, letW = {Bn ∣ Bn ∈ σ (⊗n
i=1 Fi)} be

the class of measurable cylinders.

�en W is a �eld: Obviously, Ω1 ∈ F1 is a measurable base of Ω; hence Ω ∈ W. For
the closure under complement, note that the complement of a measurable cylinder is
induced by the complement of its base, which is measurable. Moreover, any measurable

cylinder Am ∈W with a �nite base Am can also be represented by a longer base, i.e. by a
base of the form An = Am ×⨉n

i=m+1Ωi , where n > m. To see that W is closed under �nite
union, let Am , Bn ∈ U be measurable cylinders with bases Am and Bn and assume w.l.o.g.

that m < n. �en (Am×⨉n
i=m+1Ωi) ∪ Bn ∈ σ (⊗n

i=1 Fi) is a measurable base of Am ∪ Bn.
�erefore Am ∪ Bn ∈ U. With this extension in mind, it can be proved along the same

lines as for the proof of Lemma 2.10, that the class of �nite disjoint unions of (in�nite)
measurable rectangles forms a �eld.
In order to relate measurable cylinders and measurable rectangles, we note that both

classes generate the same σ-�eld. Hence, the in�nite product σ-�eld σ (W) and the σ-
�eld σ (⊗∞i=1 Fi) generated by the class of in�nite measurable rectangles are the same:

Lemma 2.11. For i = 1, 2, . . ., let (Ωi ,Fi) be measurable spaces. �en

σ( ∞⊗
i=1

Fi) = σ(W). (2.12)

⨉∞i=n+1ΩiBn

cylinder Bn

⨉∞i=1Ωi

Figure 2.4: Construction from a cylinder set from a �nite-dimensional base.
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Proof. Let n range over N. Further, recall that by de�nition it holds that σ (⊗∞i=1 Fi) =
σ ({Bn ∣ Bn ∈⊗n

i=1 Fi}) and σ (W) = σ ({Bn ∣ Bn ∈ σ (⊗n
i=1 Fi)}). We split the proof of

Eq. (2.12) in two parts:

• σ (⊗∞i=1 Fi) ⊆ σ (W): �is follows directly, as the fact that ⊗n
i=1 Fi ⊆ σ (⊗n

i=1 Fi)
implies σ ({Bn ∣ Bn ∈⊗n

i=1 Fi}) ⊆ σ ({Bn ∣ Bn ∈ σ (⊗n
i=1 Fi)}).

• σ (W) ⊆ σ (⊗∞i=1 Fi): To establish this direction, we have to prove the inclusion
σ ({Bn ∣ Bn ∈ σ (⊗n

i=1 Fi)}) ⊆ σ ({Bn ∣ Bn ∈⊗n
i=1 Fi}). Hence, it su�ces to show

that all measurable cylinders Bn are in σ (⊗∞i=1 Fi). �erefore, let Bn ∈ W be a
measurable cylinder with a measurable base Bn ∈ σ (⊗n

i=1 Fi) of length n.

With the good sets principle, let

C = {Bn ∈ σ( n⊗
i=1

Fi) ∣ Bn ∈ σ( ∞⊗
i=1

Fi)}
be the class of measurable bases which induce cylinders in σ (⊗∞i=1 Fi). Note that
by de�nition, both σ(⊗n

i=1 Fi) and σ(⊗∞i=1 Fi) are σ-�elds; hence, C is a monotone
class. Further, the �eld U of �nite disjoint unions of measurable rectangles of di-

mension n (cf. Def. 2.10 on page 43) is contained in C. �en σ(U) ⊆ C by the
monotone class theorem. By Lemma 2.10 it holds that σ(U) = σ (⊗n

i=1 Fi); hence
σ (⊗n

i=1 Fi) ⊆ C.

�erefore, let Bn ∈W be a measurable cylinder with base Bn ∈ σ (⊗n
i=1 Fi). �en

Bn ∈ C.�us, Bn ∈ σ (⊗∞i=1 Fi), proving the claim. ◻

As a consequence of Lemma 2.11, from now on we use σ (⊗∞i=1 Fi) instead of σ(W) to
denote the smallest σ-�eld generated by the class of measurable cylinders.

With these de�nitions, we are ready to derive the product measure theorem for the

in�nite case. As within this thesis we only need to consider probability measures on
in�nite product spaces, we restrict the exposition to the case of probability spaces2 and
do not consider the case of arbitrary measure spaces.

�eorem 2.19 (Ionescu-Tulcea extension theorem). Let (Ωn ,Fn) (with n = 1, 2, . . .)
be measurable spaces and F = σ (⊗∞i=1 Fi). Further, let P1 be a probability mea-
sure on F1 and for each n = 2, 3, . . . and for all (ω1,ω2, . . . ,ωn−1) ∈ ⨉n−1

i=1 Ωi , let
Pn(ω1,ω2, . . . ,ωn−1, ⋅) be a probability measure on Fn. Assume that for each n = 1, 2, . . .
and A ∈ Fn, the induced function Pn(⋅,A) ∶ ⨉n−1

i=1 Ωi → [0, 1] ∶ (ω1,ω2, . . . ,ωn−1) ↦
Pn(ω1,ω2, . . . ,ωn−1,A) is measurable w.r.t. σ (⊗n−1

i=1 Fi).
2In fact, the Ionescu-Tulcea construction that is used in the proof of�m. 2.19 does not apply to arbitrary
measures in a straightforward way.
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For n = 1, 2, . . ., let P′n ∶ σ (⊗n
i=1 Fi)→ [0, 1] be the induced probability measure on the

n-dimensional product σ-�elds (cf. �m. 2.18), that is

P′n (Bn) = ∫
Ω1

P1(dω1) ∫
Ω1

P2(ω1, dω2)⋯ ∫
Ωn−1

Pn−1(ω1,ω2, . . . ,ωn−2 , dωn−1)
∫
Ωn

IBn(ω1,ω2, . . . ,ωn) Pn(ω1,ω2, . . . ,ωn−1, dωn)
for all Bn ∈ σ (⊗n

i=1 Fi). �ere exists a unique probability measure P onF such that for all
n ∈ N, P agrees with P′n on n-dimensionalmeasurable cylinders, that is, for all measurable
bases Bn ∈ σ (⊗n

i=1 Fi) it holds
P′n(Bn) = P(Bn),

where Bn = {(ω1,ω2, . . .) ∈ Ω ∣ (ω1,ω2, . . . ,ωn) ∈ Bn} is the cylinder induced by Bn.

Proof. We do not go into the details here, but refer the reader to [ADD00,�m. 2.7.2].◻

�e intuition for the in�nite product measure theorem is simple: In fact, it states that
if we have measures for all measurable bases, we obtain a unique measure on measur-

able cylinders if we de�ne the probability P(Bn) of a cylinder Bn ∈ σ (⊗n
i=1 Fi) as the

probability P′n(Bn) of its base Bn ∈ σ (Fn
i=1Fi).

�e fact, that simply setting P(Bn) = P′n(Bn) yields a well-de�ned probability measure
is not so clear. To see this, recall that any given cylinder Bm has several bases of di�erent

lengths. For example, if n > m, any extension of Bm of the form Bn = Bm ×⨉n
i=m+1Ωi in-

duces the cylinder Bm. However, a consequence of the uniqueness property in�m. 2.19
is that the probabilities of those alternative bases all coincide with P′n(Bn). �erefore, it

does not matter which base we choose to de�ne the measure of Bn.

2.6 Concluding remarks

In this section, we gave a survey of the measure theoretic foundations that are needed

throughout this thesis. As will turn out in the next section, we need the cylinder set
construction and in�nite product σ-�elds to de�ne in�nite trajectories of continuous-
timeMarkov decision processes and interactive Markov chains. Moreover, the Lebesgue

integral and Fubini’s theorem allow to de�ne their semantics precisely.

Most of the material presented here is based on chapters one, two and four of the

excellent book “Probability & measure theory” by Robert Ash and Catherine Doléans-
Dade [ADD00]. Other references include the book “Real Analysis and Probability” by

Richard Dudley [Dud02] and “Probability and Measure” by Patrick Billingsley [Bil95].
Some remarks about the di�culties in extending the notion of length to a class of subsets
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of the reals that is larger than the Lebesgue measurable sets can be found in the German

book “Stochastik für Informatiker” by Rudolf Mathar [MP90] and in [Ben76].
�e proofs of Lemma 2.6 and Lemma 2.10, as well as the proof of Lemma 2.11 are

mostly omitted in the literature. Hence, they have been proved anew and adapted to

Ash’s notation, which is used throughout this thesis.
Finally, some enlightening details about the Vitali set construction, especially about

the cardinality of the sets involved, can be found in the English translation of Kanovei’s
paper [Kan91].�e remaining material presented in Sec. 2.3 is mostly based on a lecture
note [vRS92] from Radboud University, Nijmegen.





3 An overview of stochastic models

Proof is the idol before whom

the pure mathematician

tortures himself.

(Sir Arthur Eddington)

In this thesis, we discuss a variety of probabilistic and stochastic models that describe
the system behavior either in discrete or in continuous time. �erefore, this chapter in-
troduces the basic models that we will use throughout the thesis. For each model, we try

to convey its informal behavior before we formally de�ne its semantics.

As our models evolve in time, their behaviors are described as the outcomes of com-
pound random experiments which can be formalized in an in�nite-dimensional product
space, where each dimension corresponds to a �xed time-point. We refer to Sec. 2.5.4 for

the probability theoretic construction of such spaces.�e underlying mathematical tool
that allows us to reason about these models formally, is called a stochastic process.

Accordingly, this overview chapter starts by shortly introducing the concepts of dis-
crete and continuous stochastic processes.�en we discuss the special cases of discrete-
and continuous-time Markov chains in more detail, as their properties are essential for

the class ofmodels that we are confronted with. Most of thematerial that we provide here
is based on the standard textbook [Kul95], which provides an excellent introduction to

Markov processes.

In the second part of this chapter, we introduce nondeterminism in Markov chains

and thereby obtain discrete- and continuous-time Markov decision processes, where the
latter are at the core of our studies in the forthcoming chapters. Discrete-timeMarkov de-
cision processes are discussed in the textbook [Put94] in great detail. Moreover, [Put94]

contains an introduction to continuous-time Markov decision processes in Chapter 11.

3.1 Stochastic processes

As we aim at an algorithmic veri�cation mechanism for nondeterministic and stochastic

systems, we are mostly interested in the subclass of stochastic processes that have a �nite
state space, as they can be stored in �nite memory. Within the scope of this thesis, we

therefore restrict to systems that have a �nite state space. In this setting, a stochastic
process is de�ned as follows:
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De�nition 3.1 (Stochastic process). A stochastic process on a �nite state space S is a
collection {Xt}t∈T of random variables Xt , where the parameter t ranges over a parameter

set T. Each Xt takes on values that are in the �nite state space S .

Usually, the parameter t is interpreted as time; accordingly, for t ∈ T , the value of Xt is
the state that is occupied by the stochastic process at time t. In case of a discrete stochastic
process, the parameter set T is a subset of N (�nite or countably in�nite), whereas for
continuous stochastic processes, the set T is a connected subset of R≥0. To ease notation,
we use the natural numbers to refer to the discrete time parameters and the nonnegative

reals for the continuous time domain.

To describe one possible evolution of a stochastic process, let π ∶ T → S be a function
such that π(t) ∈ S describes the state that the stochastic process occupies at time t. Each
such function describes a trajectory of the underlying stochastic process; in mathematics,
each π ∶ T → S is called a sample path of the stochastic process.
Now, a stochastic process {Xt}t∈T evolves randomly along one of its sample paths.

�erefore, a sample path can be seen as one possible outcome of the compound random
experiment that is associated with the entire stochastic process. To link this view of a
stochastic processes to the measure theoretic results of the previous chapter, we de�ne

the sample space of a stochastic process as the collection of all its sample paths, i.e. we set
Ω = {π ∶ T → S} = ST . Accordingly, each random variable Xt is a measurable function
Xt ∶ (Ω,F) → (S , 2S), where F denotes the σ-�eld generated by the measurable cylin-

ders1. Hence, given a sample path π ∶ T → S , the random variable Xt maps π to the state
that is occupied on π at time t, i.e. Xt(π) = π(t).
Now, let P be a probability measure on the measurable space (Ω,F). If we are inter-

ested in the probability that at time t ∈ T , the stochastic process is in state s ∈ S , we have
to compute the probability measure of the set of all sample paths that are in state s at
time t. Formally, this probability can be denoted as follows:

P ({Xt = s}) = P (X−1t (s))
= P ({π ∶ T → S ∣ Xt(π) = s})
= P ({π ∶ T → S ∣ π(t) = s}) .

3.2 Markov chains

Markov chains are a prominent subclass of stochastic processes; they are particularly pop-

ular, as their analysis is relatively easy, while their expressiveness su�ces to describe a
broad variety of stochastic phenomena that change randomly over time. As instances of

1In Chapter 2 we only de�ned countably in�nite cylinders.�is concept can be generalized to uncount-
able cylinders (see [ADD00]); however, it is not needed in the context of the thesis.
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stochastic processes, Markov chains can either be discrete or continuous, depending on

their underlying notion of time.

�eMarkov property distinguishesMarkov chains from other stochastic processes: In-
formally, it states that the behavior of a Markov chain in a state s ∈ S at time t ∈ T is

independent of the states that have been visited before. Hence, it only depends on the
current state s and the global time t.�is locality makes Markov chains especially attrac-

tive for an analysis.�e formal de�nition of a Markov chain with a �nite state space can
be stated as follows:

De�nition 3.2 (Markov chain). A stochastic process {Xt}t∈T with a �nite state space S
and a parameter set T is aMarkov chain i� for all n ∈ N and for all decreasing sequences
of time instances tn+1 > tn > tn−1 > ⋯ > t1 > t0 ∈ T and states si ∈ S , it holds that

P ({Xtn+1 = sn+1} ∣ Xtn = sn , Xtn−1= sn−1 , Xtn−2= sn−2 , . . . , Xt0 = s0)
= P ({Xtn+1 = sn+1} ∣ Xtn = sn) .

De�nition 3.2 formalizes the Markov property: Intuitively, it states that if the current

time is tn and n+1 steps of a Markov chain have been observed at time points t0 < t1 <
t2 < ⋯ < tn, the probability to be in state sn+1 at time tn+1 > tn does only depend on the
state sn that is occupied at the current time tn and not on the states s0, s1, . . . , sn−1, that
have been occupied before at times t0, t1, . . . , tn−1.
Note that theMarkov property does not state that being in state s at time t implies that

the probability to be in state sn+1 at a later time t′ = t+δ ∈ T is the same for all times t ∈ T .
Hence, in general, the probability tomove froma state sn within δ timeunits to state sn+1

may vary depending on the time t at which we are in state s. Stated di�erently, the future
behavior of a Markov chain may depend on the current time t.
However, within this thesis, we assume theMarkov chains to be invariant to time shi�s.

Such Markov chains are called time-homogeneous:

De�nition 3.3 (Time-homogeneous Markov chain). AMarkov chain {Xt}t∈T is time-
homogeneous i� for all states s, s′ ∈ S and for all times t′ > t ∈ T it holds that

P ({Xt′ = s
′} ∣ Xt = s) = P ({Xt′−t = s

′} ∣ X0 = s) .

In the following, we restrict to time-homogeneous Markov chains and discuss their
discrete- and continuous-time variants. By de�nition, both share the appealing property

that for a given current state s, the future evolution of the Markov chain is completely
determined by the state s alone. In particular, it does neither depend on the states that
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have been visited in the past (Markov property), nor does it depend on the amount of

time that has passed (time-homogeneity).
In the next section, we start the discussion with the conceptually simple model of

discrete-time Markov chains.

3.2.1 Discrete-time Markov chains

�e elements of the parameter set T of a discrete-time Markov chain (DTMC) are inter-

preted as discrete-time steps. Accordingly, the set T is usually identi�ed with the natural
numbers.
�e values of the random variables Xn of a DTMC {Xn}n∈N are understood as the

state that the DTMC occupies a�er n time steps have passed. As before, the Markov
property states that the probability to move from the state Xn = sn to a state Xn+1 = sn+1
is independent of the trajectory that led into state sn. Moreover, we assume any DTMC

to be time-homogeneous. In the discrete-time setting, this implies that

P ({Xn+1 = s
′} ∣ Xn = s) = P ({Xm+1 = s

′} ∣ Xm = s) (3.1)

for all discrete time points m, n ∈ N. Hence, the probability to move from state s to
state s′ does neither depend on the state sequence that has been traversed before, nor

does it depend on the number of time steps that have passed.
Let {Xn}n∈N be a DTMC and de�ne

ps,s′ = P ({X1 = s′} ∣ X0 = s) . (3.2)

�en ps,s′ is the probability to move from state s to state s′, independent of the number

of steps or the trajectory taken so far. Taking the ps,s′ together, they form the one-step
transition probability matrix P, where P ∈ [0, 1]S×S is de�ned by P(s, s′) = ps,s′ . Note that
there are no deadlock states in the de�nition of aMarkov chain; therefore∑s′∈S P(s, s′) =
1 holds for all states s ∈ S .

De�nition 3.4 (Stochastic matrix). A matrix P ∈ [0, 1]S×S is stochastic i� for all s ∈ S
it holds∑s′∈S P(s, s′) = 1.

From the de�nition, it comes as no surprise that the one-step transition probability
matrix P of a DTMC is a stochastic matrix, i.e. the probabilities to move from a state s to
some successor state s′ ∈ S sum up to one:

Lemma 3.1. Let {Xn}n∈N be a DTMC. Its one-step transition probability matrix P is a
stochastic matrix.
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Proof. Let s ∈ S .�en it holds

∑
s′∈S

P(s, s′) = ∑
s′∈S

ps,s′ = ∑
s′∈S

P ({X1 = s′} ∣ X0 = s)
= P ({X1 ∈ S} ∣ X0 = s) = P ({X1 ∈ S ∧ X0 = s})

P ({X0 = s}) =
P ({X0 = s})
P ({X0 = s}) = 1. ◻

We are nearly done in completely describing a DTMC:�e only missing item is an initial
distributionwhich speci�es the probability to start in a certain state s. We use ν ∈ Distr(S)
to denote an initial distribution and interpret ν(s) as the probability to start in state s ∈ S .
Now recall, that the random variable X0 describes the state in which the DTMC starts.

Hence, ν speci�es the probability distribution associated with the random variable X0.
As we will see, the initial distribution and the matrix P uniquely determine a DTMC,

which is characterized by the probabilities

P ({Xn = s}) = P (X−1n (s)) = P ({π ∶ N→ S ∣ π(n) = s}) .
According to our previous remark, an initial distribution ν serves as the probabil-

ity distribution of the random variable X0, i.e. P ({X0 = s}) = ν(s). Moreover, by the
Markov property and time-homogeneity, each ps,s′ is equal to the conditional probability
P ({Xn+1 = s′} ∣ Xn = s). As we have the probability distribution for X0 �xed by ν, we can
use the conditional probability P ({X1 = s′} ∣ X0 = s) to obtain the probability distribu-
tion for X1, that is

P ({X1 = s′}) =∑
s∈S

P ({X0 = s}) ⋅ P ({X1 = s′} ∣ X0 = s) .
In the sameway, weobtain the probability P ({X2 = s′}) =∑s∈S P({X1 = s})⋅P({X2 = s′} ∣
X1 = s) from the probability P ({X1 = s}). Obviously, this inductive idea extends to all Xn.

Formally, we obtain the probability distribution of Xn by thematrix vector multiplication

P ○ X−1n = ν⃗ ⋅ P
n , (3.3)

where ν⃗ = (ν(s0), ν(s1), . . . , ν(sn)). Equation (3.3) formalizes the transient behavior of
a DTMC. Having the one-step transition probability matrix P and the initial distribu-

tion ν, one can compute the probability distribution for each random variable Xn of the
associated DTMC. We conclude that a DTMC is completely described by P and ν:

�eorem 3.1. A DTMC is uniquely determined by a one-step transition probability ma-
trix P ∈ [0, 1]S×S and an initial distribution ν ∈ Distr(S).

Proof. �e proof follows directly from the Markov property and the restriction to time-
homogeneous DTMCs. Its details can be found in [Kul95,�m. 2.2]. ◻
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�eorem 3.1 allows for another interpretation of DTMCs: From a modeling point of

view, a DTMC can be imagined as a transition systemmodel, where each transition from
a state s to a successor state s′ is labeled with the probability ps,s′ and moreover, the state
changes occur at discrete clock ticks that are global to the system.

�erefore, for the remainder of the thesis, we de�ne a DTMC as follows:

De�nition 3.5 (Discrete-time Markov chain). A discrete-time Markov chain is a tu-
ple D = (S ,P, ν), where S is a �nite, nonempty set of states, P ∶ S × S → [0, 1] is a
stochastic matrix and ν ∈ Distr(S) is an initial distribution.

�is de�nition allows for a graphical representation of DTMCs, the so-called state
transition diagram. We introduce this representation by means of an example:

Example 3.1. Consider the DTMC D depicted in Fig. 3.1: �e state space is the set S ={s0, s1, s2, s3}. Moreover, the initial distribution and the one-step transition probability ma-
trix are given as follows:

ν⃗ = ( 1
2
,
1

2
, 0, 0) and P =
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1
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With these two ingredients, we can compute the probability distribution of any random
variable Xn of the DTMC’s stochastic process {Xn}n∈N. For example, we obtain the following
distributions for the �rst two time steps inD:

P (X1 = ⋅) = ν⃗ ⋅ P = (0, 1
2
,
5

12
,
1

12
) and P (X2 = ⋅) = ν⃗ ⋅ P2 = (0, 9

16
,
1

3
,
5

48
) . ♢

In Sec. 3.1, a sample path of a stochastic processes {Xt}t∈T is de�ned as a function

π ∶ T → S with the intuition that if the outcome of the stochastic process is π, π(t) = s
means that the process is in state s at time point t ∈ T . �us, in the special case of a
DTMC {Xn}n∈N, a sample path is a function π ∶ N → S . However, in the remainder of

the thesis we use an alternative (but equivalent) representation of sample paths, that is
directly related to the transition diagram of a DTMC. Instead of using a function N → S ,
we denote sample paths as countably in�nite sequences of states.

Using this notation, a path in a DTMC has the form

π = s0 Ð→ s1 Ð→ s2 Ð→ s3 Ð→ ⋯

and describes the sequence of states that have been traversed in the state transition di-
agram of D. �e link to the sample path de�nition in Sec. 3.1 is established by not-

ing that each in�nite sequence π is in a one-to-one correspondence with a sample path
π′ ∶ N→ S ∶ n ↦ π[n], where π[n] = sn denotes the (n+1)-th state on π.
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Figure 3.1:�e state transition diagram of the DTMC.

Additionally, we sometimes also consider �nite paths. Accordingly, we let PathsnD de-

note the sets of paths of length n in D, where the length of a �nite path π is denoted ∣π∣
and determined by the number of states on π. Consequently, Paths⋆D = ⊍∞n=0 Pathsn is the
set of all �nite paths in D and PathsωD denotes the set of all in�nite paths in D. In the
following, the reference to D is omitted whenever it is clear from the context.

�e geometric distribution and the memoryless property

A DTMC is closely related to a geometric distribution: Imagine a sequence of random

experiments, which either succeed with probability p ∈ (0, 1] or which fail with proba-
bility (1 − p). Now, let X be a random variable for the number of trials that we need to
undertake until we succeed for the �rst time. Formally, we can describe the probability

that the n-th experiment is the �rst that succeeds as follows [ADD00, p. 328]:

P({X = n}) = (1 − p)n−1p.
Hence, the probabilities P({X = n}) for n = 1, 2, 3, . . . form a geometric sequence. To

see this, note that P({X = n + 1}) is obtained by multiplying P({X = n}) with the con-
stant factor (1− p). With these preliminaries, the geometric distribution has the discrete

probability distribution function F(n) given by

F(n) = P({X ≤ n}) = n∑
i=1

P({X = i}). (3.4)

�e last term in Eq. (3.4) is a geometric series. Using the well-known formula∑n
k=0 ar

k =
a(rn+1−1)

r−1 , we can express F(n) as follows (where a = 1 and r = (1 − p)):
F(n) = n∑

k=1

(1 − p)k−1p = p n−1∑
k=0

(1 − p)k = p ⋅ (1 − p)n − 1

(1 − p) − 1
= 1 − (1 − p)n .

Hence, we can also interpret F(n) as the probability that we do not see n failures of the

random experiment in a row.
An interesting property of the geometric distribution is that it is memoryless:
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�eorem 3.2 (�e geometric distribution is memoryless). Let X be a random vari-
able with a geometric distribution with parameter p ∈ (0, 1). �en

P ({X > n + k} ∣ X > n) = P ({X > k}) . (3.5)

Hence, the geometric distribution ismemoryless. Moreover, all discrete probability distri-
butions that are memoryless are geometrically distributed.

Proof. We �rst prove Eq. (3.5):

P ({X > n + k} ∣ X > n) = P ({X > n + k ∩ X > n)}
P ({X > n}) =

P ({X > n + k})
P ({X > n}) .

From thederivationof the probability distribution function F , we know that P ({X > x}) =
1 − P ({X ≤ x}) = 1 − F(x). Hence

P ({X > n + k})
P ({X > n}) =

1 − F(n + k)
1 − F(n) =

1 − (1 − (1 − p)n+k)
1 − (1 − (1 − p)n) =

(1 − p)n+k
(1 − p)n = (1 − p)k .

Now P ({X > k}) = 1 − F(k) = (1 − p)k , thereby proving Eq. (3.5).
We prove that the geometric distribution is the only discrete probability distribution

which is memoryless: We proceed by contraposition and assume that Y is a discrete
random variable which is memoryless, but not geometrically distributed. Further, let

F c
Y(y) = P ({Y > y}). As Y is memoryless, it must hold that P ({Y > n + k} ∣ Y > n) =

P ({Y > k}). By the law of total probability, we obtain

F c
Y(n + k) = P ({Y > n + k})

= P ({Y > n + k} ∣ Y > n) ⋅ P ({Y > n})
= P ({Y > k}) ⋅ P ({Y > n})
= F c

Y(k) ⋅ F c
Y(n)

for all n, k ∈ N. �erefore F c
Y(2) = F c

Y(1)2 (choose n=k=1) and F c
Y(3) = F c

Y(1) ⋅ F c
Y(2)

(with k=1 and n=2). But then F c
Y(3) = F c

Y(1)3.
According to this reasoning, we have that F c

Y(m) = F c
Y(1)m for all m ∈ N>0. Now, the

only discrete function g that satis�es g(m) = g(1)m has the form g(m) = qm for some

q ∈ R. Hence, F c
Y(m) = qm for some q ∈ (0, 1). Moreover, FY(m) = 1 − F c

Y(m) = 1 − qm,
which is the distribution function of the geometric distribution with parameter p = 1− q.
Hence we obtain a contradiction, as the randomvariable Y is geometrically distributed.◻

To see how the geometric distribution is related to our de�nitionof a discrete-timeMarkov

chain, recall that we require a DTMC to have the Markov property. Now, the time that a
DTMC spends in a given state s is geometrically distributed. To see this, let (S ,P, ν) be a
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DTMC and �x an arbitrary state s ∈ S . If the random variable N (de�ned on {1, 2, 3, . . .})
describes the number of time steps that the DTMC remains in state s, then

P ({N = 1}) = 1 − ps,s

P ({N = 2}) = (1 − ps,s) ⋅ ps,s
P ({N = 3}) = (1 − ps,s) ⋅ p2s,s

⋮ = ⋮

Hence, we have that N is geometrically distributed with p = 1 − ps,s .
�is is not a random coincidence: Intuitively, the Markov property states that the in-

formation that the DTMC has been in a state s for a certain amount of time already, must
not in�uence the distribution of the remaining sojourn time.

At this point, we conclude the discussion of DTMCs, inevitably leaving many theoret-
ical gaps open. However, we have covered the fundamental properties that we will need

in the remainder of this thesis. An otherwise important topic that we have ignored com-
pletely, is the de�nition of a DTMC’s steady state. It can be imagined as the probability
to be in a given state of the DTMC a�er a (very) long time. However, in the controlled

Markov processes that we investigate later, steady states generally do not exist. Hence,
we do not go into the details here but refer to the broad selection of literature about the
topic, for example [Kul95].

3.2.2 Continuous-time Markov chains

A�er having introduced discrete-timeMarkov chains, this section discusses their contin-

uous-time analogue. A continuous-timeMarkov chain (CTMC) is aMarkov chain{Xt}t∈T
with parameter set T = R≥0, such that each random variable Xt describes the state of the
CTMC at time point t.
Compared to DTMCs, the de�nition of CTMCs is slightly more involved. Similar to

DTMCs, the Markov property also applies to CTMCs: If a CTMC is in state sn ∈ S at

time tn ∈ R≥0, its future behavior does not depend on the states sn−1, sn−2 , . . . , s1, s0, that
have been observed at some time points tn−1 > tn−2 > . . . > t1 > t0 ∈ R≥0. Formally, the

Markov property for CTMCs is stated as follows: Let A ⊆ S be a set of states and n ∈ N.
For all decreasing sequences of time points tn+1 > tn > ⋯ > t1 > t0 ∈ R≥0 and states
sn , sn−1, . . . , s1, s0, it holds that [Hav00, Sec. 4.1]

P ({Xtn+1∈ A} ∣ Xtn = sn , Xtn−1= sn−1, . . . , Xt1 = s1, Xt0 = s0)
= P ({Xtn+1∈ A} ∣ Xtn = sn) . (3.6)

It is important to note a subtle di�erence to the discrete-time case:�ere, Eq. (3.1) (see
page 58) summarizes the Markov property and time-homogeneity for DTMCs by con-

sidering a discrete time step. As this discrete notion of a time step does not exist in
CTMCs, the probability P ({Xtn+1∈ A} ∣ Xtn = sn) in Eq. (3.6) depends on the amount of
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time ∆t = tn+1 − tn that has passed since the last time (tn in our notation), the state of the

CTMC has been observed. We will come back to this point later, when we discuss the
transition probabilities of a CTMC.
�e second important property of a CTMC is time-homogeneity. Together with the

Markov property in Eq. (3.6), time homogeneity is expressed as follows:

P ({Xtn+1∈ A} ∣ Xtn = sn) = P ({X∆t ∈ A} ∣ X0 = sn) . (3.7)

�erefore, Eq. (3.7) implies that the future behavior of a CTMC depends only on ∆t and
on the current state sn. In particular, it does neither depend on the previous history (by

Eq. (3.6)) nor on the amount of time t that has passed (cf. Eq. (3.7)) before the current
state was entered at time tn. In Eq. (3.7) and Eq. (3.6) we may interpret tn as the current
time and t + ∆t as the time in the future, when we observe the state of the CTMC again.
For a time period ∆t > 0, the probability to move from the current state sn to a state in

the set A ⊆ S within ∆t time units is determined by some parameter λ ∈ R>0 such that

P ({X∆t ∈ A} ∣ X0 = sn) = λ ⋅ ∆t + o(∆t), (3.8)

where the second summand o(∆t) denotes the probability that multiple transitions oc-
cur within time interval [0, ∆t). �e Landau notation o(∆t) that is used in Eq. (3.8) is

de�ned such that for functions f , g ∶ R → R it holds that f ∈ o(g)⇐⇒ limx→∞
f (x)
g(x) = 0.

�erefore, for small enough ∆t, the probability that we “miss” intermediate transitions

can safely be ignored.
With these remarks, we can interpret Eq. (3.8) as follows: If the time ∆t that has passed

since the last observation of the CTMC’s state is short enough, the probability to move

from state sn to a state in the set A scales linearly with parameter λ > 0.
Hence, the knowledge about the current state of a CTMC and the parameters λ com-

pletely describe the future behavior of a CTMC. In the discrete-time case, the number of
steps that aDTMCsojourns in a state is geometrically distributed (cf. Sec. 3.2.1). Similarly,
the Markov property and time-homogeneity imply that the sojourn times in a CTMC

obey the exponential distribution. Before we continue the discussion of the behavior of
CTMCs, let us shortly recall the important properties of the exponential distribution:

�e exponential distribution

�e exponential distribution is a continuous probability distributionwhich is determined
by a rate parameter λ ∈ R>0. Figure 3.2 plots its cumulative distribution function for

di�erent rate parameters.

De�nition 3.6 (Exponential distribution). Let λ ∈ R>0 be a rate, t, z ∈ R≥0 and

fλ(t) = λe−λt and
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Figure 3.2: Plot of the exponential distribution (cdf) for rates λ = 0.2, 0.5, 1 and 4.

Fλ(z) = ∫
z

0
fλ(t) dt = ∫

z

0
λe−λt dt = 1 − e−λz .

�en fλ is the probability density function and Fλ the cumulative distribution function
of the negative exponential distribution.

From Def. 3.6, we can directly conclude:

Corollary 3.1. �e rate λ ∈ R>0 uniquely determines an exponential distribution.

In contrast to DTMC, where a transition between a pair (s, s′) ∈ S × S of states are
taken at discrete time steps with a certain probability P(s, s′), CTMCs are continuous

stochastic processes.�erefore, the transitions in a CTMC are characterized by a transi-
tion rateR(s, s′). In a CTMC, the valueR(s, s′) is interpreted as the rate of an exponential
distribution which governs the transition’s delay. Similar to the DTMC case, a CTMC is

completely characterized by its transition rate matrix R and an initial distribution. As we
have seen in Sec. 3.2.1, the time that a DTMC stays in the same state (given by the number

of discrete time ticks) obeys a geometric distribution.�e exponential distribution is its
counterpart in the continuous-time domain:

�eorem 3.3 (�e exponential distribution is memoryless). Let X be a random vari-
able with an exponential distribution. �en

P ({X > x + k} ∣ X > k) = P ({X > x}) (3.9)

for all x , k ∈ R≥0. Hence, the exponential distribution is memoryless. Moreover, any
continuous distribution which is memoryless is an exponential distribution.
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Proof. �e proof is similar to that of�m. 3.2 and can be found in, e.g. [Kul95, p. 189].◻

If X and Y are two independent, exponentially distributed random variables with
rates λ1 and λ2, then theminimum of X and Y is again exponentially distributed:

Lemma 3.2. Let X ∼ Exp(λ1) and Y ∼ Exp(λ2) be independent random variables with
rates λ1, λ2 ∈ R>0. �en P ({min(X ,Y) ≤ z}) = (1 − e−(λ1+λ2)z) for all z ∈ R≥0.

Proof. For the proof, we consider the joint distribution of X and Y :

P ({min(X ,Y) ≤ z}) = PX ,Y ({(x , y) ∈ R2≥0 ∣min(x , y) ≤ z})
= ∫

∞

0
( ∫

∞

0
Imin(x ,y)≤z(x , y) ⋅ λ1e−λ1x ⋅ λ2e−λ2 y dy) dx

= ∫
z

0
∫
∞

x
λ1e
−λ1x ⋅ λ2e−λ2 y dy dx + ∫

z

0
∫
∞

y
λ1e
−λ1x ⋅ λ2e−λ2 y dx dy

= ∫
z

0
λ1e
−λ1x ⋅ e−λ2x dx + ∫

z

0
λ2e

−λ2 y ⋅ e−λ1 y dy

= ∫
z

0
λ1e
−(λ1+λ2)x dx + ∫

z

0
λ2e

−(λ1+λ2)y dy

= ∫
z

0
(λ1 + λ2) ⋅ e−(λ1+λ2)t dt = (1 − e−(λ1+λ2)z) . ◻

Hence the class of exponential distributions is closed under minimum.

In a similar way, we can prove that the probability that the outcome of the random
experiment associated with X is less than that of Y is given by the fraction λ1

λ1+λ2
:

Lemma 3.3. For two independent random variables X ∼ Exp(λ1) and Y ∼ Exp(λ2)with
rates λ1, λ2 ∈ R>0 it holds P ({X ≤ Y}) = λ1

λ1+λ2
.

Proof. Again by the joint distribution function:

P ({X ≤ Y}) = PX ,Y ({(x , y) ∈ R2≥0 ∣ x ≤ y}) = ∫
∞

0
λ2e

−λ2 y ( ∫
y

0
λ1e
−λ1x dx) dy

= ∫
∞

0
λ2e

−λ2 y (1 − e−λ1 y) dy = 1 − ∫
∞

0
λ2e

−λ2 ye−λ1 y dy

= 1 − ∫
∞

0
λ2e

−(λ1+λ2)y dy = 1 −
λ2

λ1 + λ2
⋅ ∫

∞

0
(λ1 + λ2)e−(λ1+λ2)y dy

= 1 −
λ2

λ1 + λ2
=

λ1
λ1 + λ2

. ◻
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Obviously, we obtain P ({Y ≤ X}) = λ2
λ1+λ2

in exactly the same way. Moreover, we can

prove in the same way as in Lemma 3.3, that the probability that the value of the i-th
random variable is the smallest of a sequence of independent random variables Xk ∼
Exp(λk) for k = 1, 2, . . . , n is λi

∑n
k=1 λk

. Finally, as the exponential distribution is continuous,

we have for any exponentially distributed random variable X that P ({X = c}) = 0 for all
c ∈ R≥0.
With these preliminaries, we are ready to fully describe the behavior of a CTMC:

�e de�nition of continuous-timeMarkov chains

A continuous-time Markov chain is de�ned by its transition rates R(s, s′): For states s
and s′, the value of R(s, s′) speci�es the rate of the transition that leads from state s to its
successor state s′. If no such transition exists then R(s, s′) = 0.�e values R(s, s′) ∈ R≥0
form the transition rate matrix of a CTMC . Roughly, it is the continuous-time counter-
part of a DTMC’s one-step transition probability matrix.
IfXs,s′ ∼ Exp(R(s, s′))denotes the randomvariable that is distributedwith rateR(s, s′),

then Xs,s′ can be understood as the delay that is needed for the transition from state s
to state s′ to execute. For multiple successor states, consider the situation depicted in
Fig. 3.3: Here, transitions lead from state s0 to states s1, s2 and s3. Each of them has an

exponentially distributed delay, described by the rates R(s0, s1),R(s0, s2) and R(s0, s3),
respectively. Two obvious questions arise if we consider the behavior in state s0:

(a) What is the probability to take the transition to, say, state s2?

(b) How long is the sojourn in state s0?

�e three transitions that leave state s0 compete for execution, that is, the �rst transition
whose delay expires, executes and determines the successor state. �erefore, we may

reformulate question (a) and ask for the probability that the delay of the transition that
leads to state s2 expires before the delays of the other two transitions. Formally, this

corresponds to the probability that the sample drawn for the random variable Xs0 ,s2 is
less than the samples drawn for Xs0 ,s1 and Xs0 ,s3 :

P ({Xs0 ,s2 ≤ Xs0 ,s1} ∩ {Xs0 ,s2 ≤ Xs0 ,s3}) .
As the random variables are independent, we obtain in the same way as in the proof of
Lemma 3.3 that

P ({Xs0 ,s2 ≤ Xs0 ,s1} ∩ {Xs0 ,s2 ≤ Xs0 ,s3}) = R(s0, s2)
R(s0, s1) +R(s0, s2) +R(s0, s3) .

�e situation depicted in Fig. 3.3 is known as a race condition, as the outgoing transitions
compete for execution according to their associated rates.

To answer question (b), note that the sojourn time in state s0 is governed by the time
that it takes for the �rst transition to execute. As this equals the minimum delay of the
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Figure 3.3: Race condition in a (fragment) CTMC.

outgoing transitions, the sojourn time in state s0 is described by the randomvariable Y0 =
min{Xs0 ,s1 , Xs0 ,s2 , Xs0 ,x3}. By Lemma 3.2, we conclude that the probability distribution of

the sojourn time Y0 in state s0 is

P ({Y0 ≤ z}) = P ({min (Xs0 ,s1 , Xs0 ,s2 , Xs0 ,x3) ≤ z}) = 1 − e−(R(s0 ,s1)+R(s0 ,s2)+R(s0 ,s3))z

= 1 − e−E(s0)z .

Hence, the sojourn in state s0 is exponentially distributed with the sum of the rates of all
transitions that leave state s0. Formally, this sum is the exit rate of state s0 and de�ned as

E(s0) = ∑s′∈S R(s0, s′) = R(s0, s1) + R(s0, s2) + R(s0, s3). �us, the sojourn time Y in a
state s is obtained by the equation

P ({Y ≤ z}) = ∫
z

0
E(s)e−E(s)t dt = (1 − e−E(s)z) .

As in the case of DTMCs, we also use state transition diagrams to graphically represent
CTMCs, where we augment the transitions with the corresponding entry in the CTMC’s
rate matrix (instead of the probabilities that are given by a DTMC’s one-step transition

probability matrix).

De�nition 3.7 (Continuous-time Markov chain). A continuous-timeMarkov chain is
a tuple (S ,R, ν), where S is the �nite set of states,R ∶ S×S → R≥0 is the two-dimensional
rate matrix and ν ∈ Distr(S) is an initial distribution.

As done in [BHHK03], we assume that the CTMC does not contain deadlock states

and require that E(s) =∑s′∈S R(s, s′) > 0 for all states s ∈ S .
If we abstract from the sojourn times in a CTMC, we obtain its embedded DTMC: Let(S ,R, ν) be a CTMC. Its embedded DTMC (S ,P, ν) is given by the probability matrix P

de�ned as P(s, s′) = R(s,s′)
E(s) . Intuitively, for states s, s′ ∈ S the value of P(s, s′) is the

probability that the transition that leads from state s to state s′ in the underlying CTMC

executes �rst. In this way, the embedded DTMC abstracts from the timing information
in a CTMC and only considers its time-abstract behavior.
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3.3 Nondeterminism in stochastic models

In the previous section, we discusseddiscrete and continuous timeMarkov chains.�ese

models are complete in the sense, that their underlying stochastic process is uniquely
determined. In this section, we extend the notion of a Markov chains and also allow that
nondeterministic choices may occur in the model.�ereby, we arrive at the de�nition of

discrete- and continuous-time Markov decision processes.
We follow the same route as in Sec. 3.2 and consider discrete-timeMarkov decision pro-

cesses �rst. A�erwards, Sec. 3.3.2 discusses continuous-time Markov decision processes
in detail.

3.3.1 Discrete time Markov decision processes

Discrete-time Markov decision processes [Bel57, How71, Ber95, Put94] (MDPs) have al-
ready been discovered in the late 1950’s.�ey are applied widely inmathematics and oper-

ations research. Moreover, with value iteration [Bel57] and policy iteration [How60], two
techniques exist which are well understood and permit to solve MDPs algorithmically.
In computer science, MDPs are of particular interest: As discovered by Vardi [Var85],

they allow us to model the behavior of randomized distributed algorithms. An example
of such an algorithm is a leader election protocol, where ties are broken by probabilistic
choices [IR90].

Furthermore, the support of nondeterminism in MDPs allows us to use abstraction
techniques such as simulation relations to reduce the state space of discrete-timeMarkov

chains andMDPs [DJJL01]. In this application, states with di�erent behavior are grouped
together, yielding a set of di�erent possible probabilistic behaviors. As the identity of the
underlying states is hidden in the abstract system, their di�erent behaviors give rise to

nondeterministic choices. In this way, abstracting DTMCs yields discrete-time Markov
decision processes.
Each state of anMDP is equipped with a �nite set of one-step transition probability dis-

tributions, each of which is uniquely identi�ed by an action. Hence, the actions indicate
the nondeterministic choices available in a state.

De�nition 3.8 (Discrete-time Markov decision process). A discrete-time Markov

decision process (MDP) is a tuple (S ,Act,P, ν), where S and Act are �nite, nonempty
sets of states and actions and ν ∈ Distr(S) is an initial distribution. Moreover,
P ∶ S × Act × S → [0, 1] is a three-dimensional probability matrix which satis�es
∑s′∈S P(s, α, s′) ∈ {0, 1}.
LetM = (S ,Act,P, ν) be an MDP. An action α ∈ Act is enabled in a state s ∈ S i�

∑s′∈S P(s, α, s′) = 1. Accordingly, the set
Act(s) = {α ∈ Act ∣ ∑

s′∈S

P(s, α, s′) = 1}



70 3.3 Nondeterminism in stochastic models

is the set of enabled actions in state s. We require that ∣Act(s)∣ > 0 for all states s ∈ S . Note
that this is no restriction, as any deadlock statewith Act(s) = ∅ is never le�.�erefore, it
can safely be equipped with a self-loop transition P(s, α, s) = 1 for some action α ∈ Act
without altering the MDP’s semantics.

As for DTMCs andCTMCs, the initial distribution ν quanti�es the probability that the
MDP starts in a certain state. We say that a state s ∈ S is an initial state of theMDPM if its

initial distribution is degenerate and of the form ν = {s ↦ 1}. In this case, the evolution
of theMDP de�nitely starts in state s. In principle, Def. 3.8 could be extended to allow for
sets of initial distributions. However, to simplify the technicalities, throughout this thesis,

we assume that nondeterministic models are equipped with a �xed initial distribution.

�e behavior of an MDP can be described as follows: �e �rst state of the MDP is

determined by the initial distribution ν. When entering a state s ∈ S , each enabled action
α ∈ Act(s) corresponds to one possibility to resolve the nondeterministic choices that are

represented by the set of enabled actions Act(s). More precisely, each action identi�es a
probability distribution P(s, α, ⋅) ∈ Distr(S), where P(s, α, s′) is the probability that the
MDP moves from state s to successor state s′. In general, several actions are enabled in

state s, denoting di�erent probability distributions.�erefore, to reason about probability
measures inMDPs, it is necessary to resolve the nondeterminism by choosing one action
from the set Act(s).
Markov decision processes, whose set of enabled actions are singletons, i.e. if ∣Act(s)∣ =

1 holds for all s ∈ S , are semantically equivalent to DTMCs. To see this, note that such

an MDP does not contain any nondeterministic choices as only one selectable action
remains in each state. Conversely, each DTMC can be construed as anMDP of the above
form.�erefore, the class of DTMCs is a proper subclass of MDPs.

Note that the Markov property also holds for MDPs, that is, a�er an action α ∈ Act(s)
has been chosen, its e�ect only depends on the current state s and not on the states that

have been traversed before.

Example 3.2. Figure 3.4 depicts an MDP with initial state s0. A nondeterministic choice
occurs between actions α and β upon entering state s1; all other states are deterministic,
that is, their sets of enabled actions are singletons. If action α is chosen in state s1, the
probabilities to move to states s2 or back to s0 are P(s1, α, s2) = 1

3
and P(s1, α, s0) = 2

3
,

respectively. For action β, the probability to reach state s0 or state s2 is zero; instead, we
stay in state s1 with probability P(s1, β, s1) = 3

4 and move to state s3 with the remaining
probability P(s1, β, s3) = 14 . ♢

Formally, a path is a �nite or in�nite sequence of states and actions. Whereas paths in

MDPs are time abstract, we need to consider time-dependent paths later. To distinguish
between the two variants, we mark the sets of time-abstract paths with subscript abs. Ac-
cording to this notation, Pathsnabs = S ×(Act × S)n denotes the set of all paths of length n;
similarly, Paths⋆abs = ⊍∞n=0 Pathsnabs and Pathsωabs = S × (Act × S)ω denote the sets of �nite
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Figure 3.4: An example of a discrete-time Markov decision process.

and in�nite paths, resp. For notational convenience, we describe paths in the form

π = s0
α0Ð→ s1

α1Ð→ s2
α2Ð→ ⋯.

If π is a �nite path that ends in state sn, we use π↓ = sn and ∣π∣ = n to denote the last
state on π and the length of π, respectively. Informally, a time abstract path records the
states and actions that are traversed by an MDP and thereby describes one instance of

the random behaviors of an MDP together with the actions that have been chosen.

At this stage, we cannot assign probabilities to sets of paths in 2Paths
ω
abs : To see why,

reconsider state s1 from the MDP in Ex. 3.2. Up to now, we cannot answer questions

like “What is the probability that being in state s1, the next state is s3?”, as the probability
depends on whether action α or action β are chosen in state s1. Even if we assume that β
is chosen, this does not imply that β is chosen again, if state s1 is re-entered later.

Schedulers solve this problem by quantifying the nondeterministic choices in each
state of anMDP. In the following de�nition, we slightly generalize the intuition of a sched-

uler and consider randomized schedulers, which can not only decide for a single action,
but may also yield a probability distribution over the next actions:

De�nition 3.9 (MDP scheduler). LetM = (S ,Act,P, ν) be an MDP. AnMDP sched-

uler for M is a mapping D ∶ Paths⋆abs → Distr(Act) such that D(π)(α) > 0 implies
α ∈ Act(π↓) for all π ∈ Paths⋆abs.

�e condition in Def. 3.9 implies that if a scheduler assigns a positive probability to an

action α, this action is indeed enabled in the current state π↓.
�e combination of anMDPM and anMDP scheduler D forM uniquely determines

the probabilistic behavior of the MDP. Informally, whenM enters a state a�er it has tra-

versed path π, the schedulerD resolves the nondeterministic choice between the available
actions in the current state π↓. If action α is chosen, the resulting probability distribution
P(π↓,D(π↓), ⋅) governs the next state that is occupied by the MDP.

To measure probabilities in an MDP, we use the smallest σ-�eld of subsets of Pathsωabs,
that is generated by themeasurable cylinders (cf. Sec. 2.5); we denote it byFPathsωabs

. Hence,
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the elements of FPathsωabs
have the form

{π ∈ Pathsωabs ∣ π ∈ Πn}
for some cylinder base Πn ⊆ Pathsnabs. Observe that in the discrete-time setting, no

measurability issues arise as all sets are �nite or countably in�nite. �erefore, we do
not need to restrict ourselves to measurable cylinder bases but can simply assume that
Πn ⊆ Pathsnabs. Accordingly, we use FPathsnabs

= 2Paths
n
abs as the σ-�eld over subsets of paths

of length n.
�e de�nition of the probability measure of MDPs is standard and can be found in,

for example [dA97]. However, to ease the understanding of the probability measure for
continuous-time Markov decision processes which is introduced in Sec. 3.3.2, we restate
the de�nition for MDPs here in the same notation:

De�nition 3.10 (Probability measure). LetM = (S ,Act,P, ν) be an MDP and D be
an MDP scheduler forM. �e probability measure Prnν,D on (Pathsnabs, 2Pathsnabs) is induc-
tively de�ned as follows:

Pr0ν,D ∶ FPaths0abs
→ [0, 1] ∶ Π ↦∑

s∈Π

ν ({s}) and

Prn+1ν,D ∶ FPathsn+1abs
→ [0, 1] ∶ Π ↦ ∑

π∈Pathsnabs

Prnν,D({π}) ∑
α∈Act

D(π)(α) ∑
s′∈S

IΠ(π α
Ð→ s′) ⋅ P(π↓, α, s′).

Note that IΠ is an indicator function such that IΠ(π) = 1 if π ∈ Π and 0, otherwise.
De�nition 3.10 inductively derives a family of probability measures, each de�ned on sets
of paths of some (�nite) length n: Note that a set of paths of length 0 is just a set of states.

Obviously, the probability to start in a state from the set Π0 ⊆ S is given by the sum of
the initial probabilities for all states s ∈ Π0.
By the inductive de�nition, we may rely on the measure for sets of paths of length n in

measuring paths of length n+1. More precisely, in Def. 3.10 we obtain the probability of
a set of paths Π ⊆ Pathsn+1abs by multiplying the probability of all paths of length n with all

one-step extensions; the indicator IΠ is then used to project on the set Π.
At this point, the de�nition of Prnν,D might appear overly complex. However, this

generality allows us to de�ne the probability measures in the continuous-time case (cf.

Sec. 3.3.2) in a very similar way. Let us formally prove that Def. 3.10 indeed coincides
with the semantics of MDPs that is found in the literature: As each FPathsnabs

belongs to

a discrete probability space, the measure of a set of paths Πn ⊆ Pathsnabs is de�ned by
the sum of the probabilities of all elements in Πn. To map our de�nition to the stan-
dard notation, as given in [dA97, Sec. 3.1.2], note that the probability of a single path

π = s0
α0Ð→ s1

α1Ð→ ⋯
αn−1ÐÐ→ sn is given by the product

p(D, π) = ν(π[0]) ⋅ n−1∏
i=0

P (π[i], αi , π[i + 1]) ⋅ D (s0 α0Ð→ s1
α1Ð→ ⋯

α i−1ÐÐ→ si) (αi) .
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Now a simple inductive proof shows that our de�nition of the probability Prnν,D (Πn) of
the set of paths Π ⊆ Pathsnabs coincides with that used in [dA97, BK08]:

Lemma 3.4 (Probability measure). Let M = (S ,Act,P, ν) be an MDP, D an MDP
scheduler forM and Πn ⊆ Pathsnabs for some n ∈ N. �en

Prnν,D (Π) = ∑
π∈Πn

p(D, π). (3.10)

Proof. We prove Eq. (3.10) by induction on n:

1. �e induction base follows trivially, as Pr0ν,D (Π0) =∑s∈Π0 ν({s}) =∑π∈Π0 p(D, π).
2. In the induction step (n ↝ n+ 1), we use as induction hypothesis that Prnν,D (Πn) =
∑π∈Πn p(D, π) holds for all Πn ⊆ Pathsnabs.�en

Prn+1ν,D (Πn+1) = ∑
π∈Pathsnabs

Prnν,D({π}) ∑
α∈Act

D(π)(α) ∑
s′∈S

IΠn+1(π α
Ð→ s′) ⋅ P(π↓, α, s′)

= ∑
π∈Pathsnabs

p(D, π) ∑
α∈Act

D(π)(α) ∑
s′∈S

IΠn+1(π α
Ð→ s′) ⋅ P(π↓, α, s′)

= ∑
π∈Pathsnabs

∑
α∈Act

∑
s′∈S

IΠn+1(π α
Ð→ s′) ⋅ p(D, π) ⋅ D(π)(α) ⋅ P(π↓, α, s′)

= ∑
π∈Pathsnabs

∑
α∈Act

∑
s′∈S

IΠn+1(π α
Ð→ s′) ⋅ p(D, π

α
Ð→ s′)

= ∑
π∈Πn+1

p(D, π
α
Ð→ s′). ◻

Ultimately, we are interested in the probability measure on sets of in�nite paths. �e
probability measures Prnν,D for sets of paths with length n that are obtained in Def. 3.10

directly extend to a unique probabilitymeasure on the σ-�eld FPathsωabs
. Recall thatFPathsωabs

is the smallest σ-�eld generated by the measurable cylinders.
�emeasure theoretical arguments that justify the cylinder set construction have been

discussed in detail in Sec. 2.5. Here, we only state the de�nition of the probability mea-
sure Prων,D on cylinders. Given a cylinder Bn ∈ FPathsωabs

with cylinder base Bn ∈ FPathsnabs
, we

de�ne

Prων,D(Bn) = Prnν,D(Bn).
By the Ionescu-Tulcea extension theorem (�m. 2.19 onpage 51), this de�nition su�ces to

uniquely determine the probability of all events in FPathsωabs
.�erefore, we have completed

the construction of the probability space (Pathsωabs,FPathsωabs
,Prων,D) that is associated with

an MDPM = (S ,Act,P, ν) and an MDP scheduler D forM.
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�e MDP schedulers that we have considered so far are history dependent: Upon en-

tering a state s of an MDP, the decision taken by an MDP scheduler D depends not only
on the current state s, but on the history π that led into s. In particular, D’s decision may
be di�erent each time state s is entered.
However, in many cases, simpler schedulers su�ce. More precisely, if the measure

of interest is the maximal (or minimal) probability to reach a set of goal states in an
MDP, a deterministic and positional scheduler exists which induces the optimal probabil-
ities [dA97],[BK08, Lemma 10.102]. AnMDP scheduler D is positional i� D(π) = D(π′)
for all π, π′ ∈ Paths⋆abs with π↓ = π′↓; moreover, it is deterministic i� for all s ∈ S there
exists α ∈ Act such that D(π) = {α ↦ 1}.
�e situation becomes more complicated if we aim at �nding a scheduler that opti-

mizes (i.e. maximizes orminimizes) the reachability of a set of goal states within a certain

number of steps. For such step-bounded reachability probabilities, the class of determinis-
tic hop-counting schedulers su�ces. A scheduler is hop counting i� D(π) = D(π′) for all
π, π′ ∈ Paths⋆abs with π↓ = π′↓ and ∣π∣ = ∣π′∣.
Example 3.3. Reconsider the MDPM depicted in Fig. 3.4. �e positional MDP sched-
ulers Dα and Dβ are uniquely determined by Dα(s1) = {α ↦ 1} and Dβ(s1) = {β ↦ 1}. �e
induced probability to reach state s3 within 2 steps is derived as follows:
We consider the event ◇≤2 {s3} = {π ∈ Pathsωabs ∣ ∃k ≤ 2. π[k] = s3} and compute the

probabilities Prων,Dα
(◇≤2 {s3}) and Prων,Dβ

(◇≤2 {s3}), respectively:
Prων,Dα

(◇≤2 {s3}) = Prων,Dα
(Cyl({s0 α0Ð→ s2

γ
Ð→ s3})) = 1

2
and

Prων,Dβ
(◇≤2 {s3}) = Prων,Dα

(Cyl({s0 α0Ð→ s2
γ
Ð→ s3, s0

α
Ð→ s1

β
Ð→ s3})) = 1

2
+
1

2
⋅
1

4
=
5

8
. ♢

3.3.2 Continuous time Markov decision processes

�e focus of this thesis is on the analysis of stochastic models which combine nondeter-
minism and exponentially distributed delays. More precisely, we strive to extend contin-
uous-time Markov chains (cf. Sec. 3.2.2) with nondeterministic choices. Following the

nomenclature in the discrete-time case, where nondeterministic extensions of DTMCs
are referred to as MDPs (cf. Sec. 3.3.1), the corresponding continuous-time model is

called a continuous-time Markov decision process (CTMDP) [Mil68b, Mil68a, Put94].

�e behavior in a state of a CTMC is completely determined by the exponentially dis-

tributed delays of its outgoing transitions.�is is not the case in a CTMDP, where transi-
tions are labeled with both, a rate of an exponential distribution (as in CTMCs) and an
action, which names a nondeterministic choice.

Intuitively, the behavior of a CTMDP is as follows: Upon entering a state, one of the

actions that are available according to the state’s outgoing transitions must be chosen non-
deterministically. A�er that, the behavior in that state is governed by the exponentially
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distributed delays of those transitions, that correspond to the chosen action.�e de�ni-

tion of a CTMDP di�ers from that of an MDP in that the transition probability matrix is
replaced by a rate matrix which speci�es the transitions’ delay time distribution:

De�nition 3.11 (Continuous-time Markov decision process). A continuous-time

Markov decision process (CTMDP) is a tuple C = (S ,Act,R, ν) where S and Act are
�nite, nonempty sets of states and actions, R ∶ S ×Act × S → R≥0 is a three-dimensional
rate matrix and ν ∈ Distr(S) is an initial distribution.

If R(s, α, s′) = λ and λ > 0, an α-transition with rate λ leads from state s to state s′.
λ is the rate of the negative exponential distribution which governs the transition’s de-

lay. �erefore, the α-transition executes in time interval [a, b] ⊆ R≥0 with probability

ηλ ([a, b]) = ∫
b

a λe−λt dt = (e−λa − e−λb). �e function ηλ corresponds to the cumu-

lative distribution function of the exponential distribution with rate λ. It extends to a
probability measure on the Borel σ-�eld B(R≥0) in the standard way.

Similar to the semantics of MDPs, the actions of the transitions that leave a state s ∈ S
of a CTMDP constitute the set of enabled actions in that state:

Act(s) = {α ∈ Act ∣ ∃s′ ∈ S . R(s, α, s′) > 0} .
�e exit rate of a state s ∈ S under action α is the sum of the rates of all α-transitions that
leave that state; formally, E(s, α) = ∑s′∈S R(s, α, s′). Note that in general, the exit rate of
a state di�ers depending on the enabled action that is considered.

Upon entering state s, an action from the set Act(s) is chosen nondeterministically,
say α.�e exit rate of state s under action α determines its sojourn time: By choosing α,
all transitions that are labeled with actions β /= α get blocked. �e subsequent behavior

in state s equals that of a CTMC (cf. Sec. 3.2.2):�e remaining α-transitions compete in a
race, which is won by the α-transition whose randomly drawn delay expires �rst. Hence,

the sojourn time in state s is governed by the minimum of the exponentially distributed
delays of all outgoing α-transitions.�e random variable that describes the minimum of
exponential distributions is again exponentially distributed, namely with the sum E(s, α)
of the rates of the competing α-transitions.

At the same time, the probability to move to a given α-successor state s′ of s is also
determined by the outcome of the race: It corresponds to the event that an α-transition
which leads to state s′ executes �rst. When leaving state swith action α, the probability to
jump to a successor state s′ is denotedP(s, α, s′), whereP ∶ S×Act×S → [0, 1] is the three-
dimensional transition probability matrix de�ned by P(s, α, s′) = R(s,α,s′)

E(s,α) if E(s, α) >
0 and P(s, α, s′) = 0, otherwise. In this way, each CTMDP (S ,Act,R, ν) induces the
embedded MDP (S ,Act,P, ν), which abstracts from the CTMDP’s timed behaviors and
only considers its branching probabilities.
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Similar to MDPs, we assume that Act(s) /= ∅ for all states s ∈ S of a CTMDP. In this

way, we avoid deadlock states which complicate the de�nition of the underlying stochas-
tic process. Note that for our purposes (i.e. for timed reachability analysis andCSLmodel
checking), this is no restriction as all deadlock states s ∈ S can easily be equipped with a

self-loop of the form R(s, α, s) = 1 for some arbitrary α ∈ Act. As we assume that a dead-
lock state is never le�, this yields an equivalent CTMDP that satis�es our requirement.

Example 3.4. When entering state s1 of the CTMDP in Fig. 3.5, one action from the set of
enabled actions Act(s1) = {α, β} is chosen nondeterministically, say α. Next, the rate of the
α-transition determines its exponentially distributed delay. Hence for a single α-transition,
the probability to go from s1 to s3 within time t is 1 − e−R(s1 ,α,s3)t = 1 − e−0.1t .
In Fig. 3.5 a race occurs in state s1 if action β is chosen: Two β-transitions (to states s2

and s3) with ratesR(s1, β, s2) = 15 andR(s1, β, s3) = 5 become available and state s1 is le� as
soon as the �rst transition executes. �e sojourn time in state s1 is exponentially distributed
with rate E(s1, β) = R(s1, β, s2) + R(s1, β, s3) = 20. �e probability P(s1, β, s2) to move to
state s2 is R(s1, β, s2)/E(s1, β) = 0.75. ♢

Wecall a CTMDP deterministic i� ∣Act(s)∣ = 1 for all states s ∈ S . In this case, no nondeter-
ministic choices exist and the CTMDP corresponds to a CTMC. Reversely, any CTMC
corresponds to a deterministic CTMDP.�erefore, CTMDPs are a conservative exten-
sion of CTMCs.

�emeasurable space

To measure the probability of events in a CTMDP, we use paths to represent a single
outcome of the associated random experiment. Opposed to the paths for MDPs that
were de�ned in Sec. 3.3.1, the timed paths of a CTMDP also capture the sojourn times in

each state. In this way, a timed path describes the complete trajectory of the CTMDP:

De�nition 3.12 (Timed paths). Let C = (S ,Act,R, ν) be a CTMDP. Pathsn(C) = S ×(Act × R≥0 × S)n is the set of paths of length n in C; the set of �nite paths in C is de�ned as
Paths⋆(C) = ⊍n∈N Paths

n, and Pathsω(C) = (S ×Act ×R≥0)ω is the set of in�nite paths
in C. Accordingly, Paths(C) = Paths⋆(C) ⊍ Pathsω(C) denotes the set of all paths in C.
We write Paths instead of Paths(C) whenever C is clear from the context. Moreover, if

no ambiguity arises, we refer to the time-abstract paths in MDPs and the timed paths in

CTMDPs simply as paths.

A single timed path is denoted π = s0
α0 ,t0ÐÐ→ s1

α1 ,t1ÐÐ→ ⋯
αn−1 ,tn−1ÐÐÐÐ→ sn where ∣π∣ = n is the

length of π and π↓ = sn is the last state of π. We use abs(π) = s0 α0Ð→ s1
α2Ð→ ⋯

αn−1ÐÐ→ sn to
refer to the time-abstract path induced by π.
For k ≤ ∣π∣, π[k] = sk is the (k+1)-th state on π; if k < ∣π∣, δ(π, k) = tk is the time spent

in state sk. If i < j ≤ ∣π∣ then π[i.. j] denotes the path-in�x si α i ,tiÐÐ→ si+1
α i+1 ,ti+1ÐÐÐÐ→⋯

α j−1 ,t j−1
ÐÐÐÐ→ s j
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Figure 3.5: Example of a CTMDP.

of π. Finally, for in�nite path π, we use π@t to denote the state that is occupied on π at

time point t ∈ R≥0. Formally, π@t = π[k] where k ∈ N is the smallest index such that

∑k
i=0 ti > t. If no such k exists, π@t is unde�ned.
Note that Def. 3.12 does not impose any semantic restrictions on paths. In particular,

the set Pathsmay contain paths which do not comply with the rate matrix of the underly-

ing CTMDP. However, the de�nition of the probability measure (cf. Def. 3.15 on page 80)
justi�es this, as it assigns probability zero to such sets of paths.

To de�ne the probability space that is induced by a CTMDP and a scheduler, we rely

on the measure theoretic results from Chapter 2.

Our goal is to measure the probability of (measurable) sets of paths.�erefore, we �rst
de�ne a σ-�eld of sets of combined transitionswhich we later use to de�ne σ-�elds of sets
of �nite and in�nite paths. �e concept of a combined transition goes back to [WJ06,
Joh07]. Informally, a combined transition is a tuple (α, t, s′) which entangles the deci-
sion for action α with the time-point t at which the CTMDP moves to successor state s′.
Formally, for a CTMDP C = (S ,Act,R, ν), let Ω = Act × R≥0 × S be the set of combined
transitions in C. To de�ne a probability space on Ω, note that S and Act are �nite; hence,
the corresponding σ-�elds are de�ned as FAct = 2Act and FS = 2S . Any combined tran-
sition occurs at some time point t ∈ R≥0, so that we can use the Borel σ-�eld B(R≥0) to
measure the corresponding subsets of R≥0.

Any path π = s0
α0 ,t0ÐÐ→ s1

α1 ,t1ÐÐ→⋯
αn−1 ,tn−1ÐÐÐÐ→ sn of length n can be extended by a combined

transition m = (αn , tn , sn+1) to a path of length n + 1. �is extension is denoted π ○ m.

Hence, any path can be regarded as an initial state and a (�nite or in�nite) concatenation
of combined transitions from the set Ω. Obviously, this is closely linked to the de�nition
of product σ-�elds which are discussed in detail in Sec. 2.5.

Recall that a Cartesian product is a measurable rectangle if its constituent sets are ele-
ments of their respective σ-�elds. For example, in our case the set A × T × S′ is a mea-
surable rectangle if A ∈ FAct, T ∈ B(R≥0) and S′ ∈ FS . We use FAct ⊗B(R≥0) ⊗ FS to

denote the set of all measurable rectangles2. It generates the desired σ-�eld F of sets of
combined transitions, i.e. F = σ(FAct ⊗B(R≥0)⊗ FS).
Now F may be used to infer the σ-�elds FPathsn of sets of paths of length n: FPathsn is

2Recall our notation: FAct ⊗B(R≥0) ⊗ FS is not a Cartesian product itself; instead, it is the set of all
Cartesian products. For details, see Def. 2.16 on page 42.
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generated by the set of measurable (path) rectangles, that is

FPathsn = σ({S0 ×M1 ×⋯×Mn ∣ S0 ∈ FS ,Mi ∈ F, 1 ≤ i ≤ n}).
Intuitively, FPathsn consists of all possible (even countably in�nite) unions and intersec-
tions of measurable path rectangles of length n.

Example 3.5. For the CTMDP in Fig. 3.5, the event “from s1 we directly reach state s3
within 0.5 time units” and the event “action α is chosen in state s1 and we remain in s1
for less than 0.2 or more than 1 time units” are described by the Cartesian products Π1 ={s1} ×Act × [0, 0.5] × {s3} and Π2 = {s1} × {α} × ([0, 0.2) ∪ (1,∞)) × S . Π1 and Π2 are
measurable rectangles whereas their union Π1 ∪Π2 is an element of the σ-�eld FPaths1 . ♢

�e σ-�eld of sets of in�nite paths is obtained by applying the cylinder set construction
which is discussed in detail in Sec. 2.5.4: A set Cn of paths of length n is called a cylinder
base; it induces the in�nite cylinder Cn = {π ∈ Pathsω ∣ π[0..n] ∈ Cn}. A cylinder Cn is
measurable if Cn ∈ FPathsn ; Cn is called an in�nite rectangle if Cn = S0 × A0 × T0 × . . . ×
An−1 × Tn−1 × Sn and Si ⊆ S , Ai ⊆ Act and Ti ⊆ R≥0. It is ameasurable in�nite rectangle, if
Si ∈ FS , Ai ∈ FAct and Ti ∈B(R≥0). We obtain the desired σ-�eld of sets of in�nite paths
as the minimal σ-�eld generated by the set of measurable cylinders; formally, FPathsω =
σ(⋃∞n=0 {Cn ∣ Cn ∈ FPathsn}). Finally, the σ-�eld FPaths⋆ over �nite and in�nite paths is the
smallest σ-�eld generated by the disjoint union ⊍∞n=0 FPathsn ⊍ FPathsω .

�e probability measure

As for MDPs, we use schedulers to de�ne the semantics for CTMDPs. More precisely, a
CTMDP and a scheduler induce a unique probability measure on the measurable spaces
that we have de�ned above.

A scheduler quanti�es the probability of the next action based on the history of the
system: If state s is reached via �nite path π, the scheduler yields a probability distribu-
tion over Act(π↓).�e class ofmeasurable schedulers that we use here has been de�ned

in [WJ06, Joh07]. A measurable scheduler can incorporate the complete information
from the history π that led into the current state when making its decision. In particular,

it may yield di�erent decisions depending on the time that has passed on π or in single
states on π.
In fact, there exists a plethora of scheduler classes which di�er both in the information

they can base their decision on as well as on the time, their decision is due. A detailed
discussion of this topic follows in Chapter 4. For now, we do not go into those subtle
details and stick to the general de�nition of measurable schedulers:

De�nition 3.13 (Measurable scheduler). Let C = (S ,Act,R, ν) be a CTMDP. A map-
ping D ∶ Paths⋆×FAct → [0, 1] is ameasurable scheduler i� D(π, ⋅) ∈ Distr(Act(π↓)) for
all π ∈ Paths⋆ and the functions D(⋅,A) ∶ Paths⋆ → [0, 1] are measurable for all A ∈ FAct.
We use GM to denote the set of all measurable schedulers.
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In Def. 3.13, the measurability condition states that for any measurable set of proba-

bilities B ∈ B([0, 1]) and any set of actions A ∈ FAct, the set {π ∈ Paths⋆ ∣ D(π,A) ∈ B}
belongs to FPaths⋆ (for details, we refer to [WJ06]).

Similar to the MDP de�nition, the support restriction D(π, ⋅) ∈ Distr(Act(π↓)) states
that whenever D(π)(α) > 0, the action α is enabled in state π↓.�is prevents a measur-
able scheduler to choose actions that are not available in the current state.

Note that we can equivalently specify anyGM-scheduler D ∶ Paths⋆×FAct → [0, 1] as a
mapping D′ ∶ Paths⋆ → Distr(Act) by setting D′(π)(A) = D(π,A) for all π ∈ Paths⋆ and
A ∈ FAct; to further simplify notation, we also use D(π, ⋅) to refer to this distribution.

To derive a probability measure on FPathsω , we �rst de�ne a probability measure on
combined transitions, i.e. on the measurable space (Ω,F):
De�nition 3.14 (Probability on combined transitions). Let C=(S ,Act,R, ν) be a CT-
MDP and D a GM-scheduler on C. For all π ∈ Paths⋆(C), we de�ne the probability
measure µD(π, ⋅) ∶ F→ [0, 1] such that

µD(π,M) = ∫
Act
D(π, dα) ∫

R≥0

ηE(π↓,α)(dt) ∫
S

IM(α, t, s′) P(π↓, α, ds′). (3.11)

Here, we use IM(α, t, s) to denote the indicator for the setM ⊆ Ω, that is, IM(α, t, s) = 1
if the combined transition (α, t, s) ∈ M and IM(α, t, s) = 0, otherwise. Intuitively, for a
given �nite path π and a set M of combined transitions, µD(π,M) is the probability to
continue from π↓ by one of the combined transitions in M. For a measurable rectangle
A× T × S′ ∈ F and time interval T , we obtain

µD(π,A× T × S′) =∑
α∈A

D(π, {α}) ⋅ P(π↓, α, S′) ⋅ ∫
T
E(π↓, α) ⋅ e−E(π↓,α)tdt, (3.12)

which is the probability to leave π↓ via some action from the set Awithin time interval T
to a state in S′.

Lemma 3.5. For any π ∈ Paths⋆, the function µD(π, ⋅) ∶ F → [0, 1] is a probability
measure on (Ω,F).

Proof. �is follows from [ADD00,�eorem 2.6.7], for D(π, ⋅) is a probability measure
and all ηE(π↓,α) as well as P(π↓, α, ⋅) are probability measures for α ∈ Act(π↓). ◻

To extend this to a probability measure on FPathsn , we assume an initial distribution ν ∈
Distr(S) for the probability to start in a certain state s and inductively append sets of
combined transitions.
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As the probability measures in Def. 3.15 (see below) depend on the Lebesgue integral

of a function involving the measure µD, we have to show that µD ∶ Paths⋆ × F → [0, 1]
is measurable in its �rst argument, i.e. that for all M ∈ F and B ∈ B([0, 1]) it is the case
that µD(⋅,M)−1(B) ∈ FPaths⋆ . �e following theorem stems from [WJ06] and is restated

here only for the sake of completeness:

�eorem 3.4 (Combined transition measurability [WJ06,�eorem 1]). Let
C = (S ,Act,R, ν) be a CTMDP and D a GM-scheduler. For all A ∈ FAct it holds:
D(⋅,A) ∶ Paths⋆ → [0, 1] is measurable i� ∀M ∈ F, µD(⋅,M) ∶ Paths⋆ → [0, 1] is
measurable.

Hence µD ∶ Paths⋆ × F → [0, 1] is measurable in its �rst argument whenever D is a
GM-scheduler. Note also, that the restriction µD ∶ Paths

n ×F→ [0, 1] is measurable with

respect to FPathsn . With these preconditions, we can de�ne the probability measure on
sets of �nite paths as follows:

De�nition 3.15 (Probability measure). Let C = (S ,Act,R, ν) be a CTMDP.�e proba-
bility measure on (Pathsn ,FPathsn) is de�ned inductively as follows:

Pr0ν,D ∶ FPaths0 → [0, 1] ∶Π ↦∑
s∈Π

ν({s}) and

Prn+1ν,D ∶ FPathsn+1 → [0, 1] ∶Π ↦ ∫
Pathsn

Prnν,D(dπ) ∫
Ω
IΠ(π ○m) µD(π, dm).

Informally, Def. 3.15 derives the probability measure Prn+1ν,D on sets of paths Π of length
n+1 by multiplying the probability Prnν,D(dπ) of a path π of length n with the probabil-
ity µD(π, dm) of a combined transition m such that the concatenation π ○ m is a path

from the set Π.
One further remark is in order here: Formally, we have not yet proved that the nested

integral in the de�nition of Prn+1ν,D yields a measurable function with respect to FPathsn . To

bridge this gap, we �rst show that the functions

fΠ ∶ Paths
n−1 → [0, 1] ∶ π ↦ ∫

Ω
IΠ(π ○m) µD(π, dm)

are measurable for all Π ∈ FPathsn . To see this, �rst note that {m ∈ Ω ∣ π ○m ∈ Π} ∈ F for
all π ∈ Pathsn−1: If Π = S0 ×M0 ×⋯×Mn−1 is a measurable rectangle such thatMi ∈ F for

0 ≤ i < n, we obtain

{m ∈ Ω ∣ π ○m ∈ Π} = ⎧⎪⎪⎨⎪⎪⎩
Mn−1 if π ∈ S0 ×M0 ×⋯ ×Mn−2

∅ otherwise.
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Hence, for measurable rectangle Π, the set {m ∈ Ω ∣ π ○m ∈ Π} is measurable.

Now, let Π = Π1 ∪ Π2 and Mi = {m ∈ Ω ∣ π ○m ∈ Πi} for i = 1, 2. By the induction
hypothesis, Mi ∈ F; further, {m ∈ Ω ∣ π ○ m ∈ Π} = M1 ∪ M2. As F is closed under
countable union,M1∪M2 ∈ F. For the complement Πc, de�neM = {m ∈ Ω ∣ π ○m ∈ Π}.
By the induction hypothesis,M ∈ F. Further observe that {m ∈ Ω ∣ π ○m ∈ Πc} = {m ∈
Ω ∣ π ○m ∉ Π} = {m ∈ Ω ∣ π ○m ∈ Π}c = Mc .�en Mc ∈ F follows sinceM ∈ F and F is
closed under complement. Now the functions fΠ can be restated as follows:

fΠ ∶ Paths
n−1 → [0, 1] ∶ π ↦ µD(π, {m ∈ Ω ∣ π ○m ∈ Π})

which is measurable with respect to FPathsn−1 by�eorem 3.4, where µD is restricted to
Pathsn−1.

By Def. 3.15, we obtain measures on all σ-�elds FPathsn of subsets of paths of length n.
�is extends to a measure on (Pathsω ,FPathsω) as follows: First, note that any measurable
cylinder can be represented by a base of �nite length, i.e. Bn = {π ∈ Pathsω ∣ π[0..n] ∈ Bn}.
Now themeasuresPrnν,D onFPathsn extend to a unique probabilitymeasurePrων,D onFPathsω

by de�ning Prων,D(Bn) = Prnν,D(Bn). Although any measurable rectangle with base Bm

can equally be represented by a higher-dimensional base (more precisely, if m < n and
Bn = Bm × Ωn−m then Bn = Bm), the Ionescu-Tulcea extension theorem (�m. 2.19 on

page 51) is applicable due to the inductive de�nition of the measures Prnν,D and assures
the extension to be well de�ned and unique.

One important property is still missing: We have not proved yet, that the functions

Prων,D are indeed probability measures.�e next lemma makes up for that:

Lemma 3.6. Prnν,D is a probability measure on (Pathsn ,FPathsn) for all n ∈ N.

Proof. By induction on n. ν is a probability measure on (S ,FS) and so is Pr0ν,D . In the
induction step, n > 0 and

Prnν,D(Π) = ∫
Pathsn−1

Prn−1ν,D(dπ) ∫
Ω
IΠ(π ○m) µD(π, dm).

By the induction hypothesis,Prn−1ν,D is a probabilitymeasure; the sameholds for µD(π, ⋅) by
Lemma 3.5. As the product yields a probability measure again (see�m. 2.16 on page 46

or [ADD00, 2.6.2]), the claim follows. ◻

De�nition 3.15 inductively appends transition triples to the path pre�xes of length n
to obtain a measure on sets of paths of length n+1. In some of our proofs, we make use

of the fact that paths can also be constructed reversely: More speci�cally, we will later
need to split a set of paths into a set of pre�xes I and a set of su�xes Π.�us we de�ne

the set of path pre�xes of length k > 0 as PPref k = (FS × FAct ×B(R≥0))k and provide a
probability measure on its σ-�eld FPPref k :
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De�nition 3.16 (Pre�x measure). Let C = (S ,Act,R, ν) be a CTMDP and D a GM-
scheduler on C. For I ∈ FPPref k and k > 0, de�ne

µk
ν,D(I) = ∫

Pathsk−1
Prk−1ν,D(dπ) ∫

Act
D(π, dα) ∫

R≥0

II(π α,t
Ð→) ηE(π↓,α)(dt).

As Prk−1ν,D is a probability measure, so is µk
ν,D . If I ∈ FPPref k and Π ∈ FPathsn , their concate-

nation is the set I × Π ∈ FPathsk+n ; its probability Pr
k+n
ν,D (I ×Π) is obtained by multiplying

the measure of pre�xes i ∈ I with the su�xes in Π:

Lemma 3.7. Let Π ∈ FPathsn and I ∈ FPPref k . If i = s0
α0 ,t0ÐÐ→ ⋯

αk−2 ,tk−2ÐÐÐÐ→ sk−1
αk−1 ,tk−1ÐÐÐÐ→ is a

path pre�x from I, de�ne νi = P(sk−1, αk−1 , ⋅) and Di(π, ⋅) = D(i ○ π, ⋅). �en

Prk+nν,D (I ×Π) = ∫
PPref k

µk
ν,D(di) ∫

Pathsn
II×Π(i ○ π) Prnν i ,Di

(dπ). (3.13)

Proof. By induction on n: Let Π ∈ FPaths0 , i.e. Π ⊆ S .

Prkν,D(I ×Π) = ∫
Pathsk−1

Prk−1ν,D(dπ) ∫
Ω
II×Π(π ○m) µD(π, dm)

= ∫
Pathsk−1

Prk−1ν,D(dπ) ∫
Act

D(π, dα) ∫
R≥0

ηE(π↓,α)(dt) ∫
S

II×Π(π α,t
Ð→ s′) P(π↓, α, ds′)

= ∫
(S×Act×R≥0)k

µk
ν,D(d(π α,t

Ð→)) ∫
S

II×Π(π α,t
Ð→ s′) P(π↓, α, ds′)

= ∫
(S×Act×R≥0)k

µk
ν,D(d(π α,t

Ð→)) ∫
Paths0

II×Π(π α,t
Ð→ s′) Pr0ν i ,Di

(ds′).
In the induction step (n ↝ n + 1), we assume as induction hypothesis that (3.13) holds
for n and prove its validity for n + 1:

Prk+n+1ν,D (I ×Π) = ∫
Pathsk+n

Prk+nν,D (dπ) ∫
Ω
II×Π(π ○m) µD(π, dm)

= ∫
Pathsk+n

Prk+nν,D (d(i ○ π′)) ∫
Ω
II×Π(i ○ π′ ○m) µD(i ○ π′, dm)

i.h.
= ∫

(S×Act×R≥0)k
µk
ν,D(di) ∫

Pathsn
Prnν i ,Di

(dπ′) ∫
Ω
II×Π(i ○ π′ ○m) µD(i ○ π′, dm)

= ∫
(S×Act×R≥0)k

µk
ν,D(di) ∫

Pathsn
Prnν i ,Di

(dπ′) ∫
Ω
II×Π(i ○ π′ ○m) µDi(π′, dm)

= ∫
(S×Act×R≥0)k

µk
ν,D(di) ∫

Pathsn+1
II×Π(i ○ π) Prn+1ν i ,Di

(dπ). ◻
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Lemma3.7 justi�es to split sets of paths and tomeasure the components of the resulting

Cartesian product; therefore, it abstracts from the inductive de�nition of Prnν,D .
A class of pathological paths that are not ruled out by Def. 3.12 are in�nite paths whose

duration converges to some real constant, i.e. paths that visit in�nitely many states in a

�nite amount of time. For n = 0, 1, 2, . . ., an increasing sequence rn ∈ R≥0 is Zeno if it
converges to a positive real number.

Example 3.6. �e sequence rn =∑n
i=0

1
2n
, n ∈ N is Zeno, as it converges to 2. ♢

In the remainder of this thesis, we rule out Zeno behaviors. To justify this, let us prove

that the probability of a set of paths with Zeno behaviors has probability 0. To prepare
for this proof, the next lemma states that the probability that a�er a certain number of
steps, the sojourn time is always less than 1 time unit, is 0:

Lemma 3.8. Let k ∈ N and B = S ×Ωk × (Act × [0, 1] × S)ω; then Prων,D(B) = 0.

Proof. �e proof goes along the lines of [BHHK03, Prop. 1]:
As S and Act are �nite, we can de�ne λ = max {E(s, α) ∣ s ∈ S , α ∈ Act}. For n ≥ 0,

let Bn = S × Ωk × (Act × [0, 1] × S)n be a measurable base and Bn the induced in�nite
measurable rectangle. By induction on n, we show that Prων,D(Bn) ≤ (1 − e−λ)n:

1. In the induction base, let n = 0.�en Prων,D(B0) = Prkν,D(S ×Ωk) = 1 = (1 − e−λ)0.
2. As induction hypothesis, let Prων,D(Bn) ≤ (1 − e−λ)n. For Bn+1 we obtain:

Prων,D(Bn+1) = Prn+k+1ν,D (Bn ×Act × [0, 1] × S)
= ∫

Bn
µD(π,Act × [0, 1] × S) Prn+kν,D (dπ)

= ∫
Bn
( ∑
α∈Act

D(π, {α}) ⋅ P(π↓, α,S) ⋅ ∫[0,1] E(π↓, α)e−E(π↓,α)tdt) Prn+kν,D (dπ)
= ∫

Bn
∑
α∈Act

D(π, {α}) ⋅ P(π↓, α,S) ⋅ (1 − e−E(π↓,α)) Prn+kν,D (dπ)
≤ (1 − e−λ) ⋅ ∫

Bn
∑
α∈Act

D(π, {α}) ⋅ P(π↓, α,S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

Prn+kν,D (dπ)

≤ (1 − e−λ) ⋅ ∫
Bn
Prn+kν,D (dπ) = (1 − e−λ) ⋅ Prn+kν,D (Bn)

= (1 − e−λ) ⋅ Prων,D(Bn) ≤ (1 − e−λ)n+1 .
Now B0 ⊇ B1 ⊇ ⋯ and the Bn converge to B, i.e. Bn ↓ B; hence Prων,D(Bn) → Prων,D(B) by
Lemma 2.2 (cf. page 16). Further limn→∞ Prων,D(Bn) ≤ limn→∞ (1 − e−λ)n = 0. As Prων,D is
a measure (and hence nonnegative), it follows that Prων,D(B) = 0. ◻
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With this result we can prove the following theorem which justi�es to generally rule out

Zeno behavior:

�eorem 3.5 (Converging paths theorem). �e probability measure of the set of con-
verging paths is zero.

Proof. Let ConvPaths = {s0 α0 ,t0ÐÐ→ s1
α1 ,t1ÐÐ→ ⋯ ∣ ∑n

i=0 ti converges}. For π ∈ ConvPaths,
the sequence ∑∞i=0 ti converges; thus ti converges to 0 and there exists k ∈ N such that
ti ≤ 1 for all i ≥ k. Hence ConvPaths ⊆ ⋃∞k=0 S ×Ωk × (Act × [0, 1] × S)ω. By Lemma 3.8,
Prων,D (S ×Ωk × (Act × [0, 1] × S)ω) = 0 for all k ∈ N.�us we obtain

Prων,D(∞⋃
k=0

S ×Ωk × (Act × [0, 1] × S)ω) ≤ ∞∑
k=0

Prων,D(S ×Ωk × (Act × [0, 1] × S)ω) = 0.
But then ConvPaths is a subset of a set of measure zero; hence, on FPathsω completed3 with

respect to Prων,D we obtain Prων,D(ConvPaths) = 0. ◻

3.4 Conclusion

Markov chain theory is an extremely broad �eld in mathematics. In this chapter, we only
discussed the preliminaries that are essential for the remainder of the thesis. More details
about CTMCs and DTMCs can be found in the textbooks [KS76, Kul95]. More details

about MDPs can be found in [Bel57, How71, Ber95] and in the textbook [Put94].
Compared to the other models presented in this chapter, CTMDPs have received less

attention. As do the seminal papers of Miller [Mil68b, Mil68a], most of the results that
are known for CTMDPs concentrate on optimizing reward-based measures such as the
�nite horizon expected state-based reward, the in�nite horizon discounted state-based

reward or the long run expected average reward. Details about the results that are known
in mathematics can be found in [Put94] and in the survey paper [GHLPR06].

Lately, CTMDPs are considered in the �eld of game theory, where the model has
become known as a continuous-time stochastic 1 12 player game. However, the results
mostly concentrate on time-abstract schedulers [BFK+09]. �e same holds for the re-

sults in [BHKH05], which are closely related to those of this thesis:
In [BHKH05], the authors provide an algorithm to optimize time-bounded reacha-

bility probabilities for time-abstract schedulers on a subclass of CTMDPs. �is thesis

extends these approaches in di�erent respects. Most notably, we li� the restriction to
certain subclasses of CTMDPs and consider strictly better time-dependent schedulers.

�ese contributions are described in detail in the following chapters.

3Wemay assume FPathsω to be complete, see Def. 2.4.



4 Schedulers in CTMDPs

Nothing is more difficult, and

therefore more precious, than

to be able to decide.

(Napoléon Bonaparte)

Schedulers in CTMDPs and other variants of randomly timed games can roughly be
classi�ed as to whether they use timing information or not. In the literature, the analysis

of CTMDPs is mostly focused on determining optimal schedulers for criteria such as the
expected total reward, the expected long-run average reward (cf. the survey [GHLPR06])
and unbounded reachability probabilities [Put94]. For such comparatively simple crite-

ria, time-abstract schedulers su�ce. Stated di�erently, providing the scheduler with in-
formation on the amount of time that has passed does not improve its decisions for such

properties. When analyzing such criteria, it therefore su�ces to either fully abstract from
the timing information in the CTMDP or to abstract from it at least partly by transform-
ing the CTMDP into an equivalent discrete-time MDP.�e latter process is commonly

referred to as uniformization [Put94, p. 562],[GHLPR06].

In comparison to the properties stated above, the focus of this thesis is mostly on time
bounded reachability objectives such as the maximum probability to hit a given set of
goal states during a �nite time-interval. As we will see in this chapter, the maximum

achievable probability of such events strongly depends on whether the underlying sched-
uler class uses timing information or not.

In the previous chapter, we have introduced the class of genericmeasurable schedulers.
It is complete in a sense, as the correspondingGM-schedulersmay use the complete infor-

mation about the trajectory that led into the current state. For example, a GM-scheduler
can access the state history and the sojourn time in each individual state of the history.

In this chapter, we investigate schedulers more closely and de�ne a hierarchy of posi-
tional and history-dependent schedulers which re�nes the notion of measurable sched-

ulers from Sec. 3.3.2. As it turns out, an important distinguishing criterion is the level
of detail of timing information the schedulers may exploit, e.g. the delay in the last state,

the total time that was spent during the trajectory that led into the current state, or all
individual state residence times.

In general, the delay that has to pass in a state s before theCTMDP jumps to a successor
state s′ is determined by the action that is selected by the scheduler when entering state s′.
In the second part of this chapter, we therefore investigate under which conditions this
resolution of nondeterminism may be deferred: More precisely, we identify the subclass
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of locally uniform CTMDPs and show how its schedulers delay their decision up to the

point at which the current state s is le�.
Rather than focusing on a speci�c objective, we consider this delayed nondeterminism

for arbitrary measurable events.�e core of our study is a transformation — called local
uniformization— on CTMDPs which uni�es the speed of outgoing transitions per state.
Whereas classical uniformization [Gra91, GM84, Jen53] adds self-loops to achieve this,

local uniformization uses auxiliary copy-states. In this way, we enforce that schedulers in
the original and uniformized CTMDP have (for important scheduler classes) the same

power, whereas classical loop-based uniformization permits a scheduler to change its
decision when re-entering a state through the added self-loop.

�erefore, locally uniformCTMDPs permit to defer the resolution of nondeterminism,
i.e., they dissolve the intrinsic dependency between state residence times and schedulers,
and can be viewed as MDPs with exponentially distributed state residence times. �is

characterization provides the basis for Chapter 5, where we develop an approximation
algorithm which computes time-bounded reachability probabilities in locally uniform

CTMDPs.

Organization of this chapter. Section 4.1 proposes a hierarchy of scheduler classes and
re�nes the notion of generic measurable schedulers from Sec. 3.3.2. In Sec. 4.2, we de-
�ne local uniformization and prove its correctness. Section 4.3 summarizes the main re-

sults and Sec. 4.4 proves that deferring nondeterministic choices induces strictly tighter
bounds on quantitative properties.

4.1 A hierarchy of scheduler classes

In Sec. 3.3.2, we have de�ned the probability of measurable sets of paths with respect to
GM-schedulers. However, this does not fully describe a CTMDP, as a single scheduler
represents only one way to resolve the CTMDP’s nondeterministic choices.�erefore, in-

stead of a single scheduler, we consider scheduler classes that group schedulers according
to the information that they use for making a decision:

Given an event Π ∈ FPathsω , a scheduler class induces a set of probabilities — one for
each scheduler in the respective class — which re�ects the CTMDP’s possible behaviors.

In this chapter, we propose a variety of scheduler classes (see the lattice depicted in
Fig. 4.1) and investigate which of them preserve the minimum and maximum probabili-
ties under local uniformization.

We start our discussion and recall the notion of GM-schedulers: As proved in [WJ06],
they are the most general class de�nable on arbitrary CTMDPs. More precisely, the au-

thors prove that all probability measures that conform to a CTMDP’s set of valid paths
are induced by some GM-scheduler. �e intuition is as follows: If paths π1 and π2 end
in state s, a GM-scheduler D ∶ Paths⋆ × FAct → [0, 1] may yield di�erent distributions
D(π1, ⋅) and D(π2, ⋅) over the next action, depending on the entire histories π1 and π2.
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GM = THR

TTHR

TTPR

TPR

TAPR

TAHOPR

TAHR

Figure 4.1: A hierarchy of scheduler classes.

Note that π1 and π2 contain the state sequence thatwas traversed, the sojourn time in each

of those states and the action that was chosen to move from one state to another. Hence,
we also refer to GM-schedulers as time- and history-dependent randomized schedulers.

On the contrary, a scheduler D is time-abstract and positional (a TAPR-scheduler), if
D(π1, ⋅) = D(π2, ⋅) for all π1, π2 ∈ Paths⋆ that end in the same state. As D(π, ⋅) only
depends on the current state, it can be speci�ed as a mapping D ∶ S → Distr(Act).
Example 4.1. For TAPR scheduler D with D(s0) = {α ↦ 1} and D(s1) = {β ↦ 1}, the in-
duced stochastic process of the CTMDP in Fig. 4.2(a) is the CTMC depicted in Fig. 4.2(b).
Note however, that in general, randomized schedulers do not yield CTMCs as the induced
sojourn times are hyper-exponentially distributed. Hence, a continuous-time Markov de-
cision process with an associated randomized scheduler is a slight misnomer, as a hyper-
exponentially distributed sojourn time does not obey the Markov property, in general. How-
ever, this can safely be ignored, as wewill see in the next chapters that considering determin-

istic schedulers (which obviously induce exponentially distributed sojourn times) su�ces to
optimize time-bounded reachability properties. ♢

For TAHOPR-schedulers, the decision may depend on the current state s and the length
of π1 and π2 (hop-counting schedulers); accordingly, they are isomorphic to mappings
D ∶ S × N → Distr(Act). Moreover, D is a time-abstract history-dependent scheduler
(TAHR), if D(π1, ⋅) = D(π2, ⋅) for all histories π1, π2 ∈ Paths⋆ with abs(π1) = abs(π2):
Given history π, TAHR-schedulers may decide based on the sequence of states and ac-
tions in abs(π). In [BHKH05], the authors show that TAHOPR- and TAHR-schedulers
induce the same probability bounds for timed reachability which are tighter than the
bounds induced by the class of TAPR-schedulers.
Time-dependent scheduler classes generally induce probability bounds that exceed
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(a) An example of a CTMDP.

s0

s1 s2

s31

1

3

1

(b) Induced CTMC.

Figure 4.2: An example of a CTMDP and its induced CTMC (under a TAPD-scheduler).

those of the corresponding time-abstract classes [BHKH05]. As they are the main focus
of this thesis, we discuss them in greater detail here:

If we move from state si−1 to state si , a timed positional scheduler (TPR) yields a dis-
tribution over Act(si) which depends on the current state si and the time it took to go
from state si−1 to state si ; thus, the class ofTPR-schedulers extends TAPR-schedulers with
information on the delay of the last transition.

Similarly, total time history-dependent schedulers (TTHR) extend TAHR-schedulers
with information on the time that passed up to the current state: IfD ∈ TTHR and π1, π2 ∈
Paths⋆ are histories with abs(π1) = abs(π2) and ∆(π1) = ∆(π2), then D(π1, ⋅) = D(π2, ⋅).
Here, we use ∆(π) = ∑n

i=0 ti to denote the total time that is spent on a �nite path π =

s0
α0 ,t0ÐÐ→ s1

α1 ,t1ÐÐ→ ⋯
αn−1 ,tn−1ÐÐÐÐ→ sn ∈ Paths

⋆. From the de�nition of TTHR, it follows that
TTHR ⊆ GM. Intuitively, a TTHR-schedulers may depend on the accumulated time
(that is, on ∆(π)), but not on sojourn times in individual states of the history. Hence, for
general events, the probability bounds of TTHR-schedulers are less strict than those of

GM-schedulers. However, this does not hold for time-bounded reachability probabilities.
To optimize them, an even simpler class of time-dependent schedulers su�ces:

For the properties that we investigate in this thesis, the class of total time positional
schedulers (TTPR) is of great importance: A TTPR-scheduler is given as a mapping D ∶
S × R≥0 → Distr(Act). Intuitively, it expects the current state in its �rst argument; the
second argument is the total amount of time that has passed before the current state was

entered. Hence, TTPR-schedulers are similar to TTHR-schedulers but abstract from the
state-history: For two histories π1 and π2, D(π1, ⋅) = D(π2, ⋅) if π1 and π2 end in the same

state and if the total amount of time that was spent on π1 and π2 is the same, that is, if
∆(π1) = ∆(π2).
TTPR-schedulers are of particular interest, as they induce optimal probability bounds

with respect to time- and interval bounded reachability objectives: To see this, consider

the probability to reach a set of goal states G ⊆ S within t time units. If state s is reached
via π ∈ Paths⋆ (without visiting G), the maximal probability to enter G is given by a

scheduler which maximizes the probability to reach G from state s within the remaining
t−∆(π) timeunits. Obviously, aTTPR scheduler is su�cient in this case. InChapter 5, we
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will come back to this issue (cf.�m. 5.2 on page 124) and formally prove this claim for a

slightly di�erent class of schedulers. However, the proof carries over to TTPR-schedulers,
trivially.

A further remark is in order here: In [BHKH05] it is proved that TAHOPD-schedulers
(i.e. deterministic TAHOPR-schedulers) su�ce for optimizing time-bounded reachability

objectives under all time-abstract schedulers.�is is similar to the continuous-time case,
where for time-dependent schedulers it is su�cient to measure the total amount of time

that has passed. In particular, information about the state- or action-history (as it is
provided by TAHR- and TTHR-schedulers) is proved to be unnecessary.

Example 4.2. Reconsider the CTMDP depicted in Fig. 4.2(a) and assume that we aim at
maximizing the probability to move from state s0 to state s3 within a given time bound z ∈
R≥0. Obviously, an optimal TTPR scheduler has to choose action α in state s0: If it chose β,
the CTMDPwouldmove to state s4 and stay there forever. �us, wemay assume that state s1
is entered via action α a�er a sojourn in state s0 of duration t0 ∈ R≥0.
Being in state s1, a nondeterministic choice between actions α and β occurs: If α is cho-

sen, state s1 is le� with exit rate E(s1, α) = R(s1, α, s3) + R(s1, α, s4) = 3. However, the

probability P(s1, α, s3) = R(s1 ,α,s3)
E(s1 ,α) to enter state s3 (instead of state s4) is only

1
3 . If action β

is chosen, the situation is di�erent: Although the rate for leaving state s1 under action β is
the same (i.e. E(s1, β) = R(s1, β, s2) = 3), we do not enter the goal state s3 directly. Instead,
the transition from state s2 to state s3 with rate R(s2, β, s3) = 1 induces an additional delay.
However, note that if action β is chosen in state s1, we reach state s3 with probability 1.

Obviously, the optimal decision in state s1 depends on the time z − t0 that remains to
reach s3 when t0 time units have been spent in state s0, already. With this reasoning, we
obtain an optimal TTPR-scheduler D as follows: De�ne D(s0, 0) = {α ↦ 1} and D(s1, t0) ={α ↦ 1} if t0 ≥ z − ln ( 5

8
+ 1
8

√
105) and D(s1, t0) = {β ↦ 1}, otherwise.

�e derivation for D is as follows: �e probability tomove within the remaining x = z−t0
time units from state s1 to state s3 with action α is given by the function a(x) = 13 (1 − e−3x).
For action β, the corresponding function b(x) is given by the convolution to go to state s3
via state s2. Hence b(x) = ∫ x

0 (3e−3t1 ∫ x−t1
0 e−t2 dt2)dt1. Fig. 4.3 depicts the two cumulative

distribution functions. Now, let d ∈ R≥0 be the unique solution of the equation a(x) = b(x);
then d = ln ( 5

8
+ 1
8

√
105). Obviously, if more than d time units remain, i.e. if z − t0 > d, the

optimal decision in state s1 is action β. On the other hand, if z − t0 ≤ d, it is more pro�table
to choose action α.
For now, we note that (a) time-abstract schedulers obviously do not su�ce to obtain the

maximum probability and (b) that the scheduler D is a deterministic TTPD-scheduler. ♢

With the preceding informal description of the scheduler classes that are mentioned
in Fig. 4.1, we de�ne them formally as follows:

De�nition 4.1 (Scheduler classes). Let C be a CTMDP and D a GM-scheduler on C. If
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Figure 4.3: Reachability in z − t time units.

π and π′ range over Paths⋆(C), the scheduler classes are de�ned as follows:
D ∈ TAPR ⇐⇒ π↓ = π′↓ ⇒ D(π) = D(π′)
D ∈ TAHOPR ⇐⇒ (π↓ = π′↓ ∧ ∣π∣ = ∣π′∣)⇒ D(π) = D(π′)
D ∈ TAHR ⇐⇒ abs(π) = abs(π′)⇒ D(π) = D(π′)
D ∈ TTHR ⇐⇒ (abs(π) = abs(π′) ∧ ∆(π) = ∆(π′))⇒ D(π) = D(π′)
D ∈ TTPR ⇐⇒ (π↓ = π′↓ ∧ ∆(π) = ∆(π′))⇒ D(π) = D(π′)
D ∈ TPR ⇐⇒ (π↓ = π′↓ ∧ δ(π, ∣π − 1∣) = δ(π′, ∣π′ − 1∣))⇒ D(π) = D(π′).

Def. 4.1 justi�es to restrict the domain of the schedulers to the information the respec-
tive class exploits. In this way, we obtain the characterization in Table 4.1.

In the next section, we come to a transformation on CTMDPs that uni�es the speed
of outgoing transitions and thereby allows us to defer the resolution of nondeterministic
choices: Intuitively, if the sojourn time in a state does not depend on the scheduler, the

decision needs not be taken when entering that state, but may be delayed up to the point
when the state is le�.

4.2 Local uniformization

Generally, the exit rate of a state depends on the action that is chosen by the scheduler
in that state. Intuitively, this dependency requires that the scheduler selects the action to
continue with directly upon entering a state: Imagine a state s with Act(s) = {α, β} such
that E(s, α) /= E(s, β): If the nondeterministic choice between α and β was not resolved
immediately when entering state s, it is unclear whether the delay in state s is distributed
according to E(s, α) or according to E(s, β).
For general CTMDPs, we assume that schedulers decide directly each time the CT-

MDP enters a new state. In particular, if state s is entered at time t and action α ∈ Act(s)
is chosen by the associated scheduler D, we do not consider the case that D decides for a
di�erent action at some later time t + ε during the sojourn period in state s.
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scheduler class scheduler signature
ti
m
e

ab
st
ra
ct

positional (TAPR) D ∶ S → Distr(Act)
hop-counting (TAHOPR) D ∶ S ×N→ Distr(Act)

time abstract
D ∶ Paths⋆abs → Distr(Act)

history dependent (TAHR)

ti
m
e

d
ep
en
d
en
t

timed history full timed history
dependent (GM) D ∶ Paths⋆ → Distr(Act)
total time history sequence of states & total time

dependent (TTHR) D ∶ Paths⋆abs ×R≥0 → Distr(Act)
total time last state & total time

positional (TTPR) D ∶ S × R≥0 → Distr(Act)
timed positional (TPR)

last state & delay of last transition
D ∶ S × R≥0 → Distr(Act)

Table 4.1: Proposed scheduler classes for CTMDPs.

However, such schedulers are interesting as they may correct decisions that have been

made earlier during the sojourn in the current state: For example, such a scheduler could
switch to another action if the sojourn takes longer than a given threshold.

In this chapter, we make a �rst step towards such scheduler classes. �erefore, we
identify a strict subclass of CTMDPs where the states’ sojourn time distributions are in-

dependent of the action that is chosen in the current state. For this subclass, we are able
to disentangle the sojourn time distribution and the scheduling decision. More precisely,
we de�ne locally uniform CTMDPs which require that all exit-rates are state-wise con-

stant for the available actions:

De�nition 4.2 (Local uniformity). A CTMDP (S ,Act,R, ν) is locally uniform i�
there exists u ∶ S → R>0 such that E(s, α) = u(s) for all s ∈ S and α ∈ Act(s).

In locally uniformCTMDPs, each state s has a unique exit rate u(s); hence, its sojourn
time distribution does not depend on the action that is chosen by the scheduler. In this
way, locally uniform CTMDPs allow to delay the scheduler’s decision until the current

state is le�. As an implication, we can de�ne a new class of schedulers, which decides
only upon leaving the current state. Such schedulers allow to resolve the nondetermin-

istic choice when the sojourn in the current state is over. Hence, they are referred to as
late schedulers to distinguish them from the early schedulers that are de�ned for general
CTMDPs.

As we will see in Sec. 4.4, late schedulers pro�t from the fact that they can defer their

decision to the end of a state’s sojourn time: In particular, they can incorporate the time
that was spent in the current state into their decision, which is why they strictly outper-
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form early schedulers (cf. Sec. 4.4).

Moreover, note that late schedulers on locally uniform CTMDPs are equivalent to
schedulers that can take back their decisions during the sojourn in a given state: To see
this, note that in a locally uniform CTMDP, the decision that determines the CTMDP’s

stochastic behavior is the one that is taken precisely when leaving the current state. All
previous decisions do not in�uence the associated stochastic process.

Due to their interesting properties, this section investigates locally uniform CTMDPs
more closely.�erefore, we postpone the discussion about late schedulers to Sec. 4.4 and
Chapter 5, where we consider them inmore detail. As the prerequisite for late schedulers

are locally uniform CTMDPs, let us �rst de�ne a transformation on general CTMDPs —
called local uniformization—which achieves local uniformity and investigate its proper-
ties with respect to early schedulers:

De�nition 4.3 (Local uniformization). Let C = (S ,Act,R, ν) be a CTMDP and de�ne
u(s) = max {E(s, α) ∣ α ∈ Act(s)} for all s ∈ S . �en C = (S ,Act,R, ν) is the locally
uniform CTMDP induced by C, where S = S ⊍ Scp, Scp = {sα ∣ E(s, α) < u(s)} and

R(s, α, s′) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R(s, α, s′) if s, s′ ∈ S
R(t, α, s′) if s = tα ∧ s′ ∈ S
u(s) − E(s, α) if s ∈ S ∧ s′ = sα

0 otherwise.

Further, ν(s) = ν(s) if s ∈ S and 0, otherwise.

Local uniformization is done for each state s separately with uniformization rate u(s).
If the exit rate of s under action α is less than u(s), we introduce a copy-state sα and an
α-transition which carries the missing rate R(s, α, sα) = u(s) − E(s, α). Regarding sα,
only the outgoing α-transitions of s carry over to sα. Hence sα is deterministic in the
sense that Act(sα) = {α}.
Example 4.3. Consider the fragment CTMDP in Fig. 4.4(a), where λ =∑ λi and λi , µ > 0
for i = 0, 1, 2. It is not locally uniform as E(s0, α) = λ and E(s0, β) = λ + µ. By applying
our transformation we obtain the locally uniform CTMDP in Fig. 4.4(b) as follows: We
set u(s0) = λ + µ and introduce the copy-state sα0 . As E(s0, α) < u(s0), we add a new α-
transition from state s0 to its copy-state sα0 with rate µ. Further, all α-transitions of state s0
(and only those) carry over to state sα0 ; hence, α-transitions lead from state sα0 to states s1
and s2 with rates λ1 and λ2, respectively. Accordingly, the α-self-loop in state s0 in Fig. 4.4(a)
induces a new α-transition in Fig. 4.4(b) which leads from state sα0 back to state s0. ♢

Local uniformization of C introduces new states and transitions in C. �e paths in C
re�ect this and di�er from those of C; more precisely, they may contain sequences of
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(a) Fragment of a non-uniform CTMDP.
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(b) Local uniformization of state s0.

Figure 4.4: How to obtain locally uniform CTMDPs by introducing copy states.

transitions s
α,t
Ð→ sα

α,t′

Ð→ s′ where sα is a copy-state. Intuitively, if we identify s and sα, this

corresponds to a single transition s
α,t+t′

ÐÐÐ→ s′ in C. To formalize this correspondence, we

derive a mapping merge on all valid paths π ∈ Paths⋆(C) with π[0], π↓ ∈ S : If ∣π∣ = 0,
merge(π) = π[0]. Otherwise, let

merge(s α,t
Ð→ π) = ⎧⎪⎪⎨⎪⎪⎩

s
α,t
Ð→merge(π) if π[0] ∈ S

s
α,t+t′

ÐÐÐ→merge(π′) if π = sα
α,t′

Ð→ π′.

Note that the functionmerge is de�ned only for valid paths, that is, for paths π whose tran-

sitions correspond to existing transitions in the underlying CTMDP C. Ignoring invalid
paths is justi�ed by the fact, that the set of invalid paths always has probability measure 0

(cf. Def. 3.14), independent of the scheduler.
Naturally,merge extends to in�nite paths if we do not require π↓ ∈ S ; further, merging

a set of paths Π is de�ned element-wise and denoted merge(Π).
Example 4.4. Let π = s0

α0 ,t0ÐÐ→ sα00
α0 ,t

′
0ÐÐ→ s1

α1 ,t1ÐÐ→ s2
α2 ,t2ÐÐ→ sα22

α2 ,t′2ÐÐ→ s3 be a path in C. �en

merge(π) = s0 α0 ,t0+t
′
0ÐÐÐÐ→ s1

α1 ,t1ÐÐ→ s2
α2 ,t2+t

′
2ÐÐÐÐ→ s3. ♢

Intuitively, the function merge collapses the copy states that are introduced in the lo-
cally uniformCTMDP C andmaps to valid paths in the underlying (not locally uniform)

CTMDP C. For the reverse direction, we map sets of paths in C to sets of paths in C. To
do so, note that any single path in C corresponds to a countably in�nite set of paths in C:

Let s0
α0 ,t0ÐÐ→ s1 be a path in C; it corresponds to the set {π = s0 α0 ,tÐÐ→ sα00

α0 ,t
′

ÐÐ→ s1 ∣ t + t′ = t0}
of paths in C. We formalize this extension to paths in C as follows:
If Π ⊆ Paths(C), we de�ne

extend(Π) = {π ∈ Paths(C) ∣ merge(π) ∈ Π} .
To conclude this section, let us state some natural properties of the functionsmerge and
extendwhich prove useful to establish the formal results in the remainder of this chapter:
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Lemma 4.1. Let C be a CTMDP and Π1, Π2, . . . ⊆ Paths(C). �en the following proposi-
tions hold:

1. Π1 ⊆ Π2⇒ extend(Π1) ⊆ extend(Π2),
2. Π1 ∩Π2 = ∅⇒ extend(Π1) ∩ extend(Π2) = ∅ and

3. ⋃ extend(Πk) = extend(⋃Πk).

Proof. We prove each claim separately:

1. Π1 ⊆ Π2 ⇒ extend(Π1) ⊆ extend(Π2) follows directly from the de�nition of

extend(Π): To see this, note that if Π1 ⊆ Π2, then it holds

{π ∈ Paths(C) ∣ merge(π) ∈ Π1} ⊆ {π ∈ Paths(C) ∣merge(π) ∈ Π2} .

2. We prove the claim by contraposition: �erefore, assume that Π1 ∩ Π2 = ∅ but
π ∈ extend(Π1) ∩ extend(Π2).�en

π ∈ {π′ ∈ Paths(C) ∣ merge(π′) ∈ Π1 ∧merge(π′) ∈ Π2} .
But Π1 ∩Π2 = ∅. Hence we obtain the desired contradiction.

3. For any set I ⊆ N we have that

⋃
k∈I

extend(Πk) =⋃
k∈I

{π ∈ Paths(C) ∣ merge(π) ∈ Πk}
= {π ∈ Paths(C) ∣ merge(π) ∈⋃

k∈I

Πk} = extend(⋃
k∈I

Pk). ◻

In the following, we investigate which classes of early schedulers induce the same prob-
ability measures for paths in a CTMDP C and the corresponding set of paths in C.�us,

we identify the scheduler classes for which local uniformization is a measure preserving
transformation.

For the proof, we proceed stepwise and �rst adopt a local view: In Sec. 4.2.1, we show

that the probability of a single step in C in which the nondeterministic choice has already
been resolved equals the probability of the corresponding steps in C.�e results are used

in Sec. 4.2.2 to de�ne a scheduler D on C that corresponds to a given scheduler D on C
and induces the same probabilities.
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4.2.1 One-step correctness of local uniformization

Consider the CTMDP in Fig. 4.4(a), where λ = ∑ λi and λi > 0 for i = 0, 1, 2. Assume

that action α is chosen in state s0; then
R(s0 ,α,si )
E(s0 ,α)

= λi
λ is the probability to move to state si .

Hence the probability to reach state si in time interval [0, t] is
λi
λ ∫

t

0
ηλ(dt1). (4.1)

Let us compute the same probability for C depicted in Fig. 4.4(b):�e probability to go

from s0 to si directly (with action α) is R(s0 ,α,si )
E(s0 ,α)

= λi
λ+µ ; however, with probability

R(s0 ,α,sα0 )
E(s0 ,α)

⋅
R(sα0 ,α,si )
E(sα0 ,α)

= µ
λ+µ ⋅

λi
λ we instead move to state sα0 and only then to si . In this case, the

probability that in the time interval [0, t], an α-transition executes in state s0, followed
by one of sα0 is ∫

t

0 (λ+µ)e−(λ+µ)t1 ∫ t−t1
0 λe−λt2 dt2 dt1. Hence, we reach state si with action α

in at most t time units with probability

λi
λ + µ ∫

t

0
ηλ+µ(dt1) + µ

λ + µ
⋅
λi
λ ∫

t

0
ηλ+µ(dt1) ∫

t−t1

0
ηλ(dt2). (4.2)

It is easy to verify that (4.1) and (4.2) are equal:

Lemma 4.2 (Local correctness). Let C and C be the CTMDPs depicted in Fig. 4.4. For
i ∈ {0, . . . , 2}, λi , µ > 0 and t ∈ R≥0 it holds

λi
λ ∫

t

0
ηλ(dt) = λi

λ + µ ∫
t

0
ηλ+µ(dt) + µ

λ + µ
⋅
λi
λ ∫

t

0
ηλ+µ(dt1) ∫

t−t1

0
ηλ(dt2). (4.3)

Proof. We can rewrite the right-hand side in Eq. (4.3) as follows:

λi
λ + µ ∫

t

0
(λ + µ)e−(λ+µ)t1 dt1 + µ

λ + µ
⋅
λi
λ ∫

t

0
(λ + µ)e−(λ+µ)t1 ∫

t−t1

0
λe−λt2 dt2 dt1

= λi ∫
t

0
e−(λ+µ)t1 dt1 +

µ ⋅ λi
λ ∫

t

0
e−(λ+µ)t1(1 − e−λ(t−t1))dt1

= λi ∫
t

0
e−(λ+µ)t1 dt1 +

µ ⋅ λi
λ ∫

t

0
e−(λ+µ)t1dt1 −

µ ⋅ λi
λ ∫

t

0
e−(λ+µ)t1−λ(t−t1)dt1.

Note that the �rst two integrals are equal.�is yields

= λi(1 + µ

λ
) ∫

t

0
e−(λ+µ)t1 dt1 −

µ ⋅ λi
λ ∫

t

0
e−µt1−λtdt1
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By rewriting the term λi(1+ µ
λ), we obtain the factor (λ + µ) and the exponential density

for rate (λ + µ):
=
λi
λ ∫

t

0
(λ + µ)e−(λ+µ)t1 dt1 − µ ⋅ λi

λ ∫
t

0
e−µt1−λtdt1

=
λi
λ
(1 − e−(λ+µ)t) − µ ⋅ λi

λ
e−λt ∫

t

0
e−µt1dt1

=
λi
λ
(1 − e−(λ+µ)t − µe−λt ∫

t

0
e−µt1dt1)

=
λi
λ
(1 − e−(λ+µ)t − e−λt(1 − e−µt))

=
λi
λ
(1 − e−(λ+µ)t − e−λt + e−(λ+µ)t)

=
λi
λ
(1 − e−λt) . ◻

�us the probability to reach a (non-copy) successor state in {s0, s1, s2} is the same

for C and C. It can be computed by replacing λi with ∑ λi in Eq. (4.1) and Eq. (4.2).
Further, note that the result of Lemma 4.2 extends naturally to �nitely many successor
states {s0, s1, . . . , sn}. Moreover, if the interval [0, t] is replaced by an element from the

Borel σ-�eld B(R≥0) and all integrals are interpreted as Lebesgue-integrals, we obtain
a straightforward extension of Lemma 4.2 to the class of Borel measurable sets of time

points.
Next, we prove that Equalities (4.1) and (4.2) are preserved even if we integrate over a

Borel-measurable function f ∶ R≥0 → [0, 1]. To keep our notation as simple as possible,

we only consider the probability to reach an arbitrary non-copy state within a Borel mea-
surable set of time points T ∈ B(R≥0). Compared to Lemma 4.2, we therefore replace
the rate λi to move to the i-th non-copy successor state by the cumulated rate λ = ∑ λi
to go to any non-copy state:

Lemma 4.3 (One-step timing). Let f ∶ R≥0 → [0, 1] be a Borel measurable function and
T ∈B(R≥0). �en

∫
T
f (t) ηλ(dt) = λ

λ + µ ∫T f (t) ηλ+µ(dt)
+

µ

λ + µ ∫R≥0ηλ+µ(dt1) ∫
T⊖t1
f (t1 + t2) ηλ(dt2).

(4.4)

Proof. As usual when proving properties about Lebesgue integrals of Borel measurable

functions, we prove the claim stepwise and work our way up from nonnegative simple
functions (cf. Def. 2.15 on page 35) to arbitrary nonnegative Borel measurable functions
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(cf. Def. 2.14). First, assume that f ∶ R≥0 → [0, 1] is a simple function. If T ⊆ R≥0, then it

is easy to see that f ○ IT is again a simple function. With this remark, we can rewrite the
Lebesgue integral on the right hand side of Eq. (4.4) and obtain

λ

λ + µ ∫T f (t) ηλ+µ(dt)+ µ

λ + µ ∫
R≥0

ηλ+µ(dt1) ∫
T⊖t1

f (t1 + t2) ηλ(dt2)
=

λ

λ + µ ∫R≥0 f (t) ⋅ IT(t) ηλ+µ(dt)
+

µ

λ + µ ∫
R≥0

ηλ+µ(dt1) ∫
R≥0

f (t1 + t2) ⋅ IT(t1 + t2) ηλ(dt2).
Note that in order to rewrite the innermost Lebesgue integral, we further make use of the
fact that t2 ∈ T ⊖ t1 ⇐⇒ t1 + t2 ∈ T . Applying Fubini’s theorem (�m. 2.17 on page 47),
we can switch to a two-dimensional product. In this way, we continue:

=
λ

λ + µ ∫R≥0 f (t) ⋅ IT(t) ηλ+µ(dt)
+

µ

λ + µ ∫
R≥0×R≥0

f (t1 + t2) ⋅ IT(t1 + t2) (ηλ+µ × ηλ)(d(t1, t2))
�e assumption that f (t) is a simple function implies that also f ○ IT ∶ R≥0 → [0, 1] and
f ′ ∶ R2≥0 → [0, 1] ∶ (t1, t2) ↦ f (t1 + t2) are simple functions. Now let {x1, x2 , . . . , xr} be
the (�nitely many) values that f ○ IT takes in R≥0 and de�ne A j = ( f ○ IT)−1 (x j) and
A′j = f ′−1(x j) for all j = 1, 2, . . . , r. With these choices, we can continue to rewrite our

integral as follows:

=
λ

λ + µ

r∑
j=1

x j ⋅ ηλ+µ(A j) + µ

λ + µ

r∑
j=1

x j ⋅ (ηλ+µ × ηλ)(A′j)
=

r∑
j=1

( λ

λ + µ
⋅ x j ⋅ ηλ+µ(A j) + µ

λ + µ
⋅ x j ⋅ (ηλ+µ × ηλ)(A′j))

=
r∑
j=1

x j( λ

λ + µ
⋅ ηλ+µ(A j) + µ

λ + µ
⋅ (ηλ+µ × ηλ)(A′j))

=
r∑
j=1

x j( λ

λ + µ
⋅ ηλ+µ(A j) + µ

λ + µ
⋅ ∫

R≥0×R≥0

IA j(t1 + t2)(ηλ+µ × ηλ)(d(t1, t2))).
Now we can apply�m. 2.17 reversely and come back to an iterated integration:

=
r∑
j=1

x j( λ

λ + µ
⋅ ηλ+µ(A j) + µ

λ + µ
⋅ ∫

R≥0

ηλ+µ(dt1) ∫
R≥0

IA j(t1 + t2) ηλ(dt2))
=

r∑
j=1

x j( λ

λ + µ
⋅ ηλ+µ(A j) + µ

λ + µ
⋅ ∫

R≥0

ηλ+µ(dt1) ∫
A j⊖t1
ηλ(dt2))
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(*)
=

r∑
j=1

x j ⋅ ∫
A j

ηλ(dt) = r∑
j=1

x j ⋅ ηλ(A j) = ∫
T
f (t) ηλ(dt).

Here, the equality (*) follows by extending Lemma4.2 from intervals to Borel-measurable

subsets ofR≥0 which can be done easily by replacing the Riemann integrals over intervals
in the proof of Lemma 4.2 by the corresponding Lebesgue integral over measurable sub-
sets of R≥0.

Further, if f ∶ R≥0 → [0, 1] is Borel measurable, then�m. 2.11 (on page 36) implies

that there exists a sequence of nonnegative simple functions fn such that fn(t)→ f (t) for
all t ∈ R≥0. Further, Eq. (4.4) holds for all fn. With the monotone convergence theorem
(�m. 2.13 on page 38), we obtain

∫
T
f (t)ηλ(t) dt = lim

n→∞ ∫T fn(t)ηλ(dt)
= lim

n→∞
( λ

λ + µ ∫T fn(t) ηλ+µ(dt)+ µ

λ + µ ∫R≥0ηλ+µ(dt1) ∫
T⊖t1

fn(t1 + t2) ηλ(dt2))
=

λ

λ + µ
lim
n→∞ ∫T fn(t) ηλ+µ(dt) + µ

λ + µ
lim
n→∞ ∫R≥0ηλ+µ(dt1) ∫

T⊖t1
fn(t1 + t2) ηλ(dt2)

=
λ

λ + µ
lim
n→∞ ∫T fn(t) ηλ+µ(t) dt

+
µ

λ + µ
lim
n→∞ ∫R≥0×R≥0 fn(t1 + t2) ⋅ IT(t1 + t2) (ηλ+µ × ηλ) (d(t1, t2))

=
λ

λ + µ ∫
T
f (t) ηλ+µ(dt)

+
µ

λ + µ ∫R≥0×R≥0 f (t1 + t2) ⋅ IT(t1 + t2) (ηλ+µ × ηλ) (d(t1, t2))
=

λ

λ + µ ∫
T
f (t) ηλ+µ(dt) + µ

λ + µ ∫R≥0 ηλ+µ(dt1) ∫
T⊖t1

fn(t1 + t2) ηλ(dt2). ◻

�e equality of the terms (4.1) and (4.2) proves that the probability of a single step in C
equals the probability of one or two transitions (depending on the copy-state) in C.
In the next section, we li� this argument to sets of paths in C and C. Further, note that

we did not consider nondeterministic choices yet. �is gap will also be bridged in the
next section, where we infer a scheduler D from a given scheduler D that makes use of
the strong relation between the CTMDP C and its locally uniform counterpart C.

4.2.2 Local uniformization is measure preserving

In this section, we prove that for any GM-scheduler D ∈ GM(C) and for each CTMDP C
there exists a GM-scheduler D ∈ GM (C) in C such that the induced probabilities for the
sets of paths Π and extend(Π) are equal.



4.2 Local uniformization 99

However, as C di�ers from C, we cannot use D to infer probabilities on C directly. In-
stead, given a history π in C , we de�ne D(π, ⋅) such that it mimics the decision that D
takes in C for history merge(π). �is is formalized as follows: For all π ∈ Paths⋆(C),
de�ne the GM-scheduler D such that

D(π, ⋅) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D(π, ⋅) if π[0], π↓ ∈ S ∧merge(π) = π
{α ↦ 1} if π↓ = sα ∈ Scp
γπ otherwise,

where γπ is an arbitrary distribution over Act(π↓): Ifmerge is applicable to π (i.e. if π is a

valid path in C and π[0] and π↓ are non-copy states), then D(π, ⋅) is the distribution that
D yields for pathmerge(π) in C; further, if π↓ = sα thenAct(sα) = {α} and thusD chooses
action α. Finally, C contains paths that start in a copy-state sα. But as ν(sα) = 0 for all

sα ∈ Scp, they do not contribute any probability, independent of D(π, ⋅). For such paths,
as well as for invalid paths, the scheduler decision γπ can be chosen arbitrary without
altering the probability measure.

Based on the de�nition of the scheduler D, we are now going to prove that the prob-
ability measure that D induces on C for the event extend(Π) is equal to the probability

of Π in C under scheduler D.
�erefore, consider a measurable base B ∈ FPathsn of the form B = S0×A0×T0× . . .×Sn

in C.�en B corresponds to the set extend(B) of paths in C . As extend(B) contains paths
of di�erent lengths, we resort to its induced (in�nite) cylinderCyl(extend(B)) and prove
that its probability equals that of B. To clarify notation, note that we use Cyl(Bn) = Bn

to denote the in�nite cylinder Bn ⊆ Paths
ω that is induced by a �nite-dimensional base

Bn ⊆ Pathsn (cf. Sec. 2.5.4 on page 49).

Lemma 4.4 (Measure preservation under local uniformization). Let C =(S ,Act,R, ν) be a CTMDP, D a GM-scheduler on C and B = S0 × A0 × T0 × ⋯ × Sn ∈
FPathsn(C). Further, let C = (S ,Act,R, ν) be the locally uniform CTMDP induced by C.
�en there exists a GM-scheduler D such that

Prnν,D(B) = Prων,D(Cyl(extend(B))), (4.5)

where Pr
ω

ν,D is the probability measure induced by D and ν on FPathsω(C).

Proof. To shorten notation, let B = extend(B) and C = Cyl(B). We prove the claim by
induction on the length n of the measurable base B:
In the induction base (n = 0), it holds that B = S0. �erefore Pr0ν,D(B) = ∑s∈B ν(s) =
∑s∈B ν(s) = Pr0ν,D(B) = Prων,D(C) and Eq. (4.5) follows.

In the induction step, we extend B with a set of initial path pre�xes I = S0 × A0 × T0
(see Def. 3.16 on page 82) of length one and consider the base I ×B which contains paths
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of length n + 1:

Prn+1ν,D(I × B) = ∫
I
Prnν i ,Di

(B) µ1ν,D(di) (* by Lemma 3.7 *)

= ∫
I
Pr

ω

ν i ,Di
(C) µ1ν,D(di) (* by ind. hyp. *)

= ∑
s∈S0

ν(s) ∑
α∈A0

D(s, α) ∫
T0

Pr
ω

ν i ,Di
(C) ηE(s,α)(dt) (* where i = (s, α, t) *)

= ∑
s∈S0

ν(s) ∑
α∈A0

D(s, α) ∫
T0

Pr
ω

ν i ,Di
(C)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f (s,α,t)

ηE(s,α)(dt). (* by Def. of ν,D *)

�e probabilities Pr
ω

ν i ,Di
(C) de�ne a measurable function f (s, α, ⋅) ∶ R≥0 → [0, 1] where

f (s, α, t) = Prων i ,Di
(C) if i = (s, α, t).�erefore, we can apply Lemma 4.3 and obtain

Prn+1ν,D(I × B) =∑
s∈S0

ν(s) ∑
α∈A0

D(s, α) ⋅ [P(s, α,S) ∫
T0

f (s, α, t) ηE(s,α)(dt)
+P(s, α, sα) ∫

R≥0

ηE(s,α)(dt1) ∫
T0⊖t1

f (s, α, t1 + t2) ηE(sα ,α)(dt2)].
(4.6)

To rewrite this further, note that any path pre�x i = (s, α, t) in C induces the sets of path
pre�xes I1(i) = {s α,t

Ð→} and I2(i) = {s α,t1Ð→ sα
α,t2ÐÐ→ ∣ t1 + t2 = t} in C, where the set I1(i)

corresponds to those path pre�xes that reach a state in S directly, whereas the pre�xes
that are contained in the set I2(i) take the detour via a copy-state sα to a state in S .
As de�ned in Lemma 3.7, νi(s′) = P(s, α, s′) is the probability to go to state s′ when

moving along pre�x i in C. Similarly, for C we de�ne νi(s′) as the probability to be in

state s′ ∈ S a�er a path pre�x i ∈ I1(i) ∪ I2(i): If i ∈ I1(i) then we move to a state
s′ ∈ S directly and do not visit a copy-state sα. �us, νi(s′) = P(s, α, s′) for i ∈ I1(i).
Further, P(s, α, s′) in C equals the conditional probability

P(s,α,s′)
P(s,α,S)

to enter s′ in C given

that we move there directly. �erefore, if i ∈ I1(i), it holds that νi(s′) = P(s, α, s′) =
P(s, α,S) ⋅ νi(s′).
If instead i ∈ I2(i), then i has the form s

α,t1Ð→ sα
α,t2ÐÐ→; hence, the transition from

state s to the copy-state sα has already been taken. �erefore νi(s′) = P(sα , α, s′) is the
probability to end up in state s′ when leaving the copy-state sα. By the de�nition of sα,
this is equal to the probability to move from state s to state s′ in C directly. Hence νi(s′) =
νi(s′) if i ∈ I2(i).
As de�ned in Lemma 3.7, Di(π, ⋅) = D(i ○ π, ⋅) and Di(π, ⋅) = D(i ○ π, ⋅). From

the de�nition of D, we obtain that Di(π, ⋅) = D i(π, ⋅) for all i ∈ I1(i) ∪ I2(i) and π ∈
extend(π). Hence, it follows that if i = (s, α, t) and i ∈ I1(i) ∪ I2(i) it holds

Pr
ω

ν i ,D i
(C) = ⎧⎪⎪⎨⎪⎪⎩

P(s, α,S) ⋅ Prων i ,Di
(C) if i ∈ I1(i)

Pr
ω

ν i ,Di
(C) if i ∈ I2(i). (4.7)
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With these remarks, we can rewrite Eq. (4.6) further. �erefore, note that the �rst sum-

mand in Eq. (4.6) corresponds to the set I1(s, α, t) whereas the second summand corre-
sponds to the set I2(s, α, t1 + t2). If we apply Eq. (4.7) to the right-hand side of Eq. (4.6),
we obtain

Prn+1ν,D(I × B) = ∑
s∈S0

ν(s) ∑
α∈A0

D(s, α) ∫
T0
Pr

ω

ν i ,D i
(C) ηE(s,α)(dt)

+∑
s∈S0

ν(s) ∑
α∈A0

D(s, α) ⋅ P(s, α, sα)
⋅ ∫

R≥0

ηE(s,α)(dt1) ∫
T0⊖t1

Pr
ω

ν i ,D i
(C) ηE(sα ,α)(dt2).

Applying Def. 3.16 allows us to integrate over the sets of path pre�xes I1 = ⋃i∈I I1(i) and
I2 = ⋃i∈I I2(i) which are induced by I = S0 × A0 × T0 and to obtain

Prn+1ν,D(I × B) = ∫
I1
Pr

ω

ν i ,D i
(C) µ1

ν,D
(di) + ∫

I2
Pr

ω

ν i ,D i
(C) µ2

ν,D
(di)

= Pr
ω

ν,D(I1 × C) + Pr
ω

ν,D(I2 × C)
= Pr

ω

ν,D(I × C)
= Pr

ω

ν,D(I × Cyl(extend(B)))
= Pr

ω

ν,D(Cyl(extend(I × B))).
In this way, the equality Prn+1ν,D(I × B) = Prων,D(Cyl(extend(I × B))) follows, completing
the induction step. ◻

Lemma 4.4 holds for all measurable rectangles B = S0 × A0 × T0 × . . . × Sn; however,
we aim at an extension to arbitrary measurable bases B ∈ FPathsn(C). To achieve this, we

follow the standard arguments inmeasure theory (cf. Sec. 2.5.4). In essence, we construct
a monotone class and use themonotone class theorem to extend our result from the �eld

of �nite disjoint unions of measurable rectangles to the class of measurable bases. As the
proof technique is interesting in itself, we provide the details here for completeness:
First, let GPathsn(C) be the class of all �nite disjoint unions of measurable rectangles.

�en each element of GPathsn(C) has the form B1 ⊍ B2 ⊍ ⋯ ⊍ Bn with each Bi being a
measurable rectangle as de�ned above. By Lemma 2.10 (cf. page 43), we know that the
set GPathsn(C) forms a �eld.

Lemma 4.5. Let C = (S ,Act,R, ν) be a CTMDP, D a GM-scheduler on C and n ∈ N.
Further, let C = (S ,Act,R, ν) be the locally uniform CTMDP induced by C and let D be
the scheduler that corresponds to D. �en it holds for all B ∈ GPathsn(C):

Prnν,D(B) = Prων,D(Cyl(extend(B))).
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Proof. As B ∈ GPathsn(C), it has the form B = ⊍k
i=1 Bi for pairwise disjoint measurable

rectangles Bi of length n.�us

Prnν,D(B) = Prnν,D( k⊍
i=1

Bi) = k∑
i=1

Prnν,D(Bi) (* as Bi ∩ B j = ∅ for i /= j *)

=
k∑
i=1

Pr
ω

ν,D(Cyl(extend(Bi))) (* by Lemma 4.4 *)

= Pr
ω

ν,D( k⊍
i=1

Cyl(extend(Bi))) (* by Lemma 4.1(2) *)

= Pr
ω

ν,D(Cyl(extend(B))). (* by Lemma 4.1(3) *) ◻

With the monotone class theorem (�m. 2.2 on page 22), the preservation property

extends from GPathsn to the σ-�eld FPathsn : Here, the de�nition of a monotone class (cf.
Def. 2.5 in Sec. 2.1.2) is applied to a class of subsets of Pathsn: A class C of subsets of

Pathsn is a monotone class i� it is closed under in- and decreasing sequences: if Πk ∈ C

and Π ⊆ Pathsn such that Π0 ⊆ Π1 ⊆ ⋯ and ⋃∞k=0Πk = Π, we write Πk ↑ Π (similarly for
Πk ↓ Π). �en C is a monotone class i� for all Πk ∈ C and Π ⊆ Pathsn with Πk ↑ Π or

Πk ↓ Π it holds that Π ∈ C.

Lemma 4.6 (Monotone class). Let C = (S ,Act,R, ν) be a CTMDP with GM-
scheduler D; further, let C = (S ,Act,R, ν) be C’s induced locally uniform CTMDP

and D ∈ GM(C) the scheduler induced by D. �e set

C = {B ∈ FPathsn(C) ∣ Prnν,D(B) = Prων,D(Cyl(extend(B)))}
is a monotone class.

Proof. We consider increasing and decreasing sequences of sets of paths in C:

• Assume that Πn
i ∈ C for i = 1, 2, . . ., and that the sets Πn

i form an increasing se-
quence that converges from below to the limit Πn, that is, Πn

i ↑ Πn. �e fact that

σ-�elds are closed under limits and that Πn
i ∈ FPathsn(C) for all i = 1, 2, . . . implies

that Πn ∈ FPathsn(C).�erefore, it remains to show that

Prnν,D(Πn) = Prων,D(Cyl(extend(Πn))).
By de�nition of C, Prnν,D(Πn

i ) = Prων,D(Cyl(extend(Πn
i ))) for all i ∈ N. �erefore,

the limits also agree. More precisely, we have established that

lim
i→∞

Prnν,D(Πn
i ) = lim

i→∞
Pr

ω

ν,D(Cyl(extend(Πn
i ))). (4.8)
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Further, both Prnν,D and Pr
ω

ν,D are measures on FPathsn(C) and FPathsω(C), respectively.

As Πn
i ↑ Πn is an increasing sequence, it follows by Lemma 4.1 and the de�nition

of Cyl that also Cyl(extend(Πn,i)) ↑ Cyl(extend(Πn)).
From here, we obtain by Lemma 2.2 that

lim
i→∞

Prnν,D(Πn
i ) = Prnν,D(Πn) and (4.9)

lim
i→∞

Pr
ω

ν,D(Cyl(extend(Πn
i ))) = Prων,D(Cyl(extend(Πn))). (4.10)

�us, we have proved that

Prnν,D(Πn) (4.9)= lim
i→∞

Prnν,D(Πn
i ) (4.8)= lim

i→∞
Pr

ω

ν,D(Cyl(extend(Πn
i )))

(4.10)
= Pr

ω

ν,D(Cyl(extend(Πn))).
• Now, let Πn

i ∈ C and Πn
i ↓ Πn. �is case is analogue, as limi→∞ Prnν,D(Πn

i ) =
Prnν,D(Πn) also holds for decreasing sequences Πn

i ↓ Πn. Hence, the proof goes
along the same lines as the one done before for increasing sequences. ◻

Lemma 4.7 (Extension). Let C = (S ,Act,R, ν) be a CTMDP, D a GM-scheduler on C
and n ∈ N. Further, let C = (S ,Act,R, ν) be the locally uniform CTMDP induced by C,
and D ∈ GM(C) the scheduler that corresponds to D. �en it holds for all measurable
bases B ∈ FPathsn(C) that

Prnν,D(B) = Prων,D(Cyl(extend(B))).

Proof. By Lemma 4.6, C is a monotone class and by Lemma 4.5 it follows thatGPathsn(C) ⊆
C. �us, the monotone class theorem (cf. �m. 2.2) applies and FPathsn ⊆ C. Hence
Prnν,D(B) = Prων,D(Cyl(extend(B))) for all B ∈ FPathsn . ◻

Lemma 4.4 and its measure-theoretic extension to the σ-�eld are the basis for the major
results of this chapter. We discuss them in the following section.

4.3 Preservation results for local uniformization

�e �rst result states the correctness of the construction of the scheduler D, that is, it
asserts that D and D assign the same probability to corresponding sets of paths.
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�eorem 4.1. Let C = (S ,Act,R, ν) be a CTMDP and D a GM-scheduler on C. Further,
let C = (S ,Act,R, ν) be the induced locally uniform CTMDP and D the scheduler that
corresponds to D. �en it holds for all Π ∈ FPathsω that

Prων,D(Π) = Prων,D(extend(Π)).

Proof. Each cylinder Π ∈ FPathsω(C) is induced by ameasurable base [ADD00,�m. 2.7.2];
hence Π = Cyl(B) for some B ∈ FPathsn(C) and n ∈ N. But then, Prων,D(Π) = Prnν,D(B).
Further, it is easy to verify that extend(Cyl(B)) = Cyl(extend(B)). �us Prnν,D(B) =
Pr

ω

ν,D(extend(Π)) by Lemma 4.7. ◻

With Lemma 4.4 and its extension, we are now ready to prove that local uniformization
does not alter the CTMDP in away that we leak probabilitymasswith respect to themost

important scheduler classes:

�eorem 4.2. Let C = (S ,Act,R, ν) be a CTMDP and let C = (S ,Act,R, ν) be its in-
duced locally uniform CTMDP. For all Π ∈ FPathsω(C) and each scheduler classD from the
set {GM,TTHR,TTPR,TAHR,TAPR} it holds that

sup
D∈D(C)

Prων,D(Π) ≤ sup
D′∈D(C)

Pr
ω

ν,D′(extend(Π)). (4.11)

Proof. By�m. 4.1, the claim follows for the class of all GM-schedulers, that is, for D =
GM. For the other classes, it remains to check that theGM-schedulerD used inLemma4.4
also falls into the respective class. Here, we state the proof for TTPR: If D ∶ S × R≥0 →
Distr(Act) ∈ TTPR, de�ne D(s, ∆) = D(s, ∆) if s ∈ S and D(sα , ∆) = {α ↦ 1} for sα ∈ Scp.
�en Lemma 4.4 applies verbatim. ◻

Note that�m. 4.2 does not mention the scheduler classes TPR and TAHOPR.�is is for
good reason: In�m. 4.4, we will construct a counterexample that disproves Eq. (4.11)

for these scheduler classes: Note that although we obtain a GM-scheduler D on C for
any D ∈ TPR(C) ∪ TAHOPR(C) by�m. 4.1, D is not guaranteed to lie in TPR(C) (or
TAHOPR(C), respectively). Hence, Eq. (4.11) does not hold directly for all scheduler

classes that are subsets of GM.

For themain result, we identify the scheduler classes, that do not gain probabilitymass
by local uniformization:
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�eorem 4.3. Let C = (S ,Act,R, ν) be a CTMDP, C = (S ,Act,R, ν) its induced locally
uniform CTMDP and Π ∈ FPathsω(C). �en

sup
D∈D(C)

Prων,D(Π) = sup
D′∈D(C)

Pr
ω

ν,D′(extend(Π)) for D ∈ {TTPR,TAPR} .

Proof. �eorem 4.2 proves the direction from le� to right. For the reverse, let D′ ∈
TTPR(C) and de�ne D ∈ TTPR(C) such that D(s, ∆) = D′(s, ∆) for all s ∈ S , ∆ ∈ R≥0.
�en D = D′ and Pr

ω

ν,D′(extend(Π)) = Prων,D(Π) by�m. 4.1. Hence the claim for TTPR

follows; analogue for D′ ∈ TAPR(C). ◻

Conjecture 4.1. We conjecture that �m. 4.3 also holds for GM and TTHR. For D′ ∈
GM(C), we aim at de�ning a scheduler D ∈ GM(C) that induces the same probabilities
on C. However, a history π ∈ Paths⋆(C) corresponds to the uncountable set extend(π) in
C such that D′(π, ⋅)may be di�erent for each π ∈ extend(π).

As D can only decide once on history π, in order to mimic D′ on C , we propose to weigh
each distribution D′(π, ⋅) with the conditional probability of dπ given extend(π).

In the following, we disprove Eq. (4.11) for TPR- and TAHOPR-schedulers. Intuitively,
TPR-schedulers rely on the sojourn time in the last state; however, local uniformization
changes the exit rates of states by adding transitions to copy-states.

�eorem 4.4. For G ∈ {TPR,TAHOPR}, there exists a CTMDP C = (S ,Act,R, ν) and
a measurable set of paths Π ∈ FPathsω(C) such that

sup
D∈G(C)

Prων,D(Π) > sup
D′∈G(C)

Pr
ω

ν,D′(extend(Π)).

Proof. We give the proof for TPR: Consider the CTMDPs C and C in Fig. 4.2(a) and

Fig. 4.5(a), respectively.
Let Π ∈ FPathsω(C) be the set of paths in C that reach state s3 in 1 time unit and let

Π = extend(Π). To optimize Prων,D(Π) and Pr
ω

ν,D′(Π), any scheduler D (resp. D′) must
choose {α ↦ 1} in state s0. Nondeterminism only remains in state s1; here, the optimal
distributionover {α, β} depends on the time t0 that was spent to reach state s1: In C and C,
the probability to go from s1 to s3 in the remaining t = 1− t0 time units is fα(t) = 13 − 13 e−3t
for α and fβ(t) = 1 + 1

2
e−3t − 3

2
e−t for β. Fig. 4.5(b) shows the cumulative distribution

functions (cdfs) of fα and fβ; as any convex combination of α and β results in a cdf in the
shaded area of Fig. 4.5(b), we only need to consider the extremedistributions {α ↦ 1} and
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(a) Local uniformization of Fig. 4.2(a).
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Figure 4.5: Timed reachability of state s3 (starting in s1) in C and C.

{β ↦ 1} for maximal reachability. Let d be the unique solution (in R>0) of fα(t) = fβ(t),
i.e. the point where the two cdfs cross.�en Dopt(s0 α,t0ÐÐ→ s1, ⋅) = {α ↦ 1} if 1−t0 ≤ d and{β ↦ 1}otherwise, is an optimalGM-scheduler for Π on C andDopt ∈ TPR(C)∩TTPR(C)
as it depends only on the delay of the last transition.

For Π, D′ is an optimal GM-scheduler on C if D′(s0 α,t0ÐÐ→ s1, ⋅) = Dopt(s0 α,t0ÐÐ→ s1, ⋅) as
before and D′(s0 α,t0ÐÐ→ sα0

α,t1Ð→ s1, ⋅) = {α ↦ 1} if 1−t0−t1 ≤ d and {β ↦ 1} otherwise. Note
that by de�nition, D′ = Dopt and Dopt ∈ TTPR(C), whereas D′ ∉ TPR(C) as any TPR(C)
scheduler is independent of t0. For history π = s0

α,t0ÐÐ→ sα0
α,t1Ð→ s1, the best approximation

of t0 is the expected sojourn time in state s0, i.e.
1

E(s0 ,α)
. For the induced scheduler D′′ ∈

TPR(C), it holds D′′(s1, t1) /= D′(s0 α,t0ÐÐ→ sα0
α,t1Ð→ s1) almost surely. But as Dopt is optimal,

there exists ε > 0 such that Pr
ω
ν,D′′(Π) = Prων,Dopt

(Π) − ε.�erefore

sup
D′′∈TPR(C)

Pr
ω

ν,D′′(Π) < Prων,Dopt
(Π) = Prων,Dopt

(Π) = sup
D∈TPR(C)

Prων,D(Π).
For TAHOPR, a similar proof applies that relies on the fact that local uniformization

changes the number of transitions needed to reach a goal state. ◻

�is proves that by local uniformization, essential information for TP and TAHOPR
schedulers is lost. In other cases, schedulers from TAHR and TAHOPR gain information
by local uniformization:

�eorem 4.5. �ere exists a CTMDP C = (S ,Act,R, ν) and a set of paths Π ∈ FPathsω(C)

such that

sup
D∈G(C)

Prων,D(Π) < sup
D′∈G(C)

Pr
ω

ν,D′(extend(Π)) for G = {TAHR,TAHOPR} .
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Proof. Consider the CTMDPs C and C in Fig. 4.2(a) and Fig. 4.5(a), resp. Let Π be the

time-bounded reachability property of state s3 within 1 time unit and let Π = extend(Π).
We prove the claim for TAHR:�erefore, we derive D ∈ TAHR(C) such that Prων,D(Π) =
supD′∈TAHR(C) Pr

ω
ν,D′(Π). For this, D(s0) = {α ↦ 1} must obviously hold. �us, the only

nondeterministic choice occurs in state s1 for time-abstract history s0
α
Ð→ s1 whereD(s0 α

Ð→
s1) = µ, µ ∈ Distr({α, β}). For initial state s0, Fig. 4.6(a) depicts Prων,D(Π) for all µ ∈
Distr({α, β}); obviously, D(s0 α

Ð→ s1) = {β ↦ 1} maximizes Prων,D(Π). On C, we prove
that there exists D′ ∈ TAHR(C) such that Prων,D(Π) < Prν,D′(Π): To maximize Pr

ω

ν,D′(Π),
de�ne D′(s0) = {α ↦ 1}. Note that D′ may yield di�erent distributions for the time-

abstract paths s0
α
Ð→ s1 and s0

α
Ð→ sα0

α
Ð→ s1; for µ, µc ∈ Distr({α, β}) such that µ = D′(s0 α

Ð→
s1) and µc = D′(s0 α

Ð→ sα0
α
Ð→ s1) the probability of Π under D′ is depicted in Fig. 4.6(b)

for all µ, µc ∈ Distr({α, β}). Clearly, Prων,D′(Π) is maximal if D′(s0 α
Ð→ s1) = {β ↦ 1}

and D′(s0 α
Ð→ sα0

α
Ð→ s1) = {α ↦ 1}. Further, Fig. 4.6(b) shows that with this choice of

D′, Pr
ω

ν,D′(Π) > Prων,D(Π) and the claim follows. For TAHOPR, the proof applies analo-
gously. ◻

With these counterexamples, we complete our discussion of local uniformization and
come back to the question that was raised at the beginning of Sec. 4.2:�e motivation to
study locally uniform CTMDPs is to delay the scheduling decision until the current state

is le�.

As we have seen, for TTPR- and TAPR- schedulers, any given CTMDP can be trans-
formed into a locally uniform one while preserving all measures. Moreover, in this thesis,

we are particularly interested in time-bounded reachability objectives; for them, we know
that TTPR schedulers are su�cient, that is, we do not need to consider any other class of
schedulers to obtain the optimal reachability probabilities.

However, a word of caution is necessary at this point:�e results of this chapter might

lead to the conclusion, that for time-bounded reachability objectives, one can transform
an arbitrary CTMDP into a locally uniform one and investigate it with respect to late

schedulers. Albeit possible, there is still an open theoretical problem in this approach:

�e results of this chapter do not prove in any way, that local uniformization preserves
measures with respect to late schedulers. Obviously, for such a proof, we need to de�ne
the semantics of non-locally uniform CTMDPs under late schedulers. However, in this

setting, the scheduling decision and the sojourn time distribution become dependent
on each other. �e natural result are measurable schedulers that decide continuously

during the sojourn in the current state. However, the implications of such a de�nition
are ongoing research and outside the scope of this thesis.
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Figure 4.6: Optimal TAHR-schedulers for time-bounded reachability.

4.4 Delaying nondeterministic choices

In this section, we �nally discuss late schedulers in more detail. As stated previously, we
therefore have to assume that the given CTMDP is locally uniform.

In the following, we showhow local uniformity permits to derive the class of late sched-
ulers which resolve the nondeterministic choices in the current state only upon leaving
that state. Intuitively, a late scheduler may exploit information about the current state’s so-

journ time for its decision. As a consequence, we prove in this section that late schedulers
on locally uniform CTMDPs induce more accurate probability bounds than the class of

(early) GM-schedulers.
To begin, assume that C = (S ,Act,R, ν) is a locally uniform CTMDP and D is a GM-

scheduler on C.�en E(s, α) = u(s) for all s ∈ S and α ∈ Act (cf. Def. 4.2).�is indepen-
dence of the exit-rate from the action that is chosen implies that the measures ηE(s,α) in
the integral in Def. 3.14 do not depend on α.�us, we may exchange the order of integra-

tion in Eq. (3.11) by applying [ADD00,�m. 2.6.6]. More precisely, we can rewrite the
measure on combined transitions given in Def. 3.14 (see on page 79) to account for the
fact that the sojourn time distribution becomes independent from the scheduler. Hence,

for locally uniform CTMDPs and late schedulers, the measure µD(π,M) as de�ned in
Eq. (3.11) can be restated as follows:

µD(π,M) = ∫
R≥0

ηu(π↓)(dt) ∫
Act

D(π, dα) ∫S IM(α, t, s′) P(s, α, ds′). (4.12)

Formally, Eq.(4.12) now permits to de�ne late schedulers as measurable mappings D ∶
Paths⋆(C) × R≥0 × FAct → [0, 1] that extend the class of GM-schedulers by also consider-
ing the sojourn time in the current state, that is, in state π↓. Formally, the class of late

schedulers (denoted ML) is de�ned as the set of all measurable mappings Paths⋆(C) ×
R≥0×FAct → [0, 1] which satisfy D(π, t, ⋅) ∈ Distr(Act(π↓)) for all t ∈ R≥0 and π ∈ Paths⋆.
�e details of the adaptation of the probability measures to late schedulers are dis-

cussed in Chapter 5 (see also Def. 5.1 on page 116), where we develop an approximation
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algorithm which computes the maximum time-bounded reachability probabilities in lo-

cally uniform CTMDPs under late schedulers.

Note however, that local uniformity is essential for the derivation of late schedulers:
In the general case, the measures ηE(s,α)(dt) and a late scheduler D(π, t, dα) are inter-
dependent in t and α; hence, in Def. 3.14, µD(π, ⋅) is not well-de�ned for late-schedulers.

Intuitively, in general CTMDPs the sojourn time t of the current state s depends on D
while D depends on t.

LetML and GM denote the classes of late and GM-schedulers, respectively.

�eorem 4.6 (Comparison of early and late schedulers). Let GM and ML denote the
classes of early and late schedulers. Further, let C = (S ,Act,R, ν) be a locally uniform
CTMDP. �en it holds for all Π ∈ Pathsω(C) that

sup
D∈GM

Prων,D(Π) ≤ sup
D∈ML

Prων,D(Π). (4.13)

Moreover, Inequality (4.13) is strict in general.

Proof. By de�nition, GM ⊆ML; to see this, let De ∶ Paths
⋆(C)×FAct → [0, 1] ∈ GM be an

early scheduler and de�ne the late scheduler Dl ∶ Paths
⋆(C) × R≥0 × FAct → [0, 1] ∈ ML

such that Dl(π, t, ⋅) = De(π, ⋅), where t is the sojourn time in π↓ that is available to
the ML-scheduler. With this construction, any GM-scheduler can be considered as an
ML-scheduler which ignores the sojourn time in π↓. Further, the probability measures

induced by De and Dl are equal by de�nition.�us, Inequality (4.13) follows directly.

Now we come to the second claim and prove that ML-schedulers generally induce
strictly larger probability bounds than GM-schedulers: Let C be the locally uniform CT-
MDP depicted in Fig. 4.7(a), and let Π be the time-bounded reachability probability for

state s3 and time-bound z = 1. As we have seen in Ex. 4.2 on page 89, the optimal choice
for an early scheduler if state s1 is entered and 1 time unit remains to reach state s3 is ac-
tion β (as 1 > ln ( 58 + 1

8

√
105), cf. Ex. 4.2).�erefore, we obtain themaximum reachability

probability for early schedulers:

sup
D∈GM

Prων,D(Π) = ∫
1

0
(3e−3t1 ∫

1−t1

0
e−t2 dt2) dt1 = 1 +

1

2
e−3 −

3

2
e−1 ≃ 0.4731.

On the other hand, the optimal late scheduler can be derived as follows: Assume that
the sojourn in state s1 lasts for t1 time units. If the scheduler chooses α upon leaving s1,
the CTMDP enters state s3 with probability 13 . On the other hand, action β incurs an ad-
ditional delay with rate 1, but reaches state s3 with probability 1. We derive the minimum

amount of time d ∈ R≥0 that needs to remain a�er the sojourn in state s1 is over, such that
the probability induced by choosing β is larger than 1

3
(i.e. the probability induced by α).
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Figure 4.7: Late schedulers outperform early schedulers.

Formally, we seek d ∈ R≥0 such that theML-scheduler D with

D(s1, t) =
⎧⎪⎪⎨⎪⎪⎩
{β ↦ 1} if t ≤ d

{α ↦ 1} otherwise

is optimal. For the CTMDP in Fig. 4.7(a) and a �xed d ∈ R≥0, the probability to move

from state s1 to state s3 within z time units is given by the function v, where

v(d , z) = 1

3 ∫
z

z−d
3e−3t1 dt1 + ∫

z−d

0
(3e−3t1 ⋅ ∫

z−t1

0
e−t2 dt2) dt1

=
1

3 ∫
z

z−d
3e−3t1 dt1 + ∫

z−d

0
(3e−3t1 − 3e−2t1−z) dt1.

Here, the second integral corresponds to the convolution of the delays of the transitions
that lead from state s1 via state s2 to state s3. Intuitively, in the �rst integral, the sojourn in
state s1 falls into the interval [z − d , z]; hence, time is short and action α is chosen. �e

second integral corresponds to sojourn times t1 ∈ [0, z − d], where we favor β over α. To
prove the claim, it su�ces to consider the time horizon z = 1: In this case, Fig. 4.7(b)
depicts the probability v(d , 1) for all 0 ≤ d ≤ z = 1; analytically, it is easy to derive

that v(d , 1) is maximal for d = dmax = ln 3 − ln 2.
Hence, if the remaining amount of time z− t1 a�er leaving state s1 is less than ln 3− ln 2,

we choose action α; otherwise we choose action β.�is yields the scheduler D(s1, t1, ⋅) ={β ↦ 1} if t1 < 1 + ln 2 − ln 3 and {α ↦ 1}, otherwise. Finally, computing the maximum
achievable probability under the late scheduler D as derived above yields probability

Prων,D(Π) = v(dmax, 1) = 1 + 19

24
e−3 −

3

2
e−1 ≃ 0.4876.

Hence, D induces a probability which is approximately 1.45% higher than the maximum
probability that can be obtained by early schedulers. �erefore, we have proved that op-
timalML-schedulers perform strictly better than optimal GM-schedulers. ◻
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4.5 Conclusion

In this chapter, we study a hierarchy of early scheduler classes for CTMDPs and investi-

gate their sensitivity for generalmeasures with respect to local uniformization.�is trans-
formation is shown to bemeasure-preserving for TAPR and TTPR schedulers. Moreover,
in contrast to TPR and TAHOPR schedulers, GM, TTHR and TAHR schedulers cannot

lose information to optimize their decisions. TAHR and TAHOPR schedulers can also
gain information. We conjecture that our transformation is also measure-preserving for

TTHR and GM schedulers.
�e starting point for considering local uniformizationwas the observation that locally

uniform CTMDPs separate the sojourn time distribution from the scheduler decision

which allows us to de�ne strictly more powerful scheduler classes compared to those
that are proposed for general CTMDPs.
Hence, it was a natural question to investigate means to uniformize early CTMDPs.

However, more research is necessary in this direction, as we did not prove that local
uniformization is measure preserving for late schedulers and general CTMDPs.

Moreover, the slightly simpler structure of locally uniform CTMDPs allows us to de-
rive an approximation algorithm that computes time bounded reachability probabilities
in locally uniform CTMDPs.�is will be the topic of Chapter 5.





5 �e analysis of late CTMDPs

The only reason for time is so

that everything doesn’t

happen at once.

(Albert Einstein)

In this chapter, we develop a discretization technique which allows us to analyze time-
bounded reachability probabilities in late CTMDPs. As we have seen in the previous

chapters, the sojourn time distribution of the current state in a CTMDP generally de-
pends on the action that is chosen by the associated GM-scheduler. �is dependency
requires the scheduler to decide early, that is, when entering the current state.�erefore,

we sometimes refer to the class of GM-schedulers and the associated CTMDPs as early
schedulers and early CTMDPs, respectively.
In contrast to general CTMDPs and GM-schedulers, Chapter 4 has introduced local

uniformization and motivated the use of late schedulers (from the classML): More pre-
cisely, we have seen in Sec. 4.4 that for locally uniform CTMDPs late schedulers generally
outperform the early schedulers from Sec. 3.3.2.�is comes as no surprise, as in locally

uniform CTMDPs, the states’ sojourn time distributions do not depend on the sched-
uler’s choice. Hence, local uniformity allows us to delay the scheduling decision until the
current state is le�, resulting in the class of late schedulers. However, another result of

Sec. 4.4 is that late schedulers are well-de�ned only for locally uniform CTMDPs.

Up to now, the motivation to consider locally uniform CTMDPs and late schedulers
may appear to be merely technical. However, this would be a wrong conclusion, as we

will see in the forthcoming chapters that local uniformity is a property that is commonly
found in controlled queuing systems (cf. the case study in Sec. 5.4 at the end of this chap-
ter) and stochastic Petri net formalisms such as GSPNs (cf. Chapter 8). Moreover, the

ideas and techniques developed in this chapter carry over to interactive Markov chains
(cf. Chapter 6) whose Markovian states can be considered locally uniform. �erefore it

is fair to say that the ideas presented in this chapter provide the essence of the approxi-
mations used throughout this thesis.

From a technical perspective, local uniformity is an extremely useful property when it
comes to the analysis of CTMDPs.�erefore, the focus of this chapter is on the analysis

of locally uniform CTMDPs under late scheduling disciplines.

Its main contribution is a solution method for the time-bounded reachability problem
in locally uniform CTMDPs: We propose a technique to compute the maximum proba-
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bility to reach a set G of goal states within a given time bound z under all late schedulers.
More precisely, we prove that for time-bounded reachability, it su�ces to consider total
time positional deterministic late schedulers (TTPDL) which base their decision only on
the elapsed time and on the current state. Exploiting this result, we characterize the max-

imum time-bounded reachability probability as the least �xed point of a higher-order
operator which involves integration over the time domain.�is allows us to reduce the

time-bounded reachability problem for locally uniform CTMDPs to the problem of com-
puting step-bounded reachability probabilities in discrete-time MDPs. More precisely,
we approximate the behavior of the CTMDP up to an a priori speci�ed error bound ε > 0
by de�ning its discretized MDP such that its maximum step-bounded reachability prob-
ability coincides (up to ε) with the maximum time-bounded reachability probability of

the underlying CTMDP.

In this way, we derive a quanti�ably correct approximation method that solves the
time-bounded reachability problem for locally uniform CTMDPs by reducing it to the
step-bounded reachability problem inMDPs.�e latter is a well studied problem [Put94]

and can be solved e�ciently by linear programming techniques, policy iteration [How60]
or value iteration algorithms [Bel57, Ber95]. Hence, our approach is also e�cient from a

complexity theory point of view. More precisely, we rely on the value iteration algorithm
and prove that the worst-case time complexity of our approach is in O(m ⋅ (λz)2/ε),
where m denotes the number of transitions in the locally uniform CTMDP and λ is its

maximal exit rate.

Although we present all results only for maximum time-bounded reachability proba-
bilities, all proofs can easily be adapted to the dual problem of determining theminimum

time-bounded reachability probability.

Organization of this chapter. Section 5.1 introduces the probability measures for lo-

cally uniform CTMDPs and late schedulers in full detail. In Sec. 5.2, we develop a �xed-
point characterization for the maximal time-bounded reachability probability in locally

uniformCTMDP.Moreover, we prove that total time positional schedulers su�ce tomax-
imize time-bounded reachability objectives. Section 5.3 de�nes the discretization, which
reduces the time-bounded reachability problem in locally uniform CTMDPs to a step-

bounded reachability computation in anMDP.�e case study in Sec. 5.4 shows the appli-
cability of our approach by analyzing the best- and worst-case �nishing probabilities in

the famous stochastic job scheduling problem. Finally, Sec. 5.5 concludes the chapter.

5.1 Locally uniform CTMDPs

As a preparation for the development of our approximation, let us recall the de�nition

of locally uniform CTMDPs and introduce their probabilistic semantics in detail. As we
have seen already in Sec. 4.4, the motivation for considering locally uniform CTMDPs
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is the fact that they allow us to de�ne a special class of late schedulers which generally

induce strictly better probability bounds than the standard GM-schedulers.

More precisely, in the standard de�nition of CTMDPs (cf. Def. 3.11), the exit rate of

a state depends on the action that is chosen in that state. �is is not the case in locally
uniform CTMDPs: Here, we require that the exit rate (and hence the sojourn time dis-
tribution) in a state is the same for all enabled actions in that state. Accordingly, we

consider the subclass of locally uniform CTMDPs. It is characterized by Def. 4.2 (see
page 91) which is equivalent to stating that a CTMDP C = (S ,Act,R, ν) is locally uniform
i� ∀s ∈ S . ∀α, β ∈ Act(s). E(s, α) = E(s, β).
Hence local uniformity ensures that the sojourn time in any state does not depend

on the action that is chosen in that state. Hence, we may use E(s) = E(s, α) for some

α ∈ Act(s) to denote the exit rate of state s. In the remainder of this chapter, we assume
that all CTMDPs are locally uniform and only mention this restriction where necessary.

Example 5.1. Consider the CTMDP C in Fig. 5.1. It is locally uniform as in state s0, the exit
rate under action α is E(s0, α) = ∑s′∈S R(s0, α, s′) = R(s0, α, s2) + R(s0, α, s3) = 1 + 2 = 3
which equals the exit rate E(s0, β) = R(s0, β, s1) = 3 of state s0 under action β. Apart from
the fact that it is locally uniform, the behavior of the CTMDP C is as usual: �e choice
between actions α and β in state s0 is nondeterministic. If α is chosen, the α-transitions to
states s2 and s3 compete for execution. �e motivation for local uniformity is the fact, that
the sojourn time in s0 becomes independent of the action that is chosen. In any case, it is
exponentially distributed with rate E(s0) = 3. ♢

5.1.1 Probability measures in locally uniform CTMDPs

As we already observed in Sec. 4.4, locally uniform CTMDPs allow us to de�ne ML-
schedulers that cannot be de�ned for general CTMDPs and which perform strictly better
than general GM-schedulers. In Sec. 5.1.2 we will come back to this issue and de�ne the

semantics of late schedulers in locally uniform CTMDPs in more detail.

A further remark is necessary before we do so: Obviously, locally uniform CTMDPs

are a strict subclass of ordinary CTMDPs: Hence, the construction of their associated
measurable spaces remains unaltered and all de�nitions from Sec. 3.3.2 (see page 76)
carry over to the current setting.�e probability measures de�ned on those measurable

spaces change however when considering late schedulers:

5.1.2 Measurable late schedulers

�e restriction to locally uniform CTMDPs allows us to de�ne a new class of schedulers

which we refer to as “late” schedulers. In the classical setting (cf. Sec. 3.3.2), the scheduler
immediately decides for an action when entering a state. Intuitively, this is a necessity as

the state’s sojourn time distribution is determined by the action that is chosen by the
scheduler.
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Figure 5.1: Example of a locally uniform CTMDP.

In locally uniform CTMDPs, the setting is di�erent as the state’s sojourn time distribu-
tion is independent of the selected action. Intuitively, no matter which action the sched-

uler chooses, the sojourn in the current state remains una�ected. �erefore it is natural
to consider schedulers that delay their decision up to the point when the sojourn time has

elapsed and the nondeterminismmust be resolved in order to obtain the successor-state
distribution. �is argument leads to the de�nition of ML-schedulers, which postpone
their decision up to the point when the current state is le�.�ereby, they are able to addi-

tionally incorporate the current state’s sojourn time into their decision.�is is why they
expect the sojourn time in the current state as an additional argument:

De�nition 5.1 (Measurable late scheduler). A late scheduler for a CTMDP(S ,Act,R, ν) is a mapping D ∶ Paths⋆ × R≥0 × FAct → [0, 1] where D(π, t, ⋅) ∈
Distr(Act(π↓)) for all t ∈ R≥0 and π ∈ Paths⋆. A late scheduler D is a measurable
late scheduler (ML-scheduler) i� the functions D(⋅, ⋅,A) ∶ Paths⋆ × R≥0 → [0, 1] are
measurable for all A ∈ FAct.

Similar to the de�nition of GM-schedulers (see Def. 3.13), the measurability condi-
tion for ML-schedulers states that for all A ∈ FAct and B ∈ B ([0, 1]) it must hold that{(π, t) ∣ D(π, t,A) ∈ B} ∈ σ (FPaths⋆ ×B(R≥0)).
Intuitively, the behavior of an ML-scheduler is described as follows: Let π be a �nite

path ending in state s with ∣Act(s)∣ ≥ 1. If state s is le� a�er t units of time, then D(π, t, ⋅)
is the probability distribution over Act(s) which resolves the nondeterminism in state s
for history π and sojourn time t. For anML-scheduler D, the argument t only refers to
the time spent in the current state s. However, D can infer the total time tπ that has passed
before taking the decision D(π, t) from the sojourn time t and the timing information

contained in the trajectory π: Formally, we therefore set tπ = ∆(π) + t.
LetML(C) denote the class ofML-schedulers for a locally uniformCTMDP C; we omit

the reference to C whenever it is clear from the context. Further, a scheduler D ∈ ML
is deterministic if for all π ∈ Paths⋆ and t ∈ R≥0, the distribution D(π, t, ⋅) is degenerate;
otherwise, it is randomized. Where appropriate, we useD(π, t) to denote the distribution
D(π, t, ⋅). If D ∈ML is deterministic and D(π, t) = {α ↦ 1}, we identify the distribution{α ↦ 1} and action α.
In the following, we focus on total time positional late schedulers [Mil68a, NSK09]
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which decide only based on the current state and the total elapsed time tπ, that is, they
consider the sum of the time that has elapsed during the trajectory π and the sojourn
time in the current state:

De�nition 5.2 (Total-time positional late scheduler). Let C = (S ,Act,R, ν) be a CT-
MDP and D ∈ML. �e scheduler D is a total-time positional randomized late scheduler
(TTPRL) i� for all π1, π2 ∈ Paths

⋆ and for all t1, t2 ∈ R≥0 it holds that

(π1↓ = π2↓ ∧ ∆(π1) + t1 = ∆(π2) + t2)⇒ D(π1, t1) = D(π2, t2).

A TTPRL-scheduler yields the same distribution for trajectories π1 and π2 if π1 and
π2 end in the same state (the current state) and if the sums of the time that has passed

on path π1 (resp. path π2) and the sojourn time t1 (resp. t2) of the current state are equal.
�erefore, anyTTPRL-schedulerD′ is isomorphic to amappingD ∶ S×R≥0 → Distr(Act),
whereD(s, tπ) = D′(π, t) for all paths π ∈ Paths⋆ and t ∈ R≥0with ∆(π)+t = tπ and π↓ = s.
For the other direction, any measurable mapping D ∶ S × R≥0 → Distr(Act) induces the
TTPRL-schedulerD′withD′(π, t) = D(π↓, ∆(π)+t). To ease notation and to distinguish
between ML and TTPRL-schedulers, in the following we use this one-to-one correspon-

dence and specify TTPRL-schedulers as functions D ∶ S × R≥0 → Distr(Act). As before,
if D(π, t) is degenerate for all π ∈ Paths⋆ and t ∈ R≥0, the scheduler D is deterministic;

accordingly, we use TTPDL to denote the subclass of deterministic TTPRL-schedulers.

5.1.3 Probability measures

Given a CTMDP C, each ML-scheduler D induces a unique stochastic process on C.
However, due to the di�erent scheduling discipline ofML-schedulers (compared to GM-

schedulers) we have to adapt the de�nition of the induced probability measures. �ere-
fore, we follow the lines of Sec. 3.3.2 and make adjustments where necessary. As it turns
out, we only have to adapt the probability measure µD(π, ⋅) for sets of measurable com-

bined transitions (cf. Def. 3.14); all further de�nitions carry over without modi�cations.
Recall that paths in a CTMDP can be seen as a �nite (or in�nite) concatenation of

combined transitions; we stick to the notations of Sec. 3.3.2 and use Ω = Act × R≥0 × S
and F = σ (FAct ⊗B(R≥0)⊗ FS) to denote the set of combined transitions and their
associated σ-�eld.

De�nition 5.3 (Probability of combined transitions). Let C = (S ,Act,R, ν) be a CT-
MDP and D ∈ML. For all π ∈ Paths⋆, de�ne the probabilitymeasure µD(π, ⋅) ∶ F→ [0, 1]
where

µD(π,M) = ∫
R≥0

ηE(π↓)(dt) ∫
Act

D(π, t, dα) ∫S IM(α, t, s′) P(s, α, ds′).
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Recall that ηE(π↓) is the exponential distribution of the sojourn time t of the state π↓
which has rate E(π↓); further, IM is the characteristic function of M ∈ F. In fact, as in
Sec. 3.3.2, µD(π,M) is the probability to continue with some combined transition in M,
given that we hit the current state π↓ along the trajectory π. However, for late schedulers
D ∈ML, µD refers to a slightly di�erent probability measure where the scheduler knows
the amount of time that has passed in the current state.

Having the probability measures µD(π, ⋅) at hand, we now can de�ne the probabilities
of measurable sets of paths in exactly the sameway as for early schedulers. We restate the

de�nition here for completeness:

De�nition 5.4 (Probability measure). Let C = (S ,Act,R, ν) be a CTMDP and D ∈
ML. For n ≥ 0, we de�ne the probability measures Prnν,D on the measurable space
(Pathsn ,FPathsn) inductively:

Pr0ν,D ∶ FPaths0 → [0, 1] ∶ Π ↦∑
s∈Π

ν (s) and for n > 0:

Prnν,D ∶ FPathsn → [0, 1] ∶ Π ↦ ∫
Pathsn−1

Prn−1ν,D(dπ) ∫
Ω
IΠ(π ○m) µD(π, dm).

All other results, especially the extension to measurable cylinders and to the σ-�eld
over in�nite paths carry over from Def. 3.15 on page 80.

5.2 A �xed point characterization for time-bounded

reachability

In this section, we aim at computing the upper bounds on the probability to reach a

set G ⊆ S of goal states within a given time bound z (denoted ◇[0,z]G) with respect to
the class ofML-schedulers.

De�nition 5.5 (Maximum time-bounded reachability). Let C = (S ,Act,R, ν) be a
CTMDP, G ⊆ S , s ∈ S and z ∈ R≥0. �en

pC ,Gmax ∶ S × R≥0 → [0, 1] ∶ (s, z)↦ sup
D∈ML

Prωνs ,D(◇[0,z]G)
is themaximum time-bounded reachability for the set G of goal states and time bound z.

We omit the superscripts C andG of pC ,Gmax if they are clear from the context. Any sched-
uler D ∈ ML induces the reachability probability function Prωνs ,D(◇[0,⋅]G) ∶ R≥0 → [0, 1],
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which is continuous by de�nition. As the following lemma proves, continuity — and

thereby measurability with respect to B(R≥0)— extends to the function pmax(s, ⋅):

Lemma 5.1. �e functions pmax(s, ⋅) ∶ R≥0 → [0, 1] are continuous and measurable.

Proof. We have to prove that for all s ∈ S and z ∈ R≥0,

lim
δ→0+

pmax(s, z − δ) = pmax(s, z) = lim
δ→0+

pmax(s, z + δ). (5.1)

By de�nition, the reachability probability functions Prωνs ,D(◇[0,⋅]G) are continuous and
monotone; thus, their point-wise supremum pmax(s, ⋅) is also monotone. However, the
proof that pmax(s, ⋅) is continuous is not that easy. To see why, note that in general, the
pointwise supremum of a countable family of continuous functions is not guaranteed to

be continuous. Hence, a more detailed argument is necessary:

To prove that pmax(s, ⋅) is continuous, we proceed by contraposition and assume that
there exists z ∈ R≥0 such that (5.1) is violated: Assume that pmax(s, ⋅) is not continuous
from the le� at point z ∈ R≥0, i.e.

∃ε > 0. lim
δ→0+

pmax(s, z − δ) = pmax(s, z) − ε. (5.2)

�en choose D ∈ ML such that Prωνs ,D(◇[0,z]G) = pmax(s, z) − ξ for some ξ ≤ ε
2 . By def-

inition, the function Prωνs ,D(◇[0,⋅]G) ∶ R≥0 → [0, 1] is continuous. Further, Prωνs ,D(s, z′) ≤
pmax(s, z′) for all z′ ∈ R≥0 by de�nition of pmax. �erefore, limδ→0+ Pr

ω
νs ,D
(◇[0,z−δ]G) ≤

limδ→0+ pmax(s, z − δ). Hence
pmax(s, z) − ξ = Prωνs ,D(◇[0,z]G)

= lim
δ→0+

Prωνs ,D(◇[0,z−δ]G)
≤ lim

δ→0+
pmax(s, z − δ).

But then, limδ→0+ pmax(s, z − δ) ≥ pmax(s, z) − ξ > pmax(s, z) − ε, contradicting (5.2).
Similarly, we prove by contradiction that pmax(s, ⋅) is right-continuous: Assume that

pmax(s, ⋅) is not right-continuous, that is, there exists z ∈ R≥0 such that

∃ε > 0. lim
δ→0+

pmax(s, z + δ) = pmax(s, z) + ε. (5.3)

�is implies that there exists a schedulerD ∈ML that satis�es limδ→0+ Pr
ω
νs ,D
(◇[0,z+δ]G) =

limδ→0+ pmax(s, z + δ)− ξ for some ξ ≤ ε
2 . As before, the function Prωνs ,D(◇[0,⋅]G) ∶ R≥0 →[0, 1] is continuous. Further, Prωνs ,D(s, z′) ≤ pmax(s, z′) for all z′ ∈ R≥0 by de�nition of
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pmax.�erefore, Prωνs ,D(◇[0,z]G) = limδ→0+ Pr
ω
νs ,D
(◇[0,z+δ]G) = limδ→0+ pmax(s, z + δ)− ξ.

Hence

lim
δ→0+

pmax(s, z + δ) − ξ = lim
δ→0+

Prωνs ,D(◇[0,z+δ]G)
= Prωνs ,D(◇[0,z]G)
≤ pmax(s, z).

But then, limδ→0+ pmax(s, z + δ) ≤ pmax(s, z) + ξ < pmax(s, z) + ε, contradicting (5.3).

�us, pmax(s, ⋅) is continuous. As continuity implies measurability [ADD00, p.36], the
claim follows. ◻

�e next theorem shows that the function pmax is the least �xed point of a higher order
operator Ω which is de�ned on measurable functions F ∶ S × R≥0 → [0, 1].�is result is
essential for the discretization developed in Sec. 5.3.1. It has been inspired by a similar

�xed point characterization which is used in [BHHK03,�m. 1] to derive the probability
of time-bounded until formulas in CTMCs.

�eorem 5.1 (A �xed point characterization for time-bounded reachability). Let
C = (S ,Act,R, ν) be a CTMDP and G ⊆ S a set of goal states. �en pmax is the least
�xed point of the higher-order operator Ω ∶ (S × R≥0 → [0, 1]) → (S × R≥0 → [0, 1])
which is de�ned for s ∈ S , z ∈ R≥0, and measurable function F ∶ S × R≥0 → [0, 1] such
that Ω(F)(s, z) = 1 if s ∈ G and for s ∉ G:

Ω(F)(s, z) = ∫
z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ F(s′, z − t) dt. (5.4)

Proof. �e proof is split in twoparts: First, we show that pmax is a �xed point ofΩ. Second,

we prove that pmax is the least �xed point of Ω by decomposing the event ◇[0,z]G with
respect to the number n of transitions that are needed to reach a state in G. By induction
on n, we then prove that pmax(s, z) ≤ F(s, z) for any other �xed point F of Ω and all s ∈ S
and z ∈ R≥0.
We prove that pmax is a �xed point of Ω as follows: If s ∈ G, then pmax(s, z) = 1 =

Ω (pmax) (s, z) and the claim follows. If s ∉ G, we proceed as follows. Let Π(z, n) be the
set of all in�nite paths π = s0

α0 ,t0ÐÐ→ s1
α1 ,t1ÐÐ→ ⋯ such that sn ∈ G and si ∉ G for all i < n

and∑n−1
i=0 ti ≤ z. Further, let p

n
max(s, z) = supD∈ML Pr

ω
νs ,D
(⊍n

i=0Π(z, i)) be the least upper
bound on the probability to reach G within z time units with at most n transitions.

In a �rst step, we prove that pn+1max(s, z) = Ω(pnmax)(s, z). By de�nition we have:

Ω(pnmax)(s, z) = ∫
z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pnmax(s′, z − t) dt
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= ∫
z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ sup

D′∈ML

Prωνs′ ,D′(
n⊍
i=0

Π(z − t, i))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c(α)

dt. (5.5)

For given state s ∈ S , a given number of transitions n ∈ N, a given time bound z
and a �xed sojourn time t, we de�ne the function c ∶ Act → [0, 1] such that c(α) =
∑s′∈S P(s, α, s′) ⋅ supD′∈ML Pr

ω
νs′ ,D

′(⊍n
i=0 Π(z − t, i)). Further, let γ ∈ Act denote a max-

imal action for state s and time t, i.e. c(γ) = maxα∈Actc(α). Obviously, any convex
combination of actions does not yield values larger than c(γ): More precisely, it holds

c(γ) = supµ∈Distr(Act)∑α∈Act µ(α) ⋅ c(α).
Now, letD ∈ML, s ∈ S , α ∈ Act and t ∈ R≥0. We de�ne theML schedulerDs,α,t such that

Ds,α,t(π, t′)(β) = D(s α,t
Ð→ π, t′)(β) for all π ∈ Paths⋆, β ∈ Act and t′ ∈ R≥0. Hence, Ds,α,t

yields the same decisions for history π as the original scheduler D does for the history

s
α,t
Ð→ π, where we de�ne s

α,t
Ð→ π = s

α,t
Ð→ s0

α0 ,t0ÐÐ→ s1
α1 ,t1ÐÐ→ ⋯ if π = s0

α0 ,t0ÐÐ→ s1
α1 ,t1ÐÐ→ ⋯.�us,

we can rewrite (5.5):

Ω(pnmax)(s, z) = ∫
z

0
E(s)e−E(s)t ⋅ sup

µ∈Distr(Act)
∑
α∈Act

µ(α)

⋅

c(α)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
s′∈S

P(s, α, s′) ⋅ sup
D′∈ML

Prωνs′ ,D′(
n⊍
i=0

Π(z − t, i)) dt
= ∫

z

0
E(s)e−E(s)t ⋅ sup

D∈ML
∑
α∈Act

D(s, t)(α) ⋅∑
s′∈S

P(s, α, s′)
⋅ Prωνs′ ,Ds ,α ,t

( n⊍
i=0

Π(z − t, i)) dt
(∗)
= sup

D∈ML
∫

z

0
E(s)e−E(s)t ⋅ ∑

α∈Act

D(s, t)(α) ⋅∑
s′∈S

P(s, α, s′)
⋅ Prωνs′ ,Ds ,α ,t

( n⊍
i=0

Π(z − t, i)) dt
= sup

D∈ML

Prωνs ,D(
n+1⊍
i=0

Π(z, i)) = pn+1max(s, z).
Note that in the above derivation, we swap the supremum supD∈ML and the integral to
obtain equality (∗). In this case this can be done, as each late scheduler D ∈ ML is a

function which expects the integration variable t as an argument: To see this, �x some t ∈[0, z] and let Dt,1 ,Dt,2 , . . . be a sequence of schedulers that converges to the supremum,
that is

sup
D∈ML

∑
α∈Act

D(s, t)(α) ⋅∑
s′∈S

P(s, α, s′) ⋅ Prωνs′ ,Ds ,α ,t
( n⊍
i=0

Π(z − t, i)) dt
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= lim
i→∞
∑
α∈Act

Dt,i(s, t)(α) ⋅∑
s′∈S

P(s, α, s′) ⋅ Prω
νs′ ,D

t , i
s ,α ,t
( n⊍
i=0

Π(z − t, i)) dt.
If we de�ne a sequence ofML-schedulers D̂ i such that D̂ i(s, t) = Dt,i(s, t) for all t ∈ [0, z],
then the probabilities induced by the sequence D̂ i converge pointwise to the supremum
by construction. Hence, equality (∗) follows.
�us pn+1max(s, z) = Ω(pnmax)(s, z); further, Prop. 5.1 (Prop. 5.1 is givenbelowonpage 123)

states that limn→∞ pnmax(s, z) = pmax(s, z) for all s ∈ S and z ∈ R≥0.�erefore

pmax(s, z) = lim
n→∞

pnmax(s, z) = lim
n→∞

pn+1max(s, z)
= lim

n→∞
Ω(pnmax)(s, z) = Ω( limn→∞

pnmax)(s, z) = Ω(pmax)(s, z),
proving that pmax is a �xed point of Ω. In the above derivation step, note that by de�nition
of Ω one can show that limn→∞Ω(pnmax)(s, z) = Ω(limn→∞ pnmax)(s, z):

lim
n→∞

Ω(pnmax)(s, z) = lim
n→∞ ∫

z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pnmax(s′, z − t) dt

= ∫
z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ lim

n→∞
pnmax(s′, z − t) dt

= Ω( lim
n→∞

pnmax)(s, z).
It remains to show that pmax is the least �xed point of Ω. From the �rst part, we know that
pmax is a �xed point of Ω and that pn+1max(s, z) = Ω(pnmax)(s, z). Now, let F ∶ S×R≥0 → [0, 1]
be another �xed point of Ω. By induction on n, we show that pnmax(s, z) ≤ F(s, z) for all
n ∈ N. For the base case, p0max(s, z) = 1 = Ω(F(s, z)) = F(s, z) if s ∈ G and p0max(s, z) =
0 ≤ F(s, z), otherwise. Further,

pn+1max(s, z) = Ω(pnmax)(s, z)
= ∫

z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pnmax(s′, z − t) dt

(* by the induction hypothesis *)

≤ ∫
z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ F(s′, z − t) dt

= Ω(F(s, z)) = F(s, z).
Hence, F(s, z) ≥ limn→∞ pnmax(s, z) = pmax(s, z) and the claim follows. ◻

In the proof of�m. 5.1 we need to exchange the order of taking the limit and the
supremum.�is is justi�ed by the following proposition:
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Proposition 5.1. Let C = (S ,Act,R, ν) be a CTMDP, s ∈ S , G ⊆ S and z ∈ R≥0. Further,
let Π(z, i) be de�ned as in the proof of �m. 5.1. �en

lim
n→∞

sup
D∈ML

Prωνs ,D(
n⊍
i=0

Π(z, i)) = sup
D∈ML

Prωνs ,D (◇[0,z]G) .

Proof. Recall that Π(z, i) = {π ∈ Pathsω ∣ π[i] ∈ G∧∀k < i. π[k] ∉ G∧∑i−1
k=0 δ(π, k) ≤ z}.

Let Πn ∶= ⊍n
i=0 Π(z, i); then Πn ⊆ Πn+1 and Πn ↑ ◇[0,z]G. By [ADD00,�m. 1.2.7(a)], it

holds for all D ∈ML that Prωνs ,D(Πn) → Prωνs ,D(◇[0,z]G) for n →∞. As this reasoning ap-

plies to all D ∈ML, it holds that sup{Prωνs ,D(Πn) ∣ D ∈ML} → sup{Prωνs ,D(◇[0,z]G) ∣ D ∈
ML} for n → ∞. �erefore we can conclude that limn→∞ sup{Prωνs ,D(Πn) ∣ D ∈ML} =
supD∈ML Pr

ω
νs ,D
(◇[0,z]G). ◻

Let us come back to�m. 5.1. Intuitively, the term E(s)e−E(s)t on the right-hand side
of Eq. 5.4 corresponds to the density of the sojourn time in state s; accordingly, if state s
is le� at time t, we multiply with the maximum probability (with respect to all actions
α ∈ Act) to reach a goal state in G via action α within the remaining z − t time units.

5.2.1 Optimal TTPDL schedulers

Given the �xed point characterization of�m. 5.1, we now de�ne a TTPDL scheduler
which induces the probabilities pmax. Note that the fact that this is possible has an im-

portant implication: Obviously, the additional information available toML-schedulers is
irrelevant for achieving maximum time-bounded reachability probabilities!

A scheduler D ∈ ML is optimal for the set of goal states G and time bound z i� for

all D′ ∈ ML and s ∈ S it holds that Prωνs ,D′(◇[0,z]G) ≤ Prωνs ,D(◇[0,z]G). Further, for ε > 0,
D ∈ML is ε-optimal forG and z i� ∣Prωνs ,D(◇[0,z]G)−pmax(s, z)∣ ≤ ε for all s ∈ S . Note that
up to now, it is not clear whether an optimal scheduler exists. We answer this question

in the a�rmative by �rst de�ning a TTPDL scheduler Dz and then proving that Dz is
optimal (cf.�m. 5.2):

De�nition 5.6 (�e scheduler Dz). Let C = (S ,Act,R, ν) be a CTMDP, G ⊆ S a set of
goal states and z ∈ R≥0 a time bound. Given an arbitrary (�xed) total order ≺ on Act, we
de�ne the TTPDL scheduler Dz such that for all s ∈ S and tπ ≤ z:

Dz(s, tπ) =min
≺
{α ∈ Act(s) ∣ ∀β ∈ Act(s). f (s, z − tπ , β) ≤ f (s, z − tπ , α)} ,

where f (s, z′, γ) = ∑s′∈S P(s, γ, s′) ⋅ pmax(s′, z′). If tπ > z, set Dz(s, tπ) =min≺Act(s).
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Here f (s, z − tπ , β) denotes the maximum probability to reach a state in G within the

remaining z − tπ time units via action β for the case that tπ time units have expired on
the path that led to state s and in state s itself. However, multiple actions α may exist that
maximize f (s, z − tπ , α). Hence, we �x some total order ≺ to ensure uniqueness of Dz.

Note that Def. 5.6 implies that Dz(s, tπ + t) = Dz−tπ(s, t) for all s ∈ S , t, z ∈ R≥0 and tπ ≤ z.
Exploiting the measurability of pmax (cf. Lemma 5.1), we show that Dz is measurable:

Lemma 5.2. �e schedulers Dz are measurable for all z ∈ R≥0.

Proof. Let z ∈ R≥0 be a time bound and let ≺ be the total order on Act as given in Def. 5.6.
�en Dz is de�ned by

Dz(s, tπ) =min
≺
{α ∈ Act(s) ∣ ∀β ∈ Act(s). f (s, z−tπ , β) ≤ f (s, z−tπ , α)}

and depends only on the function

f (s, z′, γ) = ∑
s′∈S

P(s, γ, s′) ⋅ pmax(s′, z′) = ∑
s′∈S

P(s, γ, s′) ⋅ sup
D′∈ML

Prωνs′ ,D′(◇[0,z′]G).
By Lemma 5.1, the function pmax(s, ⋅) is continuous; this implies that pmax(s, ⋅) is mea-

surablewith respect to the Lebesgue-measure onB(R≥0). Hence, the functions f (s′ , ⋅, γ) ∶
R≥0 → [0, 1] are measurable. Now Dz(s, tπ) = α i� f (s, z− tπ , α) = maxβ∈Act f (s, z− tπ , β)
and α is minimal with respect to ≺. Measurability of Dz now follows from the fact, that
the maximum of measurable functions is again measurable and that by ≺, the minimal

action is uniquely determined. ◻

With the measurability of Dz, we are now able to prove that the scheduler Dz indeed
maximizes the probability of reaching G within at most z time units for any initial state s:

�eorem 5.2 (Optimality). Let C = (S ,Act,R, ν) be a CTMDP, G ⊆ S a set of goal
states, s ∈ S an initial state and z ∈ R≥0 a time bound. �en

Prωνs ,Dz (◇[0,z]G) = pmax(s, z).

Proof. For the proof, we de�ne total time step counting positional late schedulers which
are a superclass of TTPRL schedulers that also considers the number of transitions taken

before reaching the current state: A scheduler D ∈ ML is a total time step counting posi-
tional late scheduler (TTSCPRL) i� ∀π1, π2 ∈ Paths

⋆. ∀t1, t2 ∈ R≥0. (π1↓ = π2↓ ∧ ∣π1∣ =∣π2∣ ∧ ∆(π1) + t1 = ∆(π2) + t2)⇒ D(π1, t1) = D(π2, t2). Hence, any TTSCPRL scheduler
D ∈ML can be expressed equivalently as a function D′ ∶ S ×N×R≥0 → Distr(Act), where
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D′(π↓, ∣π∣, ∆(π) + t)= D(π, t) for all π ∈ Paths⋆ and t ∈ R≥0. Note that TTSCPRL sched-

ulers extend TTPRL schedulers, as they additionally depend in their second argument on
the number of transitions that have occurred up to the current state. A TTSCPRL sched-
uler D is deterministic (TTSCPDL) i� ∀s ∈ S . ∀c ∈ N. ∀tπ ∈ R≥0. ∃α ∈ Act. D(s, c, tπ) ={α ↦ 1}. To ease notation, we assume that TTSCPDL schedulers are given as mappings
of the form D ∶ S ×N × R≥0 → Act.
For the proof, we de�ne the TTSCPDL schedulers Dz

n ∶ S ×N×R≥0 → Act with respect
to the total order ≺ on Act used in Def. 5.6 such that

Dz
n(s, c, tπ) =min

≺
{α ∈ Act(s) ∣ ∀β ∈ Act(s).

f ′(s, n − c − 1, z − tπ , β) ≤ f ′(s, n − c − 1, z − tπ , α)},
where f ′(s, n′, z′, γ) =∑s′∈S P(s, γ, s′)⋅supD′∈ML Pr

ω
νs′ ,D

′(⊍n′

i=0Π(z′, i)). HenceDz
n(s, c, tπ)

is the optimal action if n − c − 1 steps and z − tπ time units remain to reach a goal state
in G.
Now, let pnmax(s, z) = supD∈ML Pr

ω
νs ,D
(⊍n

i=0Π(z, i)) bede�ned as in the proof of�m. 5.1.

Further, we de�ne qnmax(s, z) = Prωνs ,Dz
n
(⊍n

i=0Π(z, i)) and qmax(s, z) = Prωνs ,Dz(◇[0,z]G).
�us, we aim at proving that pmax = qmax; as a �rst step, we show by induction on n that
pnmax = q

n
max:

1. In the induction base, we distinguish two cases: If s ∈ G, then p0max(s, z) = 1 =
q0max(s, z); otherwise, p0max(s, z) = 0 = q0max(s, z). Hence, p0max = q

0
max.

2. To prove the induction step, we use the fact (cf. the proof of�m. 5.1) that pn+1max =
Ω(pnmax). As induction hypothesis, assume that pnmax = q

n
max.�en

pn+1max(s, z) = Ω(pnmax)(s, z) (* as shown in the proof of�m. 5.1 *)

= ∫
z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pnmax(s′, z − t) dt

(* de�nition of Dz
n+1 *)

= ∫
z

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

n+1(s, 0, t), s′) ⋅ pnmax(s′, z − t) dt
(* applying the induction hypothesis *)

= ∫
z

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

n+1(s, 0, t), s′) ⋅ qnmax(s′, z − t) dt
(* de�nition of qnmax*)

= ∫
z

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

n+1(s, 0, t), s′) ⋅ Prωνs′ ,Dz−t
n
( n⊍
i=0

Π(z, i)) dt
(* see Remark 5.1 below *)

= ∫
z

0
E(s)e−E(s)t ∑

s′∈S
P(s,Dz

n+1(s, 0, t), s′)Prωνs′ ,Dz
n+1(⋅,⋅+1 ,⋅+t)

( n⊍
i=0

Π(z, i)) dt



126 5.2 A �xed point characterization for time-bounded reachability

(* by de�nition of Prωνs ,Dz
n+1
*)

= Prωνs ,Dz
n+1
(n+1⊍
i=0

Π(z, i)) = qn+1max(s, z).
Remark 5.1. In the derivations above,we use Dz

n+1(⋅, ⋅+1, ⋅+t) to denote the TTSCPDL sched-
uler that is given by Dz

n+1(⋅, ⋅+1, ⋅+t) ∶ S × N × R≥0 → Act with Dz
n+1(⋅, ⋅+1, ⋅+t)(s, c, tπ) =

Dz
n+1(s, c + 1, t + tπ). Note that from the de�nition of Dz

n and the function f ′, it follows
directly that Dz

n+1(s, c + 1, t + tπ) = Dz−t
n (s, c, tπ) for all s ∈ S , c ∈ N, t ≤ z and tπ ∈ R≥0.

With the above induction, we have shown that pnmax = q
n
max for all n ∈ N. Now it remains

to prove that qnmax → qmax for n →∞.�erefore, note that

lim
n→∞

f ′(s, n, z′ , γ) = lim
n→∞
∑
s′∈S

P(s, γ, s′) ⋅ sup
D′∈ML

Prωνs′ ,D′(
n⊍
i=0

Π(z′, i)) (* def. f ′*)

= ∑
s′∈S

P(s, γ, s′) ⋅ lim
n→∞

sup
D′∈ML

Prωνs′ ,D′(
n⊍
i=0

Π(z′, i))
= ∑

s′∈S
P(s, γ, s′) ⋅ sup

D′∈ML

Prωνs′ ,D′(◇[0,z′]G) (* by Prop. 5.1*)

= f (s, z′, γ).
As Dz and Dz

n are de�ned with respect to functions f and f ′, respectively, it follows that
for n →∞, Dz

n(s, c, tπ) = Dz(s, tπ) for all c ∈ N, s ∈ S and tπ ∈ R≥0.�us for n →∞:

qnmax(s, z) = Prωνs ,Dz
n
( n⊍
i=0

Π(z, i))→ Prωνs ,Dz(◇[0,z]G) = qmax(s, z).
Now the claim follows as we have for all s ∈ S and z ∈ R≥0:

pmax(s, z) = lim
n→∞

pnmax(s, z) = lim
n→∞

qnmax(s, z) = qmax(s, z). ◻

�e proof of the theorem is quite technical. �erefore, we give another, slightly more

intuitive but formally not completely correct argument and explain why the technical
details (such as the introduction ofTTSCPDL schedulers) in the formal proof of�m. 5.2

are indeed necessary:
By�m. 5.1, it holds for all s ∈ S and z ∈ R≥0 that

pmax(s, z) = Ω(pmax)(s, z)
= ∫

z

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − t) dt

= ∫
z

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz(s, t), s′) ⋅ pmax(s′, z − t) dt.

Applying this equality recursively to the term pmax(s′, z − t) shows that Dz induces the
probability pmax(s, z) for the event ◇[0,z]G and initial state s. To see this, note that
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Dz−tπ(s, t) = Dz(s, tπ + t) for all tπ ≤ z and t ∈ R≥0; hence, the scheduler Dz−t at time t′

which is used in the next recursion step (i.e. within pmax(s′, z− t)) equals Dz at time t+ t′.
Hence the above equation yields a recursive de�nition of pmax which depends only on Dz.

However, the above reasoning uses an inductive argument on z, although the domain
of z (i.e. the positive reals) is not well-founded.�erefore, in the formal proof of�m. 5.2

we use induction on the number n ∈ N of transitions available to reach G within time z
and resort to step counting TTSCPDL schedulers.
A direct consequence of�m. 5.2 is the existence of optimal schedulers. Further:

Corollary 5.1. TTPDL schedulers su�ce to maximize time-bounded reachability proba-
bilities.

5.2.2 Piecewise-constant schedulers

In Def. 5.5, the upper bound pmax on the maximum time-bounded reachability probabil-

ity of a set G of goal states is de�ned with respect to the class of ML-schedulers. Corol-
lary 5.1 allows us to only consider the subclass of TTPDL schedulers to compute pmax,
i.e. we restrict to schedulers of the form D ∶ S × R≥0 → Act. However, TTPDL sched-

ulers are still continuous in their second argument. To obtain schedulers with a �nite
representation, we now introduce piecewise-constant TTPDL schedulers.
�ey prove to be useful for the scheduler synthesis that we discuss in Sec. 5.3.4. As we

will see, a byproduct of our discretization technique is an ε-optimal τ-scheduler which
approximates the optimal reachability probability up to an a priori speci�ed error ε and
which changes its decisions only in between time-intervals of length τ.

De�nition 5.7 (Piecewise-constant TTPDL scheduler). Let C = (S ,Act,R, ν) be a
CTMDP and D ∶ S × R≥0 → Act a TTPDL scheduler. D is piecewise-constant i� for
all s ∈ S and α ∈ Act(s) there exist disjoint intervals A0s,α ,A1s,α ,A2s,α , . . . ⊆ R≥0 such that
for all tπ ∈ R≥0: D(s, tπ) = α ⇐⇒ tπ ∈ ⊍∞i=0 Ai

s,α . A piecewise-constant scheduler D is
non-Zeno if ∣{Ai

s,α ∣ inf Ai
s,α < z}∣ <∞ for all z ∈ R≥0, s ∈ S and α ∈ Act.

We use PCDL to denote the set of all piecewise-constant and non-Zeno TTPDL sched-
ulers. Intuitively, for a state s ∈ S and a given time-bound z, a PCDL-scheduler changes
its decision for an action only �nitely many times:�e intervals Ai

s,α in Def. 5.7 describe
the time-periods, in which the scheduler chooses action α constantly if the current state

is s.�e non-Zeno assumption implies that only �nitely many decision epochs occur up
to time z.
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(a) Time-bounded reachability example.
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(b) Optimal PCDL scheduler in state s0.

Figure 5.2: Maximizing time-bounded reachability objectives with PCDL schedulers.

�eorem 5.3 (PCDL schedulers maximize time-bounded reachability probabilities).

Let C = (S ,Act,R, ν) be a CTMDP, G ⊆ S a set of goal states, s ∈ S an initial state and
z ∈ R≥0 a time bound. �en

pmax(s, z) = sup
D∈PCDL

Prωνs ,D (◇[0,z]G) .

Proof. �e proof relies on a measure theoretic argument: As Dz is measurable and deter-
ministic, the sets As,α = {tπ ∈ R≥0 ∣ Dz(s, tπ) = α} are Borel measurable for all s ∈ S and

α ∈ Act. �e approximation theorem (cf.�m. 2.4 on page 24) then permits to approxi-
mate each set As,α arbitrarily closely by a �nite number of intervals which give rise to a
PCDL scheduler.

�erefore, let s ∈ S , α ∈ Act and de�ne As,α = Dz(s, ⋅)−1(α). By de�nition, Dz is a

measurable scheduler. Hence As,α ∈ B. Now let B0 be a �eld of subsets of R≥0 that
generates the σ-�eld B, i.e. let σ(B0) = B. Given ε > 0, we can apply �m. 2.4 to

approximate the set As,α by a set Bs,α ∈ B0 up to an error of ε. More precisely, let θ ∶
B → R≥0 be the Lebesgue measure de�ned by the distribution function Θ(y) = y for
y ∈ R≥0. �us, we use the Lebesgue measure θ to measure the “length” of measurable

subsets of R≥0. If A△B = (A∖ B)∪ (B ∖ A) denotes set di�erence,�m. 2.4 assures that
Bs,α exists such that θ (As,α △ Bs,α) < ε.
ForB0, we choose the set of �nite disjoint unions of right semi-closed intervals; asB0

is a �eld and σ(B0) =B, this is a valid choice (see also Lemma 2.6 andDef. 2.7). As Bs,α ∈
B0, there exist ns,α ∈ N and disjoint intervals B0s,α , . . . , B

ns ,α
s,α such that Bs,α = ⊍ns ,α

i=0 B
i
s,α .

Now we are ready to construct a scheduler Dz
ε which approximates Dz up to an error of

ε as follows: Dz
ε(s, tπ) = α ⇐⇒ tπ ∈ ⊍ns ,α

i=0 B
i
s,α . By de�nition, D

z
ε is a piecewise constant

and a non-Zeno scheduler. �us Dz
ε ∈ PCDL for all ε > 0; further, from the fact that

θ ({tπ ∈ R≥0 ∣ Dz(s, tπ) /= Dz
ε(s, tπ)}) < ε, we obtain for the probability measures on com-

bined transitions (cf. Def. 5.3) that limε→0 µDz
ε
(π, ⋅) = µDz(π, ⋅) for all π ∈ Paths⋆. �is
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extends inductively (cf. Def. 5.4) to the probability measure on in�nite paths, i.e.

lim
ε→0

Prωνs ,Dz
ε
(◇[0,z]G) = Prωνs ,Dz (◇[0,z]G) = pmax(s, z).

Now the claim follows, as Dz
ε ∈ TTPDL for all ε > 0. ◻

�e ε-optimal schedulers that we compute in the discretization algorithm in Sec. 5.3.1
yield a special subclass ofPCDL schedulers, where the time intervals onwhich the schedul-

ing decision remains constant all have the same length τ > 0. To formally reason about
such schedulers, we introduce τ-schedulers as a special subclass of PCDL schedulers:

De�nition 5.8 (τ-scheduler). Let C = (S ,Act,R, ν) be a CTMDP, τ ∈ R>0 and D ∈
PCDL. �en D is a τ-scheduler i� for all s ∈ S and k ∈ N:

∃α ∈ Act(s). ∀tπ ∈ [kτ, (k + 1)τ) . D(s, tπ) = α.

Any PCDL scheduler is a τ-scheduler if its choices remain constant on intervals of
length at least τ. As it turns out, the probabilities induced by PCDL and by τ-schedulers
converge for small τ:

�eorem 5.4 (Limiting τ-scheduler). Let C = (S ,Act,R, ν) be a CTMDP, G ⊆ S a set
of goal states, z ∈ R≥0 a time bound and s ∈ S an initial state. For any scheduler D ∈ PCDL,
there exist τ-schedulers Dτ such that

lim
τ→0

Prωνs ,Dτ
(◇[0,z]G) = Prωνs ,D (◇[0,z]G) .

Proof. As D ∈ PCDL, there exist ns,α ∈ N and disjoint intervals B0s,α , . . . , B
ns ,α
s,α for all

s ∈ S and α ∈ Act such that D(s, tπ) = α i� tπ ∈ Bi
s,α for some i ≤ ns,α . If τ → 0,

we can approximate those intervals arbitrarily closely, that is, there exist schedulers Dτ

such that Dτ(s, ⋅)−1(α)→ D(s, ⋅)−1(α). Similar to the proof of�m. 5.3, this implies that

limτ→0 µDτ = µD and therefore

lim
τ→0

Prων,Dτ
(◇[0,z]G) = Prων,D (◇[0,z]G) ,

proving the claim. ◻

Example 5.2. Recall the locally uniform CTMDP C that was used to introduce late sched-
ulers in Sec. 4.4. It is depicted again in Fig. 5.2(a). �e ε-optimal scheduler1 that maximizes

1�e scheduler depicted in Fig. 5.2(b) is the result that is computed by our implementation when maxi-
mizing the time-bounded reachability probability for state s2 with time-bound z = 4.
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the time-bounded reachability probability for the set G = {s2} of goal states and for time
bound z = 1.5 is depicted in Fig. 5.2(b). As expected, its decisions coincide with the theo-
retical derivation that we made in the proof of �m. 4.6 for the optimal ML-scheduler (see
page 109). ♢

5.3 Computing time-bounded reachability probabilities

In the preceding section we have established the theory which is necessary for the main
contribution of this chapter. In particular, we will make use of the �xed-point charac-
terization in�m. 5.1 and the fact (provided by�m. 5.2) that we may restrict ourselves

to TTPDL schedulers. With these preliminaries, we are now ready to reduce the prob-
lem of computing maximum time-bounded reachability in CTMDPs to the problem of
maximizing the step-bounded reachability probability in (discrete-time) MDPs.

�e latter is a well-studied problem which can be solved e�ciently, e.g. by value itera-
tion algorithms [Ber95].�e discretization that we use for our reduction is de�ned such

that it is exact up to an a priori given error bound ε > 0; hence, the results can be made
arbitrarily precise. We study the complexity of our approach and show how to synthesize

ε-optimal schedulers automatically.

5.3.1 Discretizing time in locally uniform CTMDPs

As before, let C be a locally uniform CTMDP, G ⊆ S a set of goal states, s ∈ S an initial
state and z ∈ R≥0 a time bound. We aim at computing pmax(s, z) up to an a priori �xed
error ε > 0. If s ∈ G, this is trivial as pmax(s, z) = 1 for all z ∈ R≥0. To compute pmax(s, z)
for s ∉ G, we use the �xed point characterization of pmax from�m. 5.1. More precisely,
consider the �rst sub-interval [0, τ] of the integral in Eq. (5.4) separately and split the

whole integral accordingly:

pmax(s, z) = Ω(pmax)(s, z)
= ∫

τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − t) dt

+ ∫
z

τ
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − t) dt. (5.6)

Now, let A(s, z) and B(s, z) denote the �rst, resp. second summand in Eq. (5.6). Shi�ing

the range of integration in B(s, z) by (−τ), the next Lemma derives a straightforward
recursive representation of the probability B(s, z) which can easily be used for our dis-
cretization purposes:
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Lemma 5.3. For all s ∈ S , z ∈ R≥0 and τ ∈ [0, z] it holds that
B(s, z) = e−E(s)τ ⋅ pmax(s, z − τ). (5.7)

Proof. We proceed as follows:

B(s, z) = ∫
z

τ
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − t) dt

= ∫
z−τ

0
E(s)e−E(s)(t+τ) ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − (t + τ)) dt

= ∫
z−τ

0
E(s)e−E(s)t e−E(s)τ ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − (t + τ)) dt

= e−E(s)τ ⋅ ∫
z−τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, (z − τ) − t) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pmax(s,z−τ)

= e−E(s)τ ⋅ pmax(s, z − τ). ◻

Note that the factor e−E(s)τ in Eq. (5.7) is the probability that no transition occurs in

state s in the �rst τ time units. Hence, B(s, z) is themaximumprobability of the event that
starting from state s, the setG is reached within z time units while no transition occurs in
the time interval [0, τ]. To bemore precise, let #[0,τ] ∶ Paths

ω → N be the random variable

which describes the number of transitions that occur in time interval [0, τ]. �en, it
holds that B(s, z) = supD∈ML Pr

ω
νs ,D
(◇[0,z]G ∩ #[0,τ] = 0). With the same reasoning, the

�rst summand A(s, z) of (5.6) is the maximum probability to reachG within time z with
at least one transition taking place in [0, τ]. Hence,

A(s, z) = sup
D∈ML

Prωνs ,D(◇[0,z]G ∩ #[0,τ] ≥ 1).
Now, decompose the underlying event of A(s, z) into disjoint subsets according to the
number of transitions that occur in time interval [0, τ]:

(◇[0,z]G ∩ #[0,τ] ≥ 1) = ∞⊍
n=1

(◇[0,z]G ∩ #[0,τ] = n).
Accordingly, let An(s, z) be the maximum probability to reach G in z time units with
exactly n transitions occurring in the �rst time slice [0, τ]. In this way, we maximize the
probability of each event (◇[0,z]G ∩ #[0,τ] = n) separately:

An(s, z) = sup
D∈ML

Prωνs ,D (◇[0,z]G ∩ #[0,τ] = n) . (5.8)



132 5.3 Computing time-bounded reachability probabilities

To relate A(s, z) with the probabilities An(s, z), observe that
A(s, z) = sup

D∈ML

Prωνs ,D (◇[0,z]G ∩ #[0,τ] ≥ 1)
= sup

D∈ML

Prωνs ,D(
∞⊍
n=1

(◇[0,z]G ∩ #[0,τ] = n))
≤
∞∑
n=1

( sup
D∈ML

Prωνs ,D (◇[0,z]G ∩ #[0,τ] = n))
=
∞∑
n=1

An(s, z).

(5.9)

�e next major step is to derive an analytic expression for the probability A1(s, z):
Lemma 5.4. Let C = (S ,Act,R, ν) be a CTMDP, G ⊆ S a set of goal states, s ∈ S an
initial state, z ∈ R≥0 a time bound and τ > 0 a step duration. For A1(s, z) as de�ned in
Eq. (5.8) it holds

A1(s, z) = ∫
τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ e−E(s′)(τ−t) ⋅ pmax(s′, z − τ) dt.

(5.10)

Note that A1(s, z) is the maximum probability to reach G within z time units and that
exactly one transition occurs within time interval [0, τ].�is is re�ected in the integral

in Lemma 5.4: Here, the integration variable t corresponds to the precise point in time
when state s is le�; further, if we move to state s′ a�er t units of time, we stay in the

successor state s′ for at least (τ − t) time units (i.e. the time that remains in the �rst
step duration) with probability e−E(s

′)(τ−t). Finally, we multiply with pmax(s′, z−τ), i.e.
with themaximum achievable probability to reachG in the remaining (z − τ) time units,

starting in state s′.

Proof. Let E = (◇[0,z]G ∩ #[0,τ] = 1) be the event that corresponds to the probabil-
ity A1(s, z). Given an ML scheduler D, the measure of the event E di�ers from the

time-bounded reachability event ◇[0,z]G in the additional requirement that exactly one
transition occurs in time interval [0, τ]. Hence, we obtain the probability

Prωνs ,D(◇[0,z]G ∩ #[0,τ] = 1) = ∫
τ

0
E(s)e−E(s)t ⋅ ∑

α∈Act

D(s, t)(α)
⋅∑
s′∈S

P(s, α, s′) ⋅ e−E(s′)(τ−t) ⋅ Prω
νs′ ,D(s

α ,tÐ→⋅,⋅+(τ−t))
(◇[0,z−τ]G) dt. (5.11)

�e term e−E(s
′)(τ−t) in Eq. (5.11) is the probability that a�er leaving state s at time point t

and entering the successor state s′, no transition occurs for the next (τ − t) time units.
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�e ML-scheduler D(s α,t
Ð→ ⋅, ⋅+(τ−t)) is de�ned such that if π = s′

α′ ,t′

ÐÐ→ π′′ for some

π′′ ∈ Paths⋆, then D(s α,t
Ð→ ⋅, ⋅+(τ−t))(π, t) = D(s α,t

Ð→ π′, t), where π′ = s′ α′ ,t′+(τ−t)
ÐÐÐÐÐ→ π′′.

Hence, if state s is le� at time t and no transition occurs in the successor state s′ within
the following τ − t time units, then D(s α,t

Ð→ ⋅, ⋅+(τ−t)) decides on the remaining path as D
does on the su�x of the complete path. Note that due to the memoryless property of the

exponential distribution, we may split the sojourn time in state s′ in two parts: First, the
sojourn in state s′ before τ and the remaining sojourn time. Hence Eq. (5.11) expresses
the probability to reachG from state swithin time bound z and that exactly one transition
occurs in time interval [0, τ].
With these preliminaries, we introduce theML-scheduler Dz

1 , which induces the maxi-

mumprobability for the event E. Similar to the scheduler Dz , it is deterministic; however,
it is not fully positional: To ease its de�nition, let g(s, α, t) ∈ [0, 1] be themaximumprob-

ability to reach G in z time units, if state s has been le� at time t and action α has been
chosen and no transition occurs in the remaining τ − t time units:

g(s, α, t) = ∑
s′∈S

P(s, α, s′) ⋅ e−E(s′)(τ−t) ⋅ sup
D′∈ML

Prωνs′ ,D′ (◇[0,z−τ]G) .
We obtain Dz

1 ∶ Paths
⋆ × R≥0 → Act as follows: If ∣π∣ = 0, then π = s for some s ∈ S and

Dz
1(s, t) = min≺ {α ∈ Act(s) ∣ ∀β ∈ Act(s). g(s, β, t) ≤ g(s, α, t)}. Otherwise, we know

that at least one transition has occurred. Hence, we de�ne Dz
1 such that it optimizes the

probability to reach G in the remaining time z − (∆(π)+ t).�erefore we set Dz
1(π, t) =

Dz(π↓, ∆(π) + t) if ∣π∣ > 0.
Now we prove that Dz

1 is optimal w.r.t. E by contraposition: Assume that there exists

D′ ∈ ML such that Prωνs ,D′(E) > Prωνs ,Dz
1
(E). By the following derivation, this leads to a

contradiction:

Prωνs ,D′(E) = ∫
τ

0
E(s)e−E(s)t ⋅ ∑

α∈Act

D′(s, t)(α) ⋅∑
s′∈S

P(s, α, s′) ⋅ e−E(s′)(τ−t)
⋅ Prω

νs′ ,D
′(s

α ,tÐ→⋅,⋅+(τ−t))
(◇[0,z−τ]G) dt

≤ ∫
τ

0
E(s)e−E(s)t ⋅ ∑

α∈Act

D′(s, t)(α) ⋅∑
s′∈S

P(s, α, s′) ⋅ e−E(s′)(τ−t)
⋅ sup
D∈ML

Prωνs′ ,D (◇[0,z−τ]G) dt
≤ ∫

τ

0
E(s)e−E(s)t

⋅maxα∈Act ∑
s′∈S

P(s, α, s′) ⋅ e−E(s′)(τ−t) ⋅ sup
D∈ML

Prωνs′ ,D (◇[0,z−τ]G)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g(s,α,t)

dt

= ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

1(s, t), s′) ⋅ e−E(s′)(τ−t) ⋅ sup
D∈ML

Prωνs′ ,D (◇[0,z−τ]G) dt
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= ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

1(s, t), s′) ⋅ e−E(s′)(τ−t) ⋅ Prωνs′ ,Dz−τ (◇[0,z−τ]G) dt
= Prωνs ,Dz

1
(E).

Hence, the scheduler Dz
1 yields the maximum probability for the event E and we obtain

A1(s, z) = sup
D∈ML

Prωνs ,D (◇[0,z]G ∩ #[0,τ] = 1)
= ∫

τ

0
E(s)e−E(s)t ⋅ ∑

α∈Act

Dz
1(s, t)(α) ⋅∑

s′∈S
P(s, α, s′) ⋅ e−E(s′)(τ−t)
⋅ Prω

νs′ ,D
z
1 (s

α ,tÐ→⋅,⋅+(τ−t))
(◇[0,z−τ]G) dt

= ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

1(s, t), s′) ⋅ e−E(s′)(τ−t)
⋅ Prωνs′ ,Dz(⋅,⋅+τ) (◇[0,z−τ]G) dt

= ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

1(s, t), s′) ⋅ e−E(s′)(τ−t)
⋅ Prωνs′ ,Dz−τ (◇[0,z−τ]G) dt

= ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dz

1(s, t), s′) ⋅ e−E(s′)(τ−t) ⋅ pmax(s′, z − τ) dt
= ∫

τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ e−E(s′)(τ−t) ⋅ pmax(s′, z − τ) dt,

completing the proof. ◻

Now we approximate the probability A(s, z) from below via a new probability X(s, z),
which is closely related to A1(s, z): More precisely, we obtain X(s, z) by bounding the
probability e−E(s

′)(τ−t) in Eq. (5.10) from above by 1. Hence A1(s, z) ≤ X(s, z); moreover,
by a continuity argument we can prove that X(s, z) ≤ A(s, z).
With these two inequalities and the de�nition of X(s, z) we establish an error bound

for our discretization. Formally, the following sandwich lemma proves that X(s, z) con-
verges to A(s, z) for τ → 0:

Lemma 5.5 (One-step approximation). Let C = (S ,Act,R, ν) be a CTMDP, G ⊆ S a
set of goal states, λ = maxs∈SE(s), s ∈ S an initial state, z ∈ R≥0 a time bound and τ > 0
a step duration. If we de�ne

X(s, z) = ∫
τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − τ) dt, (5.12)

then X(s, z) approximates A(s, z) in the following sense:

X(s, z) ≤ A(s, z) ≤ X(s, z) + (λτ)2
2

. (5.13)
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Proof. To establish the lower bound in Eq. (5.13), it su�ces to note that

A(s, z) (5.6)= ∫
τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥pmax(s′ ,z−τ)

dt.

By de�nition, for all s′ ∈ S , the function pmax(s′, ⋅) is monotonically increasing in its
second argument, that is, for increasing time bounds z, the maximum reachability prob-

ability pmax(s′, z) increases. Reversely, the function pmax(s′, z − t) is monotonically de-
creasing for increasing t.
Hence t < τ implies that pmax(s′, z − t) ≥ pmax(s′, z − τ) and we obtain

A(s, z) ≥ ∫
τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − τ) dt (5.12)= X(s, z).

For the upper bound in Eq. (5.13), let us �rst investigate the relation between X(s, z)
and A1(s, z). By Lemma 5.4, we derive:

A1(s, z) = ∫
τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ e−E(s′)(τ−t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

⋅ pmax(s′, z − τ) dt

≤ ∫
τ

0
E(s)e−E(s)t ⋅maxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pmax(s′, z − τ) dt

(5.12)
= X(s, z).

�erefore, we have proved that X(s, z) is an upper bound for A1(s, z); formally:

A1(s, z) ≤ X(s, z). (5.14)

In the next step, we also obtain an upper bound for the sum ∑∞n=2 An(s, z): To see how
thisworks, recall that for an exponential distributionwith rate λ and a time interval [0, τ],
the Poisson distribution ρ (n, λτ) = e−λτ ⋅ (λτ)nn! expresses the probability that n transitions
occur within [0, τ].�is allows us to derive an upper bound, �rst for each An(s, z) sepa-
rately:

An(s, z) = sup
D∈ML

Prωνs ,D (◇[0,z]G ∩ #[0,τ] = n) ≤ sup
D∈ML

Prωνs ,D (#[0,τ] = n)
≤ ρ(n, λτ) = e−λτ ⋅ (λτ)n

n!
.

(5.15)

Moreover, by maximality of λ, the probability that more than n transitions occur in any

state s ∈ S within time interval [0, τ] is at most

∞∑
i=n+1

ρ(i, λτ) = e−λτ ∞∑
i=n+1

(λτ)i
i!
= e−λτ ⋅ Rn(λτ), (5.16)
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where Rn(x) = ∑∞i=n+1 x i

i! is the remainder term of the Taylor expansion of f (x) = ex for
the point 0. By Taylor’s theorem, there exists ξ ∈ [0, λτ] such that

Rn(λτ) = f (n+1)(ξ)
(n + 1)! ⋅ (λτ)n+1 = e ξ

(n + 1)! ⋅ (λτ)n+1 , (5.17)

where f (n+1) denotes the (n + 1)-th derivative of f .
Summarizing the above reasoning, we obtain an upper bound for the error that is

induced by approximating A(s, z) by only considering X(s, z):
A(s, z) (5.9)

≤
∞∑
n=1

An(s, z) (5.14)
≤ X(s, z) + ∞∑

n=2

An(s, z) (5.15)
≤ X(s, z) + ∞∑

n=2

ρ(n, λτ)
(5.16)
= X(s, z) + e−λτ ⋅ R1(λτ).

By Taylor’s theorem and Eq. (5.17), there exists ξ ∈ [0, λτ] such that R1(λτ) = e ξ

2 ⋅ (λτ)2.
For an upper bound, choose ξ maximal in [0, λτ].�en

A(s, z) ≤ X(s, z) + e−λτ ⋅ R1(λτ) ≤ X(s, z) + e−λτ ⋅
eλτ

2
(λτ)2 = X(s, z) + (λτ)2

2
.

�us we have A(s, z) ≤ X(s, z) + (λτ)22 , completing the proof for the upper bound. ◻

By Eq. (5.13), we can approximate A(s, z) from below via X(s, z), allowing for an error
of at most

(λτ)2

2 . �us, for τ → 0+ it holds that X(s, z) = A(s, z). We use the one-step

error bound
(λτ)2

2 later in�m. 5.5 to derive the overall error bound for our analysis.

5.3.2 Reduction to step-bounded reachability in MDPs

Based on X(s, z) and B(s, z), we are now ready to derive a discretization for pmax(s, z) in
a locally uniform CTMDP C with respect to a step duration τ:

De�nition 5.9 (Discretization). Let C = (S ,Act,R, ν) be a CTMDP, and let τ > 0 be a
step duration. �e induced MDP Cτ = (S ,Act,Pτ , ν) is de�ned such that for all s, s′ ∈ S
and α ∈ Act(s):

Pτ(s, α, s′) =
⎧⎪⎪⎨⎪⎪⎩
(1 − e−E(s)τ) ⋅ P(s, α, s′) if s /= s′
(1 − e−E(s)τ) ⋅ P(s, α, s′) + e−E(s)τ if s = s′.

Further, for all α ∉ Act(s), we de�ne Pτ(s, α, s′) = 0.
In the MDP Cτ , each step corresponds to one time slice of length τ in the CTMDP C.

For a single step and a �xed successor state s′ /= s, Pτ(s, α, s′) equals the probability that
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a transition to s′ occurs within τ time units, given that α is chosen. In case that s′ = s,
the �rst summand of Pτ(s, α, s) is the probability to take the loop back to s; the second
summand denotes the probability that no transition occurs within time τ and thus s = s′.
Let pCτmax(s, k) be themaximumprobability to reachG starting from state s in atmost k

discrete steps in the (discrete time) MDP Cτ . Obviously pCτmax(s, k) = 1 if s ∈ G and
pCτmax(s, 0) = 0 if s ∉ G. Further, for s ∉ G and k > 0, pCτmax(s, k) is de�ned recursively:

pCτmax(s, k) = maxα∈Act ∑
s′∈S

Pτ(s, α, s′) ⋅ pCτmax(s′, k − 1). (5.18)

�e next theorem proves that the probability to reachG from state s within at most k = z
τ

steps in the discrete-timeMDP Cτ converges from below (for τ → 0) to the corresponding
time-bounded reachability probability in the CTMDP C:

�eorem 5.5. Let C = (S ,Act,R, ν) be a CTMDP, λ = maxs∈SE(s), G ⊆ S a set of goal
states, z ∈ R≥0 a time bound and k ∈ N>0 the number of discretization steps, such that
τ = z

k . �en it holds for all s ∈ S :

pCτmax(s, k) ≤ pCmax(s, z) ≤ pCτmax(s, k) + (λz)22k
. (5.19)

�e proof is by induction on the number k of discretization steps, where the lower and
upper bounds are established for each step of length τ using Lemma 5.4 and Lemma 5.5.

Proof. Recall that pCmax(s, z) = A(s, z)+ B(s, z) and X(s, z) ≤ A(s, z) ≤ X(s, z)+ (λτ)2
2

by
Eq. (5.13). We prove Eq. (5.19) by induction on k:

1. For k = 1, we have z = τ. If s ∈ G, then pCτmax(s, 1) = 1 = pCmax(s, τ), proving (5.19);
if k = 1 and s ∉ G, the lower bound in (5.19) holds as pCτmax(s, 1) = maxα∈Act(1 −
e−E(s)τ) ⋅ P(s, α,G) = X(s, τ) ≤ pCmax(s, τ). For the upper bound, note that s ∉ G
implies B(s, τ) = 0. �us pCmax(s, τ) = A(s, τ) + B(s, τ) = A(s, τ). By Lemma 5.5,

we know thatA(s, τ) ≤ X(s, τ)+ (λτ)2
2

. Moreover, X(s, τ) = pCτmax(s, τ) by de�nition.
�erefore pCmax(s, τ) ≤ pCτmax(s, τ) + (λτ)22

.

2. For the induction step, together with Lemma 5.5 (which provides X(s, z)) and
Lemma 5.3 (the analytic expression for B(s, z)) we have
X(s, z) + B(s, z) = [ ∫

τ

0
E(s)e−E(s)tmaxα∈Act ∑

s′∈S
P(s, α, s′) ⋅ pCmax(s′, z − τ) dt]

+ [e−E(s)τ ⋅ pCmax(s, z − τ)]
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= [maxα∈Act ∑
s′∈S

P(s, α, s′) ⋅ pCmax(s′, z − τ) ⋅ ∫
τ

0
E(s)e−E(s)t dt]

+ [e−E(s)τ ⋅ pCmax(s, z − τ)]
= maxα∈Act[(1 − e−E(s)τ) ⋅∑

s′∈S
P(s, α, s′) ⋅ pCmax(s′, z − τ)] (5.20)

+ [e−E(s)τ ⋅ pCmax(s, z − τ)]
By de�nition of Pτ(s, α, s′) (where the second summand in Eq. (5.20) corresponds
to the special case of s = s′), we derive from Eq. (5.20):

X(s, z) + B(s, z) = maxα∈Act ∑
s′∈S

Pτ(s, α, s′) ⋅ pCmax(s′, z − τ). (5.21)

First we consider the lower bound on the le� part of Eq. (5.19): By induction hy-
pothesis, it holds that pCτmax(s′, k − 1) ≤ pCmax(s′, z − τ) for all s′ ∈ S .�en

pCmax(s, z) ≥ X(s, z) + B(s, z)
(5.21)
= maxα∈Act ∑

s′∈S
Pτ(s, α, s′) ⋅ pCmax(s′, z − τ)

i.h.
≥ maxα∈Act ∑

s′∈S
Pτ(s, α, s′) ⋅ pCτmax(s′, k − 1) = pCτmax(s, k).

�e proof for the upper bound is as follows: By Lemma 5.5 it holds that A(s, z) ≤
X(s, z) + (λτ)22 . Together with Eq. (5.21) we derive

pCmax(s, z) = A(s, z) + B(s, z)
≤ X(s, z) + (λτ)2

2
+ B(s, z)

(5.21)
=
(λτ)2
2

+maxα∈Act ∑
s′∈S

Pτ(s, α, s′) ⋅ pCmax(s′, z − τ).
Applying the induction hypothesis, we obtain

pCmax(s, z) ≤ (λτ)22
+maxα∈Act ∑

s′∈S
Pτ(s, α, s′)(pCτmax(s′, k − 1) + (λ(z − τ))2

2(k − 1) )
=
(λτ)2
2

+
(λ(z − τ))2
2(k − 1) +maxα∈Act ∑

s′∈S
Pτ(s, α, s′) ⋅ pCτmax(s′, k − 1).

(5.22)

From here, we complete the induction step:�erefore, rewrite the summands
(λτ)2

2

and (λ(z−τ))
2

2(k−1) in the right part of Eq. (5.22) further:

(λτ)2
2

+
(λ(z − τ))2
2(k − 1) =

(λτ)2k(k − 1) + (λ(z − τ))2k
2k(k − 1) (* as k =

z

τ
*)
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=
(λτ)2 ⋅ zτ ⋅ z−ττ + (λ(z − τ))2 ⋅ zτ

2k ⋅ z−ττ

=
λ2z(z − τ) + λ2(z − τ)2 ⋅ zτ

2k ⋅ z−ττ

=
λ2τz + λ2z(z − τ)

2k
=
λ2 (τz + z2 − τz)

2k
=
(λz)2
2k

.

In this way, the right part of Eq. (5.22) can be simpli�ed to pCτmax(s, k) + (λz)22k . ◻

Example 5.3. Consider the CTMDP C in Fig. 5.3(a). To compute themaximumprobability

to reach G = {s2} within z time units up to a precision of ε, choose k ∈ N such that ε ≥ (λz)
2

2k ,
where λ = maxs∈SE(s) = 3. �e step duration τ = z

k induces the discretized MDP Cτ which
is depicted in Fig. 5.3(b). ♢

5.3.3 Algorithm and complexity

Let C = (S ,Act,R, ν) be a locally uniform CTMDP, G a set of goal states and z a time
bound. For some error bound ε > 0, let k be the number of steps needed to satisfy ε ≥
(λz)2

2k .�en τ = z
k induces the discretized MDP Cτ of C with step duration τ. By�m. 5.5,

themaximumprobability to reachG within z time units in C can be approximated (up to
ε) bymaximizing the step-bounded reachability pCτ

max forG in Cτ within k steps.�e latter

can be computed e�ciently by the well-known value iteration approach [Ber95]. Brie�y,
it starts with a probability vector v⃗0 with v⃗0(s) = 1 if s ∈ G and 0, otherwise. In each
iteration, v⃗i is obtained from v⃗i−1 according to Eq. (5.18). In each round, i corresponds
to the number of steps in the MDP Cτ; hence, v⃗i(s) equals pCτmax(s, i).
�e value iteration approach on the discretized MDP Cτ has the following complex-

ity. For s ∈ S and α ∈ Act(s), let post(s, α) = {s′ ∈ S ∣ R(s, α, s′) > 0} be the set of
α-successors of state s. �e size of C is denoted by m = ∑s∈S ∑α∈Act ∣post(s, α)∣. In the

worst case, Cτ is obtained by adding a self-loop for each state s ∈ S and action α ∈ Act(s).
�us, the size of Cτ is bounded by 2m. For a given error bound ε, it is easy to derive the

number k of value-iteration steps: By�m. 5.5, ∣pCmax(s, z) − pCτmax(s, k)∣ ≤ (λz)22k . Letting
(λz)2

2k ≤ ε, we conclude that the smallest k to guarantee ε is (λz)
2

2ε . In each value iteration
step, the update of the vector v⃗i takes time 2m. �us, the worst-case time complexity of

our approach isO(m ⋅ (λz)2/ε).
5.3.4 Synthesis of ε-optimal schedulers

Let C, G, z, k, τ = z
k and Cτ be as before. A byproduct of the value iteration on the

discretizedMDP Cτ is an ε-optimal scheduler for the set of goal statesG and time bound z.
More precisely, in any of the i value iteration steps, for each state s ∈ S , an action αs,i
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(b) �e MDP induced by its discretization.

Figure 5.3:�e discretization of a locally uniform CTMDP.

is chosen according to Eq. (5.18). In this way, we obtain a history-dependent (or, to
be more precise, step-dependent) scheduler for the MDP Cτ. �is scheduler induces a
τ-scheduler (denoted Dτ) of the original CTMDP C as follows: Dτ(s, tπ) = αs,i if tπ ∈[(k − i)τ, (k − i + 1)τ).�e following theorem shows that Dτ is an ε-optimal scheduler
in the underlying CTMDP C:

�eorem 5.6 (ε-optimal scheduler). �e scheduler Dτ is an ε-optimal scheduler for C
w.r.t. the maximum time-bounded reachability probability.

Proof. Let C = (S ,Act,R, ν) be a locally uniform CTMDP, G a set of goal states and z
a time bound. For some error bound ε > 0, let k be the number of steps needed to

satisfy ε ≥ (λz)
2

2k . Let Cτ be the induced MDP with τ = z
k , and Dτ be the τ-scheduler as

described. To show that Dτ is an ε-optimal scheduler for C w.r.t. the maximum time-
bounded reachability probability, we prove that for all states s ∈ S it holds that

∣Prωνs ,Dτ
(◇[0,z]G) − pCτmax(s, k)∣ ≤ ε.

It is su�cient to show the following equality:

pCτmax(s, k) ≤ Prωνs ,Dτ
(◇[0,z]G) ≤ pCτmax(s, k) + ε. (5.23)

By�eorem 5.5, the upper bound can be shown directly:

Prωνs ,Dτ
(◇[0,z]G) ≤ pCmax(s, z) ≤ pCτmax(s, k) + (λz)22k

≤ pCτmax(s, k) + ε.

Now we discuss how to show the lower bound of Eq. (5.23). First, note that under any
TTPDL scheduler D, the CTMDP C is totally stochastic and for s ∉ G, the probability
Prωνs ,D(◇[0,z]G) can be computed by:

Prωνs ,D (◇[0,z]G) = ∫
z

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,D(s, t), s′) ⋅ Prωνs′ ,D (◇[0,z−t]G) dt.
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Note Dτ is a TTPDL scheduler, thus it holds that

Prωνs ,Dτ
(◇[0,z]G) = ∫

z

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s,Dτ(s, t), s′) ⋅ Prωνs′ ,Dτ

(◇[0,z−t]G) dt.
�is integral can then be split into two parts A(s, z) and B(s, z) at time t = τ: it follows
in a similar way as Eq. (5.6) with the di�erence of taking the action Dτ(s, t) instead of
the maximum over all α ∈ Act. �e lower bound can then be established by induction
on k, by adapting the lower bound proof of Eq. (5.19) of�m. 5.5 appropriately. ◻

5.4 A case study:�e stochastic job scheduling problem

We illustrate the applicability of our approach by considering the stochastic job schedul-

ing problem (sJSP) from [BDF81]. In their paper, the authors analyze the expected time
to complete a set of stochastic jobs on a number of identical processors under a preemp-
tive scheduling policy. An instance of the sJSP is a tuple (m, n, µ), where m ≥ 2 is the

number of processors, J = {1, . . . , n} is the set of stochastic jobs and µ ∶ J → R>0 speci�es
the jobs’ exponential service times, i.e. µ(i) is the rate of job i. Each time a job �nishes,
the preemptive scheduling allows us to assign each processor one of the k remaining jobs,

giving rise to ( km) nondeterministic choices.

�e sJSP can be considered as a locally uniform CTMDP: A state of the sJSP is a tuple(R,W), where R,W ⊆ J are the sets of running and waiting jobs, respectively. When a
job j ∈ R completes, the decision which jobs to schedule next is nondeterministic.

An action α ∈ Act ((R,W)) is a preemptive schedule: If state (R,W) is le� because

a job j ∈ R �nishes and if α ∶ R → 2R∪W is chosen, the set α( j) de�nes the jobs that
are executed next. In each state (R,W), let Act ((R,W)) = {α ∶ R → 2R∪W ∣∀ j ∈
R. j ∉ α( j) ∧ ∣α( j)∣ ≤ m ∧ ∣α( j)∣ maximal}. For α ∈ Act ((R,W)), we de�ne the α( j)-
successor (R′,W ′) of (R,W), denoted (R,W) α( j)

ÐÐ→ (R′,W ′), such that R′ = α( j) and
W ′ = (R ∪W) ∖ ({ j} ∪ α( j)):

De�nition 5.10 (Modelling the sJSP as a CTMDP). Let P = (m, n, µ) be a sJSP and(R,W) a state. �e induced CTMDP (S ,Act,R, ν) is de�ned such that S = 2J × 2J ,
ν = {(R,W)↦ 1}, Act = ⋃(R′ ,W′)∈S Act ((R′,W ′)) and

R((R,W), α , (R′,W ′)) =
⎧⎪⎪
⎨⎪⎪⎩

µ( j) if (R,W)
α( j)
ÐÐ→ (R′ ,W ′) and

0 otherwise.

�us, given state (R,W), for every job j ∈ R and action α, there exists an α-transition
with the rate µ( j) of job j that leads to the α( j)-successor (R′,W ′).
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Figure 5.4(a) depicts a fragment of the CTMDP induced by the (2, 4, µ) sJSP with ini-

tial state (R,W) where R is given by the underlined process identi�ers (i.e. R = {1, 3})
and W = {2, 4}. Action α1 represents a replacement strategy where jobs {3, 4} are exe-
cuted next if job 1 ∈ R �nishes �rst and otherwise, the next jobs are {2, 4}. Similarly, for

action α2, the jobs {2, 4} (or {1, 4}) are scheduled next if job 1 (job 3, resp.) completes
�rst.

�e stochastic job scheduling problem is a classical example of a queueing system. At
the beginning of this chapter, we claimed that local uniformity is commonly found in
this setting. In fact, for our model of the sJSP we can prove local uniformity:

Lemma 5.6 (�e sJSP is locally uniform). For any sJSP P = (m, n, µ) and all initial
states, the CTMDP model induced by Def. 5.10 is locally uniform.

Proof. From Def. 5.10 it directly follows that for all states (R,W) it holds
E ((R,W), α) = ∑

(R′ ,W′)∈S
R ((R,W), α, (R′ ,W ′))

= ∑
(R,W)

α( j)
ÐÐ→(R′ ,W′)

R ((R,W), α, (R′,W ′)) =∑
j∈R

µ( j).

Hence, E ((R,W), α) = E ((R,W), β) for all α, β ∈ Act ((R,W)). ◻

Applying the results from Sec. 5.3, we are now able to algorithmically compute the

maximum and minimum probabilities to �nish all jobs within some time bound z. In
Fig. 5.4(b), we plot the maximum and minimum probabilities to �nish jobs {1, . . . , 4}
over a time bound z ∈ [0, 15] for di�erent values of µ. �e probabilities that are shown

in Fig. 5.4(b) were obtained by implementing the discretization approach of Sec. 5.3 for
maximum and minimum time-bounded reachability. Clearly, for equally distributed job

durations, i.e. if µ(i) = µ(k) for all i, k, the maximum and minimum probabilities
coincide. However, if µ(i) /= µ(k), the probabilities depend on the scheduling policy:
In [BDF81], the authors prove that a shortest expected processing time �rst (SEPT) strat-

egy minimizes the expected completion time of the sJSP; reversely, the longest expected
processing time strategy (LEPT) is proved to maximize the expected completion time.

Although we consider a di�erent quantitative measure (i.e. maximum time-bounded

reachability instead of expected completion time), we observe in our examples, that the
ε-optimal τ-scheduler that maximizes the reachability probabilities adheres to the SEPT

strategy; moreover, the optimal τ-scheduler for the minimum probabilities obeys the
LEPT strategy.
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Figure 5.4: Modeling and analysis of the stochastic job scheduling problem.

5.5 Conclusion and related work

In this chapter, we have introduced an e�cient discretization algorithm in PTIME that

solves the problem of computing time-bounded reachability probabilities in locally uni-
form CTMDPs with respect to time- and history-dependent late schedulers.

To the best of our knowledge, this is the �rst time that an automatic analysis of time-

bounded reachability objectives becomes feasible for time-dependent schedulers. More-
over, the main advantage of our approach is that we are able to bound the error that is
induced by the approximation algorithm in advance. In particular, the maximal admissi-

ble error ε > 0 can be speci�ed a priori.

�e computation is done by applying thewell-known value iteration algorithm [Ber95]
to the CTMDP’s discretized MDP. We choose the value iteration approach over other
methods like LP-solvers, as it has major advantages in our setting: During the value it-

eration steps, it is possible to extract the optimal scheduling decisions and to synthesize
an ε-optimal τ-scheduler whose decisions maximize the reachability objective. Further,

the iterative computation allows us to compute time-bounded reachability probabilities
incrementally: As a byproduct of the value iteration for a time bound z, we obtain the
reachability probabilities for all smaller time bounds z′ < z (where z′ is a multiple of τ)
with minimal computational overhead.

Related work. In the literature, the analysis of CTMDPs has received scant attention.
Most of the existing results focus on optimizing criteria such as the expected total re-
ward [GHLPR06, Mil68a] or the expected long-run average reward [dA97, GHLPR06,

Mil68b]. Directly related to the results of this chapter is the work in [BHKH05], which
provides an algorithm that computes time-bounded reachability probabilities in globally

uniform CTMDPs. However, its applicability is severely restricted, as global uniformity
— which requires the sojourn times in all states to be identically distributed— is hard to
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achieve. We shortly discuss the reason for this:

�e approach for the analysis of time-bounded reachability probabilities that is taken
in [BHKH05] refers only to time-abstract schedulers, which are strictly less powerful
than time-dependent ones [BHKH05, NSK09]. Moreover, as observed in [BHKH05],

the uniformization approach that is known fromMarkov chain theory does not work for
CTMDPs and time-abstract scheduler classes: Intuitively, uniformization introduces self

loops (or copy states, in case of local uniformization) in the CTMDP model. �ereby
uniformization changes the structure of the model. �ese structural changes expose
signi�cant information to history dependent (but time-abstract) schedulers and can be

used to estimate the timed behaviour of the system (although the scheduler class is time-
abstract). A formal proof of this is included in [BHKH05]. Due to similar reasons, lo-

cal uniformization fails for all non-trivial time-abstract scheduler classes as proved in
Sec. 4.3 (see page 103).
Recently, maximal reachability probabilities in CTMDPs have been studied in stochas-

tic timed games [BF09, BFK+09]: However, the authors of [BFK+09] also consider the
strictly weaker classes of time abstract schedulers, while [BF09] addresses the decidabil-
ity problem for qualitative reachability probabilities in stochastic timed games, that is,

reachability probabilities that are 1 or 0, respectively.
Hence, both approaches di�er considerably from our results: �e time-dependent

scheduler ML-schedulers that we use are proved to be strictly more expressive (that is,
they generally induce strictly higher probability bounds) than the time-abstract sched-
ulers that are considered in the related work. To the best of our knowledge, no analysis

techniques are known for time-dependent scheduler classes.
�erefore, this chapter extends the existing results considerably: We provide an e�-

cient algorithm that computes time-bounded reachability probabilities for the class of

time- and history-dependent schedulers up to an a priori given error bound ε. Moreover,
we relax the restriction to global uniformity in [BHKH05] and allow di�erent states to

have di�erent sojourn time distributions.



6 Model Checking Interactive Markov
Chains

It is what I sometimes have

called ”the separation of

concerns”, which, even if not

perfectly possible, is yet the

only available technique for

effective ordering of one’s

thoughts, that I know of.

(Edsger W. Dijkstra)

Interactive Markov chains (IMCs) comprise both nondeterministic choices and expo-
nentially distributed delays. Hence, in the family of stochastic models they are related to
CTMDPs. However, subtle di�erences exist: Whereas CTMDPs closely entangle nonde-

terminism and stochastic behavior in their transition relation, IMCs strictly separate the
two aspects and distinguish between Markovian and interactive transitions.

�e di�erent approach taken in IMCs is not surprising, given the fact that IMCs orig-
inate in stochastic extensions of classical process algebras. As such, they overcome the

absence of hierarchical and compositional facilities in purely stochastic dependability
models like CTMCs and SPNs [Mol81, Nat80]. Apart from IMCs, many e�orts have

been undertaken to vanquish this limitation, including formalism like the stochastic Petri
box calculus [MVCR08], Statecharts [BHH+09] and in particular, the TIPP [GHR93],
PEPA [Hil96] and EMPA [BG98, BG01] process algebras. In this thesis, we focus on

IMCs which share most of the other approaches’ bene�ts while preserving a succinct
and accurate semantics.

Since IMCs smoothly extend labeled transition systems (LTSs), themodel has received
attention in academic and in industrial settings [BCH+08, CGH+08, CHLS09]. In prac-

tice however, the theoretical bene�ts have partly been foiled by the fact that for a long
time, the analysis of IMCs was restricted to those instances, where the composed IMC

could be transformed into a CTMC.

Beyond these special cases, IMCs also support nondeterminism which arises both im-

plicitly from parallel composition and explicitly by the deliberate use of underspeci�ca-
tion in the model [HHK02]. In contrast to CTMC-based models, all of these aspects can

neatly be represented in the IMC formalism; therefore, IMCs are strictly more expressive
than CTMCs.
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�ework in [Joh07] is the �rst approach towards an analysis of nondeterministic IMCs,

i.e. of IMCs that cannot be transformed into a CTMC. It relies on a measure preserving
transformation from IMCs to CTMDPs and the time-bounded reachability algorithm
from [BHKH05]. �e latter relies on globally uniform CTMDPs which are obtained by

the transformation in [Joh07, BHH+09] if the underlying IMC is also globally uniform,
that is, if all Markovian states have the same sojourn time distribution.

Apart from these special cases, no analysis techniques exist for the general setting

where IMCs are neither globally uniform nor can they be transformed into an equiva-
lent CTMC. In this chapter, we close this gap and provide a model checking algorithm
that works for arbitrary IMCs. Our approach extends the discretization technique that is

used in Chapter 5: Instead of only considering time-bounded reachability objectives, we
extend our results to time intervals, that is, we maximize the probability to visit a goal

state during a given time interval. We then use a �xed-point characterization to discretize
an IMC and to obtain an interactive probabilistic chain (IPC) [CHLS09]. Ourmain contri-
bution is the proof that the IPC’s maximum step-interval bounded reachability coincides

(up to ε) with themaximum time-interval bounded reachability probability in the under-
lying IMC. As a �nal step, we adapt the value iteration algorithm to IPCs and compute
the step-interval bounded reachability probabilities.

On the speci�cation side, the continuous stochastic logic (CSL) [ASSB96, BHHK03]

permits to specify a wide variety of performance and dependability measures. It has orig-
inally been devised for model checking CTMCs. �erefore, Sec. 6.5 proposes an adap-

tation of CSL to IMC which enables us to reason about the maximum and minimum
achievable probability for CSL path formulas. We then develop an algorithm to automat-
ically model check CSL formulas on arbitrary IMCs.

�e crucial point inmodel checking CSL is the computation of time-interval bounded

reachability probabilities. Having achieved the latter, we obtain a model checking algo-
rithm which has a worst-case time complexity of O(∣Φ∣ ⋅ (n2.376 + (m + n2) ⋅ (λb)2/ε)),
where ∣Φ∣ denotes the size of the CSL formula, n,m are the number of states and transi-
tions of the IMC, resp., and b and λ are the maximum upper time interval bound in Φ
and the IMC’s maximum exit rate, respectively.

As in the previous chapter, we present all results only for maximum time-bounded

reachability probabilities. However, all proofs carry over when minimizing the interval-
bounded reachability probabilities.

Organization of this chapter. Section 6.1 formally introduces IMCs. In Sec. 6.2 we ob-
tain a �xed-point characterizations for time-interval (and step-interval) bounded reach-
ability in IMCs (respectively in IPCs). A major contribution are the correctness proofs

in Sec. 6.3 which provide the theoretical basis for the value iteration algorithm that we
present in Sec. 6.4. Section 6.5 introduces the logic CSL and discusses how the interval

bounded reachability analysis can be applied to the model checking problem for CSL
on IMCs. Finally, we provide some experimental results obtained by our prototypical
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implementation in Sec. 6.6.

6.1 Interactive Markov chains

IMCs strictly separate interactive from Markovian transitions; therefore, they can be
seen as a fully orthogonal extension of labeled transition systems with exponentially dis-

tributed delays. �is enables compositional modeling with intermittent weak bisimula-
tion minimization [Her02] and even allows us to augment existing untimed process alge-

bra speci�cations with random timing [HK00, BHH+09]. Moreover, the IMC formalism
is not restricted to exponential delays but permits to encode arbitrary phase-type distribu-
tions such as hyper- and hypoexponentials [Pul09]. An excellent and detailed discussion

of the advantages of the IMC modeling formalism can be found in the paper [BHK06].

6.1.1 Preliminaries

Opposed to CTMDPs, interactive Markov chains (IMCs) disentangle the relation be-

tweenMarkovian and nondeterministic behaviors:�erefore, IMCs strictly separateMar-
kovian from interactive transitions. We restate the de�nition of IMCs from [Her02]:

De�nition 6.1 (InteractiveMarkov chain). An interactive Markov chain is a tuple
M = (S ,Act, IT ,MT , ν) where S and Act are nonempty sets of states and actions,
IT ⊆ S × Act × S is a set of interactive transitions and MT ⊆ S × R>0 × S is a set of
Markovian transitions. Further, ν ∈ Distr(S) is the initial distribution.

We distinguish external actions in Acte from internal actions in Act i and set Act =
Acte ⊍ Acti . �e reason for this distinction is that IMCs may be composed via synchro-
nization over the set of external actions Acte , while internal actions in Acti are not ob-
servable from the outside environment. For a detailed discussion of the compositional

aspects of IMCs, we refer the reader to [Her02]. For the scope of this thesis, we consider
closed IMCs [Her02, Joh07], that is, we focus on the IMCM that is obtained as the �nal

outcome of the composition. Accordingly,M is not subject to any further synchroniza-
tion and all remaining external actions can safely be hidden. In our analysis, we therefore
assume that Acte = ∅ and identify the sets Act and Acti .
ForMarkovian transitions, we use λ and µ to denote rates of exponential distributions.

Moreover, IT(s) = {(s, α, s′) ∈ IT} is the set of interactive transitions that leave state s;
similarly, for Markovian transitions, we set MT(s) = {(s, λ, s′) ∈MT}. A state s ∈ S is

Markovian i� MT(s) /= ∅ and IT(s) = ∅; it is interactive i� MT(s) = ∅ and IT(s) /= ∅.
Further, s is a hybrid state i� MT(s) /= ∅ and IT(s) /= ∅; �nally, s is a deadlock state i�
MT(s) = IT(s) = ∅. We use MS ⊆ S and IS ⊆ S to refer to the sets of Markovian and
interactive states inM.
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Figure 6.1: Example of an IMC with Markovian and interactive states.

For aMarkovian state s ∈MS, we de�neR(s, s′) = ∑{λ ∣ (s, λ, s′) ∈MT(s)} as the rate
to move from state s to state s′ and E(s) =∑s′∈S R(s, s′) as the exit rate of state s; further,
postM(s) = {s′ ∈ S ∣ R(s, s′) > 0} denotes the set of successor states of state s.�e discrete

branching probability to move from state s to state s′ is P(s, s′) = R(s,s′)
E(s) .

Example 6.1. LetM be the IMC depicted in Fig. 6.1. �e semantics of Markovian states
equals that of a CTMC state: More precisely, consider the Markovian state s0 and the tran-
sition (s0, 0.3, s2) ∈MT(s) (depicted by a solid line) that leads from state s0 to state s2 with
rate λ = 0.3. �e transition’s delay is exponentially distributed with rate λ; hence, it expires
in the next z ∈ R≥0 time units with probability ∫

z

0 λe−λtdt = (1 − e−0.3z). As state s0 has two
Markovian transitions, they compete for execution and the IMCmoves along the transition
whose delay expires �rst. Clearly, in such a race, the sojourn time in s0 is determined by the
�rst transition that executes. As the minimum of exponential distributions is exponentially
distributed with the sum of their rates, the sojourn time in a state s is determined by the
exit rate E(s) of state s. In general, the probability to move from a state s ∈ MS to a suc-
cessor state s′ ∈ S equals the probability that (one of) the Markovian transitions that lead
from s to s′ wins the race. Accordingly, for state s0 of our example, we have R(s0, s2) = 0.3,
E(s0) = 0.3 + 0.6 = 0.9 and P(s0, s2) = 1

3 . ♢

For interactive transitions, we adopt the maximal progress assumption [Her02, p. 71]

which states that internal transitions (i.e. interactive transitions labeled with internal ac-
tions) trigger instantaneously.�is implies that they take precedence over all Markovian
transitions whose probability to execute immediately is 0.�erefore all Markovian tran-

sitions that emanate a hybrid state can be removed without altering the IMC’s behavior.
�is allows us to assume throughout this chapter thatMT(s) ∩ IT(s) = ∅ for all s ∈ S .
To ease the development of the theory, we assume w.l.o.g. that each internal action

α ∈ Act has a unique successor state, denoted succ(α); note that this is no restriction, for
if (s, α, u) , (s, α, v) ∈ IT(s) are internal transitions with u /= v, we may replace them by
new transitions (s, αu , u) and (s, αv , v) with fresh internal actions αu and αv .

�e internal successor relation↝i ⊆ S × S is given by s ↝i s′ i� (s, α, s′) ∈ IT; further-
more, the internal reachability relation ↝∗i is the re�exive and transitive closure of ↝i .
Accordingly, we de�ne posti(s) = {s′ ∈ S ∣ s ↝i s′} and Reachi(s) = {s′ ∈ S ∣ s ↝∗i s′}.

Finally, entering a deadlock state results in a time lock, as neither internal nor Marko-
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vian transitions are available. �erefore, we equip deadlock states s ∈ S with interactive

self-loops (s, α, s). Note that the occurrence of time locks breaks compositionality; how-
ever, note that our analysis takes place on the closed model which is themonolithic result
that is obtained a�er all compositions.

We justify the modi�cation of deadlock states as follows: Whereas each interactive
or Markovian state has an associated sojourn time distribution (which is either 0 or an

exponential distribution), the sojourn time in deadlock states remains unquanti�ed. In
this case, we encounter a time lock situation where the global time does not proceed any
further: If a deadlock state is reached at global time tdead, the probability distribution of

the associated stochastic process {Xt}t∈R≥0 is unde�ned for time-points t > tdead. �e
same phenomenon occurs if a closed IMC eventually remains in a cycle of interactive

transitions. In this case, the global time also stops, resulting in a time lock. Hence, the
two situations are semantically equivalent which justi�es to equip any deadlock state with
an interactive self-loop.

Note however, that our approach also allows for a di�erent deadlock state semantics,
where the global clock continues; in this case, we would add a Markovian instead of an
internal self-loop.

6.1.2 Paths in interactive Markov chains

To unify the notation for interactive and Markovian transitions, we introduce a special
action � ∉ Act and let σ range over Act� = Act ⊍ {�}. In this way, we can denote a �nite

path as a sequence π = s0
σ0 ,t0ÐÐ→ s1

σ1 ,t1ÐÐ→ ⋯
σn−1 ,tn−1ÐÐÐÐ→ sn, where si ∈ S , σi ∈ Act� and ti ∈ R≥0

for i ≤ n. We write si
�,tiÐ→ si+1 for Markovian and si

α i ,0ÐÐ→ si+1 for interactive transitions
in π. As before, ∣π∣ denotes the length of path π. Moreover, π[k] = sk and δ(π, k) = tk
refer to the (k+1)-th state on π and its associated sojourn time. Accordingly, ∆(π, i) =
∑i−1

k=0 tk is the total time spent on π (where ∆(π, 0) = 0) when reaching state π[i]. If π is
�nite with ∣π∣ = n, then ∆(π) = ∆(π, n) is the total time spent on π; similarly, π↓ = sn
is the last state on π. �e path in�x between the (i+1)-th and the ( j+1)-th state of π is
denoted π[i.. j].
Because internal transitions occur immediately in IMCs, an IMC can traverse several

states at once. �erefore, we modify the de�nition of π@t such that π@t ∈ (S∗ ⊍ Sω)
denotes the sequence of states that are traversed on π at time point t ∈ R≥0.
�e formal derivation of π@t is slightly involved: Let i be the smallest index such that

t ≤ ∆(π, i). �en π[i] is the �rst state on π that is visited at or a�er time t; if no such
state exists, we set π@t = ⟨⟩. Otherwise we distinguish two cases: If t < ∆(π, i), we de�ne
π@t = ⟨si−1⟩; if t = ∆(π, i), let j be the largest index (or +∞, if no such �nite index exists)
such that t = ∆(π, j) and de�ne π@t = ⟨si . . . s j⟩.
Example 6.2. Consider the path π = s0

α0 ,0ÐÐ→ s1
α1 ,0ÐÐ→ s2

�,t2ÐÐ→ s3
α3 ,0ÐÐ→ s4

α4 ,0ÐÐ→ s5
�,t5ÐÐ→ s6

and let 0 < ε < min{t2, t5}. �e derivations for the sequences π@0, π@(t2−ε), π@t2 and
π@(t2+ε) are sketched in Tab. 6.1:
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Intuitively, the (i+1)-th state on path π (i.e. π[i]) is entered at time ∆(π, i). To �nd
the �rst state of the sequence π@t, let i be the �rst index on π where at least t time units
have passed. Formally, we have to choose the minimal i that satis�es t ≤ ∆(π, i). For such a
minimal i, t < ∆(π, i) implies that time has passed in the previous state π[i−1] and that we
have been in that state at time point t. Hence, π[i−1]must be aMarkovian state and we set
π@t = ⟨π[i−1]⟩. Otherwise t = ∆(π, i), implying that state π[i] is entered at time point t.
If it is an interactive state, further transitions can occur immediately. Hence, we look for the
maximal index j, for which ∆(π, j) still equals t and de�ne π@t = ⟨π[i] . . . π[ j]⟩. ♢

We write s ∈ ⟨si . . . s j⟩ if s ∈ {si , . . . , s j}; further, for states s ∈ ⟨si . . . s j⟩ we de�ne
Pref (⟨si . . . s j⟩, s) = ⟨si , . . . sk⟩, where s = sk and k is minimal. If s ∉ ⟨si . . . s j⟩, we set
Pref (⟨si . . . s j⟩, s) = ⟨⟩.�e de�nitions for time-abstract paths are similar.

6.1.3 Events and measurable spaces

A path π (time-abstract path π′) as de�ned in Sec. 6.1.2 is a concatenation of a state
and a sequence of combined transitions (time-abstract combined transitions) from the
set Ω = R≥0 × Act� × S (Ωabs = Act� × S); hence, π = s0 ○ m0 ○ m1 ○ . . . ○ mn−1 with

mi = (ti , σi , si+1) ∈ Ω (mi = (σi , si+1) ∈ Ωabs). �us Pathsn(M) = S × Ωn is the set
of paths of length n in an IMCM; further, Paths⋆(M), Pathsω(M) and Paths(M) are
the sets of �nite, in�nite and all paths inM. To refer to time-abstract paths, we add
the subscript abs; further the reference toM is omitted wherever possible.�e measure-
theoretic concepts are mentioned only brie�y, as they directly carry over from the de�-

nitions for the CTMDP case (cf. Sec. 3.3.2 on page 76): Events inM are measurable sets
of paths; as paths are Cartesian products of combined transitions, we de�ne the σ-�eld
F = σ (B(R≥0) × FAct� × FS) on subsets of Ω where FS = 2S and FAct� = 2

Act� .

�e product σ-�eld FPathsn of measurable subsets of Pathsn is de�ned as usual, that
is, FPathsn = σ ({S0 ×M1 ×⋯ ×Mn ∣ S0 ∈ FS ,Mi ∈ F}). As for CTMDPs, the cylinder-set

construction [ADD00] extends this to in�nite paths: A set B ∈ FPathsn is called a base of an
in�nite cylinder C where C = Cyl(B) = {π ∈ Pathsω ∣ π[0..n] ∈ B}. Finally, the cylinders
generate the σ-�eld FPathsω = σ (⋃∞n=0 {Cyl(B) ∣ B ∈ FPathsn}).

t ≤ ∆(π, i) 0 1 2 3 4 5 6 min i max j π@t
0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0 2 ⟨s0s1s2⟩

t2−ε ⨉ ⨉ ⨉ ✓ ✓ ✓ ✓ 3 NA ⟨s2⟩
t2 ⨉ ⨉ ⨉ ✓ ✓ ✓ ✓ 3 5 ⟨s3s4s5⟩

t2+ε ⨉ ⨉ ⨉ ⨉ ⨉ ⨉ ✓ 6 NA ⟨s5⟩
Table 6.1: An example for the derivation of π@t for interactive Markov chains.



6.1 Interactive Markov chains 151

6.1.4 Resolving nondeterminism by schedulers

An IMC M is nondeterministic i� for some s ∈ IS, there exist interactive transitions(s, α, u) , (s, β, v) ∈ IT(s) with u /= v: For example, nondeterminism arises in the IMC

in Fig. 6.1: In state s2, two internal transitions (with actions α and β) lead to states s1
and s4, respectively. By the maximal progress assumption, they both execute instanta-
neously at time point 0. Hence, no order of execution can be �xed, which leads to the

situation that the successor state of state s2 (either s1 or s4) is not uniquely determined. To
resolve this nondeterministic choice, we use schedulers: IfM reaches state s2 along a his-
tory π ∈ Paths⋆, a scheduler yields a probability distribution over the setAct(π↓) = {α, β}.
Formally, we de�ne the set of enabled actions in an interactive state s ∈ IS of an IMC as
follows:

Act(s) = {α ∈ Act ∣ ∃s′ ∈ S . (s, α, s′) ∈ IT} .
IMC schedulers are closely related to CTMDP schedulers and most of the concepts

from Sec. 3.3.2 and Chapters 4 and 5 apply analogously.�e only notable di�erence is the

distinction between interactive and Markovian states: Nondeterminism does not occur
in the latter, as the successor states are probabilistically quanti�ed. Hence, the only source

of nondeterminism are competing internal transitions in interactive states.

De�nition 6.2 (Generic measurable scheduler). A generic scheduler on an IMCM =(S ,Act, IT ,MT , ν) is a partial mapping D ∶ Paths⋆ × FAct ↣ [0, 1] such that D(π, ⋅) ∈
Distr(Act(π↓)) for all π ∈ Paths⋆ with π↓ ∈ IS. A generic scheduler D ismeasurable (that
is, a GM scheduler) i� for all A ∈ FAct, D−1(A) ∶ Paths⋆ → [0, 1] is measurable.

Measurability states that {π ∣ D(π,A) ∈ B} ∈ FPaths⋆ holds for all A ∈ FAct and B ∈
B([0, 1]); intuitively, it excludes schedulers which resolve the nondeterminism in a way

that induces non-measurable sets. Recall that no nondeterminism occurs if π↓ ∈ MS.
However, we slightly abuse notation and assume that D(π, ⋅) = {�↦ 1} if π↓ ∈ MS so
that D yields a distribution over Act�. In this way, we can treat a GM-scheduler D as a

total function D ∶ Paths⋆ × FAct� → [0, 1].
A GM scheduler D is deterministic i� D(π, ⋅) is degenerate for all π ∈ Paths⋆. We

use GM (and GMD) to denote the class of generic measurable (deterministic) sched-
ulers. Further, a GM scheduler Dabs is time-abstract (GMabs) i� abs(π) = abs(π′) implies

Dabs(π, ⋅) = Dabs(π′, ⋅).
Example 6.3. If state s2 in Fig. 6.1 is reached along path π = s0

0.4,�
ÐÐ→ s2, then D(π)might

yield the distribution {α ↦ 1
2
, β ↦ 1

2
}, whereas for history π′ = s0 1.5,�

ÐÐ→ s2, it might return
a di�erent distribution, say D(π) = {α ↦ 1}. ♢
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6.1.5 Probability measures for IMCs

In this section, we de�ne the probability measure [Joh07] induced by D on the measur-
able space (Pathsω ,FPathsω). We �rst derive the probability of measurable sets of com-
bined transitions, i.e. of subsets of Ω:

De�nition 6.3 (Probability of combined transitions). Let M = (S ,Act, IT ,MT , ν)
be an IMC and D ∈ GM. For π ∈ Paths⋆, we de�ne the probability measure µD(π, ⋅) ∶
F→ [0, 1]:

µD(π,M) =
⎧⎪⎪⎨⎪⎪⎩
∑α∈Act(π↓) IM(α, 0, succ(α)) ⋅ D (π, {α}) if π↓ ∈ IS

∫R≥0 E(s)e−E(s)t ⋅∑s′∈S IM(�, t, s′) ⋅ P(s, s′) dt if π↓ ∈MS.
(6.1)

As usual, IM denotes the indicator function for the set M. Intuitively, µD(π,M) is the
probability to continue along one of the combined transition in the setM. For an interac-

tive state s ∈ IS, it is the probability of choosing α ∈ Act(π↓) such that (α, 0, succ(α)) is
a transition in M. Stated di�erently, we sum up the probabilities of all combined transi-
tions inM that lead immediately with an interactive transition to a successor state of π↓.
If s ∈ MS, µD(π,M) is given by the density for the Markovian transition to trigger at
time t and the probability that the IMCmoves to a successor state s′ according to a com-

bined transition in M. As paths are inductively de�ned using combined transitions, we
can li� the probability measure µD(π, ⋅) to FPathsn as usual:

De�nition 6.4 (Probability measure). Let M = (S ,Act, IT ,MT , ν) be an IMC
and D ∈ GM. For n ≥ 0, we de�ne the probability measures Prnν,D inductively on the
measurable space (Pathsn ,FPathsn):

Pr0ν,D ∶ FPaths0 → [0, 1] ∶ Π ↦∑
s∈Π

ν (s) and

Prn+1ν,D ∶ FPathsn+1 → [0, 1] ∶Π ↦ ∫
Pathsn

Prnν,D(dπ) ∫
Ω
IΠ(π ○m) µD(π, dm).

6.1.6 Interactive probabilistic chains

In this section, we introduce interactive probabilistic chains (IPCs) [CHLS09] which serve

as the discrete-time analogon of IMCs. In an IPC, Markovian transitions are replaced by
probabilistic transitions. As a consequence, no delay time distribution is associated with

probabilistic states.�erefore, taking a probabilistic transitions corresponds to a discrete
time step in the IPC.



6.1 Interactive Markov chains 153

�e semantics of interactive transitions remains the same as in the IMC case. Open

IMCs can synchronize over the set of external actions, whereas internal actions are unob-
servable for the environment.

De�nition 6.5 (Interactive probabilistic chain). An interactive probabilistic chain

(IPC) is a tuple P = (S ,Act, IT ,PT , ν), where S ,Act, IT and ν are as in Def. 6.1 and
PT ∶ S × S → [0, 1] is a transition probability function s.t. ∀s ∈ S . PT(s,S) ∈ {0, 1}.

A state s in an IPC P is probabilistic i� ∑s′∈S PT(s, s′) = 1 and IT(s) = ∅; PS denotes
the set of all probabilistic states. �e sets of interactive, hybrid and deadlock states are
de�ned as for IMCs, with the same assumption imposed on deadlock states. Further, we
assume any IPC to be closed, that is (s, α, s′) ∈ IT implies α ∈ Acti . Hence, Acte = ∅ and

we identify the sets Acti and Act.
As for IMCs, we adopt themaximal progress assumption [Her02, p. 71]; hence, internal

transitions take precedence over probabilistic transitions and their execution takes 0 dis-
crete time steps. In this way, we obtain a full correspondence between IMCs and IPCs,
as in both cases internal transitions consume no time.

De�nition 6.6 (IPC scheduler). Let P = (S ,Act, IT ,PT , ν) be an IPC. A partial func-
tion D ∶ Paths⋆abs ↣ Distr(Act) with D(π) ∈ Distr(Act(π↓)) is a time-abstract history-
dependent randomized (GMabs) scheduler.

Note that in the discrete-time setting, measurability issues do not arise. Moreover, we
extend D ∈ GMabs to a complete function D ∶ Paths⋆abs → Distr (Act�) and assume that
D(π) = {� ↦ 1} i� π↓ ∈ PS. To de�ne a probability measure on sets of paths in P , we
de�ne the probability of a single transition:

De�nition 6.7 (Combined transitions in IPCs). Let P = (S ,Act, IT ,PT , ν) be an
IPC, s ∈ S , σ ∈ Act�, π ∈ Paths

⋆

abs and (σ , s) ∈ Ωabs a time-abstract combined transi-
tion. For scheduler D ∈ GMabs, we de�ne

µabs
D (π, {(σ , s)}) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PT(π↓, s) if π↓ ∈ PS ∧ σ = �

D(π, {σ}) if π↓ ∈ IS ∧ succ(σ) = s
0 otherwise.

For a set of combined transitions M ⊆ Ωabs, we set µabs
D (π,M) =

∑(σ ,s)∈M µabs
D (s, {(σ , s)}).
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(a) An example of an IMC.
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(b) Its embedded IPC.

Figure 6.2: An example for an IMC and its embedded IPC.

�e measures µabs
D extend to a unique measure on sets of paths in P in the same way

as it was shown for the IMC case in Sec. 6.1.5.

Example 6.4. Each IMC induces an embedded IPC: Consider the IMCM in Fig. 6.2(a),
with initial state s0 and interactive states s1 and s3. A scheduler D has to resolve the nondeter-

minism in state s1: If π = s0
�,t0ÐÐ→ s0

�,t1Ð→ s1 is the path that led into state s1, then D(π)(α) is
the probability that α is chosen in s1. In Fig. 6.2(b), we depict the embedded IPC emb(M)
ofM: It is obtained by disregardingM’s timed behavior and considering the IMC’s discrete
branching probabilities P(s, s′) only. Hence emb(M) is the IPC (S ,Act,PT , IT , ν), where
PT(s, s′) = R(s,s′)

E(s) if s ∈MS and PT(s, s′) = 0, otherwise. ♢

6.2 Interval bounded reachability probability

We discuss how to compute the maximum probability to visit a set G ⊆ S of goal states
during a given time interval I.�erefore, let I be the set of nonempty intervals over the
nonnegative reals and let Q be the set of nonempty intervals with nonnegative rational

bounds. For t ∈ R≥0 and I ∈ I , we de�ne I ⊖ t = {x − t ∣ x ∈ I ∧ x ≥ t} and I ⊕ t ={x + t ∣ x ∈ I}. Obviously, if I ∈ Q and t ∈ Q≥0, this implies I ⊖ t ∈ Q and I ⊕ t ∈ Q.

6.2.1 A �xed point characterization for IMCs

LetM be an IMC. For a time interval I ∈ I and a set G ⊆ S of goal states, we de�ne the

event ◇IG = {π ∈ Pathsω ∣ ∃t ∈ I. ∃s′ ∈ π@t. s′ ∈ G} as the set of all paths that hit a state
in G during time interval I.�e maximum probability induced by◇IG inM is denoted
pMmax(s, I). Formally, it is obtained by the supremum under all GM schedulers:

pMmax(s, I) = sup
D∈GM

Prωνs ,D(◇IG). (6.2)

For a scheduler D ∈ GM, s ∈ S and interval I ∈ I with inf I = a and sup I = b, consider
the functions Prωνs ,D (◇I⊖[⋅]G) ∶ t ↦ Prωνs ,D(◇I⊖tG). �en Prωνs ,D (◇I⊖[⋅]G) is piecewise
continuous in R≥0 by de�nition. As the following lemma proves, continuity (and thereby
measurability) extends to pMmax(s, I ⊖ [⋅]):
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Lemma 6.1 (Continuity of pMmax). LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set
of goal states and I ∈ I an interval. �e functions pMmax (s, I ⊖ [⋅]) ∶ R≥0 → [0, 1] ∶ t ↦
pMmax(s, I ⊖ t) are piecewise continuous and measurable for all s ∈ S .

Proof. For continuity, we prove that for all s ∈ S and t ∈ (R>0 ∖ inf I) it holds that
lim
δ→0+

pMmax(s, I ⊖ (t − δ)) = pMmax(s, I ⊖ t) = lim
δ→0+

pMmax(s, I ⊖ (t + δ)). (6.3)

Observe that t = 0 and t = inf I are the only discontinuities of Prωνs ,D(◇I⊖tG): To see this,
note that 0 ∉ I ⊖ t for t < inf I and 0 ∈ I ⊖ t for t > inf I. Hence, if t = inf I, interactive
transitions may reach a goal state directly without requiring integration over the time
domain.
Further, observe that Prωνs ,D(s, I ⊖ t′) ≤ pMmax(s, I ⊖ t′) for all t′ ∈ R≥0 by de�nition of

pMmax. To prove that p
M
max(s, I⊖[⋅]) is piecewise continuous, we proceed by contraposition

and assume there exists t ∈ (R>0 ∖ inf I) such that Eq. (6.3) is violated: Here we consider
le�-continuity and distinguish two cases: Assume that pMmax(s, I ⊖ [⋅]) is not continuous
from the le� at point t ∈ R≥0 and that there exists ε > 0 such that

lim
δ→0+

pMmax(s, I ⊖ (t − δ)) = pMmax(s, I ⊖ t) − ε. (6.4)

Now, choose D ∈ GM such that pMmax(s, I ⊖ t) − Prωνs ,D(◇I⊖tG) = ξ for some ξ ≤ ε
2
.�en

pMmax(s, I ⊖ t) − ξ = Prωνs ,D(◇I⊖tG) = lim
δ→0+

Prωνs ,D(◇I⊖(t−δ)G)
≤ lim

δ→0+
pMmax(s, I ⊖ (t − δ)).

But then, limδ→0+ pMmax(s, I⊖(t−δ)) ≥ pMmax(s, I⊖ t)− ξ > pMmax(s, I⊖ t)−ε, contradicting
Eq. (6.4). For the second case, assume that le�-continuity at t is violated because there

exists ε > 0 such that

lim
δ→0+

pMmax(s, I ⊖ (t − δ)) = pMmax(s, I ⊖ t) + ε. (6.5)

Choose D ∈ GM such that limδ→0+ Pr
ω
νs ,D
(◇I⊖(t−δ)) = limδ→0+ pMmax(s, I ⊖ (t − δ))− ξ for

some ξ ≤ ε
2 .�en

pMmax(s, I ⊖ t) ≥ Prωνs ,D(◇I⊖tG) = lim
δ→0+

Prωνs ,D(◇I⊖(t−δ)G)
= lim

δ→0+
pMmax(s, I ⊖ (t − δ)) − ξ.

But then, limδ→0+ pMmax(s, I⊖(t−δ)) ≤ pMmax(s, I⊖ t)+ ξ < pMmax(s, I⊖ t)+є, contradicting
Eq. (6.5).�us, pMmax(s, I ⊖ [⋅]) is piecewise le�-continuous. �e fact that it is piecewise
right-continuous follows along the same lines. Hence, pMmax(s, I⊖[⋅]) is piecewise contin-
uous. As piecewise continuous functions are Borel measurable [Ros00, Prop. 3.1.8], we
are done. ◻
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Based on the measurability of pMmax(s, I ⊖ [⋅]), we are now ready to derive a �xed point

characterization of the maximum probability pMmax(s, I). More speci�cally, we prove that
pMmax is the least �xed-point of a higher-order operator Ω:

�eorem 6.1 (Fixed point characterization for IMCs). Let M = (S ,Act, IT ,PT , ν)
be an IMC, G ⊆ S a set of goal states and I ∈ I a time interval with inf I = a and
sup I = b for some a, b ∈ R≥0. �e function pMmax ∶ S × I → [0, 1] is the least �xed point of
the higher-order operator Ω ∶ (S × I → [0, 1]) → (S × I → [0, 1]), which is de�ned as
follows:

1. For Markovian states s ∈MS:

Ω(F)(s, I) = ⎧⎪⎪⎨⎪⎪⎩
∫
b

0 E(s)e−E(s)t ⋅∑s′∈S P(s, s′) ⋅ F(s′, I ⊖ t) dt if s ∉ G

e−E(s)a + ∫
a

0 E(s)e−E(s)t ⋅∑s′∈S P(s, s′) ⋅ F(s′, I ⊖ t) dt if s ∈ G .

2. For interactive states s ∈ IS:

Ω(F)(s, I) = ⎧⎪⎪⎨⎪⎪⎩
1 if s ∈ G and 0 ∈ I,

max{F(s′, I) ∣ s′ ∈ posti(s)} otherwise.

Proof. �e proof is split in two parts: First, we prove that pMmax is a �xed point of Ω and

second, we show that it is the least �xed point.
Recall that in Eq. (6.2) we de�ned pMmax(s, I) = supD∈GM Prωνs ,D(◇IG). To prove that

pMmax is a �xed point of Ω, we �rst provide a disjoint decomposition of the event◇IG: Let
γ(π, n) be the time interval which is spent in the n-th state of path π, measured in abso-
lute time. Formally, γ(π, n) = [∆(π, n), ∆(π, n+1)) if ∆(π, n) < ∆(π, n+1) and γ(π, n) =
{∆(π, n)}, otherwise. Now de�ne the set Γ(I, n) of all paths whose (n+1)-th state is inG
and lieswithin time interval I, that is, Γ(I, n) = {π ∈ Pathsω ∣ π[n] ∈ G ∧ γ(π, n) ∩ I /= ∅}.
To achieve a disjoint decomposition of ◇IG, set Π(I, n) = Γ(I, n) ∖ ⋃n−1

k=0 Γ(I, k). �en

◇IG = ⊍∞n=0 Π(I, n). For D ∈ GM it holds:

Prων,D(◇IG) = Prων,D( ∞⊍
n=0

Π(I, n)) = ∞∑
n=0

Prων,D(Π(I, n)).
Further, let pM,n

max (s, I) = supD∈GM Prωνs ,D (⊍n
i=0 Π(I, i)) be the upper bound on the prob-

ability to visit G during time interval I and within at most n transitions. First, we show

that pM,n+1
max (s, I) = Ω(pM,n

max )(s, I). It su�ces to consider two cases:

1. Let s ∈MS and assume that s ∉ G (the case s ∈ G follows similarly).�en:

Ω(pM,n
max )(s, I) = ∫

b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pM,n

max (s′, I ⊖ t) dt
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= ∫
b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ sup

D∈GM

Prωνs′ ,D(
n⊍
i=0

Π(I ⊖ t, i)) dt.
(6.6)

Let D ∈ GM, s ∈ S , σ ∈ Act� and t ∈ R≥0. We de�ne the GM scheduler Ds,σ ,t

such that Ds,σ ,t(π) = D(s σ ,t
Ð→ π) for all π ∈ Paths⋆. Hence, Ds,σ ,t yields the same

decisions for history π as the original scheduler D does for the history s
σ ,t
Ð→ π,

where we de�ne s
σ ,t
Ð→ π = s

σ ,t
Ð→ s0

σ0 ,t0ÐÐ→ s1
σ1 ,t1ÐÐ→ ⋯ if π = s0

σ0 ,t0ÐÐ→ s1
σ1 ,t1ÐÐ→ ⋯. �is

shi� allows us to rewrite Ω(pM,n
max )(s, I) further:

Ω(pM,n
max )(s, I) = sup

D∈GM
∫

b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ Prωνs′ ,Ds ,�,t

( n⊍
i=0

Π(I ⊖ t, i)) dt
= sup

D∈GM

Prωνs ,D(
n+1⊍
i=0

Π(I, i)) = pM,n+1
max (s, I).

2. Now let s ∈ IS. If s ∈ G and 0 ∈ I, it holds that Ω(pM,n
max )(s, I) = 1 = pM,n+1

max (s, I) and
we are �nished. Otherwise

Ω(pM,n
max )(s, I) = maxs′∈post i(s) p

M,n
max (s′, I) = maxs′∈post i(s)( sup

D∈GM
Prωνs′ ,D(

n⊍
i=0

Π(I, i)))
= maxα∈Act(s)( sup

D∈GM

Prωνsucc(α),D(
n⊍
i=0

Π(I, i)))
= sup

D∈GM

maxα∈Act(s)Pr
ω
νsucc(α) ,Ds ,α ,0

( n⊍
i=0

Π(I, i))
= sup

D∈GM

Prωνs ,D(
n+1⊍
i=0

Π(I, i)) = pn+1max(s, I).

It is easy to see that pM,n
max (s, I) converges to pMmax(s, I): By de�nition, ⊍n

i=0 Π(I, i) →
◇IG for n → +∞. Further, Lemma 2.2(a) implies that for each D ∈ GM we have that
limn→∞ Prωνs ,D (⊍n

i=0 Π(I, i)) = Prωνs ,D (◇IG). As this applies to all D ∈ GM, it holds

sup{Prωνs ,D(⊍n
i=0 Π(I, i)) ∣ D ∈ GM} → sup{Prωνs ,D(◇IG) ∣ D ∈ GM} for n → +∞.

Taking the limit on both sides of the equation Ω(pM,n
max )(s, I) = pM,n+1

max (s, I) yields that
Ω(pMmax)(s, I) = pMmax(s, I). Hence pMmax is a �xed point of Ω.
It remains to show that pMmax is the least �xed point of Ω.�erefore, let F ∶ S×I → [0, 1]

be another �xed point of Ω. By induction on the number of (interactive andMarkovian)
transitions n, we show that pM,n

max (s, I) ≤ F(s, I) for all n ∈ N.
1. In the induction base, it holds that pM,0

max (s, I) = 1 = Ω(F(s, I)) = F(s, I) if s ∈ G
and a = 0; otherwise p0max(s, I) = 0 ≤ F(s, I).

2. For the induction step, we distinguish between Markovian and interactive states:
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(a) Let s ∈MS and s /∈ G (the case s ∈ G can be shown similarly).�en

pM,n+1
max (s, I) = Ω(pM,n

max )(s, I)
= ∫

b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pM,n

max (s′, I ⊖ t) dt
≤ ∫

b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ F(s′, I ⊖ t) dt (* ind. hyp. *)

= Ω(F(s, I)) = F(s, I). (* F is �xed point *)

(b) Now let s ∈ IS. If s ∈ G and 0 ∈ I, we have Ω(F)(s, I) = F(s, I) = 1 ≥
pM,n+1
max (s, I). Otherwise, the induction hypothesis yields

pM,n+1
max (s, I) = Ω(pM,n

max )(s, I) = maxs′∈post i(s)p
M,n
max (s′, I) ≤ maxs′∈post i(s)F(s′, I).

By de�nition of Ω, we have maxs′∈post i(s)F(s′, I) = Ω(F)(s, I) = F(s, I), prov-
ing that pM,n+1

max (s, I) ≤ F(s, I).
Hence, F(s, I) ≥ limn→∞ pM,n

max (s, I) = pMmax(s, I) and the claim follows. ◻

Example 6.5. �e �xed point characterization suggests to compute pMmax(s, I) analytically:
Consider the IMC M depicted in Fig. 6.1 and assume that G = {s3}. For I = [0, b],
b > 0 we have pMmax(s3, I) = 1 and pMmax(s4, I) = 1 − e−0.1b . For state s1, we derive that

pMmax(s1, I) = ∫
b

0 e−t ( 2
5
⋅ pMmax(s2, I ⊖ t) + 1

5
⋅ pMmax(s3, I ⊖ t) + 2

5
⋅ pMmax(s4, I ⊖ t))dt. In in-

teractive state s2, we obtain that pMmax(s2, I) = max {pMmax(s4, I), pMmax(s1, I)}, which yields

that pMmax(s0, I) = ∫ b

0 0.9e−0.9t ⋅ ( 2
3
⋅ pMmax(s1, I ⊖ t) + 1

3
⋅ pMmax(s2, I ⊖ t)) dt. ♢

From this example, it is easy to see that an IMC generally induces an integral equation

system over the maximum over functions, which is not tractable. Moreover, the iterated
integrations that occur are known to be numerically unstable [BHHK03].

�erefore, we resort to a discretization approach: Informally, we divide the time hori-

zon into small time slices. �en we consider IPCs as a discrete-time model which we
de�ne such that its steps correspond to the IMC’s behavior during a single time slice.

First, we develop a �xed-point characterization for step bounded reachability in IPCs.
�en we reduce the maximum time interval bounded reachability problem in IMCs to
the step interval bounded reachability problem in the discretized IPC. Finally, we show

how to solve the latter by a modi�ed value iteration algorithm.

6.2.2 A �xed point characterization for IPCs

Similar to the timed paths in IMCs, we de�ne π@n ∈ S∗∪Sω for the time abstract paths in

IPCs: Let #PS(π, k) = ∣{i < k ∣ π[i] ∈ PS}∣; then #PS(π, k) is the number of probabilistic
transitions that complete up to the (k+1)-th state on π. For �xed n ∈ N, let i be the
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smallest index such that n = #PS(π, i). If no such i exists, we set π@n = ⟨⟩; otherwise i
is the index of the state that is reached on path π directly a�er the n-th probabilistic
transition executed (or the �rst state on π, if n = 0). Similarly, let j ∈ N be the largest
index (or +∞, if no such �nite index exists) such that n = #PS(π, j). �en j denotes
the position of the (n+1)-th probabilistic state on π. With these preliminaries, we de�ne
π@n = ⟨si , si+1 , . . . , s j−1, s j⟩ to denote the state sequence a�er the n-th and up to the (n+1)-
th probabilistic state of π. Intuitively, π@n is the sequence of states which are traversed
during the (n+1)-th discrete time unit.
To de�ne step-interval bounded reachability in an IPC P , let [ka , kb] ⊆ N be a step

interval.�en

◇[ka ,kb]G = {π ∈ Pathsωabs ∣ ∃n ∈ {ka , ka + 1, . . . , kb} . ∃s′ ∈ π@n. s′ ∈ G}
is the set of paths that visit G between discrete time steps ka and kb in P . Accordingly,
we de�ne the maximum probability for the event◇[ka ,kb]G:

pPmax (s, [ka , kb]) = sup
D∈GMabs

Prωνs ,D(◇[ka ,kb]G).
Now, we are ready to provide a �xed point characterization for pPmax:

�eorem 6.2 (Fixed point characterisation for IPCs). Let P = (S ,Act, IT ,PT , ν) be
an IPC, G ⊆ S a set of goal states and I = [ka , kb] a step interval. �e function
pPmax is the least �xed point of the higher-order operator Ω ∶ (S ×N ×N→ [0, 1]) →(S ×N ×N → [0, 1]) which is stated as follows:

1. For probabilistic states s ∈ PS:

Ω(F)(s, [ka , kb]) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if s ∈ G ∧ ka = 0

0 if s ∉ G ∧ ka = kb = 0

∑s′∈S PT(s, s′) ⋅ F (s′, [ka , kb]⊖ 1) otherwise.

2. For interactive states s ∈ IS:

Ω(F)(s, [ka , kb]) =
⎧⎪⎪⎨⎪⎪⎩
1 if s ∈ G and ka = 0

maxs′∈post i(s)F (s′, [ka , kb]) otherwise.

Proof. �e proof goes along the same lines as the proof of�m. 6.1. First, we decompose
the event ◇[ka ,kb] into disjoint subsets.�erefore, de�ne

Γ ([ka , kb] , n) = {π ∈ Pathsωabs ∣ π[n] ∈ G ∧ ka ≤ #
PS(π, n) ≤ kb} .
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To achieve a disjoint decomposition of◇[ka ,kb]G, we set Π([ka , kb], n) = Γ([ka , kb], n)∖⋃n−1
i=0 Γ([ka , kb], i).�en Π([ka , kb] , n) is the set of paths that visitG in the probabilistic

step interval [ka , kb] for the �rst time a�er exactly n (probabilistic or interactive) transi-
tions.�en◇[ka ,kb]G = ⊍∞n=0 Π([ka , kb] , n).�us, it holds for all D ∈ GMabs:

Prων,D(◇[ka ,kb]G) = Prων,D( ∞⊍
n=0

Π([ka , kb] , n)) = ∞∑
n=0

Prων,D(Π([ka , kb] , n)).
We maximize the probability of the sets ⊍n

i=0 Π([ka , kb] , i) separately:�erefore, let

pP ,nmax(s, [ka , kb]) = sup
D∈GMabs

Prωνs ,D(
n⊍
i=0

Π([ka , kb] , i))
be the upper bound on the probability to reach G during the probabilistic step inter-

val [ka , kb] with at most n (interactive or probabilistic) transitions. Now we show that
pP ,n+1max (s, [ka , kb]) = Ω (pP ,nmax) (s, [ka , kb]):

1. Let s ∈ PS: If s ∈ G and ka = 0, we have pP ,n+1max (s, [0, kb]) = 1. Further, by de�ni-
tion of Ω, it also holds that Ω (pP ,nmax) (s, [0, kb]) = 1. Hence Ω (pP ,nmax) (s, [0, kb]) =
pP ,n+1max (s, [0, kb]) and we are done.

�e case s /∈ G and ka = kb = 0 is similar: We have pP ,n+1max (s, [0, 0]) = 0, as no
probabilistic stepmay occur in step interval [0, 0]. Further Ω (pP ,nmax) (s, [0, 0]) = 0
by de�nition of Ω. Hence Ω (pP ,nmax) (s, [0, 0]) = pP ,n+1max (s, [0, 0]) and we are done.

In the remaining cases, we proceed as follows:

Ω (pP ,nmax) (s, [ka , kb]) = ∑
s′∈S

PT(s, s′) ⋅ pP ,nmax(s′, [ka , kb]⊖ 1)
= ∑

s′∈S
PT(s, s′) ⋅ sup

D∈GMabs

Prωνs′ ,D(
n⊍
i=0

Π([ka , kb]⊖ 1, i)). (6.7)
For D ∈ GMabs, s ∈ S and σ ∈ Act�, we de�ne the scheduler Ds,σ ∈ GMabs such that

Ds,σ(π) = D(s σ
Ð→ π) for all π ∈ Paths⋆abs. �is allows us to derive from Eq. (6.7)

that

Ω (pP ,nmax) (s, [ka , kb]) = sup
D∈GMabs

∑
s′∈S

PT(s, s′) ⋅ Prωνs′ ,Ds ,�
( n⊍
i=0

Π([ka , kb]⊖ 1, i))
= sup

D∈GMabs

Prωνs ,D(
n+1⊍
i=0

Π( [ka , kb] , i)) = pP ,n+1max (s, [ka , kb]).

2. Second, we prove that Ω (pP ,nmax) (s, [ka , kb]) = pP ,n+1max (s, [ka , kb]) for interactive
states s ∈ IS: If s ∈ G and ka = 0, it holds that pP ,nmax (s, [0, kb]) = 1. Further, the
de�nition of Ω implies that Ω (pP ,nmax) (s, [0, kb]) = 1. Hence Ω (pP ,nmax) (s, [0, kb]) =
pP ,n+1max (s, [0, kb]).
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For the other cases, it holds that

Ω (pP ,nmax) (s, [ka , kb]) = maxs′∈post i(s)p
P ,n
max(s′, [ka , kb])

= maxs′∈post i(s) sup
D∈GMabs

Prωνs′ ,D(
n⊍
i=0

Π([ka , kb] , i))
= sup

D∈GMabs

maxα∈Act(s)Pr
ω
νsucc(α),Ds ,α

( n⊍
i=0

Π([ka , kb] , i))
= sup

D∈GMabs

Prωνs ,D(
n+1⊍
i=0

Π([ka , kb] , i)) = pP ,n+1max (s, [ka , kb]).
Hence, Ω (pP ,nmax) (s, [ka , kb]) = pP ,n+1max ([ka , kb] , s). Further, pP ,nmax(s, [ka , kb]) converges

to pPmax(s, [ka , kb]) for n → +∞: To see this, note that⊍n
i=0 Π([ka , kb] , i) ↑◇[ka ,kb]G for

n → +∞. But then Lemma 2.2 implies for all D ∈ GMabs that

lim
n→∞

Prωνs ,D(
n⊍
i=0

Π([ka , kb] , i)) = Prωνs ,D (◇[ka ,kb]G) . (6.8)

Now, let Π(n) = ⊍n
i=0 Π([ka , kb] , i). As Eq. (6.8) applies to all D ∈ GMabs, it implies that

sup{Prωνs ,D(Π(n)) ∣ D ∈ GMabs} → sup{Prωνs ,D(◇[ka ,kb]G) ∣ D ∈ GMabs} for n → +∞.

Taking the limit on both sides of the equation Ω (pP ,nmax) (s, [ka , kb]) = pP ,n+1max (s, [ka , kb])
yields that Ω (pPmax) (s, [ka , kb]) = pPmax (s, [ka , kb]). Hence pPmax is a �xed point of Ω.

It remains to show that pPmax is the least �xed point of Ω:�us, let F be another �xed

point of Ω. By induction on n, we show that pP ,nmax(s, [ka , kb]) ≤ F(s, [ka , kb]):
1. For the base case, pP ,0max(s, [ka , kb]) = 1 = Ω(F(s, [ka , kb])) = F(s, [ka , kb]) if s ∈ G

and ka = 0 and pP ,0max(s, [ka , kb]) = 0 ≤ F(s, [ka , kb]), otherwise. To see this, note

that in the event Π([ka , kb] , 0) a G-state must be visited before any (probabilistic
or interactive) transition executes.

2. For the induction step, we distinguish two cases:

(a) Let s ∈ PS: If s ∉ G (the case s ∈ G is similar), then

pP ,n+1max (s, [ka , kb]) = Ω(pP ,nmax)(s, [ka , kb])
= ∑

s′∈S
PT(s, s′) ⋅ pP ,nmax(s′, [ka , kb]⊖ 1)

≤ ∑
s′∈S

PT(s, s′) ⋅ F(s′, [ka , kb]⊖ 1) (* ind. hyp. *)

= Ω(F(s, [ka , kb])) = F(s, [ka , kb]). (* F is a �xed point *)

(b) �e case s ∈ IS: If s ∈ G and ka = 0, we have pP ,n+1max (s, [0, kb]) = 1; further,

F (s, [0, kb]) = Ω (F) (s, [0, kb]) = 1. Hence pP ,n+1max (s, [0, kb]) ≤ F (s, [0, kb]).
Otherwise, applying the induction hypothesis yields

pP ,n+1max (s, [ka , kb]) = Ω (pP ,nmax) (s, [ka , kb])
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= maxs′∈post i(s)p
P ,n
max(s′, [ka , kb])

≤ maxs′∈post i(s)F(s′, [ka , kb]).
�e de�nition of Ω implies maxs′∈post i(s)F(s′, [ka , kb]) = Ω(F)(s, [ka , kb]) =
F(s, [ka , kb]), proving that pP ,n+1max (s, [ka , kb]) ≤ F(s, [ka , kb]).

Hence F(s, [ka , kb]) ≥ limn→∞ pP ,nmax(s, [ka , kb]) = pPmax(s, [ka , kb]), proving the claim. ◻

Observe the similarity in the treatment of interactive states in the �xed point charac-
terizations for IMCs and IPCs: In an interactive state, the recursive expression of the

time-interval bounded reachability in an IMC does not decrease the time interval I for
interactive states, whereas for IPCs, the recursive expression does not decrease the step
interval [ka , kb].
In this way, we have established a close relationship between IMCs and IPCs which

allows us to discretize an IMC into an IPC.�e details are the topic of the next section.

6.3 A discretization that reduces IMCs to IPCs

For an IMCM and a step duration τ > 0, we de�ne the discretized IPCMτ ofM as
follows:

De�nition 6.8 (Discretization). An IMC M = (S ,Act, IT ,MT , ν) and a step dura-
tion τ > 0 induce the discretized IPCMτ = (S ,Act, IT ,PT , ν), where

PT(s, s′) = ⎧⎪⎪⎨⎪⎪⎩
(1 − e−E(s)τ) ⋅ P(s, s′) if s /= s′
(1 − e−E(s)τ) ⋅ P(s, s′) + e−E(s)τ if s = s′.

(6.9)

Recall, that P(s, s′) = R(s,s′)
E(s) is the discrete branching probability in the IMCM. More-

over, the term (1 − e−E(s)τ) is the probability to leave state s within τ time units; accord-
ingly, e−E(s)τ denotes the probability to stay in state s for at least τ time units.

�erefore, we can see that inMτ , each probabilistic transition PT(s, s′) > 0 corre-
sponds to one time step of length τ in the underlying IMCM: More precisely, PT(s, s′)
is the probability that a transition to state s′ occurs within τ time units. In case that s′ = s,
the �rst summand in PT(s, s′) is the probability to take a self-loop back to s, i.e. a tran-
sition that leads from s back to s executes; the second summand denotes the probability

that no transition occurs for the next τ time units and the system stays in state s = s′.

6.3.1 Approximating time-bounded reachability probabilities

In the next two sections, we prove the correctness of the discretization given in Def. 6.8.
To compute the probability pMmax(s, [a, b]), we analyze step-interval bounded reachabil-
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ity in the discretized IPCMτ , where each step approximately corresponds to τ time units.

�e goal of this section (cf.�m. 6.3 below on page 171) is the proof that pMτ
max(s, [0, ⌈ bτ ⌉])

converges from below to pMmax(s, [0, b]) if τ → 0. Note the restriction in the type of inter-
vals that we allow here: We only consider intervals with closed lower bound 0.�erefore,

in this section we only deal with time-bounded reachability probabilities.�is is similar
to the discretization that we have devised for locally uniformCTMDPs in Sec. 5.3. We ad-

dress the more complex issue of computing interval-bounded reachability probabilities
(where we also allow for lower bounds greater than 0) in Sec. 6.3.2.

LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set of goal states, I = [0, b] ∈ Q a

time interval with b > 0 and λ = maxs∈MSE(s). Further, let τ > 0 be such that b = kbτ for
some kb ∈ N>0. Formally, we aim to prove the inequality

pMτ
max(s, [0, kb]) ≤ pMmax(s, I) ≤ pMτ

max(s, [0, kb]) + kb ⋅
(λτ)2
2

.

Both the upper and lower bounds will be proved by induction on kb. Because of
the constraint kb ∈ N>0, the induction base is kb = 1. For the induction step (kb ↝
kb+1), we must establish the connection of the probability pMmax(s, I) in the IMCM and

pMτ
max(s, [0, kb]) in its discretized IPCMτ .

�is is the main task of the next section, where we �rst approximate pMmax(s, I) recur-
sively in terms of pMmax(s, I ⊖ τ) by exploiting the �xed point characterization of pMmax

which we have established in�m. 6.1. Intuitively, we express the probability pMmax(s, I)
as the sum of the integration from 0 to τ and the integration from τ to b. Based on this
idea, Lemma 6.3 establishes the one-step approximation of pMmax(s, I).
One-step approximation

Weapproximate the probability pMmax(s, I) for all Markovian states s ∈MS∖G by reducing

it to an expression that depends on pMmax(s, I ⊖ τ). Since s ∉ G, we obtain a recursive

de�nition of pMmax(s, I) which is based on the �xed point characterization which is given

by�m. 6.1. Noting that b ≥ τ, we obtain:

pMmax(s, I) = Ω (pMmax) (s, I) = ∫
b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt. (6.10)

We let A(s, I) denote the probability that at least one Markovian transition executes at

some time point t ∈ [0, τ]. Accordingly
A(s, I) = ∫

τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt. (6.11)

Splitting the integral on the right-hand side of Eq. (6.10) then yields

pMmax(s, I) = A(s, I) + ∫
b

τ
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt
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= A(s, I) + ∫
b−τ

0
E(s)e−E(s)(t+τ) ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ (t + τ)) dt

= A(s, I) + e−E(s)τ ⋅ ∫
b−τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ (t + τ)) dt

= A(s, I) + e−E(s)τ ⋅ pMmax(s, I ⊖ τ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B(s,I)

.

�en B(s, I) is the probability that no Markovian transition occurs before time τ (given
by the term e−E(s)τ) multiplied with the probability to reach a G-state within the remain-

ing time interval I ⊖ τ (given by the term pmax(s, I ⊖ τ)).
From the above derivations, we obtain the result that if s ∈ MS and pMmax(s, I) is not

determined directly (which is the case if b = 0 and s ∉ G or if s ∈ G), we may express

pMmax(s, I) recursively:
pMmax(s, I) = ∫

τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A(s,I)

+ e−E(s)τ ⋅ pMmax(s, I ⊖ τ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B(s,I)

.

(6.12)

�is recursive characterization of the IMC’s behavior in Markovian states permits to de-
rive our discretization: If we de�ne the random variable #[0,τ] such that

#[0,τ] ∶ Paths
ω → N ∶ π ↦ ∣{i ∈ N ∣ π[i] ∈MS ∧ ∆(π, i + 1) ≤ τ}∣.

Informally, #[0,τ](π) is the number of Markovian transitions that have completed on

path π within the �rst τ time units. For a given τ > 0, we use #[0,τ] to decompose the
event◇IG into disjoint sets of paths and obtain

◇IG =
∞⊍
n=0

(◇IG ∩ #[0,τ] = n) .
�e term B(s, I) is already suitable for our discretization: Its �rst factor represents the

probability that no transition occurs during the �rst discretization step, and pMmax(s, I⊖τ)
corresponds to the achievable probability in the following discretization steps.

Similarly, A(s, I) is the probability that starting in state s, at least one transition (or
equivalently, one or more transitions) occurs in time interval [0, τ]. However, its analytic
expression given in Eq. (6.11) must be re�ned before it can be used for a discretization.

�erefore, let us investigate A(s, I) in more detail. Using the random variable #[0,τ],
we can characterize the event that is associated with the probability A(s, I).�is yields

A(s, I) = sup
D∈GM

Prωνs ,D(◇IG ∩ #[0,τ] ≥ 1).
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Further, we can consider each event (◇IG ∩ #[0,τ] = n) separately and maximize its prob-

ability. Accordingly, de�ne

An(s, I) = sup
D∈GM

Prωνs ,D(◇IG ∩ #[0,τ] = n) (6.13)

for all n ≥ 1. To relate A(s, I) and An(s, I), observe that
A(s, I) = sup

D∈GM

Prωνs ,D(
∞⊍
n=1

(◇IG ∩ #[0,τ] = n))
= sup

D∈GM

∞∑
n=1

Prωνs ,D(◇IG ∩ #[0,τ] = n)
≤
∞∑
n=1

sup
D∈GM

Prωνs ,D(◇IG ∩ #[0,τ] = n) = ∞∑
n=1

An(s, I).
With these preliminaries, we can approximate the probability A(s, I) by another term

X(s, I) which is closely linked to our discretization.�e di�erence between A(s, I) and
X(s, I) that makes X(s, I) suitable for our approximation and A(s, I) not, is the fact that
X(s, I) does not require an integration over the time interval [0, τ]:
Lemma 6.2 (An approximation for A(s, I)). LetM = (S ,Act, IT ,MT , ν) be an IMC,
G ⊆ S a set of goal states, τ > 0 a step duration, I = [0, b] a time-interval with b ≥ τ
such that b = kbτ for some kb ∈ N>0. Further, let s ∈MS∖G and λ = maxs∈MSE(s) be the
maximum exit rate inM. We de�ne

X(s, I) = (1 − e−E(s)τ) ⋅∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ). (6.14)

�en X(s, I) approximates A(s, I) in the following sense:

X(s, I) ≤ A(s, I) ≤ X(s, I) + (λτ)2
2

. (6.15)

Proof. First we show the lower bound. Obviously, the function pMmax(s, [0, b]⊖t) is mono-
tone decreasing for increasing t.�us:

A(s, I) = ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

≥ ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ τ) dt

= ∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ) ∫
τ

0
E(s)e−E(s)t dt = X(s, I).
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Hence the lower bound follows. To establish the upper bound, �rst observe that

A1(s, I) ≤ X(s, I). (6.16)

To see this, note that

X(s, I) = ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ τ) dt and

A1(s, I) = ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ κ(s′, t, τ) ⋅ pMmax(s′, I ⊖ τ) dt,

where κ(s′, t, τ) is the probability that no further Markovian transition occurs in time
interval (t, τ]. As 0 ≤ κ(s′, t, τ) ≤ 1 for all s′ ∈ S and t ∈ [0, τ], Eq. (6.16) follows.
In the following, we �rst consider the relation between A1(s, I) and A(s, I). Recall that

by de�nition,

An(s, I) = sup
D∈GM

Prωνs ,D (◇IG ∩ #[0,τ] = n) ≤ sup
D∈GM

Prωνs ,D (#[0,τ] = n) .
Moreover, #[0,τ] = n is de�ned as the event that nMarkovian transitions completewithin τ
time units. Further, λ = maxs′∈SE(s′) is the maximum exit rate over all Markovian states

inM. �us An(s, I) is bounded by the Poisson distribution ρ (n, λτ), which gives the
probability that exactly n transitions occur within τ time units with rate λ. As ρ(n, λτ) =
e−λτ ⋅ (λτ)

n

n! , we have that An(s, I) ≤ ρ(n, λτ) = e−λτ ⋅ (λτ)nn! .
If we approximate A(s, I) by considering the term A1(s, I) only, the probability that

we neglect (i.e. the error that we make) is given by the expression A(s, I) − A1(s, I).
�is error can be bounded as follows: We have A(s, I) ≤ ∑∞n=1 An(s, I); hence A(s, I) −
A1(s, I) ≤ ∑∞n=2 An(s, I). Further, the Poisson distribution provides an upper bound for
each An(s, I).�is yields

A(s, I) ≤ ∞∑
n=1

An(s, I) = A1(s, I) + ∞∑
n=2

An(s, I)
≤ A1(s, I) + ∞∑

n=2

ρ(n, λτ) = A1(s, I) + ∞∑
n=2

e−λτ ⋅
(λτ)n
n!

= A1(s, I) + e−λτ ⋅
∞∑
n=2

(λτ)n
n!
= A1(s, I) + e−λτ ⋅ R1(λτ),

where R1(x) = ∑∞n=2 xn

n! is the remainder term of the Taylor expansion of f (x) = ex at
point a = 0. By Taylor’s theorem, there exists ξ ∈ [0, λτ] such that

R1(λτ) = f (2)(ξ)
(2)! ⋅ (λτ)2 = e ξ

2
⋅ (λτ)2 . (6.17)

To derive an upper bound, choose ξ maximal in [0, λτ].�en

A(s, I) ≤ A1(s, I) + ∞∑
n=2

An(s, I) ≤ A1(s, I) + e−λτ ⋅ R1(λτ)
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(6.17)
= A1(s, I) + e−λτ ⋅

e ξ

2
⋅ (λτ)2 ≤ A1(s, I) + e−λτ ⋅

eλτ

2
⋅ (λτ)2

= A1(s, I) + (λτ)
2

2

(6.16)
≤ X(s, I) + (λτ)2

2
. ◻

Lemma 6.2 justi�es to use X(s, I) to approximate the probability A(s, I). Now we can
establish the relation between X(s, I) and the one-step transition probabilities in the dis-

cretized IPCMτ that belongs toM (cf. Def. 6.8):

Lemma 6.3 (One-step approximation). LetM = (S ,Act, IT ,MT , ν) be an IMC, τ >
0 a step duration and letMτ = (S ,Act, IT ,PT , ν) be the discretized IPC ofM. Further,
let I = [0, b] a time-interval with b ≥ τ such that b = kbτ for some kb ∈ N>0. For all
s ∈MS ∖G it holds

pMmax(s, I) ≥ ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, I ⊖ τ) and (6.18)

pMmax(s, I) ≤ ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, I ⊖ τ) + (λτ)2
2

. (6.19)

Proof. Let X(s, I) be de�ned as in Lemma 6.2. First, we observe:

X(s, I) + B(s, I) = (1 − e−E(s)τ) ⋅∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X(s,I)

+ e−E(s)τ ⋅ pMmax(s, I ⊖ τ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B(s,I)

= ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, I ⊖ τ).
Since pMmax(s, I) = A(s, I) + B(s, I), the statement follows directly by applying Eq. (6.29)
of Lemma 6.2. ◻

Correctness of the reduction to IPC

In this section, we use Lemma 6.3 to prove the correctness of our discretization for com-

puting time-bounded reachability probabilities. However, up to the present point, we
only considered states in the set MS ∖ G. As a preparation for dealing with interactive

states, the following lemma �rst handles a few special cases:
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Lemma 6.4. Let M = (S ,Act, IT ,MT , ν) be an IMC, τ > 0 be a step duration and
Mτ = (S ,Act, IT ,PT , ν) its discretized IPC. Let G ⊆ S be a set of goal states, [0, b] ∈ Q
a time interval such that b = kbτ for some kb ∈ N. For all s ∈ S it holds:

(a) pMmax (s, [0, 0]) = pMτ
max(s, [0, 0]).

(b) If Reachi(s) ∩MS = ∅ or if Reachi(s) ∩G /= ∅, then
pMmax (s, [0, b]) = pMτ

max(s, [0, kb]). (6.20)

Proof. We prove each claim separately:

(a) �is case is trivial, as both probabilities are 0 if Reachi(s) ∩G = ∅ and 1, otherwise.

(b) For this part we consider the two conditions separately:

• If Reachi(s) ∩MS = ∅, then state s cannot reach a Markovian state. Hence, no

more time can pass (time lock).

– If Reachi(s)∩G /= ∅, then a goal state can be reached by taking interactive
transitions only. Hence pMmax (s, [0, b]) = 1 = pMτ

max (s, [0, kb]).
– If Reachi(s)∩G = ∅, we cannot reach G along interactive transitions only.
�us pMmax (s, [0, b]) = 0 = pMτ

max (s, [0, kb]). ◻

• If Reachi(s) ∩G /= ∅, then pMmax (s, [0, b]) = 1 = pMτ
max (s, [0, kb]).

With Lemma 6.4we have covered three special cases which do not require a discretization

to determine the reachability probabilities: No timemaypass (no probabilistic transitions
may be taken) in the point interval [0, 0] before reaching a G-state. Hence, if s ∉ G
directly, the set G must be reachable via internal transitions (which consume no time)
only. Similarly, if s ∈ IS is an interactive state such that no Markovian (probabilistic)
state is reachable from s, a time lock occurs. In this case, the probabilities pmax(s, I) and
pMτ
max(s, I) are both 1 if a G-state is reachable via internal transitions and 0, otherwise.
In the remaining cases, we need the discretization technique to compute the time-

bounded reachability probabilities. In the following Lemma, we therefore establish the
upper error bound of the approximation:

Lemma 6.5 (Upper error bound). LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a
set of goal states, τ > 0 a step duration, [0, b] a time interval with b > 0 such that b = kbτ
for some kb ∈ N>0. Further, let λ = maxs∈MSE(s). For all s ∈ S it holds:

pMmax (s, [0, b]) ≤ pMτ
max(s, [0, kb]) + kb ⋅

(λτ)2
2

. (6.21)
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Proof. We prove Eq. (6.21) by induction on kb:

1. In the induction base, let kb = 1. We distinguish two cases:

(a) �e case s ∈ MS: If s ∈ G, we have pMmax (s, [0, τ]) = 1 = pMτ
max(s, [0, 1]) directly.

For s ∉ G we can apply Lemma 6.3 and proceed as follows:

pMmax(s, [0, τ]) (6.19)
≤
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, [0, τ]⊖ τ)
=
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, [0, 0])
=
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMτ
max(s′, [0, 0]) (* Lemma 6.4 *)

= pMτ
max(s, [0, 1]) + (λτ)

2

2
.

(b) �e case s ∈ IS: If Reachi(s)∩MS = ∅ or ifReachi(s)∩G /= ∅, the claim follows
by Lemma 6.4 directly. Otherwise, Reachi(s)∩G = ∅ and Y = Reachi(s)∩MS,
where Y = {s1, s2, . . . , sn} for some n ≥ 1. For the induction base, let Id = [0, 1]
be the step-interval that corresponds to the time interval I = [0, τ]. By the
�xed-point characterizations of pMmax (s, I) and pMτ

max (s, Id), it holds that
pMmax(s, I) = max {pMmax(s1, I), pMmax(s2, I), . . . , pMmax(sn , I)}
pMτ
max(s, Id) = max {pMτ

max(s1, Id), pMτ
max(s2, Id), . . . , pMτ

max(sn , Id)} .
Case (1a) implies for all si ∈ Y that

pMmax(si , I) ≤ pMτ
max(si , Id) + (λτ)22

. (6.22)

Now pick the state sk with the maximum probability inM: Formally, choose

sk ∈ Y such that pMmax(s, I) = pMmax(sk , I).�en

pMmax(s, I) = pMmax(sk , I) (6.22)
≤ pMτ

max(sk , Id) + (λτ)22
≤ pMτ

max(s, Id) + (λτ)22
.

2. In the induction step (kb ↝ kb + 1), we distinguish two cases:

(a) �e case s ∈ MS: If s ∈ G, this case is trivial. Otherwise s ∉ G and we apply
Lemma 6.3 to derive

pMmax(s, [0, b + τ]) (6.19)
≤
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, [0, b + τ]⊖ τ)
=
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, [0, b])



170 6.3 A discretization that reduces IMCs to IPCs

i.h.
≤
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ (pMτ
max(s′, [0, kb]) + kb ⋅

(λτ)2
2
)

= ∑
s′∈S

PT(s, s′) ⋅ pMτ
max(s′, [0, kb]) + kb ⋅

(λτ)2
2

+
(λτ)2
2

= pMτ
max(s, [0, kb + 1]) + (kb + 1) ⋅ (λτ)2

2
.

(b) �e case s ∈ IS: �e same proof as in case (1b) in the induction base applies
verbatim, if I and Id are de�ned such that I = [0, b + τ] and Id = [0, kb + 1] and
if instead of case (1a), the case (2a) of the induction step is used. ◻

A�er having established the upper bound, we now complete the proof for the discretiza-

tionof time-bounded reachability probabilities and establish the lower error bound. Again,
we only consider those cases which are not already covered by Lemma 6.4:

Lemma 6.6 (Lower error bound). LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a
set of goal states, τ > 0 a step duration, I = [0, b] ∈ Q a time interval with b > 0 such that
b = kbτ for some kb ∈ N>0. Further, let λ = maxs∈MSE(s). �en it holds for all s ∈ S :

pMτ
max(s, [0, kb]) ≤ pMmax (s, [0, b]) . (6.23)

Proof. �e proof of Eq. (6.23) is by induction on kb:

1. In the induction base, let kb = 1 (and hence, b = τ). We distinguish two cases:

(a) �e case s ∈MS: We prove Eq. (6.23) as follows:

pMmax (s, [0, τ]) (6.18)
≥ ∑

s′∈S
PT(s, s′) ⋅ pMmax(s′, [0, τ]⊖ τ)

= ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, [0, 0])
= ∑

s′∈S
PT(s, s′) ⋅ pMτ

max(s′, [0, 0]) (* Lemma 6.4 *)

= pMτ
max(s, [0, 1]).

(b) �e case s ∈ IS: If Reachi(s)∩MS = ∅ or ifReachi(s)∩G /= ∅, the claim follows
by Lemma 6.4 directly. Otherwise, Reachi(s)∩G = ∅ and Y = Reachi(s)∩MS,
where Y = {s1, s2, . . . , sn} for some n ≥ 1. For the induction base, let Id =[0, 1] ⊆ N be the step-interval that corresponds to the time interval I = [0, τ].
By the �xed-point characterizations of pMmax (s, I) and pMτ

max (s, Id), it holds that
pMmax(s, I) = max {pMmax(s1, I), pMmax(s2, I), . . . , pMmax(sn , I)}
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pMτ
max(s, Id) = max {pMτ

max(s1, Id), pMτ
max(s2, Id), . . . , pMτ

max(sn , Id)} .
Case (1a) implies for all si ∈ Y that

pMτ
max(si , Id) ≤ pMmax(si , I). (6.24)

Now pick the state sk with the maximum probability inMτ : Formally, choose
sk ∈ Y such that pMτ

max(s, Id) = pMτ
max(sk , Id).�en

pMτ
max(s, Id) = pMτ

max(sk , Id) (6.24)
≤ pMmax(sk , I) ≤ pMmax(s, I).

2. For the induction step (kb ↝ kb + 1), we distinguish two cases:

(a) �e case s ∈MS: If s ∈ G, this case is trivial. For s ∉ G we can apply Lemma 6.3

to derive

pMmax(s, [0, b + τ]) (6.18)
≥ ∑

s′∈S
PT(s, s′) ⋅ pMmax(s′, [0, b + τ]⊖ τ)

= ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, [0, b])
i.h.
≥ ∑

s′∈S
PT(s, s′) ⋅ (pMτ

max(s′, [0, kb]))
= pMτ

max(s, [0, kb + 1]).
(b) �e case s ∈ IS: �e same proof as in case (1b) in the induction base applies

verbatim, if I and Id are de�ned such that I = [0, b + τ] and Id = [0, kb + 1] and
if instead of case (1a), the case (2a) of the induction step is used. ◻

�eorem 6.3. LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set of goal states, I =[0, b] ∈ Q a time interval with b > 0 and λ = maxs∈MSE(s). Further, let τ > 0 be such
that b = kbτ for some kb ∈ N>0. For all s ∈ S it holds:

pMτ
max(s, [0, kb]) ≤ pMmax(s, I) ≤ pMτ

max(s, [0, kb]) + kb ⋅
(λτ)2
2

.

Proof. �e upper bound follows by Lemma 6.5 and the lower bound by Lemma 6.6. ◻

Weconclude the discussion for time-bounded reachabilitywith a small example, which
also allows us to bridge the gap towards interval bounded reachability in the next section:

Example 6.6. Consider the IMCM and its discretized IPCMτ in Fig. 6.3(a) and Fig. 6.3(b),
resp. Assume that G = {s2} and �x some τ > 0 and k ∈ N>0. We consider the time interval

I = [0, kτ]: In the IMCM, we have pMmax(s0, I) = ∫ kτ

0 λe−λt ⋅ pMmax(s1, I ⊖ t)dt = 1 − e−λkτ .

In the IPCMτ , we derive pMmax(s0, [0, k]) = ∑k
i=1(e−λτ)i−1 (1 − e−λτ) = 1 − e−λkτ , which is

the geometric distribution function for parameter p = 1 − e−λτ . ♢
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s0 s1 s2 s3
λ a b c

(a) �e example IMCM.

s0 s1 s2 s3
1 − e−λτ a b

e−λτ

c

(b) �e induced discretized IPCMτ .

Figure 6.3: Interval and time-bounded reachability in IMCs.

6.3.2 Approximating interval-bounded reachability probabilities

So far, we only considered intervals of the form I = [0, b], b > 0. In what follows, we
extend our results to arbitrary intervals. However, this is slightly involved and several

aspects have to be considered:

(a) If s ∈MS is a Markovian state and b > 0, then pMmax(s, (0, b]) = pMmax(s, [0, b]). How-
ever, this is not true for interactive states: If s1 (instead of s0) is made the only initial
state inM andMτ of Fig. 6.3, the probability to reach s2 inM within interval [0, b]
is 1 whereas it is 0 for the right-semiclosed interval (0, b].

(b) Further, the discretization does not work for point intervals: To see this, consider
Fig. 6.3 again: If I = [τ, τ], then pMmax(s0, I) = 0, as the probability for the Markovian
transition that leads from state s0 to state s1 to execute exactly at time τ is 0. On the

other hand, the corresponding probability inMτ is p
Mτ
max (s0, [1, 1]) = 1 − e−λτ .

(c) Now, let I = [kaτ, kbτ] be a closed interval with ka , kb ∈ N and 0 < ka < kb.�at is, we
consider an interval with a lower bound that is larger than 0. �en, in the IMCM
in Fig. 6.3(a), we obtain pMmax(s0, I) = ∫ kbτ

kaτ
λe−λt ⋅ pMmax (s1, I ⊖ t) dt = e−λka τ − e−λkb τ,

whereas for its discretized IPCMτ (see Fig. 6.3(b)), we derive

pMτ
max(s0, [ka , kb]) =

kb∑
i=ka

(e−λτ)i−1 ⋅ (1 − e−λτ) = e−λ(ka−1)τ − e−λkb τ .

Clearly, the two probabilities di�er in the �rst term by a factor of eλτ . To see the
reason, let ka = 2 and kb = 3: We have pMmax(s, [2τ, 3τ]) = e−2λτ − e−3λτ ; however,
inMτ it holds p

Mτ
max(s, [2, 3]) = e−λτ ⋅ (1 − e−λτ) + e−2λτ ⋅ (1 − e−λτ) = e−λτ − e−3λτ .

�is can be explained as follows: As each step inMτ corresponds to a time interval
of length τ (cf. Fig. 6.4), the interval bounds 2τ and 3τ fall in di�erent discretization

steps. Hence in the discretization, we add two step (instead of only one) which leads
to an error.

It is important to note that if we had computed pMmax(s, (2τ, 3τ]) instead, we would
have obtained the desired result pMτ

max(s, (2, 3]) = pMτ
max(s, [3, 3]) = e−2λτ − e−3λτ .

In the remainder of this section, we prove that our discretization approach also works
for approximating time interval-bounded reachability probabilities. Similar to�m. 6.3
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Figure 6.4: Discretization steps.

we obtain a “sandwich” theorem (cf.�m. 6.4) which provides upper and lower bounds

for the discretization error.
We proceed roughly in the same way as in the time-bounded case. However, the tech-

nical details are di�erent. In particular, the lower bound proof is completely new, as an
important continuity property is violated which holds for time-bounded reachability but
not for intervals with lower bounds that are greater than 0.

LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set of goal states, I = (a, b] ∈ Q a
time interval with 0 ≤ a < b and λ = maxs∈MSE(s). Further, let τ > 0 be such that a = kaτ
and b = kbτ for some ka , kb ∈ N. Formally, we aim to prove that for all s ∈ S it holds

pMτ
max(s, (ka , kb]) − ka ⋅

(λτ)2
2
≤ pMmax(s, I) ≤ pMτ

max(s, (ka , kb]) + kb ⋅
(λτ)2
2

+ λτ.

Similar to the time-bounded case, we begin the discussion in the next section with a
one-step approximation.�en we prove in Sec. 6.3.2 that we can reduce the problem of

computing (time-)interval bounded reachability probabilities in an IMCM to comput-
ing step-interval bounded reachability probabilities inM’s discretized IPCMτ .

One-step approximation

As for the case of time-bounded reachability,we approximate the interval-bounded reach-

ability probability pMmax(s, I) for intervals I = (a, b] with 0 ≤ a < b via a discretization
technique. For a given step duration τ > 0, we aim to compute the probability thatM
moves to a successor state within the next τ time units. Based on the �xed point charac-
terization for pMmax, we distinguish two cases:

1. Let s ∈ (MS ∖G):�e fact that a < b and b = kbτ implies that b ≥ τ. We obtain a

recursive de�nition of pMmax(s, I) by the �xed point theorem (�m. 6.1 on page 156)
as follows:

pMmax(s, I) = Ω (pMmax) (s, I)
= ∫

b

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt.



174 6.3 A discretization that reduces IMCs to IPCs

Similar to Sec. 6.3.1, we can derive that pMmax(s, I) is the sum A(s, I) + B(s, I) for
intervals of the form (a, b]:�e term

A(s, I) = ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

is the probability that a �rst Markovian transition executes at some time point t ∈[0, τ], and B(s, I) = e−E(s)τ ⋅ pMmax(s, I ⊖ τ) is the probability that no Markovian
transition occurs before time τ and that G is visited in time interval I.

2. If s ∈ (MS ∩G) and a = 0, then pMmax(s, I) = 1 and we can stop; hence, no further

recursion is necessary. Otherwise, we have a ≥ τ.�is case needs further attention:
Note that by the �xed point theorem we obtain

pMmax(s, I) = Ω (pMmax)
= e−E(s)a + ∫

a

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

= ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A(s,I)

+ e−E(s)a + ∫
a

τ
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B′(s,I)

.
(6.25)

Here, as for the previous case, A(s, I) is the probability that a �rst Markovian tran-
sition executes at some time point t ∈ [0, τ] and that a G-state is hit a�erwards
in the remaining time interval I ⊖ t. It is important to note that the term B′(s, I)
in Eq. (6.25) actually corresponds to the term B(s, I) (see Eq. (6.12) on page 164)
used for the derivation of the time-bounded case in Sec. 6.3.1.�is can be seen by

the following derivations:

B′(s, I) = e−E(s)a + ∫
a

τ
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

= e−E(s)a + ∫
a−τ

0
E(s)e−E(s)⋅(t+τ) ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ (t + τ)) dt

= e−E(s)τ [e−E(s)⋅(a−τ)+∫
a−τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ (t + τ)) dt]

= e−E(s)τ ⋅ pMmax(s, I ⊖ τ)
= B(s, I).

�erefore, B(s, I) can be interpreted as the probability that no Markovian transi-
tion occurs before time τ and that G is visited in time interval I ⊖ τ.
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From the above derivations we conclude that if s ∈MS and pMmax(s, I) is not determined

directly1, we may express pMmax(s, I) recursively:
pMmax(s, I) = ∫

τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A(s,I)

+ e−E(s)τ ⋅ pMmax(s, I ⊖ τ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B(s,I)

.

(6.26)

Note that even though we consider intervals with strict lower bounds, we obtain the
samedecomposition of pMmax(s, I) as obtained in Eq. (6.12) in the setting of time-bounded
reachability objectives. For the remaining derivations in this section, let the random

variable #[0,τ] and An(s, I) (see Eq. (6.13) on page 165) be de�ned as in Sec. 6.3.1.

We now derive a lower bound for A(s, I): In fact, this is the crucial part for the correct-
ness of our approximation for intervals with lower bounds a > 0: Opposed to Sec. 6.3.1,
where we make use of the fact that the functions pMmax(s, [0, b] ⊖ t) are monotone de-

creasing for increasing t, this is generally not the case if the lower interval bound a is
larger than 0.�us the way we prove the lower bound in Lemma 6.2 for intervals of the
form [0, b] cannot be adapted to the current setting.

For intervals (a, b], the analogue of Lemma6.2 is Lemma6.8, where the lower bound is

established di�erently. In its proof, wemake use of the following Lemmawhich considers
the case of interval bounds I = (a, b] with τ ≤ a < b:

Lemma 6.7 (A lower bound for A(s, I)). LetM = (S ,Act, IT ,MT , ν) be an IMC, λ =
maxs∈SE(s) be the maximum exit rate inM, τ > 0 a step duration, s ∈MS and I = (a, b]
a time interval such that τ ≤ a < b and a = kaτ and b = kbτ for some ka , kb ∈ N>0. �en

A(s, I) ≥ ∑
s′∈S

P(s, s′) ∫
τ

0
E(s)e−E(s)t ⋅ e−λ(τ−t) ⋅ pMmax(s′, I ⊖ τ) dt. (6.27)

Proof. We have

A(s, I) = ∫
τ

0
E(s)e−E(s)t ⋅∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ t) dt

= ∑
s′∈S

P(s, s′) ∫
τ

0
E(s)e−E(s)t ⋅ pMmax(s′, I ⊖ t) dt.

1Examples where the value of pMmax(s, I) is determined directly include the case where 0 ∈ I and s ∈ G or
the case where a time lock occurs.
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Figure 6.5: Derivation of a lower bound for A(s, I) as used in Lemma 6.7.

Hence, to prove Eq. (6.27) it su�ces to show that for all s′ ∈ S and t ∈ [0, τ] it holds that
e−λ(τ−t) ⋅ pMmax(s′, I ⊖ τ) ≤ pMmax(s′, I ⊖ t). (6.28)

We consider two cases:

1. �e case s′ ∈ MS: At time t, we took a transition from state s to state s′ ∈ MS.
Observe that e−E(s

′)(τ−t) ⋅ pMmax(s′, I ⊖ τ) is the maximum probability for the event

that no transition occurs in state s′ within the next (τ − t) time units and that the
setG is visited therea�er during the time interval I⊖τ. Formally, it corresponds to

themaximumprobability of the event Ele� = (#[0,τ−t] = 0 ∩◇I⊖tG) (see Fig. 6.5(a)).
On the right hand side, pMmax(s′, I ⊖ t) is the maximum probability of the event
that G is visited during interval I ⊖ t, no matter how many transitions occur in

the next (τ − t) time units. Formally, the corresponding event is Eright = ◇I⊖tG
(depicted in Fig. 6.5(b)). Hence Ele� ⊆ Eright.�erefore e−E(s

′)(τ−t) ⋅ pMmax(s′, I⊖ τ) ≤
pMmax(s′, I⊖t). Furthermore, λ = maxs′∈SE(s′) implies e−λ(τ−t) ≤ e−E(s

′)(τ−t). Hence
Eq. (6.28) follows.

2. �e case s′ ∈ IS: We consider two sub cases, depending on whether a time lock

occurs (the case (2a)) or not (the case (2b)):

(a) Reachi(s′) ∩ MS = ∅: Note that Reachi(s′) ∩ MS = ∅ implies that only in-

teractive states are reachable from s′, thus the step interval cannot decrease.
Further, I = (a, b] and a ≥ τ imply that 0 ∉ (I ⊖ τ) and 0 ∉ (I ⊖ t). Hence,
pMmax(s′, I ⊖ τ) = 0 and Eq. (6.28) follows.

(b) Reachi(s′) ∩MS ≠ ∅: �en Reachi(s′) ∩MS = Y , where Y = {s1, s2, . . . , sn}
for some n ≥ 1. �en there exist states s j, sk ∈ Y such that pMmax(s′, I ⊖ t) =
pMmax(sk , I ⊖ t) and pMmax(s′, I ⊖ τ) = pMmax(s j , I ⊖ τ).�erefore we obtain

e−λ(τ−t) ⋅ pMmax(s′, I ⊖ τ) = e−λ(τ−t) ⋅ pMmax(s j , I ⊖ τ)
(∗)
≤ pMmax(s j , I ⊖ t)
≤ pMmax(sk , I ⊖ t) = pMmax(s′, I ⊖ t),

where (∗) follows from case (1). ◻
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With Lemma 6.7 and its new lower bound for A(s, I), we are ready to prove a sandwich

lemma that shows that the probabilities X(s, I) approximate A(s, I). It can be regarded
as the extension of Lemma 6.2 to the case of intervals with strict lower bounds:

Lemma 6.8 (One-step approximation of A(s, I)). LetM = (S ,Act, IT ,MT , ν) be an
IMC, G ⊆ S a set of goal states, τ > 0 a step duration, I = (a, b] a time-interval with
τ ≤ a < b such that a = kaτ and b = kbτ for some ka , kb ∈ N>0. Further, let s ∈ MS be
a Markovian state and λ = maxs∈MSE(s) be the maximum exit rate inM. If we de�ne
X(s, I) as in Lemma 6.2 then X(s, I) approximates A(s, I) in the following sense:

X(s, I) − (λτ)2
2
≤ A(s, I) ≤ X(s, I) + (λτ)2

2
. (6.29)

Proof. First, let us restate the de�nition of X(s, I) as given in Lemma. 6.2:

X(s, I) = (1 − e−E(s)τ) ⋅∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ). (6.30)

For the prove, we make use of an approximation of the exponential function e−x . First,

note that by the Taylor expansion, e−x = ∑∞n=0 (−x)nn! . Further, by Taylor’s theorem it holds
for all x ≥ 0:

e−x ≥ 1 − x and (6.31)

e−x ≤ 1 − x +
x2

2
. (6.32)

Combining Eq. (6.31) with Lemma 6.7, we have:

A(s, I) ≥ ∑
s′∈S

P(s, s′) ⋅ ∫
τ

0
E(s)e−E(s)t ⋅ e−λ(τ−t) ⋅ pMmax(s′, I ⊖ τ) dt

(6.31)
≥ ∑

s′∈S
P(s, s′) ⋅ ∫

τ

0
E(s)e−E(s)t ⋅ (1 − λ(τ − t)) ⋅ pMmax(s′, I ⊖ τ) dt

= ∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ) ⋅ ∫
τ

0
E(s)e−E(s)t ⋅ (1 − λ(τ − t)) dt.

�e integral in the above equation can be simpli�ed as follows:

∫
τ

0
E(s)e−E(s)t dt − ∫

τ

0
E(s)e−E(s)t ⋅ λ(τ − t) dt

= (1 − e−E(s)τ) + E(s) ⋅ λ ⋅ 1 − e−E(s)τ − E(s)τ
E (s)2
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= (1 − e−E(s)τ) − λ

E(s) ⋅
⎛⎜⎜⎜⎝
E(s)τ − 1 + e−E(s)τ´¹¹¹¹¸¹¹¹¹¹¶

Taylor’s theorem

⎞⎟⎟⎟⎠
(6.32)
≥ (1 − e−E(s)τ) − λ

E(s) ⋅ (E(s)τ − 1 + (1 − E(s)τ + (E(s)τ)2
2

))
= (1 − e−E(s)τ) − λ

E(s) ⋅ (
(E(s)τ)2

2
)

= (1 − e−E(s)τ) − λE(s)τ2
2

≥ (1 − e−E(s)τ) − (λτ)2
2

. (* as λ ≥ E(s) *)
�erefore, we obtain the lower bound for A(s, I):

A(s, I) ≥ ∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ) ⋅ [(1 − e−E(s)τ) − (λτ)2
2
]

(6.30)
= X(s, I) − [∑

s′∈S
P(s, s′) ⋅ pMmax(s′, I ⊖ τ) ⋅ (λτ)2

2
]

= X(s, I) − (λτ)2
2

⋅∑
s′∈S

P(s, s′) ⋅ pMmax(s′, I ⊖ τ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

≥ X(s, I) − (λτ)2
2

.

For the derivation of the upper bound, the respective proof in Lemma 6.2 applies verba-
tim, with A(s, I) de�ned for right-semiclosed intervals. ◻

Now that we have established lower and upper bounds for the approximation of the prob-

ability A(s, I), we are ready to extend this result to our discretization. �erefore, in the
next lemma we establish the relationship between the approximation for A(s, I) and our
discretization. It serves the same purpose as Lemma 6.3 in Sec. 6.3.1, but also accounts
for the error that is induced by lower interval bounds that are larger than 0:

Lemma 6.9 (One-step approximation). LetM = (S ,Act, IT ,MT , ν) be an IMC, τ >
0 a step duration and letMτ = (S ,Act, IT ,PT , ν) be the discretized IPC ofM. Further,
let I = (a, b] be a time interval with τ ≤ a < b such that a = kaτ and b = kbτ for some
ka , kb ∈ N>0. For s ∈MS it holds:

pMmax(s, I) ≥ ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, I ⊖ τ) − (λτ)2
2

and (6.33)
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pMmax(s, I) ≤ ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, I ⊖ τ) + (λτ)2
2

. (6.34)

Proof. �e proof goes along the same lines as the proof of Lemma 6.3 if the approxima-
tion result obtained in Eq. (6.29) of Lemma 6.8 is used. ◻

Correctness of the reduction to IPC

We �rst establish the upper bound for�m. 6.4. Note that in contrast to the Lemmas

before, we now allow for intervals of the form (0, b], that is, we allow the lower bound a
of the right-semiclosed intervals I to be 0.

Lemma 6.10 (Upper error bound). LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a
set of goal states, τ > 0 a step duration, (a, b] a time interval with 0 ≤ a < b such that
a = kaτ and b = kbτ for some ka ∈ N and kb ∈ N>0. Further, let λ = maxs∈MSE(s). For
all s ∈ S it holds:

pMmax (s, (a, b]) ≤ pMτ
max(s, (ka , kb]) + kb ⋅

(λτ)2
2

+ λτ. (6.35)

Proof. We prove Eq. (6.35) by induction on ka:

1. In the induction base, let ka = 0 (implying a = 0). We consider three cases:

(a) �e case s ∈MS ∖G:

pMmax (s, (0, b]) = pMmax (s, [0, b])
≤ pMτ

max (s, [0, kb]) + kb ⋅
(λτ)2
2

(* by�m. 6.3 *)

(∗)
= pMτ

max (s, [1, kb]) + kb ⋅
(λτ)2
2

= pMτ
max (s, (0, kb]) + kb ⋅

(λτ)2
2

,

where (∗) follows from the fact that s ∈ MS ∖ G implies pMτ
max (s, [1, b]) =

pMτ
max (s, [0, b]). Hence, if a = 0, Eq. (6.35) even holds for a tighter upper bound.

(b) �e case s ∈MS∩G: In this case, the discretization induces an additional error
which can be bound from above by the term λτ: In contrast to case (1a), in the
case that s ∈MS∩G we have that pMmax (s, (0, b]) = 1, whereas pMτ

max (s, (0, kb]) =
pMτ
max (s, [1, kb]) ≥ e−λτ . Intuitively, the discretization requires one discretiza-

tion step to pass, in which the goal state s could be le�.�e probability for this
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to happen is (1 − e−E(s)τ) which can be bounded by the Taylor expansion as

follows: (1 − e−E(s)τ) ≤ (1 − e−λτ) = (1 − (1 − λτ + R1(λτ))), where R1(λτ) > 0.
Hence (1 − e−E(s)τ) ≤ λτ. With these remarks we can derive

pMmax (s, (0, b]) = pMmax (s, [0, b]) ≤ pMτ
max (s, [0, kb]) + kb ⋅

(λτ)2
2

≤ pMτ
max (s, [1, kb]) + kb ⋅

(λτ)2
2

+ λτ

= pMτ
max (s, (0, kb]) + kb ⋅

(λτ)2
2

+ λτ.

(c) If s ∈ IS, we distinguish two cases:

i. If Reachi(s) ∩MS = ∅, then pMmax (s, (0, b]) = 0 = pMτ
max (s, (0, kb]).

ii. Otherwise, Reachi(s) ∩MS /= ∅ and Reachi(s) ∩MS = Y for some Y ={s1, s2, . . . , sn} and n ≥ 1. Let I = (0, b] and Id = (0, kb].�en

pMmax (s, I) = max {pMmax (s1, I) , pMmax (s2, I) , . . . , pMmax (sn , I)} and
pMτ
max (s, Id) = max {pMτ

max (s1, Id) , pMτ
max (s2, Id) , . . . , pMτ

max (sn , Id)} .
Now choose sk ∈ Y such that pMmax(s, I) = pMmax(sk , I). Depending on

whether sk ∉ G or sk ∈ G, cases (1a) or (1b) apply, respectively. Hence

pMmax(s, I) = pMmax(sk , I) ≤ pMτ
max(sk , Id) + kb ⋅

(λτ)2
2

+ λτ

≤ pMτ
max (s, Id) + kb ⋅

(λτ)2
2

+ λτ.

2. For the induction step (ka ↝ ka + 1), assume Eq. (6.35) holds for ka. We show that
it holds for ka + 1.�erefore, we distinguish two cases:

(a) �e case s ∈MS: Since a + τ ≥ τ, we can apply Lemma 6.9 and obtain:

pMmax(s, (a + τ, b]) (6.34)
≤
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, (a + τ, b]⊖ τ)
=
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, (a, b − τ])
i.h.
≤
(λτ)2
2

+∑
s′∈S

PT(s, s′) ⋅ (pMτ
max(s′, (ka , kb − 1]) + (kb − 1) ⋅ (λτ)2

2
+ λτ)

= ∑
s′∈S

PT(s, s′) ⋅ pMτ
max(s′, (ka , kb − 1]) + (kb − 1) ⋅ (λτ)2

2
+
(λτ)2
2

+ λτ

= pMτ
max(s, (ka + 1, kb]) + kb ⋅

(λτ)2
2

+ λτ.
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(b) �e case s ∈ IS: We consider two cases: IfReachi(s)∩MS = ∅, the claim follows

directly, as pMmax (s, (a, b]) = pMτ
max(s, (ka , kb]) = 0. OtherwiseReachi(s)∩MS /=

∅ and Reachi(s)∩MS = Y for some Y = {s1, s2, . . . , sn} and n ≥ 1. Now let Id =(ka + 1, kb] ⊆ N be the step-interval that corresponds to the time interval I =(a + τ, b]. By the �xed-point characterizations of pMmax (s, I) and pMτ
max (s, Id) it

holds that

pMmax(s, I) = max {pMmax(s1, I), pMmax(s2, I), . . . , pMmax(sn , I)}
pMτ
max(s, Id) = max {pMτ

max(s1, Id), pMτ
max(s2, Id), . . . , pMτ

max(sn , Id)} .
Case (2a) implies for all si ∈ Y that

pMmax(si , I) ≤ pMτ
max(si , Id) + kb ⋅

(λτ)2
2

+ λτ. (6.36)

Now pick the state sk with the maximum probability inM: Formally, choose
sk ∈ Y such that pMmax(sk , I) = pMmax(s, I).�en

pMmax(s, I) = pMmax(sk , I)
(6.36)
≤ pMτ

max(sk , Id) + kb ⋅
(λτ)2
2

+ λτ

≤ pMτ
max(s, Id) + kb ⋅

(λτ)2
2

+ λτ. ◻

We continue and prove the lower bound of �m. 6.4. Again, we consider right-semi-
closed intervals (a, b] and also allow for the case a = 0:

Lemma 6.11 (Lower error bound). LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a
set of goal states, τ > 0 a step duration, I = (a, b] ∈ Q a time interval with 0 ≤ a < b
such that a = kaτ and b = kbτ for some ka ∈ N and kb ∈ N>0, ka < kb. Further, let
λ = maxs∈MSE(s). For for all s ∈ S it holds:

pMτ
max(s, (ka , kb]) − ka ⋅

(λτ)2
2
≤ pMmax (s, (a, b]) . (6.37)

Proof. �e proof is by induction on ka:

1. For the induction base, let ka = 0 (implying a = 0). We consider two cases:

(a) �e case s ∈MS:

pMmax (s, (0, b]) = pMmax (s, [0, b])
≥ pMτ

max (s, [0, kb]) (* by�m. 6.3*)

≥ pMτ
max (s, [1, kb])

= pMτ
max (s, (0, kb]) .
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(b) �e case s ∈ IS: We distinguish two sub cases, depending on whether a time

lock occurs or not:

i. If Reachi(s) ∩MS = ∅, then pMmax (s, (0, b]) = 0 = pMτ
max (s, (0, kb]).

ii. Otherwise, Reachi(s) ∩MS /= ∅ and Reachi(s) ∩MS = Y for some Y ={s1, s2, . . . , sn} and n ≥ 1. Let I = (0, b] and Id = (0, kb].�en

pMmax (s, I) = max {pMmax (s1, I) , pMmax (s2, I) , . . . , pMmax (sn , I)} and
pMτ
max (s, Id) = max {pMτ

max (s1, Id) , pMτ
max (s2, Id) , . . . , pMτ

max (sn , Id)} .
Now, choose sk ∈ Y such that pMτ

max(sk , Id) = pMτ
max(s, Id). �en case (1a)

applies and we obtain

pMτ
max (s, Id) = pMτ

max(sk , Id) ≤ pMmax(sk , I) ≤ pMmax(s, I).
2. For the induction step (ka ↝ ka + 1 and a ↝ a + τ), assume that Eq. (6.37) holds

for ka. We show that it also holds for ka + 1.�erefore, consider two cases:

(a) �e case s ∈MS: Since a + τ ≥ τ, we can apply Lemma 6.9 and obtain:

pMmax(s, (a + τ, b]) (6.33)
≥ ∑

s′∈S
PT(s, s′) ⋅ pMmax(s′, (a + τ, b]⊖ τ) − (λτ)2

2

= ∑
s′∈S

PT(s, s′) ⋅ pMmax(s′, (a, b − τ]) − (λτ)2
2

i.h.
≥ ∑

s′∈S
PT(s, s′) ⋅ (pMτ

max(s′, (ka , kb − 1]) − ka ⋅
(λτ)2
2
) − (λτ)2

2

= pMτ
max(s, (ka + 1, kb]) − (ka + 1) ⋅ (λτ)2

2
.

(b) �e case s ∈ IS: We consider two cases: IfReachi(s)∩MS = ∅, the claim follows

directly, as pMmax (s, (a, b]) = pMτ
max(s, (ka , kb]) = 0. Otherwise, Reachi(s) ∩

MS /= ∅. Hence, Reachi(s) ∩MS = Y for some Y = {s1, s2, . . . , sn} and n ≥ 1.
Now let Id = (ka + 1, kb] ⊆ N be the step-interval that corresponds to the time

interval I = (a + τ, b]. By the �xed-point characterizations of pMmax (s, I) and
pMτ
max (s, Id) it holds that

pMmax(s, I) = max {pMmax(s1, I), pMmax(s2, I), . . . , pMmax(sn , I)}
pMτ
max(s, Id) = max {pMτ

max(s1, Id), pMτ
max(s2, Id), . . . , pMτ

max(sn , Id)} .
Case (2a) implies for all si ∈ Y that

pMτ
max(si , Id) − (ka + 1) ⋅ (λτ)2

2
≤ pMmax(si , I). (6.38)
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Now pick the state sk with the maximum probability inMτ : Formally, choose

sk ∈ Y such that pMτ
max(s, I) = pMτ

max(sk , I).�en

pMτ
max(s, Id) − (ka + 1) ⋅ (λτ)2

2
= pMτ

max(sk , Id) − (ka + 1) ⋅ (λτ)2
2

(6.38)
≤ pMmax(sk , I) ≤ pMmax(s, I). ◻

With the technical details in Lemma 6.10 and Lemma 6.11, we have established both a
lower and an upper error bound.�ey are themain result of this section and summarized

in the following theorem, which states the correctness of our approximation technique
for right-semiclosed intervals:

�eorem 6.4. LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set of goal states, I =(a, b] ∈ Q a time interval with 0 ≤ a < b and λ = maxs∈MSE(s). If τ > 0 is such that
a = kaτ and b = kbτ for some ka ∈ N and kb ∈ N>0, then it holds for all s ∈ S :

pMτ
max(s, (ka , kb]) − ka ⋅

(λτ)2
2
≤ pMmax(s, I) ≤ pMτ

max(s, (ka , kb]) + kb ⋅
(λτ)2
2

+ λτ.

Proof. �e claim follows directly from Lemma 6.10 and Lemma 6.11. ◻

With the results of�m. 6.3 and�m. 6.4, we have a correct approximation for in-
tervals of the form [0, b] and (a, b], respectively. �is su�ces to also establish the cor-

rectness for open and le�-semiclosed intervals and for closed intervals that have a lower
bound that is larger than 0:

�eorem 6.5. LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set of goal states and
τ > 0 a step duration. Further, let I ∈ Q be a time interval with inf I = a and sup I = b
such that a < b and a = kaτ and b = kbτ for some ka ∈ N and kb ∈ N>0. If 0 ∉ I it holds
for all s ∈ S :

pMτ
max(s, (ka , kb]) − ka ⋅

(λτ)2
2
≤ pMmax(s, I) ≤ pMτ

max(s, (ka , kb]) + kb ⋅
(λτ)2
2

+ λτ.

Proof. We consider the following cases according to the form of the interval I:

1. �e case I = (a, b]: Follows directly from�m. 6.4.

2. �e case I = [a, b]: By the assumption 0 ∉ I, we have a > 0. For s ∈MS, [a, b] can
be replaced by (a, b] without changing the probability. For s ∈ IS, a > 0 implies
also that pMmax(s, I) = pMmax(s′, I) for someMarkovian state s′.�us,

pMmax(s, I) = pMmax(s′, I) = pMmax(s′, (a, b]) = pMmax(s, (a, b])
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�e claims follows then by applying the �rst case.

3. �e case I = (a, b) or I = [a, b): Since b > 0, this case can be proved in a similar
way as the previous one. ◻

For the remaining cases, note that for all states s ∈ S and time interval I = ∅ it holds that

pMmax(s, I) = 0. As we have shown in the introductory remark, the discretization does not
work for general point intervals [a, a]. However, if I = [0, 0], an interactive reachability
analysis su�ces to compute pMmax(s, I), which is either 1 or 0. Hence, these cases do not

require a discretization as the probabilities can be determined directly.

6.4 Solving the problem on the reduced IPC

In Sec. 6.3 wehave proved that the interval-bounded reachability probability in an IMCM
can be approximated arbitrarily closely by computing the corresponding step-interval
bounded reachability probability inM’s induced (discrete-time) IPC. However, we did

not propose an e�cient method to compute the latter.

In this section, we will �ll this gap. In order to be as general as possible, we consider
an arbitrary IPC P = (S ,Act, IT ,PT , ν) and a set of goal states G ⊆ S together with a
step-interval [ka , kb] with ka , kb ∈ N, ka < kb.
We discuss how to compute pPmax(s, [ka , kb]) via a modi�cation of the well known

value iteration algorithm [Ber95] for MDPs. However, the adaptation is more involved
than the one used in Sec. 5.3.1 for locally uniformCTMDPs, as we have to extend the algo-
rithm to correctly handle interactive transitions. More precisely, our adaptation needs to

consider step intervals that correspond to the number of probabilistic steps that are taken.
�is is re�ected in our algorithm which only decreases the step counter for probabilistic,

but not for internal transitions.

As done before, we discuss step bounded reachability �rst and extend our results to
step-intervals later.

6.4.1 Maximum step bounded reachability

We aim at computing pPmax(s, [0, k]) for some k > 0. �is works as follows: In each

step i = 0, 1, . . . , k of the value iteration, we use two vectors v⃗i ∈ [0, 1]S and u⃗i ∈ [0, 1]S ,
where v⃗i is the probability vector obtained from u⃗i−1 by one step in the classical value iter-

ation algorithm and u⃗i is obtained by computing the backwards closure along interactive
transitions with respect to v⃗i−1.
Each of the k value iteration steps consists of two phases. We describe the i-th value

iteration step:

1. First, v⃗i is computed: For the �rst value iteration step, we set v⃗0(s) = 1 if s ∈ G and
v⃗0(s) = 0, otherwise. In the subsequent steps, the vector v⃗i is obtained as follows:
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If s ∈ PS ∩ G, then v⃗i(s) = 1. If s ∈ PS ∖ G, then v⃗i(s) is the weighted sum of the

probabilistic successor states s′ of s, multiplied by the result u⃗i−1(s′) of the previous
value iteration step. Finally, for interactive states, the result from the previous value
iteration step propagates into v⃗i . Formally, for all 0 < i ≤ k:

v⃗i(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if s ∈ PS ∩G

∑s′∈S PT(s, s′) ⋅ u⃗i−1(s′) if s ∈ PS ∖G

u⃗i−1(s) if s ∈ IS.

(6.39)

2. In the second phase, u⃗i is obtained by the backwards closure of v⃗i along internal
transitions. Formally, the vector u⃗i is obtained according to the following equation:

u⃗i(s) = max {v⃗i(s′) ∣ s ↝∗i s′} .
Note that for e�ciency reasons, the set {s′ ∈ S ∣ s ↝∗i s′} can be precomputed by a
backwards search in the interactive reachability graph of P .

A�er k value iteration steps, pPmax (s, [0, k]) equals the probability u⃗k(s).
6.4.2 Maximum step-interval bounded reachability

In this part, we compute pPmax(s, [ka , kb]), for interval bounds 0 < ka < kb. As be-
fore, the computation proceeds stepwise and produces a sequence of probability vectors
v⃗0, u⃗0, v⃗1, u⃗1, . . . , v⃗kb , u⃗kb . To allow for lower step bounds ka > 0, we split the value iter-

ation in two parts: In the �rst kb − ka value iteration steps, we proceed as before and
compute the probability vectors v⃗0, u⃗0, . . . , v⃗kb−ka , u⃗kb−ka .�us, we compute the probabil-

ities pPmax (s, [0, kb−ka]) for all s ∈ S .
�e vector v⃗kb−ka provides the initial probabilities of the second part, which consists

of the remaining ka value iteration steps. For these, we change the way the vectors v⃗i are
computed. Instead of Eq. (6.39), we use the de�ning equation

v⃗i(s) =
⎧⎪⎪⎨⎪⎪⎩
0 if s ∈ IS

∑s′∈S PT(s, s′) ⋅ u⃗i−1(s′) if s ∈ PS
(6.40)

to determine the vectors v⃗i .�e de�nition of the vectors u⃗i remains unmodi�ed.

To motivate this de�nition, note that the value iteration algorithm proceeds in a back-
wards manner, starting from the goal states. Hence the �rst kb − ka value iteration steps
correspond to the speci�ed step interval and we set v⃗i(s) = 1 if s ∈ G. However, the re-
maining ka steps corresponds to the �rst ka transitions that are taken by the IPC. Hence,
those steps do not fall into the speci�ed step interval. More speci�cally, in Eq. (6.40) we

do not set v⃗i(s) = 1 if s ∈ G, since the fact that a goal state has been hit before ka steps
have occurred does not in�uence the step-interval bounded reachability probability.
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Finally, in order to avoid that the probabilities of interactive states s ∈ IS erroneously
propagate in the vectors u⃗i(s) from the �rst to the second part, we de�ne v⃗i(s) = 0 for
all s ∈ IS (instead of v⃗i(s) = u⃗i−1(s) as in the �rst part). We illustrate this by means of an
example.

Example 6.7. We compute pPmax (s, [1, 2]) in the IPC P in Fig. 6.6 for initial state s0 and
goal state s3: In the �rst part, apply the value iteration to compute u⃗1: v⃗0(s) = 1 if s = s3
and 0, otherwise. By the backwards closure, u⃗0 = (1, 0, 0, 1). �us pPmax (s0, [0, 0]) = 1,
as s0 can reach G by the interactive α-transition. For v⃗1, we have v⃗1(s0) = u⃗0(s0) = 1 and
v⃗1(s1) = 1

2
u⃗0(s3) + 1

2
u⃗0(s2) = 1

2
. In this way, we obtain v⃗1 = (1, 12 , 1

4
, 1) and u⃗1 = (1, 12 , 1

4
, 1).

With the probabilities u⃗1, the �rst part ends a�er kb − ka = 1 value iteration steps. As ka = 1,
one iteration for the lower step bound follows. Here v⃗2(s0) = v⃗2(s3) = 0 as s0, s3 ∈ IS;
further v⃗2(s1) = 1

2
u⃗1(s3)+ 1

2
u⃗1(s2) = 5

8
and v⃗2(s2) = 1

2
u⃗1(s2)+ 1

4
u⃗1(s3)+ 1

4
u⃗1(s1) = 1

2
. Finally,

u⃗2 = ( 58 , 58 , 1
2
, 1
2
). �erefore, we obtain that pPmax(s0, [1, 2]) = u⃗2(s0) = 5

8
. ♢

6.4.3 Correctness of the modi�ed value iteration

�e following theorem states the correctness of the value iteration algorithm that is in-

formally described in Sec. 6.4.2. More precisely, we prove that the probability u⃗kb(s) is
equal to the maximum step-interval bounded reachability probability pPmax (s, [ka , kb]).
Although intuitive, the description in Sec. 6.4.2 does not separate the �rst from the

second part of the value iteration algorithm formally. For the correctness proof, we there-
fore have to extend our notation slightly: Let [ka , kb] with ka , kb ∈ N and ka < kb be a
step-interval. �en n = kb − ka is the number of iteration steps in the �rst part. Accord-

ingly, the second part consists of the remaining ka iterations.�e idea is to annotate the
vectors with the number n = kb − ka of value iteration steps that belong to the �rst part.

�erefore, we consider vectors v⃗n0 , u⃗
n
0 , v⃗

n
1 , u⃗

n
1 , . . . , v⃗

n
kb
, u⃗n

kb
, where v⃗n0 , v⃗

n
1 , . . . , v⃗

n
n are com-

puted according to Eq. (6.39) and v⃗nn+1 , v⃗
n
n+2 , . . . , v⃗

n
kb
are derived according to Eq. (6.40).

�eorem 6.6 (Maximum value iteration). Let P = (S ,Act, IT ,PT , ν) be an IPC, G ⊆
S a set of goal states, s ∈ S a state and [ka , kb] with ka , kb ∈ N, ka ≤ kb a step interval.
Further, let n = kb − ka. For i = 0, 1, . . . , kb, we de�ne the probability vectors u⃗n

i ∈ [0, 1]S
and v⃗ni ∈ [0, 1]S : Initially, v⃗n0(s) = 1 if s ∈ G and v⃗n0(s) = 0, otherwise. Further, for i > 0
we set

v⃗ni (s) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑s′∈S PT(s, s′) ⋅ u⃗n
i−1(s′) if s ∈ PS ∧ (s ∉ G ∨ i > n)

1 if s ∈ PS ∩G ∧ i ≤ n

u⃗n
i−1(s) if s ∈ IS ∧ i ≤ n

0 if s ∈ IS ∧ i > n.

For the vectors u⃗n
i , we de�ne u⃗

n
i (s) = max {v⃗ni (s′) ∣ s ↝∗i s′} for all i ≤ kb. �en it holds

pPmax(s, [ka , kb]) = u⃗n
kb
(s). (6.41)



6.4 Solving the problem on the reduced IPC 187

Observe that if ka = 0,�m. 6.6 simpli�es to the value iteration for the step-bounded

reachability computation. Moreover, if ka > 0, the same value iteration is also used in
the �rst n = kb − ka steps when maximizing the step-interval bounded reachability for
an interval [ka , kb]. However, in the remaining ka steps, the vectors v⃗ni are de�ned such

that visiting a goal state does not imply a probability of 1. We come to the formal proof
of�m. 6.6:

Proof. First, note that by de�nition of↝∗i , it holds that u⃗
n
i (s) = v⃗ni (s) for all probabilistic

states s ∈ PS. We prove Eq. (6.41) by induction on kb:

1. For the induction base, assume that kb = 0. As ka ≤ kb, this implies ka = 0. We

distinguish between interactive and probabilistic states:

(a) �e case s ∈ PS: If s ∈ G, then pPmax(s, [0, 0]) = Ω(pPmax)(s, [0, 0]) = 1 =
v⃗00(s); further, as s ∈ PS it holds that u⃗0

0(s) = v⃗00(s), as desired. With the same
reasoning, pPmax(s, [0, 0]) = Ω(pPmax)(s, [0, 0]) = 0 = v⃗00(s) = u⃗0

0(s) if s ∉ G.
(b) �e case s ∈ IS: As pPmax is the least �xed point ofΩ, it holds that pPmax(s, [0, 0]) =

1 ifReachi(s)∩G /= ∅ and pPmax(s, [0, 0]) = 0, otherwise. Hence pPmax(s, [0, 0]) =
max {v⃗00(s′) ∣ s ↝∗i s′} = u⃗0

0(s).
2. In the induction step (kb ↝ kb + 1), we use as induction hypothesis that

∀s ∈ S . ∀ka ≤ kb . pPmax(s, [ka , kb]) = u⃗n
kb
(s), where n = kb − ka .

�e goal is to prove that pPmax(s, [ka , kb + 1]) = u⃗n+1
kb+1
(s) for all ka ≤ kb + 1. We do

so by considering two cases, depending on the state s:

(a) Assume that s ∈ PS. �en u⃗n+1
kb+1
(s) = v⃗n+1kb+1

(s). If s ∈ G and ka = 0, then

pPmax(s, [0, kb + 1]) = Ω (pPmax) (s, [0, kb + 1]) = 1 = v⃗n+1kb+1
(s) = u⃗n+1

kb+1
(s). Other-

wise s ∉ G or ka > 0. If ka > 0 we proceed as follows:

pPmax(s, [ka , kb + 1]) = Ω (pPmax) (s, [ka , kb + 1])
= ∑

s′∈S
PT(s, s′) ⋅ pPmax(s′, [ka − 1, kb])

i.h.
= ∑

s′∈S
PT(s, s′) ⋅ u⃗n+1

kb
(s′)

= v⃗n+1kb+1
(s) (* by def. of v⃗n+1kb+1

(s), as n+1 < kb+1 *)
= u⃗n+1

kb+1
(s). (* as s ∈ PS *)

If ka = 0 and s ∉ G, we derive:

pPmax(s, [0, kb + 1]) = Ω (pPmax) (s, [0, kb + 1]) = ∑
s′∈S

PT(s, s′) ⋅ pPmax(s′, [0, kb])
i.h.
= ∑

s′∈S
PT(s, s′) ⋅ u⃗n

kb
(s′) = ∑

s′∈S
PT(s, s′) ⋅ u⃗kb

kb
(s′).
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Observe that by de�nition, v⃗ ii = v⃗
m
i and u⃗i

i = u⃗
m
i for all m ≥ i. Hence:

pPmax(s, [0, kb + 1]) = ∑
s′∈S

PT(s, s′) ⋅ u⃗kb+1
kb
(s′)

= ∑
s′∈S

PT(s, s′) ⋅ u⃗n+1
kb
(s′) = v⃗n+1kb+1

(s) = u⃗n+1
kb+1
(s).

(b) �e case s ∈ IS: We consider two cases:

i. �e case that ka = 0 and Reachi(s) ∩ G /= ∅: If Reachi(s) ∩ G /= ∅, then
pPmax (s, [0, kb + 1]) = 1. To see this, choose some state s′ ∈ Reachi(s) ∩G
and apply Ω iteratively until s′ is reached.

By de�nition, we have u⃗kb+1
kb+1
(s) = max{v⃗kb+1kb+1

(s′′) ∣ s ↝∗i s′′}. Further, if
s′ ∈ PS it holds by de�nition that v⃗kb+1kb+1

(s′) = 1.�is implies u⃗kb+1
kb+1
(s) = 1. If

s′ ∈ IS, we derive v⃗kb+1kb+1
(s′) = u⃗kb+1

kb
(s′) = u⃗kb

kb
(s′) = pPmax(s′, [0, kb]) = 1 by

applying the induction hypothesis to the term u⃗kb
kb
(s′). Again, v⃗kb+1kb+1

(s′) = 1
implies that u⃗kb+1

kb+1
(s) = 1 and we are done.

ii. �e case that ka > 0 or Reach
i(s) ∩G = ∅: We derive

pPmax(s, [ka , kb + 1]) = Ω (pPmax) (s, [ka , kb + 1])
= max {pPmax(s′, [ka , kb + 1]) ∣ s′ ∈ Reachi(s)}
= max {pPmax(s′, [ka , kb + 1]) ∣ s′ ∈ Reachi(s) ∩ PS}

(* the case s ∈ PS before *)

= max {u⃗n+1
kb+1
(s′) ∣ s′ ∈ Reachi(s) ∩ PS}

(* u⃗n+1
kb+1
(s) = v⃗n+1kb+1

(s) for s ∈ PS *)
= max {v⃗n+1kb+1

(s′) ∣ s′ ∈ Reachi(s) ∩ PS} .
Now, if Reachi(s) ∩G = ∅, it holds that max{v⃗n+1kb+1

(s′) ∣ s′ ∈ Reachi(s)} =
v⃗n+1kb+1
(s′′) for some s′′ ∈ Reachi(s) ∩ PS. �erefore, we obtain u⃗n+1

kb+1
(s) =

max{v⃗n+1kb+1
(s′) ∣ s′ ∈ Reachi(s) ∩ PS}, as desired.

Otherwise, ka > 0 andReach
i(s)∩G = {s1, s2, . . . , s j} for some j ≥ 1. If si ∈

G ∩ IS, ka > 0 implies that kb + 1 > n+ 1 and hence v⃗n+1kb+1
(si) = 0.�erefore

max{v⃗n+1kb+1
(s′) ∣ s′ ∈ Reachi(s)} = v⃗n+1kb+1

(s′′) for some s′′ ∈ Reachi(s) ∩ PS

and we concludemax{v⃗n+1kb+1
(s′) ∣ s′ ∈ Reachi(s) ∩ PS} = u⃗n+1

kb+1
(s). ◻
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Figure 6.6: Example IPC.

6.4.4 Complexity considerations

LetM = (S ,Act, IT ,MT , ν) be an IMC, G ⊆ S a set of goal states and let I ∈ Q be a time
interval with b = sup I. For the error bound ε > 0, choose kb such that

kb ⋅
(λτ)2
2

+ λτ ≤ ε.

With τ = b
kb
, the smallest such kb is kb = ⌈ λ2b2+2λb2ε ⌉. �en the step duration τ induces

the discretized IPCMτ . By�m. 6.5, pMmax(s0, I) can be approximated (up to ε) by the
step-interval bounded reachability pMτ

max(s0, (ka , kb]) in the discretized IPCMτ .
We derive the complexity of our approach:�erefore, let n = ∣S ∣ andm = ∣IT∣+∣MT∣ be

the number of states and transitions ofM, respectively. In theworst case,Mτ has n states,
andm+n transitions, due to the self-loops which are introduced in the discretization (cf.
Def. 6.8 on page 162).

In each value iteration step, the update of the vector v⃗i takes at mostm + n time units.
When computing u⃗i , we assume that the sets Reachi(s) are precomputed: In the gen-
eral case, the best theoretical complexity for computing the re�exive transitive closure

is in O (n2.376), as given by [CW87]. Let m∗ ⊆ S × S denote the re�exive and transitive
closure along interactive transitions. As m∗ ⊆ S × S , the number of transitions in m∗

is bounded by n2. Hence, with an appropriate precomputation of m∗, updating u⃗i takes

timeO(n2).
Altogether, for kb = ⌈ λ2b2+2λb2ε ⌉ value iteration steps, the worst case time complexity of

our approach is n2.376+(m+n+n2) ⋅(λb) ⋅(λb + 2) /(2ε) ∈ O(n2.376+(m+n2) ⋅(λb)2 /ε).

6.5 Model checking the continuous stochastic logic

�e crucial point for model checking CSL is to compute the maximum and minimum

probability to visit a set of goal states in some time interval I. In this section, we there-
fore apply the results from Sec. 6.3 and reduce the CSL model checking problem to the

time-interval bounded reachability computation. However, this only works for a slightly
restricted subset of the logic CSL. We address this restriction in detail in Sec. 6.5.2.
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Model checking CSL relies on state labellings; hence, we introduce a �nite set AP ={a, b, c, . . .} of atomic propositions and consider state labeled IMCs, where a state labeling
function L ∶ S → 2AP assigns to each state the set of atomic propositions that hold in that
state.

6.5.1 Syntax and semantics of CSL

�e continuous stochastic logic (CSL) [BHHK03, CDHS06] is devised for specifying
quantitative properties of continuous-time Markov chains. In the �rst part of this sec-
tion, we therefore extend its semantics to the nondeterministic setting. However, we

omit the steady-state operator from classical CSL [BHHK03], as a steady-state generally
does not exist in controlled Markov chains or IMCs.

De�nition 6.9 (CSL syntax). For a ∈ AP, p ∈ [0, 1], I ⊆ Q an interval and ⊴ ∈{<, ≤, ≥, >}, the syntax of CSL state and CSL path formulas is de�ned by the following
grammar rules:

Φ ∶∶= a ∣ ¬Φ ∣ Φ ∧Φ ∣ P⊴p(φ) and φ ∶∶= X
IΦ ∣ Φ U I Φ.

Intuitively, a path π ∈ Pathsω satis�es the next formula X IΦ (denoted π ⊧ X IΦ) if the
�rst transition on π occurs in time-interval I and leads to a successor state in Sat(Φ).
Similarly, π satis�es the until formula Φ U I Ψ if a state in Sat(Ψ) is visited at some time
point t ∈ I and before that, all states satisfy state formula Φ.

Intuitively, the semantics of the probabilistic state formula P⊴p(φ) is de�ned such that
s ⊧ P⊴p(φ) holds if the probability of the set of paths that start in state s and that satisfy
the CSL path formula φ meets the bound speci�ed by ⊴ p.

De�nition 6.10 (CSL semantics). LetM = (S ,Act, IT ,MT ,AP, L, ν) be a state labeled
IMC, s ∈ S a state, a ∈ AP an atomic proposition, I ∈ Q a time interval, ⊴ ∈ {<, ≤, ≥, >} a
comparison operator and π ∈ Pathsω an in�nite path.

For CSL state formulas, we de�ne:

s ⊧ a ⇐⇒ a ∈ L(s)
s ⊧ ¬Φ ⇐⇒ s /⊧ Φ

s ⊧ Φ ∧Ψ ⇐⇒ s ⊧ Φ ∧ s ⊧ Ψ
s ⊧ P⊴p(φ) ⇐⇒ ∀D ∈ GM. Prωνs ,D {π ∈ Pathsω ∣ π ⊧ φ} ⊴ p.

�e semantics for path formulas is de�ned as follows:

π ⊧ XIΦ ⇐⇒ π[1] ⊧ Φ ∧ δ(π, 0) ∈ I
π ⊧ Φ U I Ψ ⇐⇒ ∃t ∈ I. ∃s ∈ π@t. s ⊧ Ψ ∧∀s′ ∈ Pref (π@t, s). s′ ⊧ Φ

∧∀t′ ∈ [0, t) . ∀s′′ ∈ π@t′. s′′ ⊧ Φ.
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Some remarks are in order: First, the semantics of the until path formula is slightly

more involved compared to the original de�nition in [BHHK03]: Due to interactive tran-
sitions that execute instantaneously, an IMC may traverse a (�nite or in�nite) sequence
of states in 0 time units.�erefore π ⊧ ΦU I Ψ is de�ned such that it holds if there exists

a state sequence π@t that is traversed at some time t ∈ I and on π@t, a Ψ-state is visited.
Moreover, for π ⊧ Φ U I Ψ to be satis�ed, all previous states on π@t and all states visited

at times t′ < t must satisfy Φ.
Second, to decide the probabilistic CSL state formula P⊴p(φ), we need to distinguish

two cases: If ⊴ = < or ⊴ = ≤, it su�ces to verify that pMmax (s, φ) ⊴ p. Reversely, if ⊴ = > or
⊴ = ≥, we need to compute the in�mum pMmin (s, φ) and to check whether pMmin (s, φ) ⊴ p.
6.5.2 Model checking algorithm for CSL

�e model checking algorithm that we present in this section works only for a subset of
all CSL formulas. More precisely, we restrict to path formulas Φ U I Ψ where Ψ ⇒ Φ if
inf I > 0. Note however, that albeit this restriction we preserve most of the expressivity of

CSL: For example, the CSL operator◇IΦ can still be derived, as◇IΦ ≡ tt U I Φ for CSL
state formula Φ. Moreover, it does not apply to time-bounded reachability objectives, i.e.

to the case where inf I = 0. Hence, the restriction does hardly ever hamper the practical
applicability of our approach. Intuitively, its consequence can be stated as follows: If we
consider interval-bounded until formulas with inf I > 0, we require that on any path π
which satis�es the formula ΦU IΨ, the validity of Φ needs to be resolved by a state which
satis�es Ψ and Φ.
To model check an IMC with respect to a state formula Φ from this subset of CSL,

we successively consider the state subformulas Ψ of Φ and calculate the sets Sat(Ψ) ={s ∈ S ∣ s ⊧ Ψ}. For atomic propositions, conjunction and negation, this is easy, as

Sat(a) = {s ∈ S ∣ a ∈ L(s)} ,
Sat(¬Ψ) = S ∖ Sat(Ψ) and

Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2).
In the remainder of this section, we therefore discuss the probabilistic operator P⊴p(φ)
for next and until formulas. To decide Sat (P⊴p(φ)), it su�ces to maximize or minimize
the probability Prωνs ,D ({π ∈ Pathsω ∣ π ⊧ φ}) with respect to all schedulers D ∈ GM. Ac-

cordingly, we de�ne

pMmax(s, φ) = sup
D∈GM

Prωνs ,D ({π ∈ Pathsω ∣ π ⊧ φ}) and
pMmin(s, φ) = inf

D∈GM
Prωνs ,D ({π ∈ Pathsω ∣ π ⊧ φ}) .

As done throughout this chapter, we only consider the details for maximizing the prob-

ability Prωνs ,D ({π ∈ Pathsω ∣ π ⊧ φ}) and leave out most of the details for computing the
minimum probabilities, which can be done similarly.
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�e next formula

Computing pMmax(s,X IΦ) is straightforward: We proceed inductively on the structure of

the formula and assume that Sat(Φ) is already computed.�en we distinguish two cases,
depending on whether state s is a Markovian or an interactive state:

(a) If s ∈MS is aMarkovian state, no nondeterminismoccurs andwederive pMmax(s,X IΦ)
as done for CTMCs in [BHHK03]: Let a = inf I and b = sup I; then

pMmax(s,X IΦ) = ∫
b

a
E(s)e−E(s)t ⋅ ∑

s′∈Sat(Φ)
P(s, s′) dt

= P (s, Sat(Φ)) ⋅ (e−E(s)a − e−E(s)b) ,
where P (s, Sat(Φ)) = ∑s′∈Sat(Φ) P(s, s′) is the probability to move to a successor

state s′ ∈ Sat(Φ) when leaving state s.

(b) If s ∈ IS is an interactive state, the probability pMmax(s,X IΦ) depends on the interval I:
If 0 ∈ I and posti(s) ∩ Sat(Φ) /= ∅, then pMmax(s,X IΦ) = 1; otherwise it holds that

pMmax(s,X IΦ) = 0.
�e until formula

Computing pMmax (s, Φ U I Ψ) ismore complex: Let φ = ΦU IΨbe a time-interval bounded

until path formula with I ∈ Q and the restriction that Ψ⇒ Φ if inf I > 0. As we will see,
this technical restriction is essential for the correctness proof given in�m. 6.7 below.

As the computation proceeds inductively along the structure of the formula, wemay as-

sume that Sat(Φ) and Sat(Ψ) are already computed. Note that if inf I > 0, the restriction
to until formulas Φ U I Ψ where Ψ⇒ Φ directly implies that Sat(Ψ) ⊆ Sat(Φ).
We reduce the problem of computing pMmax (s, φ) and pMmin (s, φ) to the maximum and

minimum interval-bounded reachability problem, respectively.�erefore, de�ne the set

Sφ
=0 = {s ∈ S ∣ s ⊧ ¬Φ ∧ ¬Ψ} .

of absorbing states: A Markovian state s ∈ MS is called absorbing i� R(s, λ, s) > 0 and

R(s, λ, s′) = 0 for all s′ /= s; hence, absorbing states are states with a single Markovian self
loop. Similar to the approach taken for model checking CTMCs and MDPs [BHHK03,

BdA95], we make all states s ∈ Sφ
=0 absorbing by replacing all their outgoing transitions

by a single Markovian self loop (s, 1, s).
Intuitively this is justi�ed as follows: Let Pathsω(s) denote the set of all in�nite paths

that start in state s.�en the probability of the set {π ∈ Pathsω(s) ∣ π ⊧ Φ U I Ψ} is 0 for
states s ∈ Sφ

=0: If a state s ∈ S
φ
=0 is visited, it violates Φ and Ψ. But all paths that start in a(¬Φ ∧ ¬Ψ)-state violate the until formula ΦU I Ψ. Hence, making those states absorbing

does not alter the probabilities pMmax(s, φ) and pMmin(s, φ).
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�eorem 6.7 (Time-bounded until). Let M = (S ,Act, IT ,MT ,AP, L, ν) be a state-
labeled IMC, φ = Φ U I Ψ a CSL path formula with I ∈ Q a time-interval and Φ, Ψ

state formulas such that Ψ ⇒ Φ if inf I > 0. Further, let G = Sat(Ψ) be the set of goal
states and assume that all states s ∈ Sφ

=0 are made absorbing. �en it holds for all s ∈ S :

pMmax (s, Φ U I Ψ) = pMmax(s, I) and pMmin (s, Φ U I Ψ) = pMmin(s, I).

Proof. It su�ces to prove that for all paths π ∈ Pathsω(s), it holds:
π ⊧ Φ U I Ψ⇐⇒ π ⊧◇I(Sat(Ψ)).

We show the two directions separately:

“⇒” First, assume that π ⊧ ΦU IΨ. Let π ∈ Pathsω. By the semantics of the until formula,

we have:

π ⊧ Φ U I Ψ⇐⇒ ∃t ∈ I. ∃s ∈ π@t. s ⊧ Ψ ∧∀s′ ∈ Pref (π@t, s). s′ ⊧ Φ

∧ ∀t′ ∈ [0, t). ∀s′′ ∈ π@t′. s′′ ⊧ Φ.

�us, for all t′ ∈ [0, t) and s′′ ∈ π@t′, we have s′′ ⊧ Φ implying s′′ /∈ Sφ
=0. Moreover,

for all s′ ∈ Pref (π@t, s) it holds that s′ ⊧ Φ, implying that s′ ∉ Sφ
=0. Hence, none of

the states is made absorbing. Let n be the index of π such that π[n] = s.�en we
have that π[n] = s ⊧ Ψ, implying that π ⊧◇I(Sat(Ψ)).

“⇐” Now let π be such that π ⊧◇I(Sat(Ψ)).�us, there exists t ∈ I such that

∃s ∈ π@t. s ⊧ Ψ. (6.42)

Choose the minimal t ∈ I such that Eq. (6.42) holds. Moreover, for this t, choose
the �rst occurrence of a state s ∈ Sat(Ψ) in π@t. Now let n ∈ N be its position
on π and consider all states π[k] with k < n. Since π[k] can reach π[n], we have
π[k] /∈ Sφ

=0. If inf I = 0, the minimality of t implies that π[n] is the �rst occurrence
of a Ψ-state on π and therefore, that π[k] ⊧ Φ for all k < n. If inf I > 0, we know
that π[k] ⊧ Φ or π[k] ⊧ Ψ for all k < n. In the latter case, the restriction to until

formulas where Ψ ⇒ Φ implies that π[k] ⊧ Φ. Hence, in both cases it holds that
π[k] ⊧ Φ for all k < n, proving that π ⊧ Φ U I Ψ. ◻

�eorem 6.7 reduces the problem to compute pMmax(s, Φ U I Ψ) and pMmin(s, Φ U I Ψ)
for interval bounded until formulas to the problem of computing the interval bounded
reachability probabilities pMmax(s, I) and pMmin(s, I)with respect to the set of goal statesG =
Sat(Ψ).�e latter can be computed e�ciently by the discretization approach introduced
in Sec. 6.3.
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Remark 6.1 (�e restricted until formulas). �eorem 6.7 relies on the assumption that
Ψ⇒ Φ for intervals I with inf I > 0. Without this restriction, the direction from right to le�
in the proof of�m. 6.7 does not hold. To see this, assume thatΨ /⇒ Φ and that inf I > 0. If
on a path π, a (Ψ ∧ ¬Φ)-state is visited at time t < inf I, say on position k, then π /⊧ ΦU IΨ.
However, π[k] ∉ Sφ

=0, as π[k] ⊧ Ψ. Hence, state π[k] is not made absorbing. �erefore, the
path π is erroneously included in the computation of the reachability probability◇IG.

Complexity of CSL model checking

�e complexity of the CSLmodel checking approach is clearly dominated by the interval-
bounded reachability computation: For CSL state-formula Φ, let ∣Φ∣ be the number of

state subformulas of Φ. In the worst case, the interval bounded reachability probability is
computed ∣Φ∣ times. Using the complexity of the value iteration algorithm (cf. Sec. 6.4.4),
the model checking problem has time complexityO(∣Φ∣ ⋅ (n2.376 + (m + n2) ⋅ (λb)2/ε)).

6.6 Experimental results

We consider the IMC in Fig. 6.7(a), where Erl(30, 10) denotes a transition with an Erlang(k, λ) distributed delay: �is corresponds to k = 30 consecutive Markovian transitions
each of which has rate λ. �e mean time to move from s2 to the goal s4 is

k
λ = 3 with a

variance of k
λ2 =

3
10
. Hence, with very high probability we move from state s2 to state s4

a�er approximately 3 time units.�e decision that maximizes the probability to reach s4
in time interval [0, b] in state s1 depends on the sojourn in state s0. Fig. 6.7(b) depicts the
computed maxima for time-dependent schedulers and the upper part of Tab. 6.7(c) lists

some performance measurements.
If AP = {g} and s4 is the only state labeled with g, we can verify the CSL formula

Φ = P≥0.5 (◇[3,4]g) by computing pMmax (s0, [3, 4]) with the modi�ed value iteration.�e

result pMmax (s0, [3, 4]) = 0.6057 meets the bound ≥ 0.5 in Φ, implying that s0 ⊧ Φ.
All measurements were carried out on a 2.2GHz Xeon CPU with 16GB RAM.

6.7 Interval bounded reachability in early CTMDPs

In this section, we apply the time-interval bounded reachability analysis that we have
developed for closed IMCs to also solve the open problem of computing time-interval

bounded reachability probabilities in early CTMDPs. Note the di�erence compared to
Chapter 5, wherewe considered locally uniform late CTMDPs. In this section, we consider
arbitrary early CTMDPs and transform them into an equivalent alternating IMC which

is then subject to the analysis techniques developed so far.
As a model that incorporates continuous-time and nondeterminism, IMCs strictly

separate interactive from Markovian transitions, whereas CTMDPs combine non-deter-
ministic choices with exponential delays. However, CTMDPs can be considered as the
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Figure 6.7: Experimental results for Erl(30, 10).
subclass of strictly alternating IMCs [HJ07]. Brie�y, an IMC is strictly alternating if all suc-
cessor states of interactive states are Markovian states, and all successor states of Marko-

vian states are interactive states. With this de�nition, an early CTMDP can be considered
as a strictly alternating (and closed) IMC in which the Markovian and interactive states
are entangled.

In order to reduce the model checking problem for early CTMDPs to the correspond-
ing problem for IMCs, we de�ne the induced IMCM(C) for an early CTMDP C as fol-
lows:

De�nition 6.11 (Induced IMC of a CTMDP). Let C = (S ,Act,R, ν) be a CTMDP. Its
induced IMCM (C) is the tuple (S ′,Act, IT ,MT , ν′) such that

S ′ = S ⊍ {sα ∣ s ∈ S ∧ α ∈ Act(s)} ,
IT = {(s, α, sα) ∣ s ∈ S ∧ α ∈ Act(s)} and

MT = {(sα ,R(s, α, s′), s′) ∣ s′ ∈ S ∧R(s, α, s′) > 0} .
Further, ν′(s) = ν(s) if s ∈ S and ν′(s) = 0, otherwise.

Example 6.8. Consider the early CTMDP in Fig. 6.8(b) on page 201. Applying Def. 6.11
yields its induced IMC which is depicted in Fig. 6.8. ♢
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For model checking purposes, it is useful to extend Def. 6.11 to state labeled CTMDPs:

A state labeled CTMDP is augmented by a set AP of atomic propositions and a state
labeling function L ∶ S → 2AP. We de�ne the labeling L′ of C’s induced IMC such that
the labeling of each interactive state and its corresponding Markovian successor states

coincide. Formally: L′ (s) = L (s) and L′ (sα) = L (s) for all s ∈ S and α ∈ Act(s).
By de�nition, the induced IMC of a CTMDP C is strictly alternating: Each state s ∈

S in C becomes an interactive state in the induced IMC which mimics the CTMDP’s
nondeterministic choices: For each action α ∈ Act(s), an internal transition leads from
interactive state s to a newly introduced Markovian state sα which represents the race

between the exponential delays that lead to the successor states of s in the underlying
early CTMDP under action α.
To formally establish the relation between an early CTMDP C and its induced strictly

alternating IMCM, we �rst observe a correspondence between paths inM and paths
in C: �erefore, let sep ∶ Paths(C) → Paths(M) be such that it separates the scheduler
choices and the Markovian sojourn times on a path π ∈ Paths(C). Formally:

sep(s0 α0 ,t0ÐÐ→ s1
α1 ,t1ÐÐ→⋯) = s0 α0 ,0ÐÐ→ sα00

�,t0ÐÐ→ s1
α1 ,0ÐÐ→ sα11

�,t1Ð→ ⋯.

Reversely, we collapse paths inM to obtain the corresponding path in C:

col (s0 α0 ,0ÐÐ→ sα00
�,t0ÐÐ→ s1

α1 ,0ÐÐ→ sα11
�,t1Ð→ ⋯) = s0 α0 ,t0ÐÐ→ s1

α1 ,t1ÐÐ→ ⋯.

For in�nite paths, we thus have a one-to-one correspondence between in�nite paths in C
and in�nite paths in M. Moreover, each �nite path π ∈ Paths(C) induces a unique
path π ∈ Paths(M) of length ∣π∣ = 2 ∣π∣; reversely, each path π ∈ Paths(M) that starts
and ends in an interactive statemaps back to a unique path col(π) in the underlying early
CTMDP. For the following discussion, we extend the de�nitions of the functions sep and
col to sets of paths in the natural way.

6.7.1 Scheduler correspondence

Weaim at establishing a correspondence between sets of paths in the early CTMDP C and
its induced IMCM. Each path π ∈ Paths(C) corresponds to the path sep(π) inM, which
starts and ends in an interactive state. Further, the initial distribution in C’s induced
IMCM assigns probability 0 to each path inM that starts in a Markovian state. Hence,
such paths can safely be ignored in the remainder of this section.

�e above observation allows us to establish a close correspondence between the sched-
ulers in C andM: Let DC ∈ GM(C) be an early scheduler in C and π ∈ Paths⋆(M) a path
inM. We de�ne the scheduler DM ∈ GM (M) such that

DM (π) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DC (col(π)) if π↓ ∈ IS ∧ π[0] ∈ IS
? if π↓ ∈ IS ∧ π[0] ∈MS

� if π↓ ∈MS,

(6.43)
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where the scheduler decisions taken on paths π that start in a Markovian state can be

chosen arbitrary (as long as DM remains measurable), as in our setting, the set of such
paths has measure 0 anyways. Hence, for our purposes we can identify all schedulers
which di�er only for the case that π↓ ∈ IS and π[0] ∈MS.

Reversely, if DM ∈ GM (M) is a scheduler in the strictly alternating IMCM, it corre-
sponds to a unique early scheduler DC ∈ GM(C), which is de�ned for all π ∈ Paths⋆ (C)
such that DC (π) = DM (sep(π)).
Hence, there exists a one-to-one correspondence between schedulers in C andM.

6.7.2 Measure correspondence

We�rst prove that the probabilitymeasure that is induced for a set of paths Π ∈ Pathsω(C)
by a schedulerDC ∈ GM(C) in the early CTMDP C equals the probability of sep(Π)under
the corresponding scheduler DM in the induced IMCM:

Lemma 6.12 (Measure correspondence). Let C = (S ,Act,R, ν) be a CTMDP and
M = (S ′,Act, IT ,MT , ν′) be its induced IMC. Further, let DC ∈ GM(C) be a scheduler
in C and let DM ∈ GM(M) be the corresponding scheduler inM as de�ned in Eq. (6.43).
For all s ∈ S and Π ∈ FPathsω(C) it holds that

Prωνs ,DC(Π) = Prων′s ,DM(sep(Π)).

Proof. �e proof is along the same lines as in Lemma 4.4 in Sec. 4.2.2: We �rst prove

the claim for measurable rectangles: Let B = S0 × A0 × T0 × S1 × ⋯ × Sn ∈ FPathsn(C) be a

measurable rectangle inC.�enB = sep(B) = S0×A0×S
A0

0 ×T0×S1×A1×S
A1

1 ×T1×S2×⋯×Sn,
where SAi

i = {sα ∣ s ∈ Si ∧ α ∈ Ai} for 0 ≤ i < n. We proceed by induction on n and prove
for all measurable rectangles B ∈ FPathsn(C):

Prnν,DC (B) = Pr2nν′ ,DM(sep(B)). (6.44)

In the induction base, B = S0 and B = S0. Hence, Pr
0
ν,DC(B) = ∑s∈S0 ν(s) = ∑s∈S0 ν

′(s) =
Pr0ν′ ,DM(B). In the induction step, let I = S0 × A0 × T0 be a set of initial path pre�xes (cf.
Lemma 3.16) in C which extend the measurable rectangle B ∈ FPathsn(C) to a measurable

rectangle I × B ∈ FPathsn+1(C) of length n + 1. With i = (s, α, t) ranging over I, we derive
Prn+1ν,DC (I × B) = ∫

I
Prn

ν i ,DCi
(B) µ1

ν,DC(di)
= ∫

I
Pr2n

ν i ,DMi
(B) µ1

ν,DC(di), (* by the ind. hyp.*)

where µk
ν,DC

is the probability measure on initial path pre�xes as de�ned in Sec. 3.3.2 on

page 82. Now, if i = (s, α, t) ∈ I is an initial path pre�x in C, let i = (s, α, 0, sα ,�, t) be the
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corresponding two-step initial path pre�x inM. �en νi(s′) = PC(s, α, s′) = R(s,α,s′)
E(s,α) =

PM(sα , s′) = νi(s′), where PC(s, α, s′) denotes the branching probability from s to s′

under action α in C and PM(sα , s′) denotes the corresponding probability from state sα

to state s′ inM.
Moreover it holds that DM

i
(sep(π)) = DM(i ○ sep(π)) = DC(i ○ π) = DCi (π) =

DMi (sep(π)) for all π ∈ Paths⋆(C). Hence:
Prn+1ν,DC (I × B) = ∫

I
Pr2n

ν i ,D
M

i

(B) µ1
ν,DC(di)

= ∑
s∈S0

ν(s) ∑
α∈A0

DC(s, α) ∫
T0
Pr2n

ν i ,D
M

i

(B) ηE(s,α)(dt) (* def. of µ1
ν,DC *)

= ∑
s∈S0

ν(s) ∑
α∈A0

DM(s, α) ∫
T0
Pr2n

ν i ,D
M

i

(B) ηE(sα)(dt) (* succ(α) = sα *)
= ∫

I
Pr2n

ν i ,D
M

i

(B) µ2
ν,DM(di) (* def. of µ2

ν,DM *)

= Pr2n+2
ν,DM
(I × B) = Pr2(n+1)

ν,DM
(sep(I × B)).

�us Eq. (6.44) holds for all measurable rectangles. To prove that this result extends to
arbitrary measurable sets of paths Π ∈ FPathsω , it su�ces to prove (6.44) for any measur-

able base B ∈ FPathsn .�erefore, let GPathsn(C) denote the set of all �nite disjoint unions of
measurable rectangles, which forms a �eld by Lemma 2.10 (see page 43).�en Eq. (6.44)
directly extends to GPathsn(C): Let B = ⊍k

i=0 Bi with all Bi being pairwise disjoint mea-

surable rectangles in FPathsn(C). �en Prnν,DC (B) = Prnν,DC (⊍k
i=0 Bi) = ∑k

i=0 Pr
n
ν,DC (Bi) =

∑k
i=0 Pr

2n
ν′ ,DM

(sep(Bi)) = Pr2nν′ ,DM (⊍k
i=0 sep(Bi)) = Pr2nν′ ,DM(sep(B)).

Now, de�ne

C = {B ∈ FPathsn ∣ Prnν,DC (B) = Pr2nν′ ,DM(sep(B))} .
�en C is a monotone class, i.e. for all Bi ↑ B and Bi ↓ B, it holds B ∈ C: Here, we
only give the proof for increasing sequences. Let Bi ↑ B. As σ-�elds are closed under
increasing sequences, we obtain B ∈ FPathsn . �us, it remains to prove that Prn

ν,DC
(B) =

Pr2nν,DM(sep(B)). �erefore, note that sep(Bi) ↑ sep(B). From Lemma 2.2 (see page 16),
we obtain

Prnν,DC (B) = limi→∞
Prnν,DC (Bi) = lim

i→∞
Pr2nν′ ,DM(sep(Bi)) = Pr2nν′ ,DM(sep(B)).

For decreasing sequences, the same argument applies analogously.
Hence, C is a monotone class. Further, as all sets inGPathsn(C) satisfy Eq. (6.44), it holds

GPathsn(C) ⊆ C. �us, the monotone class theorem (�m. 2.5, page 22) is applicable and

states that σ(G) ⊆ C. Moreover, by de�nition of FPathsn(C), it holds σ(G) = FPathsn(C).
�erefore we conclude that Eq. (6.44) holds for all B ∈ FPathsn . From here, the claim

follows by the Ionescu-Tulcea extension theorem, which li�s the argument from �nite
measurable bases to the in�nite product σ-�eld FPathsω . ◻
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Now we address the next question: Are there schedulers inM that induce a proba-

bility for the event sep(Π) (where Π ∈ FPathsω(C)) that cannot by mimicked by a “native”
scheduler DC in the early CTMDP C? We answer this question in the negative and use
the one-to-one correspondence to apply Lemma 6.12 again:

Lemma 6.13. Let C = (S ,Act,R, ν) be a CTMDP andM = (S ′,Act, IT ,MT , ν′) be its
induced IMC. Further, let D ∈ GM(M) be a scheduler inM. De�ne DC ∈ GM(C) such
that DC(π) = D(sep(π)) for all π ∈ Paths⋆(C). For all Π ∈ FPathsω(C) it holds that

Prων′ ,D(sep (Π)) = Prων′ ,DC(Π).

Proof. By Eq. (6.43), the scheduler DM which corresponds to the early scheduler DC is
the scheduler D. Hence, Lemma 6.12 applies and yields the desired equality. ◻

Corollary 6.1 (Measure preservation). Let C = (S ,Act,R, ν) be a CTMDP and let
M = (S ′,Act, IT ,MT , ν′) be its induced IMC. For all Π ∈ FPathsω(C) it holds that

sup
DC∈GM(C)

Prων,DC(Π) = sup
DM∈GM(M)

Prων′ ,DM(sep (Π)).

Proof. Direct consequence of Lemma 6.12 and Lemma 6.13. ◻

�eorem 6.8 (Interval bounded reachability in C andM). Let C = (S ,Act,R, ν) be
a CTMDP andM = (S ′,Act, IT ,MT , ν′) be its induced IMC. For a set G ⊆ S of goal
states and a time interval I ∈ I de�ne

◇IG = {π ∈ Pathsω(C) ∣ ∃t ∈ I. π@t ∈ G} and
◇IG = {π ∈ Pathsω(M) ∣ ∃t ∈ I. π@t ∩G /= ∅} ,

where G = G ⊍ {sα ∣ s ∈ G ∧ α ∈ Act(s)}. �en it holds

sup
DC∈GM(C)

Prω
ν,DC
(◇IG) = sup

DM∈GM(M)
Prω

ν′ ,DM
(◇IG). (6.45)

Proof. First, observe that Prων′ ,DM (◇IG) = Prων′ ,DM (sep (◇IG)) for all DM ∈ GM(M).
To see this, note thatM is an alternating IMCwhere each interactive goal state is followed
directly by a Markovian goal state.�en Cor. 6.1 implies Eq. (6.45). ◻
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6.8 Comparison of di�erent scheduler classes

Consider the CTMDP C which is depicted in Fig. 6.8(a). To compute the maximum
time-bounded reachability probability for state s4 with respect to initial state s0, we apply
Def. 6.11 to obtain the induced IMC of C, which is depicted in Fig. 6.8(b).

By�m. 6.8, we can compute themaximum time-interval bounded reachability proba-
bility for state s4 in the early CTMDP C by applying themodi�ed value iteration algorithm
from Sec. 6.4 to its induced IMCM(C) and the set of goal states G = {s4, sγ4}.
In Fig. 6.9, the curve for early schedulers depicts the results that we obtain for the

maximum reachability probability for intervals of the form [0, z] with z ∈ Q≥0.
Moreover, note that the example in Fig. 6.8 is constructed such that it is locally and

globally uniform. �is enables a comparison of all analysis methods and their underly-
ing scheduler classes, that are currently available for CTMDPs. �e results depicted in

Fig. 6.9 can be explained as follows:

• As C is locally uniform, we can compute the maximum time-bounded reachability
for late schedulers according to the approximation algorithm in Chapter 5. �e

results depicted in Fig. 6.9(b) coincide with our theoretical �ndings in Chapter 4:
�e class of late schedulers outperforms all other scheduler classes.

• For positional schedulers, the only relevant choice is between actions α and β in

state s1; Fig. 6.9 depicts the results for both choices. Hence, the maximum reacha-
bility probability for the class of positional schedulers is the maximum of the two

curves labeled α and β, respectively.

• Finally, C is globally uniform; hence, the algorithm in [BHKH05] is applicable,
which computes themaximum time-bounded reachability probability for the class

of time-abstract schedulers. Due to the restricted scheduler class, the obtained
maxima are considerably smaller compared to those that are obtained by time-

dependent schedulers. In fact, in Fig. 6.9 they agree with the maximum that is
achieved by positional schedulers. �is is not surprising, as the only nondeter-
ministic choice in C occurs in state s1, which is always entered along the trajec-

tory π = s0
α
Ð→ s1.

6.9 Related work and conclusions

By providing an e�cient and quanti�ably precise approximation algorithm to compute
interval bounded reachability probabilities, we solve the long standing open problem in
the area of performance and dependability evaluation [BHKH05], that is, the CSLmodel

checking problem on CTMDPs and on arbitrary IMCs.

In the setting of stochastic games, the time-bounded reachability problem has been
studied extensively in [BFK+09], with extensions to timed automata in [BF09]. Closely
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(b) Its induced IMCM(C).

Figure 6.8: Transforming an early CTMDP into its induced IMC.

related to our results in this chapter is the work in [Joh07, BHH+09], where globally

uniform IMCs — which require the sojourn times in all Markovian states to be equally
distributed — are transformed into continuous-time Markov decision processes (CT-
MDPs). Subsequently, the algorithm in [BHKH05] is used to compute the maximum

time-bounded reachability probability in the resulting globally uniform CTMDP. How-
ever, the applicability of this approach is severely restricted, as global uniformity is hard

(and o�en impossible) to achieve on nondeterministic models.
Further, the above approaches rely on time-abstract schedulers. From [BHKH05] and

Chapter 4 we know that they are strictly less powerful than the time-dependent ones that

we consider in this thesis.
Section 6.7 is closely related to Chapter 5, where we analyze time-bounded reachability

probabilities in locally uniformCTMDPs under late schedulers: FromChapter 4we know
that in locally uniform CTMDPs, late schedulers outperform early schedulers, which are
the largest class of history- and time-dependent schedulers that is de�nable on general

CTMDPs [Joh07].
Although the discretizations used in Chapters 5 and 6 may appear similar, the ob-

tained results are complementary: In general, transforming IMCs to CTMDPs as done

in [Joh07] does not yield locally (or globally) uniform CTMDPs. Hence, the approach in
Chapter 5 is inapplicable for the analysis of general IMCs. Reversely however, we have

proved in Sec. 6.7 that the problem of computing time-interval bounded reachability in
CTMDPs with respect to early schedulers can be solved by the analysis of the CTMDP’s
induced IMC. In this way, this chapter not only solves the problem of model checking

IMCs, but also yields a CSL model checking algorithm for early CTMDPs under time
and history dependent schedulers.
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Figure 6.9: Maximum time-bounded reachability for the CTMDP and IMC in Fig. 6.8.



7 Equivalences and logics for CTMDPs

The difference between the

right word and the almost

right word is the difference

between lightning and the

lightning bug.

(Mark Twain)

In Chapter 5, we have developed an algorithm to compute time-bounded reachability
probabilities in locally uniform CTMDPs. Moreover, in Sec. 6.7, we have shown that
similar ideas allow tomodel checkCSL formulas on arbitrary CTMDPs by analyzing their

induced IMCs. In fact, this is the �rst time that e�cient and quanti�ably precise model
checking techniques are available for time-dependent schedulers on arbitrary CTMDPs

and IMCs.
In practice however, bothmodels are mostly used as the underlying semantics of high-

level modeling formalism such as generalized stochastic Petri nets [CMBC93], stochastic

activity networks [SM00] and dynamic fault trees [BCS07]. �ese formalism allow to
represent complexmodels in a compact and structuredway. Once the high-level model is
�nished, it is transformed into an equivalent CTMDP (or IMC)which is then the starting

point for the analysis.
However, during this transformation, one usually encounters the state space explosion

problem:�e unfolding of a rather compact high-level model in many cases yields a CT-
MDP with an exponentially larger state space. For an example, we refer to the GSPN
model of a workstation cluster that we analyze in Chapter 8.

Even though the approximation algorithms that we have developed in the previous
chapters are all in PTIME, the state space explosion problem still renders them inapplica-

ble for large scale applications.�is is not surprising, as the same problem also arises in
the classical setting, where CTL and LTL formulas are veri�ed on Kripke structures. To
address this problem, equivalence notions such as strong- and weak bisimulation have

been proposed, which allow to minimize the state space by identifying states that have
similar behavior.
�is idea has carried over to the stochastic setting with great success: For example,

bisimulationminimization has become a standard tool for reducing the state space when
model checking CTMCs [BHHK03], DTMCs [LS91, BKHW05] and MDPs [SL95]. Fur-

ther, due to their process algebraic background, it comes as no surprise that strong and
weak bisimulation are readily available for IMCs [HHK02]. In this setting, lumping (i.e.
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bisimulation minimization) has been used to eliminate τ-transitions [MT06].

Such results do not exist for CTMDPs and a corresponding notion of strong bisimula-
tion has not been de�ned yet.�is chapter is meant to close this theoretical gap:

We de�ne strong bisimulation on CTMDPs as a conservative extension of the existing

notion of strong bisimulation on CTMCs [Buc94] and investigate which kind of logical
properties it preserves. In particular, we show that bisimulation preserves the validity of
CSL [ASSB00, BHHK03], which we already used in a slightly restricted version to reason

about IMCs (cf. Sec. 6.5).

Accordingly, in this chapter, we provide a semantics of CSL on CTMDPs which is
obtained in a similar way as the semantics of PCTL on MDPs [BK98, BdA95]. We show

the semantic soundness of our de�nition by usingmeasure–theoretic arguments to prove
that bisimilar states preserve full CSL. Finally, we close the discussion by noting that
similar toMDPs, CSL equivalence does not coincide with bisimulation:�is observation

corresponds to the discrete-time case [Bai98], where reasoning about the maximal and
minimal achievable probabilities (as done by logics like PCTL) is not enough to fully

characterize the model, either.

Organization of this chapter. In Sec. 7.1 we de�ne strong bisimulation for CTMDPs

and investigate its properties. In Sec. 7.2 we adapt CSL to reason about CTMDPs; in this
context, we answer the question whether CSL path formulas induce measurable sets in
the a�rmative. Section 7.3 �nally proves that CSL-formulas are preserved under strong

bisimulation.

7.1 Strong bisimilarity

By de�nition, CSL is a state based logic which reasons about the labeling of the states
of a CTMDP. As this chapter aims at establishing the relation between CSL and strong

bisimulation, we extend the de�nition of CTMDPs (cf. Def. 3.11 on page 75) with a state
labeling function L ∶ S → 2AP that assigns each state of the CTMDP the set of atomic
propositions from the set AP, that hold in that state.

Strong bisimilarity [BKHW05, LS91] is an equivalence on the set of states of a CTMDP
which relates two states if they are equally labeled and exhibit the same stepwise behavior.
As we will prove in�m. 7.4, strong bisimilarity allows us to aggregate the state space

while preserving transient and long run measures.

As usual, we denote the equivalence class of s under an equivalence relationR ⊆ S ×S
by [s]R and de�ne [s]R = {s′ ∈ S ∣ (s, s′) ∈ R}. If R is clear from the context, we also

write [s] instead of [s]R. Further, SR = {[s]R ∣ s ∈ S} is the quotient space of S underR.
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De�nition 7.1 (Strong bisimulation relation). Let C = (S ,Act,R,AP, L, ν) be a state
labeled CTMDP. An equivalence relationR ⊆ S × S is a strong bisimulation relation i�
for all (u, v) ∈ R it holds that L(u) = L(v) and R(u, α,C) = R(v , α,C) for all α ∈ Act
and all C ∈ SR.
Two states u and v are strongly bisimilar (denoted u ∼ v) i� there exists a strong bisim-
ulation relation R such that (u, v) ∈ R. Strong bisimilarity is the union of all strong
bisimulation relations.

�eorem 7.1 (Strong bisimilarity). Strong bisimilarity is

(a) an equivalence,

(b) a strong bisimulation relation, and

(c) the largest strong bisimulation relation.

Proof. As usual, we use ∼ = ⋃{R ∣ R is a strong bisimulation relation on S} to denote
strong bisimilarity. We prove each claim separately:

(a) ∼ is an equivalence: Re�exivity and symmetry follow directly from the de�nition.
For re�exivity, note that the identity relation is a strong bisimulation relation. For
symmetry, it su�ces to note that if u ∼ v, then (u, v) ∈ R for some strong bisimula-

tion relation R. Hence L(u) = L(v) and R(u, α,C) = R(v , α,C) for all α ∈ Act and
all C ∈ SR. �en R−1 = {(v , u) ∣ (u, v) ∈ R} is a strong bisimulation relation that

proves v ∼ u.

We need to show transitivity, that is (u, v) ∈ ∼ and (v ,w) ∈ ∼ Ô⇒ (u,w) ∈ ∼.
(u, v) ∈ ∼ Ô⇒ ex. strong bisimulation relationR1 ⊆ ∼ such that (u, v) ∈ R1.

(v ,w) ∈ ∼ Ô⇒ ex. strong bisimulation relationR2 ⊆ ∼ such that (v ,w) ∈ R2 .

LetR denote the transitive closure ofR1 ∪R2.�en (u,w) ∈ R.�erefore it su�ces

to show thatR is a strong bisimulation relation. AsR obviously is an equivalence, it
remains to show that for all (u, v) ∈ R, α ∈ Act and C ∈ SR it holds L(u) = L(v) and

R(u, α,C) = R(v , α,C). (7.1)

�e �rst condition, L(u) = L(v) follows directly from the transitivity of the identity

relation on 2AP. For Cond. (7.1), let C = {s1, . . . , sn} ∈ SR. �en it holds for k = 1, 2
that C = ⋃n

i=1 [si]Rk
; to see this, we prove both directions:

⊆: Let s ∈ C.�en s ∈ [si]Rk
for some i ∈ {1, . . . , n}. Hence s ∈ ⋃n

i=1 [si]Rk
.
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⊇: Let i ∈ {1, . . . , n}.�en it holds:

s ∈ [si]Rk
⇐⇒(s, si) ∈ Rk (* by de�nition *)

Ô⇒(s, si) ∈ R (*Rk ⊆R *)

⇐⇒s ∈ [si]R (*R is an equivalence relation *)

⇐⇒s ∈ C (* [si]R = C *)

Hence we can decompose C into equivalence classes with respect to R1 andR2 (see
Fig. 7.1). AsR1 is an equivalence relation, it induces a partitioning of C:

C =⊍{[si1]R1
, [si2]R1

, . . . , [sim]R1
} where m ≤ n. (7.2)

Note that the same applies toR2 for a di�erent set of indices i′1 , . . . , i
′
m′ . Now we are

able to prove Property (7.1) by induction on the structure ofR.�erefore we provide
an inductive de�nition ofR as follows:

R0 = R1 ∪R2 and

Ri+1 = {(u,w) ∣ ∃v ∈ S . (u, v) ∈Ri ∧ (v ,w) ∈Ri} for i ≥ 0.

By construction, the subset-ordering onRi is bounded from above by S×S . Further,
S is �nite, so thatR0 ⊆R1 ⊆ ⋯ is an increasing sequence, that is, the transitive closure

is reached a�er a �nite number z of iterations such that Rz+1 = Rz . Obviously, we
then haveR =Rz .

By induction on i, we prove that if (u, v) ∈ Ri , then R(u, α,C) = R(v , α,C) for all
α ∈ Act and C ∈ SR:

i. For the induction base (i = 0), we distinguish two cases:

• Let (u, v) ∈ R1:

(u, v) ∈R1 Ô⇒∀C′ ∈ SR1 .∀α ∈ Act. R(u, α,C′) = R(v , α,C′)
Ô⇒∀ j ∈ {1, . . . ,m}. ∀α ∈ Act.

R(u, α, [si j]R1
) = R(v , α, [si j]R1

)
Ô⇒∀α ∈ Act.

m∑
j=1

R(u, α, [si j]R1
) = m∑

j=1

R(v , α, [si j]R1
)

Ô⇒∀α ∈ Act. R(u, α, m⊍
j=1

[si j]R1
) = R(v , α, m⊍

j=1

[si j]R1
)

(7.2)
ÔÔ⇒∀α ∈ Act. R(u, α,C) = R(v , α,C).

• Let (u, v) ∈ R2:�e argument is completely analogue to the �rst case.
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C

[s6]R1
[s2]R1

[s 4
] R

1
=
[s 5
] R

1

[s1]R1
= [s7]R1

[s3]R1

(a) according toR1

C

[s6]R2= [s3]R2

[s2]R2

[s4]R2

[s1]R2

[s7]R2

[s5]R2

(b) according toR2

Figure 7.1: Example partitioning of an equivalence class C ∈ SR.

ii. In the induction step (i ↝ i + 1), assume (u,w) ∈ Ri+1. By construction, we
have (u, v) ∈ Ri and (v ,w) ∈ Ri . Applying the induction hypothesis we have
R(u, α,C) = R(v , α,C) and R(v , α,C) = R(w , α,C) for all actions α ∈ Act
and all C ∈ SR. �erefore R(u, α,C) = R(w , α,C) directly follows from the
transitivity of = on R≥0.

Now we can conclude that ∼ is indeed transitive: Given (u, v) ∈ R1 and (v ,w) ∈ R2,

there exists a strong bisimulation relation R such that (u,w) ∈ R. By de�nition,
R ⊆ ∼ and therefore u ∼ w.

(b) ∼ is a strong bisimulation relation:

It remains to show for any u ∼ v, that L(u) = L(v) andR(u, α,C) = R(v , α,C) holds
for all α ∈ Act and C ∈ S∼. Since u ∼ v implies the existence of a strong bisimulation

relationR ⊆ ∼ with (u, v) ∈ R it holds that L(u) = L(v) and we may follow the idea
in Eq. (7.2) and express C as �nite union of equivalence classes of SR. Since R is
a strong bisimulation relation, the rates from u and v into those equivalence classes

are equal and maintained by summation.

(c) ∼ is the largest (i.e. the coarsest) strong bisimulation relation:

Clear from the fact that ∼ is the union of all strong bisimulation relations. ◻

For the purpose of reducing the state space, the quotient CTMDP is essential: Instead
of considering all states in S , the quotient only retains their equivalence classes under

strong bisimilarity:

De�nition 7.2 (Quotient). Let C = (S ,Act,R,AP, L, ν) be a state labeled CTMDP.�e
CTMDP C̃ = (S̃ ,Act, R̃,AP, L̃) where S̃ = S∼, R̃([s] , α,C) = R(s, α,C) and L̃([s]) =
L(s) for all s ∈ S , α ∈ Act and C ∈ S̃ is the quotient of C under strong bisimilarity.

For states [s] , [t] ∈ S̃ of the quotient C̃ , let Ẽ([s] , α) =∑[s′]∈S̃ R̃([s] , α, [s′]) be the exit
rate of [s] under action α. Further, if Ẽ([s] , α) > 0, then P̃([s] , α, [t]) = R̃([s],α,[t])

Ẽ([s],α) is the
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discrete branching probability from state [s] to state [t] under action α. For Ẽ([s] , α) = 0,
we set P̃([s] , α, [t]) = 0.
Example 7.1. Consider the CTMDP over the set AP = {a} of atomic propositions depicted
in Fig. 7.2(a). Its quotient under strong bisimilarity is outlined in Fig. 7.2(b). In this example,
the states s2 and s3 are strongly bisimilar. �e corresponding strong bisimulation relation is
R = {(s0, s0) , (s1, s1), (s2 , s2), (s2, s3), (s3 , s3), (s3 , s2)}. ♢

In the quotient, exit rates and branching probabilities are preserved with respect to the
underlying CTMDP as shown by the following two lemmas:

Lemma 7.1 (Preservation of exit rates). Let C = (S ,Act,R,AP, L, ν) be a state labeled
CTMDP and let C̃ be its quotient under strong bisimilarity. �en E(s, α) = Ẽ([s] , α) for
all s ∈ S and α ∈ Act.

Proof. Let S = ⊍n
k=0[sik ] such that [si j] ∩ [sik ] = ∅ for all j /= k. For all states s ∈ S it

holds:

E(s, α) = ∑
s′∈S

R(s, α, s′) = n∑
k=0

∑
s′∈[sik ]

R(s, α, s′) = n∑
k=0

R(s, α, [sik ])
Def. 7.2
=

n∑
k=0

R̃([s] , α, [sik ]) = ∑
[s′]∈S̃

R̃([s] , α, [s′]) = Ẽ([s] , α). ◻

With Lemma 7.1 it directly follows that also the discrete transition probabilities are pre-

served under strong bisimulation:

Lemma 7.2 (Preservation of transition probabilities). Let C = (S ,Act,R,AP, L, ν)
be a state labeled CTMDP and let C̃ be its quotient under strong bisimilarity. For all
states s, t ∈ S and all actions α ∈ Act it holds

P̃([s] , α, [t]) = ∑
t′∈[t]

P(s, α, t′).

Proof.

P̃([s] , α, [t]) = R̃([s] , α, [t])
Ẽ([s] , α)

Def. 7.2
=

R(s, α, [t])
Ẽ([s] , α)

=
∑t′∈[t] R(s, α, t′)

Ẽ([s] , α)
Lemma 7.1
=
∑t′∈[t]R(s, α, t′)

E(s, α) = ∑
t′∈[t]

P(s, α, t′). ◻

With these remarks, we conclude our de�nition of strong bisimulation for CTMDPs. To

set its de�nition in a context, we adapt the continuous stochastic logic that we already
used in Chapter 6 to reason about IMCs, to reason about CTMDPs.
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Figure 7.2: Quotient under strong bisimilarity.

7.2 Continuous Stochastic Logic

Continuous stochastic logic [ASSB00, BHHK03] is a state-based logic which was origi-
nally designed to reason about continuous-timeMarkov chains. In this context, its formu-

las characterize strong bisimilarity [DP03] as de�ned in [BHHK03]; moreover, strongly
bisimilar states satisfy the same CSL formulas [BHHK03].

In this section, we extend CSL to CTMDPs along the lines of [BHHK04]. As steady
states do not exist in CTMDPs, we further introduce a long-run average operator [dA97],
which serves as a replacement of the steady state operator known from classical CSL.�e

semantics that we propose for CSL on CTMDPs is based on ideas from [BK98, BdA95]
where variants of PCTL are extended to (discrete time) MDPs.

De�nition 7.3 (CSL syntax). For a ∈ AP, p ∈ [0, 1], I ⊆ R≥0 a nonempty interval and
⊴ ∈ {<, ≤, ≥, >}, CSL state and CSL path formulas are de�ned according to the following
grammar rules:

Φ ∶∶= a ∣ ¬Φ ∣ Φ ∧Φ ∣ ∀⊴pφ∣ L⊴pΦ and φ ∶∶= X
IΦ ∣ Φ U I Φ.

�e Boolean connectives ∨ and→ are de�ned as usual; further we extend the syntax by
deriving the timedmodal operators “eventually” and “always” using the equalities◇IΦ ≡
tt U I Φ and ◻IΦ ≡ ¬ ◇I ¬Φ where tt ∶= a ∨ ¬a for some a ∈ AP. Similarly, the equality
∃⊴pφ ≡ ¬∀⊳pφ de�nes an existentially quanti�ed transient state operator, where⊳denotes
the negation of the comparison operator ⊴: For example, if ⊴ = <, then ⊳ = ≥. �e

intuition for the probabilistic and the long-run average operators is given by an example:

Example 7.2. Reconsider the CTMDP depicted in Fig. 7.2(a). �e transient state formula

∀>0.1 (◇[0,1]a) states that the probability to reach an a-labeled state within at most one time
unit exceeds 0.1, nomatter how the nondeterministic choices in the current state are resolved.
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Further, the long-run average formula L<0.25 (¬a) states that for all scheduling decisions,
the system spends less than 25% of its execution time in non-a states, on average. ♢

Formally, the long-run average is derived as follows: For B ⊆ S , let IB denote an indicator
with IB(s) = 1 if s ∈ B and 0 otherwise. Following the ideas of [dA97, LHK01], we compute
the fraction of time spent in states from the set B on an in�nite path π up to time bound

t ∈ R≥0 and de�ne

avgB,t(π) = 1

t ∫
t

0
IB(π@t′)dt′.

As avgB,t is a random variable, its expectation can be derived given an initial distribution

ν ∈ Distr(S) and a measurable scheduler D ∈ GM. In this way, we obtain

E(avgB,t) = ∫
Pathsω

avgB,t(π) Prων,D(dπ).
Having de�ned the expectation for a �xed time bound t ∈ R≥0, we now take the limit

t →∞ and obtain the long-run average as limt→∞ E(avgB,t).�is idea is made precise in
the semantics of CSL:

De�nition 7.4 (CSL semantics). Let C = (S ,Act,R,AP, L, ν) be a state labeledCTMDP,
s, t ∈ S , a ∈ AP, ⊴ ∈ {<, ≤, ≥, >} and π ∈ Pathsω. Further let νs(t) ∶= 1 if s = t and 0 other-
wise. �e semantics of state formulas is de�ned as follows:

s ⊧ a ⇐⇒ a ∈ L(s)
s ⊧ ¬Φ ⇐⇒ not s ⊧ Φ

s ⊧ Φ ∧Ψ ⇐⇒ s ⊧ Φ and s ⊧ Ψ
s ⊧ ∀⊴pφ ⇐⇒ ∀D ∈ GM. Prωνs ,D {π ∈ Pathsω ∣ π ⊧ φ} ⊴ p
s ⊧ L⊴pΦ ⇐⇒ ∀D ∈ GM. limt→∞ ∫Pathsω avgSat(Φ),t(π) Prωνs ,D(dπ) ⊴ p.

�e semantics of path formulas is de�ned such that

π ⊧ XIΦ ⇐⇒ π[1] ⊧ Φ ∧ δ(π, 0) ∈ I
π ⊧ Φ U I Ψ ⇐⇒ ∃t ∈ I. (π@t ⊧ Ψ ∧ (∀t′ ∈ [0, t). π@t′ ⊧ Φ)) ,

where Sat(Φ) = {s ∈ S ∣ s ⊧ Φ}.
In Def. 7.4, the transient-state operator∀⊴pφ is based on themeasure of the set of paths

that satisfy φ. However, in order to associate a probability to the set {π ∈ Pathsω ∣ π ⊧ φ},
we must prove that the set is measurable with respect to the σ-�eld FPathsω . �is is the

result of the next theorem:

�eorem 7.2 (Measurability of path formulas). �e set {π ∈ Pathsω ∣ π ⊧ φ} is mea-
surable for all CSL path formula φ.
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Proof. For next formulas, the proof is straightforward. For until formulas, let π = s0
α0 ,t0ÐÐ→

s1
α1 ,t1ÐÐ→ ⋯ ∈ Pathsω and assume π ⊧ Φ U I Ψ. By Def. 7.4 it holds that π ⊧ Φ U I Ψ i�

∃t ∈ I. (π@t ⊧ Ψ ∧ ∀t′ ∈ [0, t). π@t′ ⊧ Φ). As we may exclude Zeno behavior by

�m. 3.5 (see page 84), there exists n ∈ N with π@t = π[n] = sn such that I and the
period of time [∑n−1

i=0 ti ,∑n
i=0 ti) spent in state sn overlap; further sn ⊧ Ψ and si ⊧ Φ

for i = 0, . . . , n − 1. Note however, that sn must also satisfy Φ except for the case of
instantaneous arrival where ∑n−1

i=0 ti ∈ I. Accordingly, the set {π ∈ Pathsω ∣ π ⊧ Φ U I Ψ}
can be represented by the union

∞⋃
n=0

{π ∈ Pathsω ∣ n−1∑
i=0

ti ∈ I ∧ π[n] ⊧ Ψ ∧ ∀m < n. π[m] ⊧ Φ} (7.3)

∪
∞⋃
n=0

{π ∈ Pathsω ∣ (n−1∑
i=0

ti ,
n∑
i=0

ti) ∩ I /= ∅∧ π[n] ⊧ Ψ ∧∀m ≤ n. π[m] ⊧ Φ}. (7.4)

It su�ces to show that the subsets in the unions of Eq. (7.3) and Eq. (7.4) are measurable
cylinders for all n ∈ N. In the following, we give the proof for Eq. (7.4) and closed intervals
I = [a, b] and only note that the other cases are similar. For �xed n ≥ 0, we show that the
corresponding cylinder base is measurable using a discretization argument:

{π ∈ Pathsn+1 ∣ (n−1∑
i=0

ti ,
n∑
i=0

ti) ∩ [a, b] /= ∅ ∧ π[n] ⊧ Ψ ∧∀m ≤ n. π[m] ⊧ Φ}
=
∞⋃
k=1

⋃
c0+⋯+cn≥ak

d0+⋯+dn−1≤bk
ci<d i

n−1∏
i=0

[Sat(Φ)×Act×(ci
k
,
di

k
)]× Sat(Φ ∧Ψ)×Act×( cn

k
,∞)×S (7.5)

where ci , d j ∈ N. To shorten notation, let c =∑n−1
i=0 ti and d =∑n

i=0 ti .
We prove Eq. (7.5) in both directions separately:

⊆: Let π = s0
α0 ,t0ÐÐ→ s1

α1 ,t1ÐÐ→ ⋯
αn ,tnÐÐ→ sn+1 be in the set on the le�-hand side of Eq. (7.5).

�e intervals (c, d) and [a, b] overlap, hence c < b and d > a (see top of Fig. 7.3).
Further π[i] ⊧ Φ for i = 0, . . . , n and π[n] ⊧ Ψ. To show that π is in the set on the

right-hand side, let ci = ⌈ti ⋅ k − 1⌉ and di = ⌊ti ⋅ k + 1⌋ for k > 0. �en ci
k < ti <

d i
k

approximates the sojourn times ti as depicted in Fig. 7.3. Further let ε =∑n
i=0 ti − a

and choose k0 such that n+1
k0
≤ ε to obtain

a =
n∑
i=0

ti − ε ≤
n∑
i=0

ti −
n + 1

k0
≤

n∑
i=0

ci + 1

k0
−
n + 1

k0
=

n∑
i=0

ci
k0
.

�us ak ≤ ∑n
i=0 ci for all k ≥ k0. Similarly, we obtain k′0 ∈ N s.t. ∑n−1

i=0 di ≤ bk for all
k ≥ k′0. Hence for large k, π is in the set on the right-hand side.



212 7.3 Strong bisimilarity preserves CSL

t2t1t0 t3 t4
ΦΦΦ

s4s3s2s1s0

Φ Φ ∧ Ψ

s5

dc

b

π =

c0
k

d0
k

c1
k

d1
k

c2
k

d2
k

c3
k

d3
k c4

k

a

Figure 7.3: Discretization of intervals with n = 4 and I = (a, b).
⊇: Let π be in the set on the right-hand side of Eq. (7.5) with corresponding values for

ci , di and k. �en ti ∈ ( cik , d ik ). Hence a ≤ ∑n
i=0

ci
k < ∑n

i=0 ti = d and b ≥ ∑n−1
i=0

d i
k >∑n−1

i=0 ti = c so that the time-interval (c, d) of state sn and the time interval I = [a, b]
of the formula overlap. Further, π[m] ⊧ Φ for m ≤ n and π[n] ⊧ Ψ; thus π is in
the set on the le�-hand side of Eq. (7.5).

�e right-hand side of Eq. (7.5) is measurable, hence also the cylinder base. �is ex-
tends to its cylinder and the countable union in Eq. (7.4). ◻

7.3 Strong bisimilarity preserves CSL

We now come to the main contribution in this chapter. To prove that strong bisimilarity
preserves CSL formulas, we establish a correspondence between certain sets of paths of

a CTMDP and its quotient which is measure-preserving:

De�nition 7.5 (Simple bisimulation closed). Let C = (S ,Act,R,AP, L, ν) be a state
labeled CTMDP. Ameasurable rectangleΠ = S0×A0×T0×⋯×An−1×Tn−1×Sn is simple
bisimulation closed i� Si ∈ (S̃ ∪ {∅}) for i = 0, . . . , n. Further, let Π̃ = {S0}×A0 × T0 ×
⋯ × An−1 × Tn−1 × {Sn} be the corresponding rectangle in the quotient C̃.

An essential step in our proof strategy is to obtain a scheduler on the quotient. �e

following example illustrates the intuition for such a scheduler.

Example 7.3. Let C be the CTMDP in Fig. 7.4(a) where ν(s0) = 1
4 , ν(s1) = 2

3 and ν(s2) =
1
12
. Moreover, let D be the GM-scheduler such that D(s0, {α}) = 2

3
, D(s0, {β}) = 1

3
,

D(s1, {α}) = 1
4
and D(s1, {β}) = 3

4
. Intuitively, a scheduler Dν

∼ that mimics D’s behavior
on the quotient C̃ (see Fig. 7.4(b)) can be de�ned by

Dν
∼([s0] , {α}) = ∑s∈[s0] ν(s) ⋅ D(s, {α})∑s∈[s0] ν(s) =

1
4
⋅ 2
3
+ 2

3
⋅ 1
4

1
4 +

2
3

=
4

11
and
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Figure 7.4: Derivation of the quotient scheduler.

Dν
∼([s0] , {β}) = ∑s∈[s0] ν(s) ⋅ D(s, {β})∑s∈[s0] ν(s) =

1
4 ⋅

1
3 +

2
3 ⋅

3
4

1
4
+ 2

3

=
7

11
.

Even though s0 and s1 are bisimilar, the scheduler D decides di�erently for the histories
π0 = s0 and π1 = s1. As π0 and π1 collapse into π̃ = [s0] on the quotient, Dν

∼ can no longer
distinguish between π0 and π1. �erefore D’s decision for any history π ∈ π̃ is weighted with
respect to the total probability of π̃. ♢

In order to formally derive the quotient scheduler, Def. 7.6 generalizes the ideas from Ex.
7.3 to histories of arbitrary (�nite) length:

De�nition 7.6 (Quotient scheduler). Let C = (S ,Act,R,AP, L, ν) be a CTMDP and
D ∈ GM. First, de�ne the history weight of �nite paths of length n inductively as follows:

hw0(ν,D, s0) = ν(s0) and
hwn+1(ν,D, π

αn ,tnÐÐ→ sn+1) = hwn(ν,D, π) ⋅ D(π, {αn}) ⋅ P(π↓, αn , sn+1).
Let π̃ = [s0] α0 ,t0ÐÐ→ ⋯

αn−1 ,tn−1ÐÐÐÐ→ [sn] be a timed history of C̃ and Π = [s0] × {α0} × {t0} ×
⋯× {αn−1}× {tn−1}× [sn] be the corresponding set of paths in C. �e quotient scheduler
Dν
∼ on C̃ is then de�ned as follows:

Dν
∼(π̃, αn) = ∑π∈Π hwn(ν,D, π) ⋅ D(π, {αn})

∑π∈Π hwn(ν,D, π) .

Further, let ν̃ ([s]) =∑s′∈[s] ν(s′) be the initial distribution on C̃.

A history π̃ of C̃ corresponds to a set of paths Π in C; given π̃, the quotient scheduler
decides by multiplying D’s decision on each path in Π with its corresponding weight and

normalizing with the weight of Π a�erwards. In this way, we obtain the �rst intermedi-
ate result: For CTMDP C, if Π is a simple bisimulation closed set of paths, ν an initial
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distribution and D ∈ GM, the measure of Π in C coincides with the measure of Π̃ in C̃
which is induced by ν̃ and Dν

∼:

�eorem 7.3. Let C = (S ,Act,R,AP, L, ν) be a CTMDP and D ∈ GM(C) a scheduler.
For all simple bisimulation closed sets of paths Π it holds that

Prων,D(Π) = Prων̃,Dν
∼
(Π̃).

Proof. By induction on the length n of cylinder bases. �e induction base holds for all
ν ∈ Distr(S) sincePr0ν,D([s]) =∑s′∈[s] ν(s′) = ν̃([s]) = Pr0ν̃,Dν

∼
({[s]}). With the induction

hypothesis that Prnν,D(Π) = Prnν̃,Dν
∼
(Π̃) for all ν ∈ Distr(S), D ∈ GM and bisimulation

closed Π ⊆ Pathsn we obtain the induction step:

Prn+1ν,D([s0] × A0 × T0 ×Π) = ∫[s0]×A0×T0
Prn

P(s,α,⋅),D(s
α ,tÐ→⋅)
(Π) µν,D(ds, dα, dt)

= ∫
s∈[s0]

ν(ds) ∫
α∈A0

D(s, dα) ∫
T0
Prn

P(s,α,⋅),D(s
α ,tÐ→⋅)
(Π) ηE(s,α)(dt)

= ∑
s∈[s0]

ν(s) ∑
α∈A0

D(s, {α}) ∫
T0
Prn

P(s,α,⋅),D(s
α ,tÐ→⋅)
(Π) ηẼ([s0],α)(dt) (* Lemma 7.1 *)

i.h.
= ∑

s∈[s0]
∑
α∈A0

∫
T0
Prn

P̃([s0],α,⋅),Dν
∼([s0]

α ,tÐ→⋅)
(Π̃) ⋅ ν(s) ⋅ D(s, {α}) ηẼ([s0],α)(dt)

= ∑
α∈A0

∫
T0
Prn

P̃([s0],α,⋅),Dν
∼([s0]

α ,tÐ→⋅)
(Π̃) ⋅ ∑

s∈[s0]
(ν(s) ⋅ D(s, {α})) ηẼ([s0],α)(dt)

= ∑
α∈A0

∫
T0
Prn

P̃([s0],α,⋅),Dν
∼([s0]

α ,tÐ→⋅)
(Π̃) ⋅ (∑

s∈[s0]
ν(s))∑s∈[s0] ν(s) ⋅ D(s, {α})∑s∈[s0] ν(s) ηẼ([s0],α)(dt)

= ∑
α∈A0

∫
T0
Prn

P̃([s0],α,⋅),Dν
∼([s0]

α ,tÐ→⋅)
(Π̃) ⋅ ν̃([s0]) ⋅ Dν

∼([s0] , {α}) ηẼ([s0],α)(dt)
= ∫{[s0]} ν̃(d [s]) ∫A0

Dν
∼([s], dα) ∫

T0
Prn

P̃([s],α,⋅),Dν
∼([s]

α ,tÐ→⋅)
(Π̃) ηẼ([s],α)(dt)

= ∫{[s0]}×A0×T0
Prn

P̃([s],α,⋅),Dν
∼([s]

α ,tÐ→⋅)
(Π̃) µ̃ν̃,Dν

∼
(d [s] , dα, dt)

= Prn+1ν̃,Dν
∼
({[s0]} × A0 × T0 × Π̃)

where µ̃ν̃,Dν
∼
is the extension of µν,D (Def. 3.16) to sets of initial triples in C̃:

µ̃ν̃,Dν
∼
∶ FS̃×Act×R≥0 → [0, 1] ∶

I ↦ ∫S̃ ν̃(d [s]) ∫Act Dν
∼([s] , dα) ∫

R≥0

II([s] , α, t) ηẼ([s],α)(dt). ◻
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According to�m. 7.3, the quotient scheduler preserves the measure for simple bisimula-

tion closed sets of paths, i.e. for paths, whose state components are equivalence classes
under strong bisimilarity. To generalize this to sets of paths that satisfy a CSL path for-
mula, we introduce general bisimulation closed sets of paths:

De�nition 7.7 (Bisimulation closed). Let C = (S ,Act,R,AP, L, ν) be a CTMDP and
C̃ its quotient under strong bisimilarity. A measurable rectangle Π = S0 × A0 × T0 ×⋯ ×
An−1 × Tn−1 × Sn is bisimulation closed i� Si = ⊍ki

j=0 [si, j] for ki ∈ N and 0 ≤ i ≤ n. Let

Π̃ =
k0⊍
j=0

{[s0, j]} × A0 × T0 ×⋯ × An−1 × Tn−1 ×
kn⊍
j=0

{[sn, j]}
denote the corresponding rectangle in the quotient C̃.

Lemma 7.3. Any bisimulation closed set of pathsΠ can be represented as a �nite disjoint
union of simple bisimulation closed sets of paths.

Proof. Direct consequence of Def. 7.7. ◻

Corollary 7.1. Let C = (S ,Act,R,AP, L, ν) be a CTMDP. �en

Prων,D(Π) = Prων̃,Dν
∼
(Π̃)

for all D ∈ GM and all bisimulation closed sets of paths Π.

Proof. Follows directly from Lemma 7.3 and�m. 7.3. ◻

Using these extensions, we are ready to prove the main result of this chapter:

�eorem 7.4 (Preservation theorem). Let C = (S ,Act,R,AP, L, ν) be a CTMDP. For
all CSL state formulas Φ and for all states u, v ∈ S with u ∼ v it holds that

u ⊧ Φ ⇐⇒ v ⊧ Φ.

Proof. By structural induction on Φ.

1. If Φ = a and a ∈ AP, the induction base follows as L(u) = L(v).
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2. In the induction step, conjunction and negation are obvious.�uswe only consider

the transient state operator ∀⊴p and the long-run average operator:

• Let Φ = ∀⊑pφ and Π = {π ∈ Pathsω ∣ π ⊧ φ}. To show u ⊧ ∀⊑pφ implies

v ⊧ ∀⊑pφ it su�ces to show that for any V ∈ GM there exists U ∈ GM
with Prωνu ,U(Π) = Prωνv ,V(Π). By �m. 7.2 the set Π is measurable, hence
Π = ⊍∞i=0 Πi for disjoint Πi ∈ FPathsω . By induction hypothesis for path for-

mulas XIΦ and Φ U I Ψ the sets Sat(Φ) and Sat(Ψ) are disjoint unions of ∼-
equivalence classes. �e same holds for any Boolean combination of Φ and

Ψ. Hence Π = ⊍∞i=0 Πi where the Πi are bisimulation closed. For all V ∈ GM
and π = s0

α0 ,t0ÐÐ→ ⋯
αn−1 ,tn−1ÐÐÐÐ→ sn let U(π) ∶= Vνv

∼ ([s0] α0 ,t0ÐÐ→ ⋯
αn−1 ,tn−1ÐÐÐÐ→ [sn]).

�us U mimics on π the decision of Vνv
∼ on π̃. In fact U νu

∼ = Vνv
∼ since

U νu
∼ (π̃, αn) = ∑π∈Π hwn(νu ,U , π) ⋅ Vνv

∼ (π̃, αn)
∑π∈Π hwn(νu ,U , π)

and Vνv
∼ (π̃, αn) is independent of π. With ν̃u = ν̃v and by Corollary 7.1 we

obtain Prωνu ,U(Πi) = Prων̃u ,U νu
∼
(Π̃i) = Prων̃v ,V νv

∼
(Π̃i) = Prωνv ,V(Πi) which carries

over to Π for Π is a countable union of disjoint sets Πi .

• Let Φ = L⊑pΨ. Since u ∼ v, it su�ces to show that for all s ∈ S it holds

s ⊧ L⊑pΨ i� [s] ⊧ L⊑pΨ. �e expectation of avgSat(Ψ),t for t ∈ R≥0 can be
expressed as follows:

∫
Pathsω

( 1
t ∫

t

0
ISat(Ψ)(π@t′)dt′)Prωνs ,D(dπ)

=
1

t ∫
t

0
Prωνs ,D{π ∈ Pathsω ∣ π@t′ ⊧ Ψ}dt′.

Further, the sets {π ∈ Pathsω ∣ π@t′ ⊧ Ψ} and {π ∈ Pathsω ∣ π ⊧ ◇[t′ ,t′]Ψ}
have the same measure and the induction hypothesis applies to Ψ. Applying

the previous reasoning for the until case to the formula tt U [t′ ,t′] Ψ once, we
obtain

Prωνs ,D{π ∈ Pathsω(C) ∣ π ⊧◇[t′ ,t′]Ψ} = Prων̃s ,Dνs
∼
{π̃ ∈ Pathsω(C̃) ∣ π̃ ⊧◇[t′ ,t′]Ψ}

for all t′ ∈ R≥0.�us the expectations of avgSat(Ψ),t on C and C̃ are equal for all
t ∈ R≥0 and the same holds for their limits if t →∞.�is completes the proof

as for u ∼ v we obtain u ⊧ L⊑pΨ i� [u] ⊧ L⊑pΨ i� [v] ⊧ L⊑pΨ i� v ⊧ L⊑pΨ. ◻

�is theorem shows that bisimilar states satisfy the same CSL formulas.
�e reverse direction, however, does not hold in general. One reason is obvious:�e

logic that we use throughout this thesis is purely state-based. However, the de�nition of
strong bisimulation also accounts for action names. �erefore it comes as no surprise
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that CSL cannot characterize strong bisimulation. However, there is another more pro-

found reason which is analogous to the discrete-time setting where extensions of PCTL
to Markov decision processes [SL95, Bai98] also cannot express strong bisimilarity: CSL
and PCTL only allow to specify in�ma and suprema as probability bounds under a denu-

merable class of randomized schedulers; therefore intuitively, CSL cannot characterize
exponential distributions which neither contribute to the supremumnor to the in�mum

of the probability measures of a given set of paths.�us the counterexample from [Bai98,
Fig. 9.5] interpreted as a CTMDP applies verbatim to our case.

7.4 Conclusion

In this chapter we de�ne strong bisimulation on CTMDPs and adapt the continuous
stochastic logic (CSL) to CTMDP such that it permits to reason about the maximum

and minimum achievable performance and dependability measures in CTMDPs.
Using measure-theoretic arguments, we further prove that CSL path formulas induce

measurable sets of paths. As this proof is done in the more general setting of CTMDPs,
it applies to CSL-path formulas for CTMCs, as well. In this way, we close a gap in the
theory of CSL, where the measurability of path formulas has not been discussed.

�emain contribution of this chapter is the proof that strong bisimilarity preserves the
validity of CSL formulas. In this way, we justify the de�nition of bisimulation that we use

and embed it into the context of CSL. However, our logic is not capable of characterizing
strong bisimilarity.�is is not surprising, as similar limitations are also known for logics
like PCTL in the discrete-time setting.

A promising approach to obtain a logic that is expressive enough to characterize CT-
MDPs are action based variants of CSL. To investigate such logics and their relation to
scheduler classes remains for future research.





8 Model checking generalized stochastic
Petri nets

Perfection is achieved, not

when there is nothing more to

add, but when there is

nothing left to take away.

(Antoine de Saint-Exupéryi)

In a stochastic Petri net [Nat80, Mol82], all transitions are delayed according to an
exponential distribution.�eir associated token game induces a CTMCwhich represents

the SPN’s semantics.

�is chapter considers generalized stochastic Petri nets [MCB84] (GSPNs) which ex-
tend SPNs with immediate transitions. Similar to the internal transitions in the closed
IMCs of Chapter 6, immediate transitions in a GSPN �re instantaneously. Accordingly, a

GSPN distinguishes exponentially delayed timed transitions from immediate transitions.
Con�icts between immediate transitions lead to so-called “confused” GSPNs, where con-

fusion arises if multiple immediate transitions are enabled at the same time. In principle,
the choice which of them executes next is not speci�ed and hence, nondeterministic.

However, at the time GSPNs were developed, no analysis techniques were available
for nondeterministic and stochastically timed systems. �erefore, much work has been

spent in order to rule out confused GSPNs [MCB84, CMBC93]. �e solution that was
chosen already in [MCB84] is to assign weights to immediate transitions. If multiple im-
mediate transitions compete for execution, the proportion of their weights gives rise to

a discrete probability distribution which resolves the nondeterminism probabilistically.
Hence, all nondeterministic choices are replaced by probability distributions that are im-

plicitly encoded in the syntax of the GSPN.

In this approach, themodeler has to assignweights “at the net level” [CDF91, CMBC93],

that is, without knowingwhich immediate transitions actually get into con�ict during the
token game. As observed already in [MCB84], �nding reasonable weight-assignments is

di�cult; for larger systems, it might even be practically impossible.

Tomitigate against this shortcoming, the GSPN community tries to identify sets of im-

mediate transitions thatmight get into con�ict during the evolution of the GSPN.�ese
extended con�ict sets [CMBC93] rely on necessary conditions for a con�ict and partition

the set of immediate transitions accordingly. In this way, weights become local to each
block of the ECS equivalence which facilitates the weight speci�cation for the modeler.
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�e quest to �nd suitable necessary conditions for the occurrence of con�icts between

immediate transitions led to extremely complex and technical de�nitions of extended
con�ict sets. Among others, this is testi�ed by the research papers [MBCC87, CMBC93,
MBC+91] and their further re�nements in [CDF91, MBC+95, Bal00, Bal07]. However,

despite all this work, the authors of [TFP99] and [TF03] still managed to disprove the
correctness claim (i.e. the claim that immediate transitions in di�erent extended con�ict

sets can never be in con�ict) of the extended con�ict set approach.

A further, more general shortcoming of weight-assignments is that weights only per-

mit to formalize positional strategies to resolve the nondeterministic choices that occur
inmarkingswith competing immediate transitions. Aswe have seen in the previous chap-
ters, depending on the measure of interest, positional schedulers are far from optimal.

�erefore, we do not follow this approach, but strive for a general semantics of GSPNs
which accepts that nondeterminism occurs between competing immediate transitions.

In this way, we obtain a new de�nition of GSPNs which avoids the use of weights while
conservatively extending stochastic Petri nets [Mol82]. In this way, it resembles an ear-
lier approach in [HHMR97] where compositional extensions of GSPN are discussed; in

this context, immediate transitions are equipped with action names for synchronization
purposes. �is approach does not use the weight speci�cation of the classical GSPN

de�nition either, but relies on the fact that the precedence of competing immediate tran-
sitions is o�en resolved by synchronization with the environment. However, as men-
tioned already in [HHMR97, Sec. 4], nondeterminism cannot be ruled out completely.

Instead, it generally occurs in the composedGSPNs due to competing immediate internal
τ-transitions.

�e same problem is also observed by the authors of [MH06b] and [MH06a]. In their
work, they propose a framework for CSL model checking of deterministic stochastic Petri
nets. �e results in [MH06b] are closely related to the approach taken in this chapter.

However, the technique that is proposed in [MH06b] is again restricted to deterministic
stochastic Petri nets which induce a CTMC [MH06b, Sec. 3].

�e results of this chapter overcome these limitations and enable an analysis of nonde-
terministic GSPNs that may occur in the frameworks [MH06b] and [HHMR97].

Opposed to earlier approaches, we describe the semantics of a GSPN by its marking
graph, which is isomorphic to a closed IMC. Hence, our nondeterministic GSPNs can be
analyzed by the approximation algorithm from Chapter 6.

Organization of this chapter. Section 8.1 introduces some basic notation. In Sec. 8.2,

we de�ne the syntax of GSPNs without weight-assignments. Section 8.3 introduces their
semantics by interpreting their marking graph as an IMC. Finally, Sec. 8.4 provides a case

study where we apply our GSPN semantics to analyze the dependability characteristics
of a workstation cluster which is modeled by a nondeterministic GSPN.
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8.1 Preliminaries

Our de�nition of GSPNs di�ers from that in [MCB84], as we do not support the speci�ca-

tion ofweights for immediate transitions. Speci�cally, we propose to completely abandon
the idea of resolving the nondeterministic choices by weight-speci�cations.
To obtain a simple and semantically precise de�nition of our GSPNs, we only distin-

guish between timed and immediate transitions and do not allow for further priority
speci�cations within the class of immediate transitions. Moreover, we do not care about

marking dependent rates. Note however, that this is no severe restriction, as it is straight-
forward to adapt our approach to the aforementioned generalizations by extending the
transformation from GSPNs to IMCs such that it re�ects the priority levels and marking

dependent rates in the inducedmarking graph.
As in Petri nets, a GSPN consists of �nitely many places and transitions; each place can

contain an unbounded �nite number of tokens. Informally, the state of a GSPN— called

amarking — is completely determined by the number of tokens in each place:

De�nition 8.1 (Marking). Let P be a nonempty, �nite set of places. A marking m is a
mapping m ∶ P → N. LetM = {m ∶ P → N} denote the set of all markings.

8.2 �e syntax of GSPNs

AGSPN consists of a �nite, nonempty set of places and �nitely many transitions that con-

nect those places; transitions are further partitioned into the set of immediate transitions
which execute instantaneously and the set of timed transitions, which are delayed by an

exponentially distributed amount of time.

Example 8.1. Consider the GSPN G in Fig. 8.1(a). It consists of the set of places (denoted by
circular nodes) {p0, . . . , p3}; moreover, {t0, t1, t2, t8} is its set of timed transitions (depicted
as rectangles) and {t3, t4, t5, t6, t7} is the set of immediate transitions (solid bars).
Each transition has a number of input, output and inhibition places1, depicted as arcs

in Fig. 8.1(a). Informally, a transition has concession if enough tokens are available in all its
input places, while the corresponding inhibition places are empty. �e e�ect of executing a
transition is a new marking, which is obtained by removing a token from each input place
and adding tokens to the transition’s output places. Immediate transitions execute imme-
diately upon becoming enabled, whereas timed transitions are delayed by an exponentially
distributed duration, speci�ed by the transition rate. ♢

To de�ne a GSPN formally, we encode its input, output and inhibition places as func-
tion T → (P → N) which assign to each transition a mapping P → N, specifying the
cardinality of the input, output or inhibition places.

1Inhibition places may disable an otherwise enabled transition depending on the current marking.
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De�nition 8.2 (Generalized stochastic Petri net). A generalized stochastic Petri net
(GSPN) is a tuple G = (P, T , λ, I,O ,H,m0) where

• P is a nonempty, �nite set of places,

• T = Tt ⊍ Ti is a �nite set of transitions partitioned into the sets Tt and Ti of timed

and immediate transitions,

• λ ∶ Tt → R>0 is a rate assignment,

• I ∶ T → (P → N) de�nes the transitions’ input places,
• O ∶ T → (P → N) the transitions’ output places and
• H ∶ T → (P → N) de�nes the transitions’ inhibition places.

Finally, m0 ∈M is the initial marking.

For a given transition t ∈ T , we use It to denote t’s input places, that is, we de�ne
It(p) = I(t)(p). Similarly, we use Ot and Ht to denote the output and inhibition places
of t. Moreover, for any GSPN G and transition t ∈ T , we use

pre(t) = {p ∈ P ∣ It(p) > 0} and
post(t) = {p ∈ P ∣ Ot(p) > 0}

to de�ne the sets of input and output places of transition t.

Example 8.2. �e input places of the transitions t6 and t8 in Fig. 8.1(a) are represented as
follows:

It6(p) =
⎧⎪⎪⎨⎪⎪⎩
1 if p ∈ {p2 , p3}
0 otherwise

It8(p) =
⎧⎪⎪⎨⎪⎪⎩
1 if p = p3
0 otherwise.

Similarly, the formal description of the output places yields

Ot6(p) =
⎧⎪⎪⎨⎪⎪⎩
1 if p = p0
0 otherwise

Ot8(p) =
⎧⎪⎪⎨⎪⎪⎩
2 if p = p1
0 otherwise.

In the graphical notation, we do not label arcs that specify input or output places with car-
dinality 1. In Fig. 8.1(a), the initial marking m0 = (1, 0, 0, 0) is depicted by the number of
tokens in each place. For notational convenience, we specify markings as vectors. ♢
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Figure 8.1: A confused GSPN and its induced marking graph.

8.3 A new semantics for GSPNs

�e semantics of a GSPN is de�ned by its marking graph, which is informally obtained
by playing the “token game”. To de�ne this concept formally, we state the conditions that

must be satis�ed for a transition to execute:

De�nition 8.3 (Concession and enabled transitions). Let G = (P, T , λ, I,O ,H,m0)
be a GSPN and m ∈M. �e set of transitions with concession in marking m is

Conc(m) = {t ∈ T ∣ ∀p ∈ P. m(p) ≥ It(p) ∧m(p) < Ht(p)}.
�e set of enabled transitions in marking m is

en(m) =
⎧⎪⎪⎨⎪⎪⎩
Conc(m) ∩ Ti if Conc(m) ∩ Ti /= ∅
Conc(m) otherwise.

We distinguish transitions that have concession from those that are enabled: If a transi-
tion has concession in a marking, the number of tokens in its input and inhibition places
is such that the transition could execute; however, GSPNs adopt themaximal progress as-
sumptionwhich states that immediate transitions take precedence over timed transitions.
�erefore, if timed and immediate transitions have concession in a marking m, only the
immediate transitions become enabled.

We classifymarkings according to their enabled transitions: If an immediate transition
is enabled in a marking m ∈ M, the marking changes immediately; we refer to such

markings as vanishing. Otherwise, if only timed transitions are enabled, we call m a
tangiblemarking.
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De�nition 8.4 (Tangible and vanishing markings). Let G = (P, T , λ, I,O ,H,m0) be
a GSPN. A marking m ∈M is vanishing if en(m) ∩ Ti /= ∅; otherwise, the marking m is
tangible.

In a tangible marking m, only timed transitions are enabled.�e residence time in m
is then determined by a negative exponential distribution with rate ∑t∈en(m) λ(t). If m
is vanishing instead, one of the immediate transitions executes directly, i.e. the sojourn
time inm is deterministically zero. In this case, none of the timed transitions which have
concession can execute. �e e�ect of executing a transition is formally described by the

transition execution relation:

De�nition 8.5 (Transition execution). Let G = (P, T , λ, I,O ,H,m0) be a GSPN. We
de�ne the transition execution relation [⋅⟩ ⊆ M × T ×M such that for all markings
m,m′ ∈M and transitions t ∈ T it holds:

m [t⟩m′ ⇐⇒ t ∈ en(m) ∧ ∀p ∈ P. m′(p) = m(p) − It(p) + Ot(p).

Twomarkingsm andm′ are in the one-step successor relation↝GSPN (denotedm ↝GSPN

m′) i� a transition t ∈ en(m) exists such thatm [t⟩m′ holds. Accordingly, the reachability
set for marking m ∈M is de�ned as

Reach(m) = {m′ ∈M ∣ m ↝∗GSPN m′} ,
where↝∗GSPN denotes the re�exive and transitive closure of the relation↝GSPN .

With Def. 8.5 and the reachability set, we are now ready to de�ne the semantics of a
GSPN. It is obtained by successively applying the transition execution relation to generate

the (�nite or in�nite) marking graph of the GSPN:

De�nition 8.6 (Marking graph). Let G = (P, T , λ, I,O ,H,m0) be a GSPN with imme-
diate transitions in Ti and timed transitions in Tt. �en G induces the marking graph
M(G) = (M, Ti , , ,m0), where

• M = Reach(m0) is the set of reachable markings in G,

• ⊆ M × R>0 ×M is the timed transition relation where

m
µ

m′ ⇐⇒ µ =∑{∣λ(t) ∣ t ∈ Tt ∧m [t⟩m′∣} > 0
for all m,m′ ∈ M and µ ∈ R>0. Further

• ⊆ M × Act ×M is the immediate transition relation where for all m,m′ ∈ M

and t ∈ Ti it holds m
t
m′ ⇐⇒ m [t⟩m′.
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Here we use the multiset {∣λ(t) ∣ t ∈ Tt ∧m [t⟩m′∣} to sum up the rates of all Marko-

vian transitions that lead from marking m to marking m′. As for classical Petri nets, we
de�ne the notion of k-boundedness: A GSPN G with initial marking m0 is k-bounded
i� the number of tokens in each place of all reachable markings is at most k. As a direct
consequence, a k-bounded GSPN induces a �nite marking graph. We do not discuss the
details of determining whether a GSPN is bounded or not, but simply assume that all

GSPNs that are intended for our analysis induce a �nite marking graph.

Under this assumption, it is straightforward to de�ne the induced IMC of a GSPN by
simply interpreting its �nite marking graph as an IMC. Informally, the GSPN’s imme-

diate transitions correspond to interactive transitions in a closed IMC. Similarly, timed
transitions in the GSPN are turned into Markovian transitions in the induced IMC:

De�nition 8.7 (Induced IMC). Let G = (P, T , λ, I,O ,H,m0) be a k-bounded GSPN
with marking graph M(G) = (M, Ti , , ,m0). �en G induces the closed IMC
I(G) = (S ,Act, IT ,MT , ν) where

• S = M is the �nite set of states,

• Act = Acti ⊍Acte is the set of actions, where Acte = ∅ and Acti = Ti ,

• IT ⊆ S ×Act × S with (m, t,m′) ∈ IT ⇐⇒ m
t
m′ for m,m′ ∈ M and t ∈ Ti ,

• MT ⊆ S×R>0×S with (m, µ,m′) ∈MT ⇐⇒ m
µ

m′ for m,m′ ∈ M and µ ∈ R>0
and

• ν = {m0 ↦ 1}.

Stochastic Petri nets (SPNs) form a strict subclass of GSPNs which have a precisely

de�ned semantics [Nat80, Mol81, Mol82]: Each marking in an SPN corresponds to a
state of a CTMC; the set of enabled transitions in each marking determine the transition

in the CTMC, where the rates of those SPN transitions that lead to the same successor
marking are cumulated.

Corollary 8.1. �e semantics of GSPN given in Def. 8.7 conservatively extends SPN.

Proof. Follows immediately by the de�nition of the SPN semantics in [Mol82]. ◻

Hence, our de�nition of GSPNs is a conservative extension of stochastic Petri nets.
However, our proposed semantics is di�erent to that of [MCB84, CMBC93], as we do

not permit to augment immediate transitions withweights but interpret the race between
immediate transitions nondeterministically.
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�is allows us to de�ne a semantics for all GSPNs. In particular, we do not have to

restrict to well-de�ned GSPNs:

Example 8.3. Consider the GSPN G depicted in Fig. 8.1(a) and its marking graph G(G) in
Fig. 8.1(b). According to [TF03, Sec. 2.4], G is not well-de�ned: In marking (0, 0, 1, 1), the
set of reachable tangible markings is {(1, 0, 0, 0), (0, 0, 0, 1)}.
If t5 is chosen, the tangible marking (0, 0, 0, 1) is reached with probability 1; however,

if t6 is chosen, we enter the tangible marking (1, 0, 0, 0) with probability 1. Hence, the dis-
tribution over next stable markings depends on the way, the nondeterminism in (0, 0, 1, 1)
is resolved. ♢

In the next section, we model a dependable workstation cluster as a GSPN. As we

will see, this GSPN model contains nondeterministic choices which correspond to the
di�erent strategies to repair failed components within the cluster.

8.4 Dependability analysis of a workstation cluster

In this section, we present our results for the analysis of a dependable workstation cluster

which is modeled by a GSPN [HHK00].�e setting is depicted in Fig. 8.2: We consider
two identical subclusters, each of which consists of N ∈ N>0 workstations that are inter-
connected by a switch. Moreover, via their switches and a central backbone, the work-

stations in the two subclusters can communicate with each other. For the dependability
analysis, we use the failure rates of the components which are given in [HHK00] and

restated in Table 8.1.
For our veri�cation, wemodel the workstation cluster as the GSPN depicted in Fig. 8.3.

�e �rst two rows represent the N workstations in the le� and right subcluster, respec-

tively. Each single workstation fails a�er 500h of operation, on average. Hence, we
associate a failure rate of 1

500
to each workstation. Accordingly, the timed transitions

Le�WorkstationFail and RightWorkstationFail are marking dependent: If n tokens are in
place Le�WorkstationUp, each of them fails with rate 1

500 .�erefore, the timed transition
Le�WorkstationFail has rate n

500
.�e same reasoning applies for RightWorkstationFail.

Once a component has failed, a single repair unit is available that can repair one failed
component at a time. Depending on the type of component, the repair operation takes

event duration event duration

Le�WorkstationFail 500h Le�WorkstationRepair 0.5h
RightWorkstationFail 500h RightWorkstationRepair 0.5h
Le�SwitchFail 4000h Le�SwitchRepair 4h
RightSwitchFail 4000h RightSwitchRepair 4h
BackboneFail 5000h BackboneRepair 8h

Table 8.1: Average durations for component failures and repairs.
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Figure 8.2: A dependable workstation cluster with 2N workstations [HHK00].

di�erent average times, cf. Tab. 8.1.
Note that theGSPNmodel in Fig. 8.3 is confused: Whenever the repair unit is available

and di�erent components have failed, the choice which component to repair next is non-
deterministic. In theGSPNmodel, this nondeterminism is represented by the immediate

transitions Le�WorkstationInspect, RightWorkstationInspect, Le�SwitchInspect, etc.
By applying Def. 8.7, the GSPN model induces an IMC. As reported in [HHK00], the

resulting state space of the IMC consists of 820 states if N = 4 and 2772 states for N = 8.
In our prototypical implementation, we use bisimulation minimization on the obtained
IMC to reduce the size of the state space. As can be seen in Table 8.2, the symmetry in the
GSPN model yields enormous state space reductions in the bisimulation quotient.�ey

are further ampli�ed by the fact that for a time-bounded reachability analysis, we can
make all goal states absorbing before computing the bisimulation quotient.

In the following, we analyze two of the dependability measures that are mentioned
in [HHK00]. �erefore, we describe the minimum quality of service (QoS) criterion of
a workstation cluster with 2N workstations by the number k ∈ {2, 3, . . . , 2N} of worksta-
tions that are required to be operational and mutually connected.
For example, if N = 4 and k = 5, at least 5 of the 8 workstations must be up. Moreover,

theymust be able to communicatewith eachother; hence, satisfying theQoS criterion k =
5 implies that both switches and the backbone are operational.
For a marking m ∈ M (which corresponds to a state s ∈ S of the IMC), let

le�k(m) = m (Le�SwitchUp) > 0 ∧m (Le�WorkstationUp) ≥ k
rightk(m) = m (RightSwitchUp) > 0 ∧m (RightWorkstationUp) ≥ k
conn(m) = m (Le�SwitchUp) > 0 ∧m (RightSwitchUp) > 0 ∧m (BackboneUp) > 0

sharedk(m) = m (Le�WorkstationUp) +m (RightWorkstationUp) ≥ k ∧ conn(m).
With these de�nitions, we can assign an atomic propositionsmink to all states s ∈ S which
correspond to a marking that meets the QoS requirement in the underlying GSPN:

mink ∈ L(s)⇐⇒ le�k(s) ∨ rightk(s) ∨ sharedk(s).
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N

Le�WorkstationUp Le�WorkstationDown Le�WorkstationInRepair

N

RightWorkstationUp RightWorkstationDown RightWorkstationInRepair

Le�SwitchUp Le�SwitchDown Le�SwitchInRepair

RightSwitchUp RightSwitchDown RightSwitchInRepair

BackboneUp BackboneDown BackboneInRepair

RepairUnitAvailable

Le�WorkstationFail Le�WorkstationInspect Le�WorkstationRepair

RightWorkstationFail RightWorkstationInspect RightWorkstationRepair

Le�SwitchFail Le�SwitchInspect Le�SwitchRepair

RightSwitchFail RightSwitchInspect RightSwitchRepair

BackboneFail BackboneInspect BackboneRepair

Figure 8.3: GSPN model of the fault tolerant workstation cluster [HHK00].

We analyze the following dependability measures for di�erent parameters N and k:

1. “�e chance that the QoS constraint k is violated within the next z time units is less
than p”:

�is measure corresponds to themaximum time-bounded reachability probability
for the set of goal states Sbad = {s ∈ S ∣ s /⊧ mink} that violate the QoS constraint k.
It is formalized by the CSL state formula Φ4 taken from [HHK00]:

Φ4 = P≤p(◇≤z (¬mink)).
To model check s ⊧ Φ4, it su�ces to compute

p4(s) = sup
D∈GM

Prωνs ,D (◇[0,z]Sbad)
and to decide whether p4(s) ≤ p holds. In this section, we aim at computing the

actual least upper bound on the achievable probability. �erefore, Table 8.2 lists
the values p4(s) instead of the truth values for s ⊧ Φ4.

We compute the probability p4 for two di�erentmarkings:�e state sopt denotes the
marking where all components of the cluster are operational. On the other hand,
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N k states
quot.

z measure
results time

states IMC PRISM IMC PRISM

4 3 820 129 1000

p4(sopt)
0.0009 0.0009 104h 73s

4 5 820 8 1000 0.5034 0.5034 3.1h 10s
8 8 2772 703 200 0.0076 0.0076 2.7h 18s
8 10 2772 14 100 0.0676 0.0676 196s 3s
8 10 2772 14 1000 0.5034 0.5034 5.3h 33s
4 3 820 130 1000

p4(scrit)
0.0834 0.0437 91h 75s

8 8 2772 142 200 0.2275 0.1876 3.2h 18s
8 10 2772 15 200 0.1393 0.1393 2.2h 7s
4 3 820 424 20

maxs∈Sbad p5(s)
0.3797 0.3038 304s 4s

4 5 820 164 20 0.4219 0.3717 90s 4s
4 8 820 164 20 0.4278 0.4250 15m 4s
8 3 2772 1412 10 0.9319 0.7457 277s 6s
8 10 2772 316 10 0.9805 0.9178 45s 7s
8 16 2772 316 20 0.6147 0.6089 36m 123s

Table 8.2: Results of the dependability analysis.

scrit is a marking with the minimum number of working components to satisfy
the QoS constraint k. For example, if N = 4 and k = 3, scrit is the state where k
workstations and the switch of the le� (or right) subcluster are working, whereas

all other components have failed. Hence scrit barely ful�lls the QoS requirements.

2. “If the QoS constraint k is violated, the probability to face the same problem a�er z
time units is less than p”:

�is measure corresponds to a time-interval bounded reachability probability. For
a single state s ∈ S , it is speci�ed in [HHK00] by the CSL state formula Φ5:

Φ5 = ¬mink → P≤p(◇[z,z] (¬mink)).
Obviously, all states s ∈ (S ∖ Sbad) satisfyΦ5.�erefore, we aim at decidingwhether
Sbad ⊧ Φ5, where A ⊧ Φ5 holds i� all states in A ⊆ S satisfy Φ5. Let p5(s) =
supD∈GM Prωνs ,D (◇[z,z]Sbad) be the maximal probability of the event◇[z,z]Sbad, start-
ing from initial state s.�enmaxs∈Sbad p5(s) is the desired dependability measure.

Note that in theory (cf. Sec. 6.3.2), we cannot compute the probability in the in-

duced IMC for a point-interval [z, z]. �erefore, we approximate the event by us-
ing a short time-interval [z, z+ε], where ε = 10−5.

In the following, we compare the results that we obtain by our prototypical imple-
mentation of the GSPN semantics from Sec. 8.3 and the IMC approximation algorithm

(Chapter 6) to the probabilities that are obtained by the PRISM model checker [KNP02,
HKNP06] on the classical GSPN model with weight speci�cations as given in [HHK00].
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As pointed out earlier, nondeterminism occurs in the workstation cluster whenever

di�erent components have failed and the repair unit has to choose which one to repair
next. However, PRISM is not capable of analyzing nondeterministic and randomly timed
models such as CTMDPs and IMCs. Instead, the nondeterminism in the PRISMmodel2

is resolved by assigning high rates to the immediate transitions. In this way, the GSPN is
transformed into a CTMC, which is then analyzed.�e outcomes are shown in Table 8.2.

Some remarks concerning this comparison are in order:

In the �rst block of Table 8.2, the probabilities p4(sopt) that are computed by our im-
plementation of the IMC-based semantics are very close to those obtained by analyzing

the weighted GSPN model.

�is is no longer true if we consider the initial state scrit: Here, the worst case probabil-
ities in the nondeterministic GSPN semantics are approximately 4% higher than those

obtained by the weighted GSPN, which resolves the nondeterminism by equi-probability.
�is is explained as follows:

Only k workstations and the le� switch remain operational in state scrit. In this sit-

uation, the scheduling strategy for the RepairUnit matters: In the worst case, all faulty
workstations in the right subcluster are repaired �rst; however, as long as the right switch
and the backbone are defective, this does not improve the dependability probability.�e

uniform probability distribution used in classical GSPNmodel does not re�ect this worst
case scenario, e�ectively producing false positives.
�is phenomenon is not observed for initial state sopt, as the probability to reach a

state such as scrit that is badly degraded, is extremely low. As the repair time is short com-
pared to the failure rate, only states with few failed components occur with considerable

probability.�erefore, the degree of nondeterminism is low for initial state sopt.
If k > N , the QoS constraint is violated as soon as one switch or the backbone fail.

Hence, in this case, the strategy of the repair unit does notmatter. Accordingly, the results

agree for the case N = 8, k = 10 and initial state scrit.
For Φ5, the dependability measures di�er considerably: In the worst case, the depend-

ability is 18% worse than predicted by the classical GSPN model. �is di�erence is ex-

plained as follows:

Assume that sdown is the state where both switches, the backbone and all N worksta-
tions in the right subcluster have failed, whereas in the le� subcluster, all workstations

are operational. To compute p5(sdown), we have to select the worst schedule possible.
�erefore, note that if k ≤ N , repairing the le� switch establishes QoS.�us, the desired
worst case probability is obtained if all workstations in the right subcluster are repaired

— which does not establish QoS — before the le� switch.

However, in the classical GSPN model, each immediate transition has weight 1; there-
fore, the probability to repair the switch in the otherwise intact le� subcluster is 1

5
. Ob-

viously, this implicit strategy does not re�ect the worst case scenario, which is needed to

2�e source code of the PRISMmodel is available online on the PRISM website:
http://www.prismmodelchecker.org/casestudies/cluster.php

http://www.prismmodelchecker.org/casestudies/cluster.php
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decide Φ5.

Again, no di�erence occurs if k = 2N : In this case, all components must be operational
in order to satisfy QoS. Hence, the scheduler is irrelevant and the resulting probabilities

coincide (up to rounding errors).

Further, note that our prototypical implementation is not optimized yet; for example,

it relies on an arbitrary precision �oating point library (the MPFR library) that does not
make use of the underlying �oating point hardware. �erefore, it is realistic to expect
improvements in the performance of our model checking tool. All measurements were

carried out on a 2.2GHz Xeon CPU with 16GB RAM.

In [Joh07], the dependable workstation cluster [HHK00] has beenmodeled as an IMC,

directly. More precisely, the IMCmodel is obtained by composing (untimed) labeled tran-
sition systems that model the cluster’s components with corresponding time constraints

that are speci�ed as IMCs (see [Joh07, Fig. 10.3]). �e approach taken in [Joh07] is to
transform the composed IMCmodel into a globally uniform CTMDP which is then sub-
ject to a time-bounded reachability probability analysis. In order to obtain a globally uni-

formCTMDP, the approach relies on the assumption that the underlying IMC is globally
uniform, as well. From a modeling point of view, this is not the case in the workstation

cluster. Hence, to still achieve global uniformity, the time-constraints that are weaved
into the IMC model in [Joh07] are uniformized before the composition. In this way, the
resulting IMC is globally uniform; however, it contains self-loops that are introduced

arti�cially by the uniformization of the time-constraints [Joh07, Fig. 10.4].

In contrast to our results, [Joh07] computes time-bounded reachability probabilities

for time-abstract scheduler classes. However, as shown before in [BHKH05] and in
Sec. 4.3, the implicit uniformization that is used in [Joh07] is not measure preserving for
the class of time-abstract schedulers: Intuitively, a history dependent but time-abstract

scheduler can estimate the amount of time that has passed by observingwhich states have
been visited. Introducing arti�cial self loops as done in [Joh07] exposes additional infor-

mation to such schedulers: By counting the number of times such a self loop is taken, the
otherwise time-abstract scheduler can improve (as proved in [BHKH05] and in Sec. 4.3)
its decisions considerably.�us it may exploit the structural changes in the CTMDP that

are induced by uniformization. Due to these di�erences, the results of [Joh07] are not
directly comparable to ours.

As expected from a theoretical point of view, all probabilities that are computed in our
IMCmodel are larger or equal to those that are obtained by thePRISMmodel.�is stands
in contrast to the surprising result in [Joh07, p. 187], where the probabilities that are

obtained by analyzing the CTMC model are larger than those of the IMC model [Joh07,
Sec. 10.1.3].�e reason for this phenomenon remains unclear; however, our results do not

support the claim in [Joh07] that imprecisions in the PRISMmodel lead to probabilities
that are too large.
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8.5 Conclusion

Motivated by the development of our approximation algorithm for the analysis of IMCs

(cf. Chapter 6), we propose a nondeterministic semantics for generalized stochastic Petri
nets and omit the weight-speci�cation that has been used in the classical GSPN de�ni-
tions. In this way, all static (qualitative) analyses such as k-boundedness, reachability and
coverability are also applicable to our modi�ed de�nition of GSPNs.
It remains an interesting question for future research to apply the results in this chapter

to analyse the compositional extensions ofGSPNmodels that are proposed in [HHMR97].
When [HHMR97] was published, the analysis of compositional GSPNs was restricted to
deterministic instances. We expect that applying the results of this chapter to the com-

positional modeling framework permits the analysis of a much broader class of compo-
sitional GSPNs.
If a GSPN is k-bounded, it induces a closed IMC with a �nite state space on which

important performance and dependability measures can be computed.
We apply our de�nition to a case study from the literature and compare the results

of our technique to those that are obtained by the classical weighted GSPN semantics.
�ereby it turns out, that the reliability estimates that are obtained by analyzing the clas-
sical GSPN model are up to 18% higher than those that might actually occur.

�ese false positives clearly prove that nondeterministic modeling is essential in the
area of dependability analysis.



9 Conclusion

Whenmy supervisor Joost-Pieter introducedme to CTMDPs, I hardly had a background
in stochastic modeling. However, with his guidance and our joint research on bisimula-

tion minimization for CTMDPs, I slowly got more con�dent in my understanding of
stochastic processes and probability & measure theory.�e results of this early work are

the de�nition of bisimulation for CTMDPs in Chapter 7 and the proof that it preserves
not only CSL, but all quantitative measures.
In the sequel, I gave a talk on this topic at the University of Twente, when Mariëlle

asked an elementary question: “Wouldn’t it be better for the scheduler if it was allowed to
decide later, when the state is actually le�?”
�e subsequent research ofMariëlle, Joost-Pieter andmyself led to the results in Chap-

ter 4, where we study a hierarchy of scheduler classes and characterize their relationships.
Our motivation was to delay the scheduling decisions in CTMDPs. �erefore, we inves-

tigated local uniformity and de�ned late schedulers. In retrospect, the latter turned out
to be the most in�uential idea for the achievements in this thesis.
When I visited his group in Saarbrücken, Holger asked me to give a talk about local

uniformity and late schedulers.�e following discussionwith Lijun was the most reveal-
ing of my entire PhD time. When we were �nished, we had sketched the discretization
for locally uniformCTMDPs which is the basis of the time-bounded reachability analysis

in Chapter 5. In the following months, we proved that our approximation is quanti�ably
correct, that is, it determines themaximal orminimal reachability probability in a locally

uniform CTMDP up to an error which can be made arbitrarily small.
�is result encouraged further research: We adapted the idea behind our discretization

technique to IMCs and extended it to also account for lower time-interval bounds.�e

result is the �rst model checking algorithm for CSL on IMCs. It is presented in Chapter 6.
At roughly the same time, Holger, Lijun, Sven and I discussed about a new seman-

tics for GSPNs. However, at that time, no model checking algorithms were available
that would have made our proposal attractive to a broader audience. Luckily, this has
changed by now: With the achievements in Chapters 5 and 6, we are able to model check

nondeterministic GSPNs. �is is the topic of Chapter 8 that proposes a new semantics
for GSPNs that overcomes the shortcomings in modeling nondeterminism of the former
approaches. By means of a case study which considers dependability characteristics of a

workstation cluster, we show that nondeterministic modeling indeed makes a di�erence:
As it turns out, earlier reliability predictions that were obtained in the classical GSPN

semantics are up to 18% too optimistic. �ese false positives clearly prove the necessity
of analyzing nondeterministic and randomly timed systems.
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To conclude the thesis, we summarize our achievements and propose directions for

future research:

• We de�ne a hierarchy of time-dependent scheduler classes and investigate their ex-
pressive power. Moreover, we propose local uniformization and identify the sched-

uler classes for which it is measure preserving. �is culminates in the discovery
of late schedulers that are more expressive than the scheduler classes considered

previously and in the literature.
Future research:�e de�nition of late schedulers is limited to locally uniform CT-
MDPs. To bridge this gap and to de�ne corresponding schedulers for arbitrary

CTMDPs is an important further step. In the same context, the question whether
local uniformization is measure preserving w.r.t. such a new scheduler de�nition

is another interesting starting point for future research.

• We develop an e�cient and quanti�ably precise algorithm that computes time
bounded reachability probabilities in locally uniform CTMDPs with respect to

time- and history-dependent late schedulers. To the best of our knowledge, this
is the �rst time that such an analysis becomes feasible.
Future research:�e de�nition of late schedulers on arbitrary CTMDPs is an open

problem. We believe that in combination with the results on local uniformization
fromChapter 4, such a de�nition will allow us tomodel check non-locally uniform

CTMDPs with respect to late schedulers.

• Along similar lines, we derive a model checking algorithm that veri�es a broad
class of CSL formulas on IMCs. It is the �rst algorithm that is not restricted to

speci�c subclasses but enables the analysis of arbitrary IMCs.
Future research:Model checking long run average properties and speci�c instances

of until formulas remain unsolved problems which must be tackled.

• We introduce strong bisimulationminimization for CTMDPs and prove that it pre-
serves all quantitative measures. Moreover, we de�ne CSL on CTMDPs and prove

its measure theoretic soundness.
Future research: Chapter 7 is based on time- and history dependent schedulers. It
is an open question whether its results also apply to less powerful schedulers. Con-

sidering action-based variants of CSL is another promising approach to obtain a
logical characterization for strong bisimilarity.

• We de�ne a new semantics for GSPNs that allows nondeterminism to occur in the
model. Via a transformation which turns a GSPN into an equivalent IMC, we can
model check CSL formulas on GSPNs. Finally, we show the applicability of this

approach by means of a larger case study.
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