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Abstract

Formal methods initially focused on the mathematically precise specification, design and
analysis of functional aspects of software and hardware systems. In this context, model
checking has proved to be tremendously successful in analyzing qualitative properties
of distributed systems. This observation has encouraged people in the field of perfor-
mance and dependability evaluation to extend existing model checking techniques to
also account for quantitative measures. As a result, nowadays, the automatic analysis of
Markovian models has become an indispensable tool for the design and evaluation of
safety and performance critical systems.

Markovian models are classified according to their underlying notion of time, being
either discrete or continuous. In the discrete-time setting, Markov decision processes
are a nondeterministic model which is widely known in mathematics, computer science
and operations research. Moreover, efficient algorithms are available for their analysis.
This stands in sharp contrast to the continuous-time setting, where no techniques exist
to analyze models that combine stochastic timing and nondeterminism. In the present
thesis, we bridge this gap and propose quantifiably precise model checking algorithms
for a variety of nondeterministic and stochastic models.

We first consider continuous-time Markov decision processes (CTMDPs). To uniquely
determine the quantitative properties of a CTMDDP, all its nondeterministic choices must
be resolved according to some strategy. Therefore, we propose a hierarchy of scheduler
classes and investigate their impact on the achievable performance and dependability
measures. In this context, we identify late schedulers, which resolve the nondetermin-
ism as neatly as possible. Apart from their interesting theoretical properties, they facili-
tate the analysis of locally uniform CTMDPs considerably. In a locally uniform CTMDP,
the timing in a state is independent of the scheduler. This observation culminates in an
efficient and quantifiably precise approximation algorithm for locally uniform CTMDPs.

In contrast to CTMDPs which closely entangle nondeterminism and stochastic time,
interactive Markov chains (IMCs) are a highly versatile model that strictly uncouples the
two aspects. Due to this separation of concerns, IMCs are locally uniform by definition.
This allows us to apply analysis techniques which are similar to those that we developed
for locally uniform CTMDPs, also to IMCs. In this way, we solve the open problem of
model checking arbitrary IMCs.

In the next step, we return to CTMDPs and prove that they can be transformed into
alternating IMCs in a measure preserving way. As our proof does not rely on local uni-
formity, it enables the analysis of quantitative measures on arbitrary CTMDPs by model
checking their induced IMCs. However, the underlying scheduler class slightly differs
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from the late schedulers that we used initially. In fact, it coincides with the time- and his-
tory dependent schedulers that are proposed in the literature. Thus, our result for IMCs
also solves the long standing problem of model checking arbitrary CTMDPs.

However, the applicability of model checking is limited by the infamous state space ex-
plosion problem: Even systems of moderate size often yield models with an exponentially
larger state space that foils their analysis. To tackle this problem, many techniques have
been developed that minimize the state space while preserving important properties of
the model. In process algebras, bisimulation minimization identifies processes with the
same quantitative behavior and replaces equivalent ones by a single representative. De-
pending on the redundancy in the model, this can lead to enormous reductions in the
size of the state space. As IMCs have a process algebraic background, it is not surpris-
ing that bisimulation minimization is readily available for them. However, this is not the
case for CTMDPs. That is why we introduce bisimulation minimization for CTMDPs
and prove that it preserves all quantitative measures.

Finally, we apply the achieved results and propose an alternative semantics for gener-
alized stochastic Petri nets (GSPN), which avoids the shortcomings of earlier definitions
that were needed to rule out nondeterministic choices. More precisely, we transform a
GSPN model into an equivalent IMC which can be model checked.

To show the applicability of our approach, we analyze the dependability of a worksta-
tion cluster which is modeled by a nondeterministic GSPN. The comparison of our re-
sults with those that are available in the literature is illuminating: When the latter were
published, no analysis technique for nondeterministic and randomly timed systems was
available. Therefore, the nondeterministic choices in the GSPN model were replaced by
static probability distributions.

For measures that are mostly independent of the scheduling policy, our results coin-
cide with those in the literature. However, for other measures, choosing antagonistic
schedulers mitigates the inferred dependability characteristic of the system that we study
by up to 18%. These false positives in the earlier analyses clearly prove the necessity of
nondeterministic modeling in the field of performance and dependability analysis.



Samenvatting

Formele methoden worden van oudsher toegepast met een wiskundig rigoureuze bena-
dering van specificatie, ontwerp en analyse van functionele aspecten in hard- en software.
Met name model checking bleek enorm succesvol te zijn om kwalitatieve eigenschappen
van gedistribueerde systemen te analyseren. Dit moedigde onderzoekers in performan-
ce evaluatie en betrouwbaarheidsanalyse aan om diezelfde technieken te benutten voor
kwantitatieve analyses. Als gevolg daarvan is de automatische analyse van Markov mo-
dellen een onmisbaar middel geworden voor het ontwerp en evaluatie van betrouwbare
systemen.

Markov modellen worden doorgaans geclassificeerd aan de hand van hun onderliggen-
de interpretatie van tijd, hetzij discreet of continu. Betreffende het eerstgenoemde, zijn
Markov decision processes wijdverspreid in de wiskunde, informatica en operationele
research. Er zijn efficiénte algoritmen beschikbaar om deze modellen te analyseren. Dit
staat in scherp contrast met haar continue-tijdstegenhanger. Er waren tot heden nog geen
technieken ontwikkeld voor modellen met stochastische timing en non-determinisme.
In dit proefschrift overbruggen we deze tekortkoming met onze behandeling van kwan-
titief precieze model checking algoritmes voor een scala van non-deterministische en
stochastische modellen.

We behandelen eerst Continuous-Time Markov Decision Processes (CTMDPs). Om
de kwantitatieve eigenschappen van een non-deterministisch model te bepalen moeten
alle non-deterministische keuzes vastgelegd worden volgens een strategie. Om die reden
presenteren wij een hierarchie van scheduler klasses en onderzoeken wij hun impact op
performance en betrouwbaarheidsmaten. In deze context identificeren we de klasse van
“late schedulers”. Naast hun interessante theoretische eigenschappen, faciliteren zij de
analyse van lokaal uniform CTMDPs. Voor deze schedulers en modellen presenteren we
namelijk een precies benaderingsalgoritme.

In tegenstelling tot CTMDPs, waarbij non-determinisme en stochastische tijd sterk
verstrengeld zijn, zijn Interactive Markov Chains (IMCs) een extreem veelzijdig forma-
lisme waarin deze twee aspecten zijn ontkoppeld. Door deze ontkoppeling zijn IMCs per
definitie lokaal uniform. De technieken die we hebben ontwikkeld voor lokaal uniform
CTMDPs zijn conceptueel vergelijkbaar met die voor IMCs. Op deze wijze hebben we
het openstaande model checking probleem van IMCs opgelost.

Vervolgens laten we zien hoe CTMDPs afbeeldbaar zijn op alternerende IMCs waarbij
de maten behouden blijven. Ons bewijs van dit resultaat vereist niet dat de CTMDP
lokaal uniform is. Dit maakt kwantitatieve analyses mogelijk voor algemene CTMDPs
door hun geinduceerde IMCs te analyseren. De scheduler klasse die hierbij nodig is wijkt



enigszins af van die we gebruikten om lokaal uniform CTMDDPs te analyseren. Sterker
nog, die afwijkende klasse valt samen met de tijds- en historie athankelijke schedulers
die bekend zijn in de literatuur. De resultaten lossen derhalve een langdurig openstaand
probleem op, namelijk het model checken van arbitraire CTMDPs.

De toepassing van model checking is echter gelimiteerd door de fameuze explosie van
de toestandsruimte. Zelfs systemen van gemiddelde complexiteit leiden vaak tot een ex-
ponentieel groeiende toestandsruimte wat het model checken bemoeilijkt. Om dit pro-
bleem aan te pakken zijn er vele technieken ontwikkeld die de toestandsruimte minima-
liseren terwijl haar eigenschappen intact blijven. In proces algebra’s identificeert bisimu-
latie minimalisatie de processen die eenzelfde kwantitatief gedrag vertonen en vervangt
deze door een enkel representatief gedrag. Athankelijk van de redundantie in het model
kan de toestandsruimte aanzienlijk reduceren. Aangezien IMCs als basis dienen voor
stochastische proces algebra’s is het niet verwonderlijk dat er reeds bisimulatie minimali-
satie technieken voor IMCs bestaan. Dit is echter niet het geval voor CTMDPs. Daarom
onderzochten wij tevens bisimulatie minimalisatie voor CTMDPs en bewijzen dat die
alle kwantitatieve maten intact houdt.

Ten slotte passen we onze resultaten toe en presenteren we een alternatieve semantiek
voor generalized stochastic Petri nets (GSPNs). Deze vermijdt de tekortkomingen van
voorgaande definities in de literatuur die nodig waren om non-deterministische keuzes
te omzeilen. Hiertoe beelden we een GSPN model af op haar equivalente IMC model die
vervolgens met onze technieken gemodelcheckt kan worden.

Ter demonstratie van onze aanpak, analyseren wij de betrouwbaarheid van een work-
station cluster die gemodelleerd is als een niet-deterministische GSPN. Een vergelijking
van onze resultaten met die uit de literatuur levert enkele interessante bevindingen op.
Hier dient vermeld te worden dat de eerder gepubliceerde resultaten verkregen zijn door
niet-deterministische keuzemomenten door uniforme kansverdelingen te vervangen.

Voor maten die grotendeels onathankelijk zijn van de scheduling tactiek, komen onze
resultaten overeen met de bestaande. Echter, voor andere maten leidt de keuze van anto-
gonistische schedulers tot een verslechtering van de verkregen betrouwbaarheidskarak-
teristieken met maar liefst 18%. Deze uitkomsten tonen de noodzaak van het meenemen
van niet-deterministische keuzes in de prestatie- en betrouwbaarheidsanalyse onomsto-
telijk aan.



Zusammenfassung

In der Informatik beschiftigt sich das Gebiet der formalen Methoden urspriinglich mit
der Spezifikation, dem Design und der Analyse funktionaler Aspekte von Hard- und
Software. Vor diesem Hintergrund hat sich Model Checking als dufSerst niitzlich beim
Analysieren quantitativer Eigenschaften verteilter Systeme erwiesen. Darauthin wurde
im Bereich der Leistungs- und Verlésslichkeitsbewertung begonnen, die existierenden
Model Checking Verfahren auf quantitative Eigenschaften zu erweitern. Heute ist die
Analyse der entsprechenden Markovmodelle ein unabdingbarer Bestandteil beim Design
und der Evaluierung der Sicherheit und Leistung kritischer Systeme.

Es werden entsprechend dem zugrunde liegenden Zeitbegriff diskrete und kontinuier-
liche Markovmodelle unterschieden. Im zeitdiskreten Fall sind Markov-Entscheidungs-
prozesse (MDPs) ein weit verbreitetes nichtdeterministisches Modell in der Mathema-
tik und der Informatik. Fiir die Analyse von MDPs stehen effiziente Algorithmen zur
Verfiigung. Dagegen sind fiir den zeitkontinuierlichen Fall bisher keine Methoden fiir
die automatische Analyse von Modellen bekannt, die stochastisch quantifiziertes Zeitver-
halten und Nichtdeterminismus verbinden. Die vorliegende Dissertation schlief3t diese
Liicke und fiihrt prazise und quantifizierbar korrekte Model Checking Algorithmen fiir
eine Vielzahl von nichtdeterministischen und stochastischen Modellen ein.

Anfangs betrachten wir sogenannte zeitkontinuierliche Markov-Entscheidungsprozes-
se (CTMDPs). Um die quantitativen Eigenschaften einer CTMDP eindeutig zu bestim-
men, miissen zundchst alle in ihr vorkommenden nichtdeterministischen Wahlmoglich-
keiten anhand einer Strategie aufgelost werden. Dazu fiihren wir eine Hierarchie von
Schedulerklassen ein und untersuchen ihren Einfluss auf die erzielbaren Leistungs- und
Verlasslichkeitsanforderungen. In diesem Zusammenhang beschreiben wir sogenannte
verzogerte Scheduler, die den Nichtdeterminismus bestmdglich auflosen. Neben ihren
interessanten theoretischen Eigenschaften erleichtern sie die Analyse von lokal unifor-
men CTMDPs erheblich. Dabei bilden lokal uniforme CTMDPs eine Teilklasse, in der
das Zeitverhalten der Zustinde unabhéngig vom Scheduler ist. Diese Beobachtung ist
Grundlage fiir einen eflizienten und quantifizierbar korrekten Approximationsalgorith-
mus fiir lokal uniforme CTMDDPs.

Im Gegensatz zu CTMDPs, die Nichtdeterminismen und stochastisches Zeitverhalten
eng miteinander verbinden, sind interaktive Markovketten (IMCs) ein Modell, das diese
beiden Aspekte strikt trennt. Aus diesem Grund sind IMCs per Definition bereits lokal
uniform. Das ermoglicht es, Analysetechniken, die denen fiir lokal uniforme CTMDPs
dhneln, auch auf IMCs anzuwenden. Auf diese Weise 16sen wir die offene Frage nach
einem Model Checking Algorithmus fiir IMCs.
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Im nidchsten Schritt kehren wir zu CTMDPs zuriick und beweisen, dass sie auf mafi-
erhaltende Art und Weise in alternierende IMCs transformiert werden kdnnen. Da un-
ser Beweis nicht auf lokale Uniformitit angewiesen ist, ermoglicht er die Analyse quan-
titativer Eigenschaften von allgemeinen CTMDPs anhand ihrer induzierten IMCs. Je-
doch unterscheiden sich die zugrunde liegenden Schedulerklassen leicht von den bis-
her betrachteten verzogerten Schedulern. Tatsachlich stimmen sie mit den zeit- und ver-
laufsabhdngigen Schedulern, die in der Literatur bekannt sind, iiberein. Damit l6sen un-
sere Resultate auch das seit langem offene Problem der Analyse allgemeiner CTMDPs.

Im Allgemeinen wird die Anwendbarkeit von Model Checking durch das exponenti-
elle Anwachsen der Zustandsraume begrenzt. Viele Techniken sind entwickelt worden,
um den Zustandsraum unter Beibehaltung wichtiger Eigenschaften zu minimieren. Im
Bereich der Prozessalgebren fasst Bisimulation Zustinde zusammen, die die gleichen Ei-
genschaften haben. Abhingig von der im Modell enthaltenen Redundanz fiihrt das oft zu
einer erheblichen Reduktion des Zustandsraums. Da IMCs aus Prozessalgebren hervor-
gehen, ist es nicht verwunderlich, dass Bisimulationsminimierung fiir sie bereits unter-
sucht wurde. Das trifft jedoch nicht auf CTMDPs zu. Daher fiithren wir Bisimulation auf
CTMDPs ein und weisen nach, dass durch sie alle quantitativen Maf3e erhalten bleiben.

Abschlieflend wenden wir die erzielten Resultate an und entwickeln eine alternative
Semantik fiir GSPNs, die die Nachteile fritherer Ansétze hinsichtlich der Berticksich-
tigung von Nichtdeterminismen umgeht. Dazu transformieren wir GSPN Modelle in
dquivalente IMCs, die anschlieflend analysiert werden.

Um die Anwendbarkeit unseres Ansatzes zu zeigen, analysieren wir so die Verlasslich-
keit eines Workstation-Clusters, der als nichtdeterministisches GSPN modelliert wird. In-
teressant ist dabei besonders der Vergleich unserer Ergebnisse mit friither veréffentlichten
Resultaten. Letztere wurden publiziert, als noch keine Analysetechniken fiir nichtdeter-
ministische Systeme mit stochastischem Zeitverhalten verfiigbar waren. Daher wurden
die im GSPN-Modell auftretenden Nichtdeterminismen auf festgelegte Art und Weise
durch Wahrscheinlichkeitsverteilungen ersetzt.

Fiir Mafle, die kaum von den Wahlmoglichkeiten des Schedulers abhéngen, stimmen
unsere Resultate mit denen aus der Literatur iiberein. Fiir andere Mafle jedoch liegen die
ableitbaren Verldsslichkeitscharakteristika des Systems fiir antagonistische Scheduler um
bis zu 18% unter den Vorhersagen fritherer Modelle. Diese falsch positiven fritheren Ana-
lysen verdeutlichen die Notwendigkeit nichtdeterministischer Modellierung im Bereich
der Leistungs- und Verldsslichkeitsbewertung.
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Summary of Notation

We indicate here the basic notational conventions that are used throughout the thesis.
We use O and ¢ to denote the end of proofs and examples, respectively.

Numbers

We use R, R, and R to denote the sets of nonnegative, positive and the set of all real
numbers; similarly, the sets Q¢, Q@-¢ and Q refer to the nonnegative, positive and all
rational numbers. Moreover, N = {0,1,2,...} denotes the set of natural numbers. If
T € Ry and t € Ry, we define

Tet={x+t|xeT}, and

Tot={x-t|xeT,x>t}.

Sets

Let Z be a set with subsets A and B. If An B = &, we use A U B to denote the disjoint
union of the sets A and B. The indicator for a subset A of Z is defined as the function
1 ifxeA

I,: Z2-1{0,1}: x
4 (0.1} {0 otherwise.

If A; € A, C - is an increasing sequence of subsets of Z and lim, ., A, = A, we write
A, 1 A. Similarly, A,, | A denotes a decreasing sequence with limit set A.

Functions

Iff: Z\x2Z,x---xZ, - Zisann-ary function, we use f (21,22, - . . » Zi—1> > Zis1> - - > Zn-1>Zn )
and, depending on the context, also f(z1,22,...,Zi-1,[*] > Zit1> - - - » Zn1, Zn ) to denote the
function z; = f(21,22, .+ +>Zi-1>Zi> Zists -+ » Zn-1>Zn)-

Probability distributions

Let X' = {x0, X1, X2, . . ., X, } be a finite set. Probability distributions on X are functions y :
X - [0,1] with ¥, u(x) = 1. Moreover, we write p = {xo = po, X1 = P1,---»Xn = Pn}
to denote the probability distribution y where u(x;) = p;. If u(x) = 1for some x € X, we
write y = {x ~ 1} and identify y and x. The set of all probability distributions over X’ is
denoted Distr(X'). If y € Distr(X) and A € X, then u(A) = ¥ eq 4(x).






1 Introduction

It is fair to state, that in this
digital era correct systems for
information processing are
more valuable than gold.

(Henk Barendregt)

When you woke up today, the first thing that you perceived was probably the microcon-
troller-driven bell of your alarm clock. On the way to your office, you rely on the software
that schedules your metro train while optimizing the metro system’s signal headway. At
work, you expect the operating system of your workstation to store and manipulate your
data correctly. And if you happen to be involved in an accident on your way back home,
you depend on an operational mobile phone network to call an ambulance that takes
you to the hospital. But even there, you are confronted with software and hardware sys-
tems that monitor your pulse, provide oxygen to your lungs or compute the X-Ray dose
necessary for radiation therapy.

Today, the ubiquitous use of embedded systems in our daily lives makes us highly de-
pendent on their correctness. The consequences of failures range from just getting up too
late to social and economic disasters. However, accompanied by the unmatched advance-
ments that have been achieved in the design of integrated circuits since the late 1960’s, the
realizable software and hardware systems have become evermore complex. Today, this
growing complexity leads to serious errors in safety critical systems [[Baa08] as witnessed
by prominent examples, such as the erroneous flight control unit which destroyed the
Ariane-5 rocket, or the Therac-25 radiation therapy machine which killed at least three
patients due to a race condition in its control software, which led to a lethal overdose of
X-Rays. Hence, it is fair to state that methodologies which assure the correctness of safety
critical systems are of vital importance.

1.1 System validation

In computer science, the field of formal methods focuses on techniques for the mathe-
matically precise design, modeling and verification of functional aspects of safety critical
systems. Accordingly, the aim of system validation is to guarantee that the physical sys-
tem fulfills its intended purpose.

In this context, model checking refers to the automatic verification of a system model



4 1.1 System validation

against a specification that is usually given as a logic formula. As depicted in Fig. [} the
model checking approach relies on at least three ingredients: the model, the property
specification and the verification algorithm that checks the validity of the property in the
model. We discuss each of them shortly.

Model checking can only guarantee that a mathematical model of the actual system —
where the model is usually given by a Kripke structure — conforms to the specification.
Obviously, all results are void if the model does not accurately reflect the behavior of the
system. Thus, a fundamental requirement for formal validation is to derive a mathemat-
ically precise model so that the verification results that are obtained on the model carry
over to its actual implementation.

If software engineers used a formal modeling language during the design phase, the
system model could be inferred automatically. However, in today’s practice, mostly semi-
formal approaches like the UML [BR04] or even informal natural language specifica-
tions are used. This lack of mathematical rigor leads to ambiguities in the design and
impedes a formal validation of the system. Therefore, most people in the formal meth-
ods community favor the use of completely formal specification languages like State-
charts [Har87, [Jan03]], queueing networks [CG89], Petri nets [Rei85] or process alge-
bras [Mil82, [Hoa85, BW90, IMil99]. In this way, the system specification automatically
translates into a precise system model, which allows us to formally validate the system.

Having a formal model at hand, the next step is to identify the properties that need to
be checked. Usually, logics like LTL [Pnu77|] and CTL [[CES86] are used for the property
specification. They permit to express functional aspects of the model such as “Two trains
never collide in the metro system” or “The routing algorithm stabilizes eventually after a
router has failed”.

Finally, given the model T of the system and a formula @ which specifies the desired
property, a model checking tool like Spin [Hol04] or NuSMV [CCGRO00] automatically
verifies whether the model satisfies the property. A positive outcome allows us to con-
clude that the system satisfies the corresponding property. Moreover, if the result is neg-
ative, model checking offers diagnostic feedback by identitying the faulty behaviors.

In this way, classical model checking verifies qualitative system properties by provid-
ing a definite yes-or-no answer. However, it is often impossible to completely prove the
correctness of realistic systems, as they are embedded in an environment and therefore
subject to random phenomena. For example, a detailed model of a distributed system
should reflect the probability that messages get lost or become garbled during transmis-
sion. Although this closely reflects the physical behavior of the system, it is hard to guar-
antee its correctness by providing a definite yes-or-no answer. Therefore, we strive for a
less stringent notion of correctness, which enables us to quantify the degree at which the
model meets its specification. For example, proving that the probability of a system fail-
ure is less than 0.1% might convince us to rely on that system despite the unlikely event
that it might fail.
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Figure 1.1: Verifying system correctness by model checking [BKOS].

1.2 The quantitative analysis of stochastic models

Applying model checking to analyze quantitative properties allows us to infer a variety
of performance and dependability measures automatically. Typical examples are the av-
erage throughput of a router, the expected round trip time of an IP-packet or the mean
time between failures of a hard disk drive. In all these scenarios, we do not expect a rigid
yes-or-no answer, but need to find quantitative measures that describe the system.

A plethora of models has been proposed that incorporate probability distributions into
the classical transition system formalism; thereby, they permit to specify the quantitative
behavior of the underlying system. In the context of this thesis, we classify quantitative
models along two dimensions:

1. Discrete vs. continuous. Time can be measured either in discrete entities or contin-
uously: In probabilistic models, time is represented by a sequence of discrete steps
which are usually identified with the natural numbers. Hence, the transitions in a
probabilistic model occur synchronously with its discrete time ticks. The random-
ness of the system is determined by discrete probability distributions over succes-
sor states that specify the likelihood to move from one state to another and by a
probability distribution over initial states.

Unlike discrete-time models, stochastic models adopt a continuous notion of time.
In this setting, transitions are delayed by a random amount of time which is gov-
erned by a continuous probability distribution. Hence, time points are drawn from
the set of nonnegative real numbers. A continuous-time model moves from one
state to another according to the transition which executes first. In this way, prob-
abilistic and timed behaviors are closely entangled in stochastic models.
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2. Deterministic vs. nondeterministic: The behavior of a deterministic model is com-
pletely specified by its (discrete or continuous) probability distributions. Note that
we use the term deterministic, although the system behavior is only determined
quantitatively.

Accordingly, we call a system nondeterministic, if its probabilistic or stochastic be-
havior is not decided completely. This situation can arise intentionally, for example,
if the modeler does not have enough information to estimate the probability distri-
bution that governs the system’s behavior in a specific state and therefore decides to
leave it unspecified. Apart from the deliberate use of underspecifications, another
implicit source of nondeterminism is the scheduling freedom that occurs in ran-
domized distributed systems, where the order of executing is only partly specified.
Moreover, nondeterminism occurs naturally in open systems that communicate
with other components in their environment.

We summarize the models that are used in the thesis in Table[[1l The most fundamen-
tal ones are discrete- and continuous-time Markov chains [KS76), [Kul95|]. Discrete-time
Markov chains (DTMC) were used as a dependability model for the first time in the sem-
inal work of Hansson and Jonsson [[H]94]]. Due to their discrete notion of time, DTMCs
can be used to model randomized algorithms or hardware circuits which obey a global
clock pulse.

The work in [[Var85, [HJ94] led to further research towards model checking of con-
tinuous-time Markov chains [Kul95,[ASSB96] (CTMC), which had already been widely
accepted in the area of performance evaluation [Hav98]. However, an automatic analysis
technique for CTMC only became available with the corresponding model checking al-
gorithm in [BHHKO3]]. Nowadays, model checking tools like PRISM [KNP02, HKNP06]]
and MRMC [[Zap08, [KZH*09]] enable an efficient analysis of CTMC models. They have
been successfully adopted for the performance evaluation of queueing systems and QoS
constraints, to name a few.

However, neither DTMCs nor CTMC are appropriate to model nondeterminism. In
effect, this shortcoming prevents the analysis of distributed systems, which is the tradi-
tional realm of model checking.

In the discrete-time setting, Markov decision processes (MDPs) [Put94] are a widely
known formalism in mathematics and discrete optimization which incorporates nonde-
terminism into DTMCs. In computer science, several extensions of MDPs like probabilis-
tic automata [SLI95, Seg95], ACP-style process algebras [And02] and interactive proba-
bilistic chains [[CHLS09] have been considered. They all support nondeterminism and
have successfully been applied to study quantitative measures of randomized distributed
algorithms [Seg97, SV99].

In this thesis, we focus on the bottom right corner of Table [T Whereas DTMCs
have successfully been extended to MDPs to account for nondeterministic choices, the
corresponding continuous-time model has received scant attention in computer science.
Continuous-time Markov decision processes have been studied in mathematics [Mil68b),
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discrete-time continuous-time
deterministic | DTMC, Def. CTMC s, Def. B4
non- MDPs, Def. CTMDPs, Def.B.11
deterministic | IPCs, Def. IMCs, Def. 6.1

Table 1.1: The basic stochastic models used in this thesis.

Mil68a] and are mentioned shortly in [Put94, Chapter 11]. In [BHKHO5]], the authors
develop a first model checking algorithm that works on a narrow subclass of CTMDPs;
it has received quite some attention and was extended in [Joh07] to analyze interactive
Markov chains [HHKO02]], which are another prominent model for nondeterministic and
randomly timed systems. However, these approaches are severely restricted, as they as-
sume that all states of the system have the same timed behavior.

1.3 The contribution of the thesis

Apart from the subclass of globally uniform CTMDPs, no model checking algorithms
exist for nondeterministic and randomly timed systems. The aim of this thesis is to fill
this gap in the theory of formal methods.

First, we investigate a hierarchy of scheduler classes which differ in the information
that they can use to resolve nondeterministic choices. We compare their impact on the
achievable quantitative measures and introduce the new class of late schedulers, which
strictly improve upon those that are known from the literature.

Further, we introduce bisimulation minimization on CTMDPs and prove that all quan-
titative measures are preserved in the quotient. As a consequence, we are able to mini-
mize the state space of CTMDDP:s prior to their analysis.

However, the main contribution of this thesis are precise and efficient model checking
algorithms for a variety of nondeterministic and randomly timed systems:

» We develop a quantifiably precise model checking algorithm for locally uniform
CTMDPs and late schedulers. Compared to the earlier result [BHKHO35], this en-
larges the class of analyzable CTMDPs considerably, as we only require that the
timing in each state is independent on the resolution of the nondeterminism in
that state.

» We extend the previous result to interactive Markov chains and obtain an efficient
model checking algorithm. Most notably, our extension does no longer depend on
any kind of uniformity. To the best of our knowledge, this is the first time that a
model checking algorithm is available for arbitrary IMCs.

« By applying our results for IMCs, we succeed in model checking arbitrary CT-
MDPs. This is achieved by transforming a given CTMDP into an equivalent IMC
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which we can analyse. However, compared to our native results on locally uniform
CTMDPs, we have to impose mild restrictions on the scheduler class: In fact, the
CTMDP model checking algorithm that we obtain computes the optimal quantita-
tive measures with respect to the classical definition of time- and history dependent
schedulers.

« Finally, we introduce a new semantics for generalized stochastic Petri nets (GSPNs),
which overcomes the shortcomings in the support of nondeterminism in the pre-
vious definitions. More precisely, we transform a nondeterministic GSPN into an
IMC which is subject to our analysis. In a case study, we compare the new GSPN
semantics to the previous one and show the necessity of nondeterministic model-
ing.

All algorithms are implemented in a prototypical model checker which has been used to
obtain the quantitative measures that can be found throughout the thesis.

1.4 Outline of the thesis

o In Chapter[, we summarize the definitions and measure theoretic results that are
necessary for a deeper understanding of the forthcoming chapters. In fact, Chap-
ter Qis a computer scientist's summary of the excellent, but mathematically dense
textbook [[ADDO0].

« In Chapter Bl we formally introduce the probabilistic and stochastic models that
form the basis of this thesis. Further, we introduce the notation that is used in the
later chapters.

« In Chapterd we investigate a hierarchy of scheduler classes for CTMDPs and pro-
pose a technique to achieve local uniformity. We prove that local uniformization
preserves quantitative measures for important scheduler classes. Moreover, we in-
troduce the new class of late schedulers, which outperforms all previous scheduler
definitions on locally uniform CTMDPs.

« In Chapter B, we apply those results and derive an approximation algorithm for
time-bounded reachability probabilities in locally uniform CTMDPs. Most no-
tably, our algorithm is quantifiably precise, that is, we prove that the computed
results meet an a priori specified precision. We show the applicability of our ap-
proach by analyzing a stochastic job scheduling problem.

o In Chapter[@ we build upon the time-bounded reachability algorithm for locally
uniform CTMDPs and develop a model checking algorithm that verifies formulas
in the continuous stochastic logic [BHHKO03] on IMCs. Again, the obtained analy-
sis technique is quantifiably precise. In the last part of Chapter [6l we establish the
result that CTMDPs can be transformed into alternating IMCs.
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o In Chapter[Z we introduce bisimulation for CTMDPs and extend the continuous
stochastic logic (CSL) to CTMDPs. Moreover, we prove that all measures are pre-
served when considering the quotient. This result justifies to use bisimulation min-
imization to reduce the size of the state space before applying the model checking
algorithm.

o In Chapter[8 we propose a new semantics for GSPNs which allows for nondeter-
ministic choices and conservatively extends stochastic activity networks. By ap-
plying our definition, we can transform GSPNs into IMCs, thereby making their
analysis feasible. In the second part of Chapter [8, we show the applicability of this
approach and study dependability characteristics of a workstation cluster. More-
over, we compare our results to those that are available in the literature.

+ In Chapter[] we mention some directions for further research and conclude.

1.5 Origins of the chapters and credits

The results presented in Chapters [6l Bl Bl and [/ are based on the following work (in that
order):

« Lijun Zhang and Martin R. Neuhéduf3er. Model Checking Interactive Markov Chains.
Accepted at the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) 2010.

o Martin R. Neuhdufler and Lijun Zhang. Time-Bounded Reachability in Continuous-
Time Markov Decision Processes. Technical Report, RWTH Aachen University, 2009.
To be submitted.

« Martin R. Neuhdufler, Mariélle I. A. Stoelinga and Joost-Pieter Katoen. Delayed
Nondeterminism in Continuous-Time Markov Decision Processes. In Proceedings of
the 12th International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS) 2009. Lecture Notes in Computer Science. Vol. 5504.
364-379. Springer Verlag.

o Martin R. Neuhdufler and Joost-Pieter Katoen. Bisimulation and Logical Preserva-
tion for Continuous-Time Markov Decision Processes. In Proceedings of the 18th In-
ternational Conference on Concurrency Theory (CONCUR) 2007. Lecture Notes
in Computer Science. Vol. 4703. 412-427. Springer Verlag.

Further publications not included in this thesis are

« Joost-Pieter Katoen, Daniel Klink and Martin R. Neuhdufler. Compositional Ab-
straction for Stochastic Systems. In Proceedings of the 7th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS) 2009. Lecture
Notes in Computer Science. Vol. 5813. 195-211. Springer Verlag.
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« Martin R. Neuhdufler and Thomas Noll. Abstraction and Model Checking of Core
Erlang Programs in Maude. In Proceedings of the 6th International Workshop on
Rewriting Logic and its Applications (WRLA) 2007. Electronic Notes in Theoreti-
cal Computer Science. Vol. 176. 147-163. Elsevier.

The results in Chapter [§are new and not published yet.



2 Basics of measure & probability theory

The Axiom of Choice is
obviously true, the
well-ordering principle
obviously false, and who can
tell about Zorn's lemma?

(Prof. Jerry Lloyd Bona)

The focus of this thesis is on the analysis of stochastic systems that evolve in continuous
time, which is usually modeled by the nonnegative real numbers. In the later chapters, we
reason about the probability that an event occurs in a certain period of time; for example,
we could be interested in the probability to leave a certain state within the next 1.5 time
units.

The advantage of modeling time in a continuous domain is pretty clear, as it allows us
to formalize phenomena that are best described by continuous probability distributions.
Examples include the probability that a failure occurs within a certain amount of time
(which usually is exponentially distributed) or the probability that a measurement error
deviates by a certain percentage from its average value (which can often be described by
the normal distribution).

However, we pay for this greater generality by a more complex mathematical frame-
work: Whereas for discrete probabilistic systems (like MDPs and DTMCs), it suffices to
restrict to discrete probability theory, in our continuous setting, we need the concepts of
modern probability theory with its measure-theoretic background.

Therefore, this chapter provides an overview of the measure theoretic concepts which
are used throughout the thesis.

In Sec. 21 we give an abstract introduction to measure theory. In a journey of step-
wise extensions, we start with an abstract, uncountable set (2 and a measure on a class
of subsets of Q2 which have a simple structure. By several extensions, we subsequently
increase the complexity of the sets that we are able to measure.

Section 22 applies the previously obtained results: Starting with the natural notion of
the length of a (time) interval, we arrive at a measure on the large class of so-called Borel
measurable sets.

To point out the limits of measure theory, Sec. 23 explains Vitali sets, which turn out
to be neither Borel nor Lebesgue measurable. Hence, they provide a barrier that we may
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not overcome in our extensions.

Section 24 explains the details of the Lebesgue integral, which allow us to integrate
Borel measurable functions over sets different from the ordinary real numbers. Moreover,
it is much more versatile, as it mitigates many of the restrictions of the Riemann integral.

Finally, the finite- and infinite-dimensional product spaces that we discuss in Sec.
allow us to measure the probability of sets of (finite and infinite) paths that describe the
trajectories in our system models.

Most of the results presented here are taken from the excellent textbook “Probability
& Measure Theory” by Robert B. Ash and Catherine A. Doléans-Dade [ADDO0]. There-
fore, many of the concepts explained in this section are a reproduction of those that can
be found in [ADDO00]. However, in contrast to Ash, we suppose a computer scientist’s
background on probability theory; therefore, we strive for a compromise between the
full complexity of some of the intricate measure theoretic constructions and an easier to
read introductory text, where we emphasize those aspects that are useful for an under-
standing of the subsequent chapters. Another introduction to measure and probability
theory can be found in [Bil95]].

2.1 Basics of measure theory

2

A measure is a generalization of the concepts of “size”, “length” or “volume” which are in-
tuitively known from Euclidean space. The aim in measure theory is to define a measure,
that is, a function that assigns to each subset A of a given set 2 a value which corresponds
to the size of A.

However, a measure has to satisfy certain constraints: Obviously, if A, B € Q) are sub-
sets of Q) which do not have any element of Q) in common and if 4(A) and y(B) denote
their respective sizes, we naturally require their disjoint union A u B ¢ Q to have size
u(AuB) = u(A) +u(B).

Another requirement for a general definition of a measure is that if we know the size
of A ¢ Q, we should also define the size of its complement, i.e. of A° = Q \ A.

Finally, it is a natural assumption to assume that the empty set should have size 0, as it
does not contain any element of Q.

As long as Q) is a finite or countably infinite set, no measure theoretic arguments are
necessary. It suffices to define the size of each element w € Q and to extend this to sub-
sets A of () by simply adding the elements’ sizes. Any measure defined in this way satisfies
the above mentioned properties.

However, if ) is an uncountable set, the existence of a measure that satisfies the above
properties for all subsets of Q) is not guaranteed. For example, it is impossible to con-
struct such a measure on all subsets of the real numbers. The proof and the necessary
constructions can be found in Sec.
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Definition 2.1 (Field,o-field). Let Q) be a set and § < 22 a class of subsets of Q). Then §
is a field iff § satisfies the following conditions:

(a) Q€S

(b) Ae§F = A€ § and

(c) AL, Ay ... A, eF=>UL A €5

§ is a o-field iff § satisfies Cond. @) and () and instead of Cond. @) it holds
(d) A, Ay As,...eF=>US A €3

Hence, a field § is a o-field iff for every countable family A;, A,, A, ... € § it holds
that U2 A; € §. If § € 22 is a o-field of subsets of Q, then the tuple (Q, §) is called a
measurable space.

Example 2.1. Let Q be a set. According to Def. 21l the smallest o-field of subsets of Q) is
the set § = {@, Q}; the largest o-field is the set § = 2. &

The link between measure and probability theory is established as follows: In probability
theory, the set Q) is called the sample space and interpreted as the set of all possible out-
comes (called samples) of a random experiment. Accordingly, the aim in probability the-
ory is to measure the probability of events, where an event is understood as a subset of Q
which belongs to (O’s associated o-field §. Hence, measuring an event A € § yields the
probability of A. In the context of probability theory, the closure properties that Def. 2]
requires for a class of subsets of ) to be a field, have the following informal justification:
By Conditions (B)) and (d), they permit to reason about the probability of the negation
(A°) and (finite and countably infinite) conjunction (AuB) of events. The sample space Q
is understood as the set of all possible outcomes of the random experiment; accordingly,
the probability that the outcome of a random experiment falls within Q) is 1. Therefore, Q
is the certain event and included in §. As § is closed under complement, the set Q¢ = &
is in § as well; it is the impossible event, which is assigned probability 0.

Example 2.2. Let Q be a countably infinite set and define § as the smallest class of subsets
of Q such that for all A c Q:

|A| < +00 = A€ T and AcF, = A€ 5.

Note that the definition is non-trivial, i.e. in general o ¢ 2°: For example, if Q = N, then
the set {2n | n € N} of even numbers is not in §o, as both {2n | n e N} and {2n +1| n e N}
are countably infinite sets.

In order to show that 3 is a field, we check the properties required by Def. 2t By def-
inition, § is closed under complement; hence, Cond. (D) is satisfied. For Cond. @), note
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that |@| = 0 < +oo implies @ € §o. As o is closed under complement, & € §, implies
@ = Q € Fo; hence § satisfies Cond. @). For Cond. @), let A, B € . If both |A| < +o0
and |B| < +oo, then |A U B| < +00 and A U B € §. For the other cases, assume w.l.o.g. that
|A| = +00. By definition of §o, |A| = +oo implies |A¢| < +oo (otherwise, A ¢ To). Therefore
|A° N B| < +00 and (A° N B°) € §y. As § is closed under complement, this implies that
(A°nB°)¢ € §o and by De Morgan’s law, we conclude that (A°nB¢)¢ = (AU B) € §,. Hence,
So is closed under finite union.

Lemma 2.1 (Generated o-field). Let J < 29 be a class of subsets of some set Q) and
define

o(T)=N{gc2*|Fisaofied JcF}.

Then o(J) is the smallest o-field which contains J. It is called the smallest o-field
generated by J.

Proof. LetJ ={F c2?|Fisao-field, J € F}.

First, we prove that o(7) is a field: Therefore, we check Conditions @), (b)) and (d)) of
Def. 2Tt For Cond. @), note that Q € § for all § € J; hence, Q € ¢ (J). For Cond. (),
let Ac o (J). Then A € § for all § € J, implying A€ € § for all § € J. Hence, A° € 0 (7).
Finally, o (J) satisfies Cond. (d): If A}, A,,... € J, then A}, A, ... € Fforall § € J; as
each § is a o-field, it holds that U2, A; € § for all § € J. Therefore U2, A; € 0 (J). Thus,
0 (J) is a o-field.

By definition, J < 29. Further, 29 is a o-field. This implies that 2© € J so that J is
nonempty. Furthermore, 7 € § for all § € J. Hence J € (7).

Finally, if §" is a o-field of subsets of Q with 7 € §', then §’ € Jand ¢ (J) € §'. Hence,
o(J) is the smallest o-field that contains 7. O

Definition 2.2 (Measure, probability measure). A measure y on a measurable space
(Q,3F) is a function y : § - R, such that for all finite or countably infinite families
{A;} .., of pairwise disjoint sets A; € § (where I € N), it holds that

u(UAz-) = D (4. 1)
iel i€l

If u(Q) =1, then p is a probability measure.

Any measurable space (Q, §) together with a measure y forms a measure space, denoted

by the triple (Q,§, it). If p is a probability measure, the measurable space (Q,F, ) isa
probability space.



2.1 Basics of measure theory 15

For what follows, we generalize the notion of a measure to also account for fields
(instead of o-fields as required in Def. Z2)): Therefore, let Q) be a set and T, a field
of subsets of Q). A set function y : Fo — R>™ on §, is countably additive on § ift
U (Uit Ai) = Xier h(A;) for all finite or countably infinite families {A;} ., of pairwise
disjoint sets A; € §, (where I € N) that satisfy (J;;; A; € To. Observe the intricate point in
this definition: For y to be countably additive on a field, it suffices to consider only those
countably infinite collections of disjoint sets, whose union actually belongs to §o: As T
is only a field (and not a o-field), there may exist countably infinite collections A;, A,, ...
of disjoint sets A; € §o such that [J72 A; ¢ S.

Accordingly, we extend Def. and call a set function y : §y - R* on a field § a
measure on the field §, iff y is countably additive on §p and u(A) > 0 for all A € .
Further, if u(Q) =1, u is called a probability measure on the field §,. Note that if T is
not only a field but also a o-field and y is countably additive and nonnegative, then y is
a measure according to Def.

Naturally, finite additivity is a weaker condition than countable additivity: We say that
a set function y : Fo - R™ is finitely additive ift y (U, A;) = >, u(A;) for all finite
collections Aj, A,, ..., A, of pairwise disjoint sets A; € F.

Further, a set function y : §o - RS is o-finite on a field § iff there exists a collection
AL Ay, ... €Fosuchthat Q = U3 A; and p(A;) < +oo for all i € N. Thus, if y is o-finite,
we can build Q from an at most countably infinite collection of sets in §, that all have a
finite measure.

Example 2.3. Reconsider the field §, from Ex. and define the set function y on §
such that u(A) = 0 if |A] < +oo and u(A) =1, otherwise. Then u is finitely additive, but
not countably additive: Let Ay, A,, ..., A, be pairwise disjoint sets in §o. To show finite
additivity, we consider two cases:

First, assume that |Ay| = +oo for at least one k € {1,2,...,n}. Then u (U, A;) = 1.
To show that Y7, u(A;) = 1 holds as well, recall that by definition of §o, it holds that
|Ax| = +oo implies ‘A;{‘ < +oo. As A; € A forall i # k, we derive |A;| < +oo; thus
p(A;) =0 forall i # k by definition of y and §o. Hence, 3.7, u(A;) = u(Ax) = 1and
therefore (11 A;) = Ty p(Ay).

For the second case, assume that |A;| < +oo foralli € {1,2,...,n}. Then u (U, A;) =
0=X",u(A;). Thus u is finitely additive.

On the other hand, it is easy to see that u is not countably additive: Let w,, w,, ... be
an enumeration of the elements in Q and define A; = {w;}. Then Y2, u(A;) = 0, but

p(UZA) =pu(Q) =1 o

By definition, any o-field § is closed under countable union; hence, if A; ¢ A, € -
is an increasing sequence of sets A; € §, its limit lim, .., A; = U3 A; is an element of §.
Therefore, o-fields are closed under increasing sequences. Moreover, o-fields are also
closed under decreasing sequences, i.e. if A} 2 A, 2 --- are elements in §, then N5 A; € §.
To see this, note that any o-field § is closed under complement and countable union.
Hence, it is also closed under countable intersection and N2, A; € §.




16 2.1 Basics of measure theory

The obvious next question is whether measures, or more generally, countably additive
set functions agree with these closure properties of o-fields:

Lemma 2.2 (Continuity of countably additive set functions). Let § be a o-field of
subsets of some set Q) and let y : § — R* be a countably additive set function on §.

(a) IfA1 c A2 c A3 € ooo € Sand A,’ TA, then lim,'_,oo [J(A,) = ‘Ll(A)

(b) IfAy2 A2 A2 eFsuchthat A; | Aand —oo < u(A;) < +oo forall i € N, then
lim;e (A;) = u(A).

Proof. For a proof, see [ADD00, Th. 1.2.7]. O

Although Lemma 272 is stated in full generality, note that any measure y on (Q,§) is
a nonnegative, countable additive set function. Hence, the statements @) and (B) in
Lemma[.2hold for any measure.

2.1.1 Extension from §, to o(Fo)

In general, if Q) is an uncountable set like the set of real numbers, and we are to define
a measure 4 on all subsets of (), it turns out that this is impossible (see Sec. Z3]). More
precisely, if we insist on the natural assumption that a measure should be countably ad-
ditive (cf. Def.Z2(Z1)), we cannot define a measure on the o-field 2?: This is due to the
fact, that in general (for example, on 2®) there exist subsets of Q) such that no countably
additive set function can be defined on 29.

As a consequence, if () is countably infinite, we are forced to restrict ourselves to the
subclass of measurable subsets of Q). This can be achieved as follows: First, we identify
those subsets of () that we need to measure. In a second step, we need to find a field §,
which contains those desirable sets and allows us to define the corresponding measure
on §o. Note that due to the simple structure of a field, this is usually an easy task.

However, there are important properties (like the measure of the limit of in- or decreas-
ing sequences) that require to extend g from the field §, to the smallest o-field o () that
is generated by . This is a nontrivial task, as it turns out that the structure of the ele-
ments in the o-field o () is much more complex than the structure of the elements of
its underlying field .

Therefore, this section introduces the measure theoretic results that guarantee the ex-
istence (and uniqueness) of the extension of y from §, to d(Fo). In what follows, we
obtain an easier description if we assume that y is a finite measure, that is, y(A) < +oo
for all A € §o. As we shall see later, this restriction is too strict; in fact, we already obtain
a unique extension of y from F, to d(F) if we assume that y is o-finite on §o; however,
this result is easily established later, so that we do not loose anything if we restrict to finite
measures first.
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In the following, we proceed stepwise and extend y to more and more complex classes
of subsets of ), until we arrive at o(F). The first step is to extend p to the class G of all
countable unions of elements in Fy. Note that in contrast to the first impression, G is a
strict subset of 6(F,) and should not be confused with the latter!

Extension to countable unions of elements in 5.

To begin with, consider the class G € 22 of subsets of Q) which is defined such that
Aeg <~ E'AI,Az,... ESO.A,'TA.

Thus, G is the set of all limits of increasing sequences of elements in §o; further, §) € G,
as for any set A € §, the sequence which is obtained by defining A; = Aforall i e N
increases to A.

Note that G is also the class of all countable unions of elements in §,: To see this, let
Ay, As, ... € Fand define the sets B, = U* | A; and A = U, A;. Each By is a finite union
of elements in §, and therefore, By € §y. Moreover, By 1 A by construction. Thus, by
definition of G it holds that A € G. Hence, G contains all countable unions of elements
in §,. To show that G does not contain more, consider the reverse direction: If A € G, then
there exists an increasing sequence A;, A,, ... € §y suchthat A; 1 A. Butthen A = U2, A;
is a countable union of elements in §,.

Now that we have defined the class G of subsets of (), we extend the measure y from
the field §, to G:

Lemma 2.3 (Extension of p to G). Let §, be a field and u a finite measure on §,. Fur-
ther, let G be the class of all countable unions of elements in §o. Then y' : G - R, denotes
the extension of u from §o to G. For A € G, we define

W' (A) = lim u(A,),
where A, A,, . .. € §o are such that A,, 1 A. Then it holds:

(a) u'(A) = u(A) forall A € §.
(b) IfGl, Gz, (G] U Gz) > (Gl n Gz) € Q, then

W(GUGy) +u(Gin Gy) = ' (G) + 4 (Ga).
(c) If G, G, € G and G, € Gy, then u'(Gy) < u'(G,).

(d) IfG,Gy,...€Gand G, 1 G, then G € G and lim,_. . u'(G,) = y'(G).

Proof. A proof can be found in [ADD00, Lemma 1.3.2]. O



18 2.1 Basics of measure theory

First, note that by definition of G, there exists a sequence A;, A,, ... € §, that increases
to A; further, if A}, A),... € Ty is another sequence with A/ 1 A, it can be shown that
lim,, o t(A,) =1lim,_, . p(A’) [ADD00, Lemma 1.3.1]. Hence, u’ is well-defined.

Observe that y’ satisfies the requirements that we expect from a measure, i.e. by (@) it
coincides with the original measure y on §o, by (d) it preserves limits, by (B) it works as
expected for (not necessarily disjoint) set union and finally, by (@) it obeys the ordering
on the measures of sets according to set inclusion.

However, at this stage the extension is not complete, as G is not a o-field yet. Hence,
there are still sets in 0(§o) \ G that g’ is unable to measure. As an example, note that
the class G is not closed under complement: We derive G by extending §, to the class
of all countable unions of elements in §o; however, G is closed under complement only
with respect to elements in §,. More precisely, if A = U, A; with A; € T is a countable
union that does not belong to §, then A € G still holds by definition of G. However, this
does not imply that A€ € G. To see this, note that the set A° cannot always be represented
as a countable union of elements in §,. Therefore, in general, A° ¢ G so that G is not
closed under complement. We postpone the construction of a concrete counterexample
and refer the reader to Ex. 25 on page 26l for further details.

Therefore, although Lemma [Z3 considerably extends the domain of y, we still do not
cover all desirable subsets of Q). This problem is overcome (only partly, as we will see) in
the next step:

Extension to an outer measure.

With p’ : G - R, and the class G, we have extended the measure y on § to a larger class
of subsets of (). Now we aim at an extension of y’ to an outer measure which is defined
on the entire power set 2%:

Definition 2.3 (Outer measure). An outer measure on a set Q) is a set function A : 22 —
RS that satisfies

(a) M(@) =0,
(b) ifA,BC Qand A c B, then A(A) < A(B) and
(©) if A, As,... € Q, then MU Ay) < Ty MAL).

Itis important to note that Cond. (@) (which is also called countable subadditivity) does
neither require the sets A, to be disjoint, nor does it state that /\( U2, An) =Y AMA)
holds if they happen to be pairwise disjoint (which is required in Def.2Z2for A to be a mea-
sure)! Hence, we could suspect already here that something is wrong with extending y’
to a measure on 2.
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In fact, albeit its name, an outer measure is not a measure in general. In our case, it
will turn out that by extending u’ to 22, the extension loses important properties of a
measure. Before we address this issue, let us define how to extend ' to an outer measure
on all subsets of Q:

Lemma 2.4 (Extension to an outer measure). Let § be a field of subsets of some set (2,
G the class of all countable unions of elements in Ty and y' the extension of a finite mea-
sure y on § to G. Define the set function

p 2% >RY:A-inf {y/'(B)|B2AABeG}.
Then u* is an outer measure on Q) with the additional properties that
(a) u(A)=u'(A) forall Aeg,
(b) uy*(AuB)+pu*(AnB) < u*(A) + u*(B) forall A,Bc Q and
(c) if A, Ay, ... S Qwith A, 1 A thenlim, o u*(A,) = u*(A).

Proof. The proof can be found in, e.g. [ADDO0), p.16ft]. o

This definition of y* provides an extension of u’ to the whole power set of (3. Note
however, that countable additivity which is required for y* to be a measure on 29 (cf.
Eq. @) of Def.2.2) is replaced by the weaker property of subadditivity in Def. Z3(g). In
fact, it turns out that in general, y* is not countably additive on all subsets of (), that is,
there exist sequences Aj, A,, ... € Q of pairwise disjoint sets A, such that p* ({52, An) <
z;il ¢ * (An)

By the above argument, extending y’ to the whole power set 22 is too ambitious. There-
fore, to still obtain a measure, we have to exclude certain elements in 2 and restrict to
a o-field smaller than 22. In the following, we identify a large (but proper) subset of 2
that is a o-field and allows an extension of y that is countably additive:

Lemma 2.5 (Extension of finite measures). Let T be a field of subsets of a set ), y a
finite measure on §o and G the class of all countable unions of elements in §,. For the
outer measure u* defined as above, let

H={HcQ|p (H)+u (H)=u(Q)}.

Then H is a o-field and u* is a measure on H.

Proof. The proof can be found in [ADD00, Thm. 1.3.5]. O
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To see that the class H indeed extends G, let A € G. By definition of G, there exists an
increasing sequence Aj, A,, ... € §o such that A, 1 A, implying that A° C A¢ forall n e N.
As p* is an outer measure, it holds by Def. Z3(D) that u*(A¢) < u*(AS). Further, recall
that y* agrees with 4’ on G and with y on §o; hence

u(An) + " (A%) < p(An) + p(A5) = 1(Q). (2.2)
Further, lim,., 4'(A,) = ¢/(A) by LemmaZ3|(d). Hence, taking the limit for n - oo
on both sides of Eq. (22) yields p*(A) + u*(A°) < u(Q).

On the other hand, Lemma Z4b)) implies that p*(A U A°) + u* (A n A°) < u'(A) +
p*(A);as (AU A°) = u(Q) and p*(An A°) = u(2) = 0, we obtain u(Q) < u'(A) +
p*(A°). Further, y/(A) = u*(A) by LemmaZ4@). Hence, u*(A) + u*(A) > u(Q).

Therefore we have established that y*(A) + u*(A°) = u(Q) and A € H. As this applies
to all A € G, this proves that G € H.

The class H has another important property: By transitivity of set inclusion, we con-
clude from the fact that G € H and §, € G, that §, € H. Moreover, by Lemma 2.5 we
know that H is a o-field of subsets of Q). But by definition, o(F,) is the smallest o-field
that contains §,. Hence, 0(§) € H.

To summarize the different steps in extending y from §, to 0(F ), Table[ZIldepicts the
complete chain of inclusions (from left to right) as well as the corresponding extensions
of p and their properties.

As we have seen, 0(F,) and H are both o-fields that contain the field §y; further, we
are able to extend y to a measure on 0 (F,) and H. Hence o(F,) and H seem to be related
closely. In fact, it turns out that they differ only in sets of measure zero. More precisely,
it can be shown (see [ADD00, Thm. 1.3.8]) that any element A € H can be decomposed
such that A = Bu M, where B € d(Fy) and M c N is a subset of some set N € a(F)
which has measure zero, i.e. u*(N) = 0. Therefore, we say that # is the completion of
0 (o) with respect to u* and sets of measure zero:

Definition 2.4 (Completion of a measure space). Let (Q,§, ) be a measure space.
Then

F“={AUM|AeF MCcN,NeF, u(N)=0}

is the completion of § with respect to the measure y. Further, a measure space (Q, 5, i)
is complete iff for all N € §, u(N) = 0 implies that M € § for all M € N.

Therefore, we complete a measure space (Q,§, ) by extending any set A € § with all
subsets of sets of measure zero which are in §. Further, it directly follows from Def. 24
that the completion of a measure space is indeed complete.

Using the construction outlined above (i.e. from §, over G to 2? and back via H
to 0(§o)), we are now able to state the first important result regarding the extension
of a finite measure y on §, to the smallest o-field generated by F:
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So g a(So) H 20
field | limit collection | smallest o-field | completion of (F) power set
“ W Hlo(s) M W
measure set function measure measure not countably
on §o additive

Table 2.1: Summary of the inclusions and the properties of the extensions of y.

Theorem 2.1 (Existence of an extension). A finite measure y on a field §, can be ex-
tended to a measure on a(F).

Proof. We have shown before that §, € G € 0(§o) € H ¢ 22 Further, y* is an extension
of u to 2. Hence, the domain of y* covers o (§p). Moreover p* is a finite measure on
by LemmaZ3 and 0(F,) € H. Hence, the restriction of y* to (3§, ) is the desired finite
measure on d(F). i

With this result, we are able to extend y from § to 0(Fo) and even more, to H. Recall
that it can be proved (see Sec. 23l for the details of the construction) that we cannot ex-
tend u to a measure on the o-field 22. However, the question whether there exist o-fields
that are larger than ¢(§,) and H (but smaller than 2?), which allow for an extension, is
not answered by the preceding constructions. Within this thesis, we only refer to [Ben76}
p. 40] which provides links to the related literature.

Although Thm.[ZJallows us to extend any finite measure y to the o-field o (o), we do
not know whether this extension is unique: More precisely, the question to be answered
is: Does there exist another measure A on () such that 4 = A on § but 4(A) # 1(A)
for some set A € 0(Fo)? The answer to this question will be the topic of the next section:

2.1.2 Uniqueness of the extension

Starting from a finite measure y on some field §, of subsets of a set (2, we have extended y
to a set function y’ on the class G that contains all limits of increasing sequences of sets
in §; then, we have shown that the outer measure y* which is induced by y/, is a finite
measure on the class H of subsets of Q. As 0(§y) is a subset of , we can consider y*
as an extension of y to the smallest o-field generated by §,. What remains to discuss is
the uniqueness of our extension: Stated differently, does there exist another measure A
defined on 0(F) such that u and A agree on sets in F, (i.e. u*(A) = A(A) for all A € F)
while their extensions to o (F,) differ (i.e. JA € 0(Fo). u*(A) # A*(A))?

At the end of this section, we will answer this question in the negative, that is, the
extension of y is unique. The following theorem, the so-called monotone class theorem,
is essential in proving this result. In fact, it provides the basis for a proof technique, where
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it suffices to show a property on a monotone class to prove it for the entire o-field. The
only restriction is that the monotone class must be “large enough”, that is, it must contain
at least all elements of the underlying field:

Definition 2.5 (Monotone class). Let X' be a class of subsets of Q). X is a monotone
class iff for all collections Ay, A,, ... € X:

(a) A,t A= Ae X and

(b) A, | A= AecX.

Thus, any class of subsets of some set Q2 which is closed under increasing and decreas-
ing sequences is a monotone class.

Theorem 2.2 (Monotone class theorem). Let X' be a monotone class over subsets of
some set Q) and let § be a field of subsets of Q. If §o € X, then o(Fo) € X.

Proof. A proof can be found in [ADDO00, Thm. 1.6.2]. O

The monotone class theorem is extremely useful: We use it in the proof of Lemma &7
in Sec. as well as in the next theorem to show that properties which hold for all
elements in a field §, also hold for all elements in o (§y).

The Carathéodory extension theorem is the main result of this section. It states that
the extension of a finite measure y from a field §, to the measure pu* on ¢(§) is unique.
Moreover, it relaxes the restriction to finite measures that we have imposed so far:

Theorem 2.3 (Carathéodory extension theorem). Let y be a o-finite measure on a
field §o of subsets of some set Q. Then y has a unique extension to a measure on (g ).

Proof. Asthe Carathéodory extension theorem is essential to measure theory and demon-
strates a basic proof technique, we give a detailed proof here. It is split in two parts:

o We relax the restriction of ¢ of being a finite measure and allow u to be o-finite.
Thus, there exist sets A}, A’, ... € §o such that U2, A’ = Q and p(A’) < +oo for all
i € N. Now, define A, = A/, \ U7 A. Then the sets A, are pairwise disjoint and
Q=2 Ayand p(A,) < p(A),) < +oo forall neN.

Now;, define a family of measures y, on §, (for n = 1,2,...) such that y,(A) =
u(AnA,). Each y, is a finite measure (because y(A,) < +o0) and has an exten-
sion y; to 0(§o). As the A, are pairwise disjoint, it holds that y(A) = u(An Q) =
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M(UZL(A N An)) =Y u(AnA,) =372 ua(A). Hence, the set function that is
obtained by defining pu*(A) = Y2, pi(A) forall A € 6(5F) is an extension of u. To
prove that it is a measure, we check the condition of Def.2Z2k Let By, By, ... € 0(§o)
be a sequence of pairwise disjoint sets in §. Then
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Therefore, y* is a measure on o(F).

o It remains to prove that the extension is unique: Therefore, suppose there exists
another measure A on 0(F,) such that u(A) = A(A) for all A € Fo. Let 1,,(A) =
AM(AnA,) forall A € o(F)). Note that we can define each A, directly on o(F,) and
not only on § as it was the case for the measures y,! Moreover, each A, is a finite
measure on 0(F), as it is bounded by A(A,) = u(A,), which is finite.

Our aim is to prove that A and p* agree on 0(F): For each A, consider the class
Con={Aca(Fo) | A(A) = u;(A)}, ie. the class of all sets A € o(F) for which A,
and the extension of y,, agree: First, we prove that each class C, is a monotone class:
Therefore, let C;, C,, ... € C, such that C; 1 C. Each C; is an element of ¢ (§,) and
as a o-field, 0(F) is closed under increasing sequences; hence C € o(§y). Thus,
in order to show that C € C,, it remains to prove that 1,,(C) = u(C). Now C; 1 C

implies that
lim u;(C;) = u;(C) and lim A,(C;) = 1,,(C).

But p;(C;) = 1,(C;) forall i e N, as C; € C. Thus lim;_,o, ;(C;) = lim;,o A,(C;).
As the limits are equal, i.e. u;(C) = 1,(C), we conclude that C € C,,.

Having established that each C, is a monotone class, it is easy to see that §, € C,:
From the extension, we know that u, = u; on §o; hence p,(A) = u;(A) = 1,(A)
for all A € §, and §y € C,. By Thm. we conclude that 6(F,) < C, and thus,
Au(A) = 3 (A) for all A € o(Fy). But then A(A) = ¥, A,(4) = £, 3 (A) =
p*(A). Hence A = p on o (§p ), proving uniqueness. o

2.1.3 Approximate representations of elements in §

The difference between a field §, of subsets of (2 and the smallest o-field o(F,) generated
by §o is that elements of () may be obtained by taking countably infinite combina-
tions of unions and intersections of elements in §,. In contrast to o(g§y), the elements
in § are structurally simple, as they are constructed using only finitely many unions
and intersections. Nevertheless, there is no bound on the number of such unions and
intersections.
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Intuitively, this leads to the following observation: If § is the o-field generated by a
field §y, and A € §, we can construct a set B € §, which approximates the set A arbitrarily
closely by just taking enough unions and intersections of elements in §, when building
the set B.

To make this precise, let X, Y ¢ Q and define the set difference X A Y of X and Y by
XAY=(X~NY)u(Y~X). Givenaset A €, we can construct a set B € §, by taking
finitely many unions and intersections of elements in § such that 4(A A B) < ¢ for any
predefined € > 0.

Note however, that in general, the smaller ¢ is chosen, the more complex the unions
and intersections needed for the construction of B become. The possibility of approxi-
mating elements in § by those in § is made precise in the following theorem:

Theorem 2.4 (Approximation theorem). Let (Q,F, ) be a measure space and §, be
a field of subsets of Q with 0(§o) = §. Further, let y be o-finite on §o. For all ¢ > 0 and
A € § with u(A) < +oo, there exists B € § such that u(A & B) < e.

Proof. A proof can be found in [ADDO00, Thm. 1.3.11]. 0

The approximation theorem is used in Chapter Bl to construct finite representations of
Borel-measurable functions.

2.2 The Borel o-field and the Lebesgue measure

In this thesis, we consider systems that evolve in continuous-time, where time points are
modeled by the set of nonnegative real numbers. The aim of this section is to construct a
measure that allows us to quantify the “size” or “length” of any set of time-points, i.e. of
any subset A C Ry,.

In the following, we apply the extension technique from Sec.ZIlto derive a o-field B (R)
over the set of real numbers R. Further, we define the Lebesgue measure, which corre-
sponds to the natural notion of “size” or “length” of subsets of R.

2.2.1 The size of intervals

We strive to define a measure on (measurable) subsets of R.y. A natural requirement is
that the measure of any interval (a, b] with a, b € Ry and a < b is its length, that is, we
expect the measure of (a,b] tobe b - a.

Note that in the following, we use right-semiclosed intervals of the form (a, b] to de-
rive the Borel o-field B (R); however, as will become clear in the next paragraph, we
also could have used any other type of interval (closed or open, or intervals of the form

(—o0,al).
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Definition 2.6 (Right-semiclosed interval). For a,b € R>, the set (a,b] =
{x €R | a < x < b} is a right-semiclosed interval in R.

Now, let 4 be a set function defined on right-semiclosed intervals such thatif I = (g, b],
then u(I) = b — a. In this way, y formalizes the length of right-semiclosed intervals.

There is one subtle point in Def. 2.6} It states that any right-semiclosed interval on R is
a subset of R; as +00, —oo ¢ R, we identify the set (a, +oo | with the set {x e R | a < x} and
define this set to be right-semiclosed. Similarly, we define (o0, a] = {x e R| x < a} tobe
right-semiclosed. This convention is necessary, as it makes the class of right-semiclosed
intervals closed under complement, which is required in Lemma 2.6

Right-semiclosed intervals are a very restricted class of subsets of R; for example, given
a right-semiclosed interval (a, b], we are not able to measure its complement (a, b] =
(=00, a] u (b, +o0] or any other disjoint union of right-semiclosed intervals. To address
this, we strive to extend the set function y to a larger class of subsets of R. In a first
step, we therefore consider the class §, that consists of all finite disjoint unions of right-
semiclosed intervals:

By definition, all elements A of §, have the form A = (a;, b;] v (ay, by] v+ (a,, b,]
for some n € N and a;, b; € R*. Thus, it suffices to define u(A) = >-°", u ((a;, b;]) for all
A € §y. Then the class §, of finite disjoint unions of right-semiclosed intervals forms a
field:

Lemma 2.6. Let §, be the class of finite disjoint unions of right-semiclosed intervals in R.

Then § is a field.

Proof. Let Q) = R. To show that § is a field, we verify the conditions of Def. LTt

(a) Q€ g issatisfied as R = (—oc0, +00] € §p. Note that by Def. intervals of the form
{xeR|a<x<+o0} = (a,+o0] are right-semiclosed.

(b) Let A=, A; with A; = (a;, b;] be a finite disjoint union of right-semiclosed inter-
vals. Without loss of generality, we may assume that the A; are ordered according to
their lower interval bounds, i.e. let a; < a;,; fori =1,2,..., n—1. First, we prove that
AU (a,b] € F, for any right-semiclosed interval (a, b]:

If An(a,b] = @, then Au (a,b] € F and we are done. Otherwise, there exist
jok € {l,...,n}, j < k with (a;,b;]n (a,b] # @ foralli e {j,j+1,...,k} and
(a;,b;] n (a,b] = & for all other i. (see Fig. Il where j = 2 and k = 4). To obtain a
disjoint decomposition of the set (U, (a;, b;]) U (a, b], set a,,;, = min {a, aj} and
bmax = max {by, b} and replace (Ui-‘:j A;) U (a,b] c A with the interval (@yin, byax]:
Therefore, define C; = A; for i < j, C; = (Ayin> bimax] and for i > j, define C; = A, (_j).
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Figure 2.1: The union of an interval and a disjoint union of right-semiclosed intervals.

By construction it then follows that C; n C; = @ for i # jand (UL, A;) U (a,b] =
U” (k=7) C € %

Now, let A, B € §y,i.e. A =J", A; and B = |J; B; for some n, m € N. To complete
the proof, we show that Au B € §y: Therefore, let C; = A and C;;; = C; u B; for
i=12,...,m. We prove that C; € §, by induction on i: By definition, C, = A € F.
For the induction step, let C; € §. By the above argument, C;,; = C;UB; € §,. Hence,
Cis1 € §o; now the claim follows, as C,,,; = AU B.

(c) Let A=JL, A; € T be defined as before and set B; = (b;_1, a;] for1 < i < n +1with
by = —o0 and a,,, = +o0. Then A¢ = |-J// B; and hence, A° € F. O

With this result, we know that by extending u from single intervals to the elements in F,
we can already measure the complement and union of any finite combination of right-
semiclosed intervals.

It can even be proved (cf. [MP90), p. 23] and [ADDO00, Lemma 1.4.3]) that g is count-
ably additive on §, that is, if A}, A,, ... € § is a countably infinite sequence of disjoint
sets in § with the property that their union (J;3; A; is again in Fo, then uy (U2 A;) =
Yo 4(A;). Hence, countable additivity on §, allows us to reason even about countably
infinite unions of intervals, provided they do belong to §,. However, such countable
unions obviously are an exception, as g is not a o-field but just a field.

Example 2.4. As an example of a countably infinite union which is in §o and can be mea-
sured by u without further extensions, let A, (21 = 1] fori =1,2,... be a countably
infinite sequence of disjoint right-semiclosed intervals. Then (U5, A;) = (0, 1] € §o and
therefore, ;1 (U, 1A ) = u((0,1]) = 1. However, this obviously does not hold in general: If
Bi=(1-35,1- 5] then B; € 3y forall i =1,2,... and %, B; = (0,1). But (0,1) is not
right-semiclosed; hence, it is not in §, and therefore, not in the domain of p. &
As can be seen from the example, the structure of the elements in § is too restricted. In
the general case (cf. Sec. L)), the next step is to define the set function y’ (see Lemma[Z3),
which extends y to the class G = {U, A; | A; € Fo} of countable unions of elements in §.
Although we do not go into the details here, note that the class G is still restricted; more
specifically, it is not closed under complement:
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Example 2.5. Reconsider the sequence of sets B; € §, as defined in Ex. and let G =
(0,1). If we define G, = U, B; forn = 1,2,..., then G, 1 G and G € G. Therefore,
with the extension of y to y', we can measure the set G = (0,1). However, its complement
B¢ = (—o00,0]U[1, +00] is still not in G: To see this, note that by definition, the left-semiclosed
interval [1, +o0 | is not in §o. Further, no increasing sequence {C, }, . € So converges to a
left-semiclosed interval. Hence [1,+o0] ¢ G. o

In order to extend u to a larger class of subsets of R, we now develop an extension to
the smallest o-field o () that is generated by §,. To motivate this extension, observe
that in contrast to §o, the o-field o(F) is closed under all countable unions and under
complements.

2.2.2 Distribution functions and Lebesgue-Stieltjes measures

So far, p is a measure on the field § of finite disjoint unions of right-semiclosed intervals.
Now, we apply the extension described in Sec. ZIlto derive a measure on o (§):

Definition 2.7 (Borel o-field). The Borel o-field B(R) is the smallest o-field generated
by the field T, of finite disjoint unions of right-semiclosed intervals, that is, B(R) =
o (go)

Any o-field is closed under countable union and complement (cf. Def. 2. Therefore,
we can imagine B(R) also as the smallest o-field that contains all right-semiclosed inter-
vals. Moreover, the choice of right-semiclosed intervals for the construction of B (R) is ar-
bitrary. For example, 2B (R) contains all closed intervals iff it contains all right-semiclosed
intervals. To see this, note that

[a,b]zﬂ(a—l,b] and (a,b]:U[a+l,b].
n=1 n n=1 n

Similarly, it can be proved that B (R) is the smallest o-field that contains all left-semiclosed
as well as all open intervals.

The extension of the measure y from the field §, to the Borel o-field B(R) = 0(F) is
based on Carathéodory’s extension theorem (Thm.[Z3). In the following, we generalize
the idea of extending u to B(R) such that it also applies to cases, where the measure of
an interval (a, b] is not defined as the difference b — a:

Example 2.6 (Measure of the exponential distribution). Let A € R, and define the func-
tion py ((a,b]) = e — e for all right-semiclosed intervals (a,b]. As we will see
later, ) turns out to be the measure induced by the negative exponential distribution with
rate A. &

To achieve greater flexibility, we do no longer define y ((a, b]) = b — a directly, but use a
distribution function F : R — R instead, where we set u ((a,b]) = F(b) — F(a):
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Definition 2.8 (Distribution function). A distribution function on R is a mapping F :
R — R such that

(a) F is increasing, i.e. F(a) < F(b) forall a < b and

(b) F is right-continuous, i.e. lim,_,+ F(x) = F(a).

By the formula y ((a,b]) = F(b) — F(a), a distribution function F defines a mea-
sure y on the Borel o-field: For example, the distribution function F(x) = x defines the
measure y that we have investigated so far, i.e. y((a,b]) = b —a = F(b) — F(a). Fur-
ther, the negative exponential distribution with rate A is F)(x) =1- e™*. Hence, the set
function y, in Ex.[Z.6is obtained directly by F (x).

In general, there is a one-to-one correspondence between distribution functions and
the so-called class of Lebesgue-Stieltjes measures:

Definition 2.9 (Lebesgue-Stieltjes measure). A measure u : B(R) - Ry on
(R,B(R)) is a Lebesgue-Stieltjes measure iff u(I) < +oo for all bounded intervals I ¢ R.

The class of Lebesgue-Stieltjes measures is the most prominent class of measures on
the Borel o-field. It is related to the definition of distribution functions in the following
sense: Any measure that is defined by a distribution function is a Lebesgue-Stieltjes mea-
sure, and reversely, for any Lebesgue-Stieltjes measure, we can construct a corresponding
distribution function:

Theorem 2.5 (Lebesgue-Stieltjes measures induce distribution functions). Let u
B(R) - Ry be a Lebesgue-Stieltjes measure and let F : R — R be such that F(b)—F(a) =
¢ ((a,b]). Then F is a distribution function.

Proof. Leta,beRanda < b. Then F(b)-F(a) = u((a,b]) > 0. This implies that F(b) >
F(a) and therefore, F is increasing. For right-continuity, let x € Randletx; > x; > x; > -
be a decreasing sequence such that lim,,., x, = x. Then F(x,) — F(x) = u ((x,x,]);
further, as p is a measure, it holds that lim,_,., 4 ((x,x,]) = 0. To see this, note that
lim,_, o (x,x,] = @, which has measure 0. This implies that lim,_ ., F(x,) - F(x) = 0
and lim, ., F(x,) = F(x). Therefore, F is right-continuous. O

For the proof of the reverse direction, we apply the extension results from Sec. 2Lt
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Theorem 2.6 (Distribution functions induce Lebesgue-Stieltjes measures). Let F :
R — R be a distribution function and let y be a function on right-semiclosed intervals
such that u ((a,b]) = F(b) — F(a). Then u extends uniquely to a measure on B (R).

Proof. As before, set u ((a,b]) = F(b) — F(a) to obtain a measure for right-semiclosed
intervals. The first step in the extension is to define y on §y; therefore, let A}, A,,..., A,
be disjoint right-semiclosed intervals in R and define p (U7, A;) = X7, u(A;). This
extends y to a measure on the field §,. To be able to apply Carathéodory’s extension
theorem that extends u to o(Fy), we need to prove that u is a o-finite measure on the
field §o. First, note that y is finitely additive on §(; moreover, it can be proved that p
is also countably additive on §, (cf. [ADDO00, Lemma 1.4.3]). To see that u is o-finite,
note that R = U2, (-n,n] and that y ((-n,n]) = F(n) - F(-n) < +oco. Hence, by
Carathéodory’s extension theorem (Thm.[23)), there exists a unique extension of y to a
measure on d(Fo) = B(R). i

With Thm.Z35and Thm. we have established a one-to-one correspondence between
Lebesgue-Stieltjes measures and distribution functions. Thus, the measure ¢ on right-
semiclosed intervals, that we defined by p ((a, b]) = b — a has a unique extension to the
Borel o-field. In fact, it is important enough to get its own name:

Definition 2.10 (Lebesgue measure). The Lebesgue measure on B (R) is the Lebesgue-
Stieltjes measure induced by the distribution function F(x) = x.

We slightly extend the definition of the Lebesgue measure: Let B(R) be the comple-
tion of *B(R) i.e. any element A € B(R) can be expressed as a union A = Bu M, where
BeB(R) and M € N is a subset of a set N € B(R) that has Lebesgue measure 0.

Definition 2.11 (Borel and Lebesgue measurable sets). Let B(R) the Borel o-field, u
the Lebesgue measure and B(R) the completion of B(R) w.r.t. y. The elements in B(R)
are the Borel measurable sets. If A € B(R), then A is a Lebesgue measurable set.

To extend the Lebesgue measure  to B(R), let A € B(R). Then A = Bu M, where
B,N € B(R), u(N) = 0 and M ¢ N. Therefore, we extend the Lebesgue measure y
from B (R) to a measure on B(R) by setting u(A) = u(B). As the difference between u
on B(R) and B(R) is only w.r.t. sets of measure zero, we do not distinguish between u
and its extension to B (R); instead, we refer to both as the Lebesgue measure.

Another important property of the Lebesgue measure is translation invariance. It will
be essential to prove the existence of sets that are not measurable.
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Lemma 2.7 (The Lebesgue measure is translation invariant). Let y be the Lebesgue
measure, A € B(R) and b eR. Then A® b € B(R) and u(Ae b) = u(A).

Proof. First, let A = |JI; A; € T, with pairwise disjoint right-semiclosed intervals A;.
Then A@ b = J, A; ® b with each A; @ b being a right-semiclosed interval. Hence,
A @b €. Further, for each A; = (a;, b;] it holds that u(A;) = F(b;) - F(a;) =b; —a; =
(bi+b)—(a;+b)=F(bij+b)—F(a;+b)=u(A; ®b). Therefore u(A) = u (U, A;) =
YA =Y u(Aieb)=u (UL, (A;@b)) = u(A®b), proving that the Lebesgue
measure 4 is translation invariant on .

To extend this result to the Borel o-field, we use the monotone class theorem (Thm.22))
and a proof technique which is also used in Thm. &7 in [ADDO0]], Ash calls it the “good
sets principle”. The idea is as follows: Let

C={AcBR)|AobeBR)Au(Aab)=u(A)}
be the class of good sets. First, we have to prove that € is a monotone class:

o Let Ay € A, C - € € be such that A, 1 A. By definition of ¢, it follows that
A, @b e B(R) forall n € N. Further, Ay®b c A,®b c ---. Hence, A, ® b 1
A @ b. But as o-fields are closed under increasing sequences (to see this, note that
Ao b=U; A, ®b and that B(R) is closed under countable union), it follows
that A @ b € B(R). Further, y is a measure, hence y(A @ b) = lim,_, u(A, @ b).
By definition of &, u(A, ®b) = u(A,). Therefore y(A® b) =lim, o, (A, ®b) =
lim,, oo p(A,) = u(A). Thus y(A® b) = u(A) and Ae €.

o Let Aj2 Ay 2--eCsuchthatA, | A. Again, A, +beB(R)and A, &b | Aab.
Further, o-fields are closed under decreasing sequencesas A®b =2, (A, ®b) =
(UZ‘; (A, ® b)c)c. Hence A® b € *B(R). Further, y(A®b) =lim, o, p(A, ®b) =
lim, o p(A,) = u(A). Hence, A € €.

Thus, € is a monotone class. Further, §, € €, as for each A € §,, itholdsthat A® b € §,
and u(A) = u(A @ b). By the monotone class theorem (Thm. 2Z72), we conclude that
0(So) € €. Hence, Ao b e B(R)and u(A) = u(Aeob) foral Ac B(R)andbeR. O

2.3 A set that is not Lebesgue measurable

Now that we have discussed the technical details that allow to derive Lebesgue-Stieltjes
measures from distribution functions and right-semiclosed intervals, we now construct
an example of a set that is not Lebesgue measurable.

Therefore, this section partly answers the question that we posed in the discussion
following Thm. 2 in a more general setting. It turns out that 2% \ B(R) # @; hence,
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although the extensions that we have discussed in Sec. 2L cover a very large class of
subsets (namely B (R)) of the real line, there exist sets that are not Lebesgue measurable.
Even worse, there are uncountably many of them. However, the construction of these
Vitali sets is nonconstructive and relies on the axiom of choice.

Let us start slowly with the definition of an equivalence relation:

Lemma 2.8. Let Q denote the rationals and define a relation ~ C R x R such that
Vx,yeR. x~y <= x-yecQ.

Then ~ is an equivalence relation.

Proof. Reflexivity follows directly as x — x = 0 and 0 € Q for all x € R. For symmetry, let
x,y € R such that x ~ y. Then x — y = z for some z € Q. Equivalently, y — x = —z. But
-z € Q and therefore y ~ x. For transitivity, let x, y, z € Ry with x ~ y and y ~ z. Further,
letx—y=uandy-z=v.Thenx-z=(u+y)-(y-v)=u+v. Nowu,v € Q; hence,
x —z =u+v € Q and therefore x ~ z. O

As usual, let [x]. = {y € R| x ~ y} denote the equivalence class of x € R. Further, let
R = {[x]. | x € R} be the set of all equivalence classes of ~. Then R partitions the set of
real numbers, i.e. JR = R.

Example 2.7. Let x € Q. Its equivalence class [x] _ is the set of all rational numbers, i.e.
[x].=Qasx—yeQforall y e Q. As an example for an irrational number, consider the
constant m € R. It holds [n] .= {y e R|Ju e Q. y=n+u} and [x]_# [7].. &

As it can be seen from the examples above, the definition of ~ is not trivial; in fact, the
set R contains uncountably many equivalence classes, each of which consists of infinitely
many elements.

For the construction of Vitali sets, we restrict to the subset of real numbers in (0,1].
The idea is to pick from each equivalence class [x]_ € R exactly one representative; any
set that contains a representative from each equivalence class is a Vitali set. Formally:

Definition 2.12 (Vitali set). A Vitali set is a set V ¢ (0,1] such that |V n[x]_| = 1 for
all x € R.

Some remarks are in order: First, it turns out that there are uncountably many equiva-
lence classes in R (for a discussion, see [Kan91l]). Second, each equivalence class is count-
ably infinite: To see this, note that all elements y of any equivalence class [x]_ differ in a
rational number. Hence, the cardinality of [x]_ is that of the rationals.

Hence, there are uncountably many possibilities to select a combination of representa-
tives for each equivalence class so that we can construct uncountably many Vitali sets.



32 2.3 A set that is not Lebesgue measurable

However, in this intuitive reasoning, we implicitly assume that it is possible to choose
exactly one representative from each of the uncountably many equivalence classes in 9.
However, this assumption is not so clear: In fact, the existence of Vitali sets depends on
the axiom of choice:

Axiom 2.1 (Axiom of choice). Let X' be a set. For any set X C 2% with X # @, there
exists a choice function f : X — X such that f(X) € X forall X € X.

Therefore, if we set X = (0,1]and X = {([x]_ n (0,1]) | [x]_ € 2R}, the axiom of choice
states that we may select a representative in ([x]_n(0,1]) for each equivalence class
[x]. € R

To prove that V ¢ B(R), we have to investigate the Vitali sets a bit closer: Therefore,
let V be a Vitali set, v € V an element of the Vitali set V and g € Q. Then [v]_ = [v + q]._
as (v+q) ~v. Moreover, if q;,q, € Qwithq; # g and Ve g, = {v+q; e R|v e V} for
i=1,2,then V&g, and V @ g, are both Vitali sets.

Furthermore it holds that (V @ ¢q;) n (V @ g,) = @: To prove this, let x € (V & q).
Then there exists v € V such that x = v + g;. Now assume that x € V @ ¢g,. This implies
that x = v/ + g, for some v’ € V; further,v # v/ as q; # ¢,. Butv' =x - ¢, =v+¢q; — g, and
q1 — q2 € Q; thus v ~ v'. Therefore V n [v]_ 2 {v,v'}, contradicting the definition of V.
Hence, x ¢ V @ ¢,. The same argument applies for the reverse direction, i.e. y € V & ¢,
implies y ¢ V & ¢;. Hence, the two Vitali sets V & g, and V & g, are disjoint.

Another property used in the proof of the next theorem is that (0,1] € [Jyeq (V @ q).
To establish this, fix some x € (0,1] and consider its equivalence class [x] .. By definition,
there exists v € V such that v € [x]_. But then x ~ v and x = v + q for some g € Q. Hence,
x € (V @ q) for some q € Q. Therefore it holds that (0,1] € U, (V @ q). We are now
ready for the proof that Vitali sets are not Lebesgue measurable:

Theorem 2.7 (Vitali sets are not Lebesgue measurable). Let B(R) be the Borel o-
field, completed w.r.t. the Lebesgue measure y and let V be a Vitali set. Then V ¢ B(R).

Proof. Let u be the Lebesgue measure on B(R) and assume that V € B(R). Consider
the sets V & L for n € N,,. By definition, it holds that (V @ 1) c (0,2] for all n € Nj.
Moreover, we have proved above, that the sets V& % and Ve # are disjoint for n, m € N,

and n # m. Therefore i, (V @ 1) c (0,2]. Thus

Oggy(VGB%)zy(n@(V@%))gy((O,Z])=2. (2.3)

By Lemma[Z7} the Lebesgue measure y is translation invariant. Hence /4( Ve %) =u(V)
for all n € N,o. Thus Y7, p (V ®1) =% u(V)and @3) implies 0 < Y2, u(V) < 2.
The only solution to this inequality is u(V') = 0.
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Applying Lemma 27 (translation invariance of y) again, we obtain that y(V @ ¢) =0
for all ¢ € R. But as shown before, (0,1] € yeq (V @ q). This implies

t=u((01)) <u(lJ(Veq)=Yuveq) =0

9€Q q€Q
which is a contradiction. Hence V ¢ B(R). o

Asa consequence of Thm.Z7, we may conclude that although the extension techniques
that we have developed in Sec. ZI]] extend a measure y from a field §, to its generated
o-field o(F) and moreover, to the completion of o(F) w.r.t. u, there generally remain
uncountably many sets (like the Vitali sets in the case of the Borel o-field), that are not
measurable.

2.4 The Lebesgue integral

In order to define a path-based semantics of randomly timed systems like CTMDPs and
IMCs, we need to integrate over uncountable sets of paths. Further, CTMDPs and IMCs
are systems that evolve in continuous-time; hence, we need measures on the Borel o-field
to measure their behavior in the continuous-time domain.

To achieve this generality, we mostly do not use the Riemann integral, which only per-
mits to integrate functions that map from the reals to the real numbers. Instead, we con-
sider the more general Lebesgue integral, which accounts for Borel measurable functions
that map from an arbitrary measurable space to the extended real numbers.

Although the set of Lebesgue integrable functions is a proper superset of Riemann
integrable functions, we have to impose certain measurability conditions.

2.4.1 Measurable functions

To motivate the concept of measurable functions, let (Q,F, 4) be a measure space and
let h : QO — R>. Thus, the function h assigns to each element in Q an extended real
number. Now, assume that we are interested in the measure of the set of all w € Q for
which h(w) € B for some interval B ¢ R*. That is, we aim to compute the measure
p (h™(B)) of the set h"}(B) = {w € Q| h(w) € B}. As p is a measure on (Q,F), itisa
function y : § - RZ; hence, in order for y (h™!(B)) to be well-defined, the set h~!(B)
must be measurable, that is, it must hold that h7'(B) € §.
If we generalize this idea, we arrive at the definition of measurable functions:

Definition 2.13 (Measurable function). Let (Q,,§,) and (Q,,5.) be measurable
spaces. Any function f : O — Q, that satisfies f~'(B) € §, for all B € §, is measur-
able with respect to the o-fields §; and §,.
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We use the notation f : (Q,§1) = (Q2,52) to denote the fact that f is a measurable
function with respect to the measurable spaces (Q;, §1) and (Q,, 5>).

Measurable functions share many nice properties: For example, the composition of
two measurable functions is again measurable:

Theorem 2.8 (Composition of measurable functions). Let f : (Q,F1) — (Q2,52)
and g: (Q,,52) = (Q3,53). Their composition g o f is defined such that (go f) (w;) =
g(f(wy)) for all w, € Q. Then, the function g o f : Q) - Q3 is measurable with respect
to &, and §;.

Proof. The proof can be found in [ADD00, Lemma 1.5.7]. 0

In the general setting above, we let h be defined between two measurable spaces; to
link the definition to the Lebesgue integral, let (€2;, §;) be some measurable space and
set (Q2,52) = (R*,B(R>)). Then h : QO — R* is measurable with respect to (Q, )
and (R, B(R>)) iff 1~'(B) € F for all sets B € B(R*).

Definition 2.14 (Borel measurable function). Let (Q,§) be a measurable space. A
function f: (Q,F) - (R, B(R>)) is Borel measurable.

In probability theory, Borel measurable functions are called random variables, i.e. a
Borel measurable function X : (Q,§) - (R,B(R)) is a random variable. Note that the
Lebesgue integral also permits to integrate functions that map to {+o0, -0 }; however,
within probability theory and also throughout this thesis, it suffices to consider the Borel
o-field B(R) instead of the Borel o-field B(R>) over the extended reals.

Example 2.8 (A function that is not Borel measurable). With the Vitali set construction
from Sec. it is straightforward to derive a function that is not Borel measurable: Let V
be a Vitali set (hence, V ¢ B(R)) and define h : (R, B(R)) - (R,B(R)) such that
h(x) =1ifx € V and h(x) = 0, otherwise. Then h=(1) = V ¢ B(R); hence, h is not Borel
measurable. &

Before we define the Lebesgue integral of Borel measurable functions, let us consider
some properties of Borel measurable functions. As we have already seen, they are closed
under composition. Moreover:

Theorem 2.9 (Pointwise limit of Borel measurable functions). Let (Q,§) be a mea-
surable space. If hy, h,, . .. are Borel measurable functions such that h,(w) - h(w) for
all w € Q and n € N, then the function h (i.e. the pointwise limit of the h,) is also Borel
measurable.
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Proof. For a proof, see [ADD00, Thm. 1.5.4]. O

Further, the class of Borel measurable functions is closed under algebraic operations:

Theorem 2.10. Let h and h' be Borel measurable functions from (Q,§) to (R, B(R)).
Provided they are well-defined, the functions h + h', h — h’, h - h' and h|h’ are Borel
measurable.

Proof. For a proof, see [ADD00, Thm. 1.5.6]. O

2.4.2 The Lebesgue integral

With the introduction of Borel measurable functions, we are now ready to define the
Lebesgue integral. Ultimately, we will define the Lebesgue integral of any Borel measur-
able function h : (Q,F) - (R>,B(R>)) over some measure space (Q,§, #). Therefore,
we proceed stepwise; for the beginning, let us consider simple functions:

Definition 2.15 (Simple function). Any Borel measurable function h : (Q,F) -
(R, B(R>)) with a finite image is simple iff |{h(w) | w € Q}| < +oo0.

As a consequence, a simple function h takes on only finitely many values x;, x5, . . ., x,,
say. Hence, we can partition the domain Q of 4 into finitely many disjoint sets, denoted
Ay, Ay, ..., A, € §, such that the elements in each set A; map to the fixed value x;. For-
mally, let {x;,x5,...,x,} = {h(w) | w € Q} be the image of a simple function h and let
A;={we Q| h(w) = x;}. Then h can be written as the finite sum

h(w) = Zn:xi Iy, (w), (2.4)
i=1

where we use the indicator function I, which is defined for any subset X of a set X such
that

1 ifxeX

Lo = {01 s {0 otherwise.
Hence, in Eq. 2.4), all summands with w ¢ A; are 0, whereas for the (uniquely deter-
mined) set A; with w € A;, we return the value x;.

The idea to define the abstract Lebesgue integral of a simple function 4 : (Q,§) —
(R>,B(R*>)) with respect to a measure space (Q, §, ¢) is as follows: Let y be a measure
on (Q, ) and assume that as before, the sets A;, A,, ..., A, partition the set Q according
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to the finitely many values xi, x,, ..., x, that h takes on. Then we define the abstract
Lebesgue integral of h as follows:

[ h(@) u(do) - z (A, (25)

First, let us fix some notation: If w is clear from the context (and u is unary), we also use
Jo b dy to denote the Lebesgue integral as defined in Eq. @3).

According to Eq. 3), in order to compute [, h dy, we multiply each value x; that the
simple function 4 can take on with the measure of its preimage under h.

Example 2.9 (Interpretation of the Lebesgue integral). Informally, Fig. 2.2 depicts the
construction of the abstract Lebesgue integral: In contrast to the Riemann integral, the
Lebesgue integral computes the area under a curve by measuring each subset A; of Q), where
the step function h takes on value x;; Fig. depicts this partitioning of Q according to
the values that h takes on. Informally, the area that is under those segments of the graph
of h, where h takes on, say value x;, is given by the product of the measure of the segment
and the height of x;, that is, by u(A;) - x;. Consequently we obtain the area under the curve
of h (cf. Fig. by adding up the corresponding products for all values x;, x5, . .., X,. ¢

One further remark is in order here: The Lebesgue integral is defined w.r.t. an arbitrary
measurable space (Q, §, 4). More concretely, notwithstanding its name, it is not limited
to the Lebesgue measure or to the class of Lebesgue-Stieltjes measures!

Up to now, we have defined the abstract Lebesgue integral for simple functions only. To
lift this restriction, we now strive for an extension of the defining Equation (Z3]) to a larger
class of functions. As a first step, consider the class of nonnegative Borel measurable
functions: The idea is to approximate any nonnegative Borel measurable function / by
a sequence of simple functions s that converges pointwise from below to h. Accordingly,
we set

/ hdyzsup{f sdy|sisasimplefunctionand0SSSh}.
) Q

This definition is justified by the following theorem:

Theorem 2.11 (Limit of simple functions). Any nonnegative Borel measurable func-
tion is the limit of an increasing sequence of simple functions.

Proof. A proof can be found in, e.g. [ADD00, Thm. 1.5.5]. O

Although within this thesis, we only need to consider the Lebesgue integral of nonnega-
tive Borel measurable functions, the extension to arbitrary (also negative) Borel measur-
able functions is straightforward:
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X2 X2
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(A1) = p(
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u(A2) = u( [ | [ ]
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(a) Partitioning of Q according to xy, ..., X4. (b) Multiplication of u(A;) and x;.

Figure 2.2: Deriving the Lebesgue integral of a simple function.

Leth: (Q,§) = (R*,B(R*>)) be an arbitrary Borel measurable function. Define the
functions h* and A~ such that

() = {h(w) if h(w) >0 () - {—h(w) if h(w) <0

0 otherwise 0 otherwise.

Obviously, this yields a decomposition of h into two nonnegative functions, i.e. h =
h*(w) — h~(w). Further, the functions h* and h~ are Borel measurable: To see this, we
first show a more general result:

Lemma 2.9 (Maximum and minimum of Borel measurable functions). Let (Q, )
be a measurable space and h, : QO - R and h, : QO — R be Borel measurable functions.
Then their pointwise maximum and minimum are Borel measurable.

Proof. We only prove the claim for the pointwise maximum, as the proof for the point-
wise minimum is completely analogous. Formally, the pointwise maximum of 4, and h, is
the function max (hy, hy) : Q > R : w — max {h;(w), h,(w)}. To prove that max (hy, h,)
is Borel measurable, it suffices to prove that M = {w € Q | max {h(w), hy(w)} < c} €
§. To see this, note that the class {(-o0,c] | c € R} is a generator of B(R). But M =
{w]|h(w)<c}n{w]|hy(w) < c}; from the fact that h; and h, are Borel measurable, we
directly conclude that {w | (w) < ¢} e Fand {w | hy(w) < ¢} € F. As § is closed under
intersection, we derive that M € §. m|

To extend the Lebesgue integral to a Borel measurable function h = h*(w)-h~(w) given
as above, note that h* = max(h,0) and h~ = —min(h, 0), where 0 denotes the constant
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(hence Borel measurable) function 0 : QO — R* : @ ~ 0. With the result of Lemma 29
h* and h~ are Borel measurable. Thus, we can define the Lebesgue integral of h as the

difference
/hdyz/h*dy—/h’dy,
Q Q Q

as long as the term does not have the form (+o00) — (+00), in which case the Lebesgue
integral of h does not exist.

2.4.3 Properties of the Lebesgue integral

Even though it is much more general than the Riemann integral (cf. Sec. Z44), the
Lebesgue integral shares most of the properties that are commonly known from classi-
cal integration theory:

Theorem 2.12. Let (Q, 3§, p) be a measure space and h : (Q,F) - (R*,B(R*)) be a
Borel measurable function. The Lebesgue integral w.r.t. u satisfies the following properties:

(a) If c € Ris a constant and h a Borel measurable function such that [, h du exists, then

Joc-hdyexistsand [yc-hdu=c- [, hdy.

(b) If h is nonnegative and A € §, then
f hdu= sup{f s du | s is a simple function and 0 < s < h}.
A A

(c) If [, h dy exists, then [, h dy exists for all A € §.

Proof. The proof can be found in [ADD00, Thm. 1.5.9]. 0

Note, that with the property stated in Thm. ZI2(H) and Thm. ZIX(@), we obtain a means
to compute the integral of a Borel measurable function over any set A € §. Thus, we are
no longer restricted to the abstract Lebesgue integral over the entire set Q.

Theorem 2.13 (Monotone convergence). Let h; < h, < --- be an increasing sequence of
nonnegative Borel measurable functions from (Q,F) to (R, B(R*)). Further, define
h(w) =lim,_o hy(w) forallw € Q. Then ., h, du — [, h du for n - oo.

Proof. The proof can be found in [ADDO00, Thm. 1.6.2]. 0
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In order to prove properties of the Lebesgue integral of a Borel measurable function, it
is often useful to start with nonnegative simple functions; if we manage to prove the
property for all simple functions, we know by Thm. 211} that any nonnegative Borel mea-
surable function is the limit of an increasing sequence of nonnegative simple functions.
Now, the monotone convergence theorem (Thm. [Z13) states that the Lebesgue integral
of an increasing sequence of nonnegative simple functions converges to the integral of
their limit. Thus, we have established the property on all nonnegative Borel measurable
functions. What remains is the extension to arbitrary Borel measurable functions. This
can often be done as in Sec. 2242 by decomposing the function h in question into a pos-
itive and a negative part, i.e. h = h* — h~. Within the thesis, we make use of this proof
strategy in, for example, Lemma[.2 on page @3l

Finally, to support the intuitive reasoning with Lebesgue integrals, we remark that they
satisfy the usual additivity property:

Theorem 2.14 (Additivity). Let h and g be Borel measurable functions on (Q,F). If
g + h is well defined (i.e. not of the form +oo — 00), then

/Q(gm) dy:_[ggdw_/ghdy.

Proof. The proof can be found in [ADDO00, Thm. 1.6.3]. O

2.4.4 Comparison between the Lebesgue and Riemann integral

As we will see in this section, the Lebesgue integral is more versatile than the classical
Riemann integral. More precisely, it will turn out that any Riemann integrable function
is Lebesgue integrable w.r.t. the Lebesgue measure; hence, the Lebesgue integral extends
the Riemann notion of integrability. Moreover, it is more versatile in the sense that it
permits to integrate any Borel measurable function; moreover, the domain of integration
and the corresponding measure may be given as an arbitrary measure space (Q,§, ).

These arguments justify the use of Lebesgue integration within this thesis: We need
to allow the domain of integration to be, e.g. the set of paths that describe the evolution
of a system, and not just the real numbers. Further, we make heavy use of measurable
functions which appear in the integral, but which are not Riemann integrable in general.

Figure[2.3(a)|depicts the idea for the derivation of the Riemann integral: Let [a,b) € R
be the domain of integration and let x; < x, < x3 < --- < x,, with x; = a and x,, = b induce
the partitioning P = /5 {[x;, xi11) } of [a,b). Fori =1,2,...,n—1, the upper and lower
Riemann sums are defined as

M; =sup{h(x)|x €[x;,xi11)} and

m; = inf {h(x) | x € [x;, xi11)} , respectively.
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A
h(x) | h(w)
x=a x; X3 X3 X5 Xe %7 Xg x9 xp xuxz b R Q
(a) Upper and lower Riemann sums for a (b) The supremum of the limit of simple
partitioning a<x;<---<b of the integration functions defines the Lebesgue integral.
domain.

Figure 2.3: The derivations of the Riemann and the Lebesgue integral.

Now, let a(x) = M; and B(x) = m; for x € [x;,x;11). Thus, & and f3 are simple functions
so that U(P) = fab a duand L(P) = fah S du form the upper and lower sums given h and
a partitioning P (see Fig.2.3(a)).

Let P, Py, ... be a sequence of partitions of [a, b) such that Py, refines P, and let
a1, oy, ... and fi, o, . .. be the corresponding simple functions. Moreover, let ||P|| =
MaXoic|p,| (Xi+1 — x;) be the maximum length of the intervals in Py. If we assume that
the refinement from Py to Py, is such that limy_,., || Px|| = 0, i.e. if the length of all blocks
of the refined partitions become infinitesimally small, thena; > a, > - > h > --- > 8, > f31.
Hence, limj_ o ax = & and limy_, o, Bx = B, for the pointwise limits a and . Further, from
the definition of « and f one can derive that k is continuous (that is, lim,_,. #(x) = h(c))
iff a(x) = B(x) (to see this, consider the limit of a sequence of refined partitions).

With these preliminaries, the function h is Riemann integrable on [a, b) iff

[ adu= [ pau

holds independent of the partitions chosen to construct & and 8. Accordingly, the Rie-
mann integral of 4 on [ 4, b) is then defined as the value fab « dy (or equivalently, fab B du).

The next theorem provides another characterization of Riemann integrability. More-
over, it states that for bounded intervals, every Riemann integrable function is also Le-
besgue integrable w.r.t. the Lebesgue measure:

Theorem 2.15. Let I = [a, b) be an interval with a,b e R, a<band h: I - R.

(a) h is Riemann integrable on I iff h is continuous almost everywhere on I with respect
to the Lebesgue measure.
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(b) If h is Riemann integrable on I, then h is Lebesgue integrable on I. In this case

ﬂh(x) dx = /;h du,

where y is the Lebesgue measure.

Proof. The proof can be found in [ADDO00, Thm. 1.7.1]. O

In Thm. the term “almost everywhere” needs some explanation: If (Q, 5, y) is a
measurable space (in the case of Thm. set QO = R, § = B(R) and y the Lebesgue
measure) a property holds almost everywhere on a set A € § w.r.t. measure y iff the set
B c A of elements where it fails has measure 0. We denote this by stating that the property
holds a.e. [#]. Note that when it comes to Lebesgue integration over a domain A € §, it
does not matter whether a property holds on all or almost all elements of A: In both cases,
for the exceptional set B where the property is violated, it holds y(B) = 0. Hence, albeit
the difference, the integrals are equal.

Now consider the converse direction: The Dirichlet function is an example of a function
that is Lebesgue integrable w.r.t. the Lebesgue measure, but not Riemann integrable: Let
h:R - {0,1} be such that

h(x) = {1 ifxe@'
0 otherwise.

Then h is a nonnegative simple function and hence, it is Lebesgue integrable. Moreover,
if B € B(R), we have that [, h du = u(BnQ), where y is the Lebesgue measure. Further,
the rationals are a measurable set in B(R) and their Lebesgue measureis 0, i.e. 4(Q) = 0.
Thus [, h dy = 0 for all B € B(R).

Further, & is not Riemann integrable, as it is discontinuous on any interval [a, b) with
a < b. To see this, note that for each block I = [x;,x;,;) of a partition P of [a, b) and
all x € I'it holds that a(x) =1as I n Q # &; further, f(x) =0as I\ Q # @.

Hence ay # B, no matter how fine the partition P is chosen. Thus, the upper and
lower sums of the Riemann integral do not converge to the same limit.

2.5 Product o-fields

The scope of this thesis is on finite-state systems. Their behavior is fully described by
the path (or trajectory) along which they evolve. Among other things, on such a path
we record which states have been visited and how long the system sojourned in each of
those states. For example, the latter information (i.e. the sojourn time) is obtained as
the outcome of a random experiment with a continuous probability distribution. As we
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might expect, it turns out that any single such path has probability zero; therefore, we
need measure theoretic arguments to measure sets of paths.

Now, a path may lead through arbitrarily many states, each of which involves random
experiments. Hence, from a measure theoretic perspective, a path describes one outcome
of a compound experiment which is composed of multiple stages.

This section is divided into four parts: First, we discuss in Sec. ZZ5Jhow to construct
multi-dimensional measurable spaces that capture events in compound random experi-
ments.

With these results, the next natural question is: How can we measure these higher-
dimensional events? We approach the technicalities slowly in Sec. where we only
describe the construction of 2-dimensional measures. After that, we extend these results
in Sec. and define measures on higher-dimensional product spaces.

Finally, in our systems, we also need to consider infinite paths. To formalize them,
Sec.Z5dlintroduces the cylinder set construction and the necessary tools to extend finite-
dimensional product measures to the infinite case.

2.5.1 The construction of finite-dimensional product spaces

To obtain finite-dimensional product spaces, the starting point are measurable rectangles:
Assume that two measurable spaces (€);,§1) and (Q,, §,) are given. A natural first step
to describe their product is to consider Cartesian products of the form A; x A,, where A;
and A, are elements of the o-fields §; and >, respectively.

Aslong as only finitely many measurable spaces are involved in this construction, these
Cartesian products are (finite) measurable rectangles:

Definition 2.16 (Measurable rectangle). Fori=1,2,...,n, let (Q;,§;) be measurable
spaces. A Cartesian product X;_; A; = Ay x Ay x - x A, with A; € §,; fori=1,2,...,nis
a measurable rectangle. We use

é§i=&®3z®”'®3n={A1><A2X"'><An|Ai€3i}
i=1

to denote the set of all measurable rectangles over the measurable spaces (Q;,§;).

So far, the class of measurable rectangles is severely restricted: For example, it is neither
closed under complement nor under any (finite or countably infinite) union.

Hence, we strive for an extension of the measurable rectangles to obtain a class of
subsets of the entire space Q = Q) x Q, x -+ x Q,, that is closed under complement and
countable union. Hence, we consider the smallest o-field generated by the measurable
rectangles:
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Definition 2.17 (Product o-field). Fori=1,2,...,n, let (Q;,§;) be measurable spaces.
The product o-field is the smallest o-field generated by the measurable rectangles. It is
denoted 0 (", 5:).

Similar to the construction of the Borel o-field % (R), which is obtained as the small-
est o-field generated by the field of finite disjoint unions of right-semiclosed intervals
(cf. Sec. Z2), we can identify the field of finite disjoint unions of measurable rectangles
as a generator of 0 (®7, F;). Hence, all results obtained in Sec. 2} and most notably,
Carathéodory’s extension theorem and the monotone class theorem carry over to the
finite-dimensional case. In the next lemma, we prove that the class of finite disjoint
unions of measurable rectangles is indeed a field; moreover, the lemma states that it gen-
erates the smallest o-field over the measurable rectangles:

Lemma 2.10. Let (Q;,5;) fori = 1,2,...,n be measurable spaces and define i\ as the
collection of finite disjoint unions of measurable rectangles in Q_, §;. Then t is a field

and 0 (QL, §:) = o (L).

Proof. To prove that U is a field, it is useful to first establish that 4l is closed under finite
intersection: Therefore, note that the set @, §; is already closed under finite intersection,
forif A,B e ®",§;, then A =X" A;and B= X" ,B;and AnB = X", (A;nB;). As
each §; is a o-field, it follows that (A; N B;) € §;. Hence, An B e ®", 5.

With this observation we are ready to show that also il is closed under finite inter-
section: Let A,B € 4. Then A = JI", Ay and B = \J"_, By, where Ay = X", A; and
By = X?:l By i with Aki» By € $i. Then

ANB-= (UXAk,i) N (U XBk’,i) = U U >< (Ak,,- N Bk/),-) = U U Ak N By (26)
k=1 i=1 k=1 i=1 k=1 k/=1 i=1 k=1k/=1
As shown before, Ay, By € @}, §; implies that Ay n By € ®}, §;. Hence, the disjoint
union of the sets (A N By) is also in &; but then Eq. (2.6) implies that An B € 4.
Now we come to the proof that il is a field. Therefore we verify properties (@), (b))
and (©) of Def. 2Tt

(a) Forallie{1,2,...,n} itholds that Q; € §;. Thus, the set Q = X, Q; is in L.

(b) To show that il is closed under complement, let A € L. Then there exists m € N such
that A = JJ*, Ax and Ay € @7, F; forall k € {1,2,...,m}. Hence, each set Ay is a
Cartesian product of the form Ay = Ay x Agy x -+ x Ay, where Ay ; € §; for all
i=1,2,...,n. Moreover, the complement A of each Ay has the form

Al = (Aic,1 X Agp X -+ X Ak,n) T} (Ak,l x Ai,z X Agz X X Ak,n)



44 2.5 Product o-fields

W e (Ak’1 X Agy X Az X - X A?{,n)
. c c . ¢ ¢
W (Ak,1 X Ay X Ags x e x Ak,n) W (Ak,1 X Agp X AQ 3 X Agg X oo X Ak,n)

o oeee c 4 c c
ey (Ak,l X Afy X Afz X oo X Ak,n)'

Now, Ay; € §; implies that A} ; € §;. Hence, each A{ is a finite disjoint union of
measurable rectangles. Thus A € U forallk =1,2,...,m.

With these preliminaries, the proof that A¢ € il is easy: By de Morgan’s law, we have
A¢ = (UIL Ax)" = N}, AS. But as shown in the beginning, {l is closed under finite
intersection. As each A$ is an element of &I, we conclude that A€ € 4.

(c) To prove that i is closed under finite union, let A, B € 4l. Then there exist constants
m,m’ € N such that A = |J{_, Ay and B = UZ};IB,(, for sets Ay, By € QL 5.

Now, let C = AuB. Then C = UZ:]’"’ Ci,wherefork =1,2,...,m+m’,welet Cy = Ay
for k < m and Cy = By_,,, otherwise. Then each Cy is a measurable rectangle.

By de Morgan’s law, C = ( plasd ]C()C and by part (b)), it holds that C{ € 4. As shown
in the beginning, {{ is closed under finite intersection, hence N™™ C; € Y. Now

C € 4l follows again by part (D).

Thus U is a field. The fact that @7, §; < U directly implies that 0 (Q!, F:) € o (U). For
the reverse direction, note that 4 € 0 (®7, ;). Hence, () € 0 (®F, §:)- O

Another property of product o-fields that is used in this thesis is the following: If
(Q;,F:) isa measurable spacefori =1,2,...,n,then o (0 (®?:’11 S,») ® Sn) =0 (®",35:).
Hence, we may “append” a o-field §, to a product o-field o (®77'F;) by constructing the
set of 2-dimensional measurable rectangles, where the first component is an element in

! §; and the second component is in §,. Then, the smallest o-field they generate
coincides with the n-dimensional o-field which we would have obtained if we began
the construction right from the beginning with the class of n-dimensional measurable
rectangles.

2.5.2 Measures on two-dimensional product spaces

We start the definition of measures on product spaces with the simple case of a two-
dimensional o-field. Therefore, let (0,1, ¢1) and (Q,, §2, 42) be measure spaces and
let A € 0 (F) ® §2) be an element of the product o-field.

In probability theory, the event A corresponds to a set of outcomes (w;, w,) € A of a
two-stage experiment, where w; is the outcome of the first and w, the outcome of the
second experiment. If the two experiments are independent (that is, the outcome w; of
the first experiment does not alter the probability distribution of the second experiment)
and A = A, x A, is a measurable rectangle, we expect the measure of A to be the product
of the measures of A; and A,, thatis, u(A) = u1(A;) - p2(Az).
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This idea transfers to arbitrary elements A € ¢ (§; ® §;) (i.e. elements in 0 (F; ® )
that are not Cartesian products):

Example 2.10. Consider the two-stage random experiment where two fair dice are thrown.
Then Qy x Q, = {1,...,6}" serves as the sample space and §; = 2% (for i = 1,2) form the
corresponding o-fields.

Aneventsuchas A = {(w, w;) | w; + w, > 6} is not a measurable rectangle; for example,
(1,5),(5,1) € Abut (1,1) ¢ A. Thus, depending on the outcome w; of the first experiment,
we are interested in different events in §,: If w, = 1, we are only interested in outcomes w,
of the second experiment that are in A, = {5, 6}; if w; = 2, we only measure those w, which
are in A, = {4,5,6}, etc. &

If A € 0(31®3F,), we call the function A(w;) = {w, | (w;, w,)} the section of A at w;.
Intuitively, for any given outcome w; of the first experiment, the section A(w,) is the
set of those outcomes w, of the second stage, that make the “product outcome” (w;, w,)
admissible with respect to the event A.

Hence, the general idea to obtain a measure ¢ on o (F; ® §,) from independent mea-
sures p; and p, is to multiply the measure y(dw,;) of any possible outcome of the first
experiment with the measure of the section A(w;) of admissible outcomes w, € A(w,).
Formally, we obtain

w(@) = [ o (Aw)) m(dy). @7)

To motivate the next step, we come back to the special case of probability measures:
Up to now, we have assumed that the outcome w; of the first experiment does not alter
the way we measure the events that occur in the second experiment. Now we drop this
assumption and consider compound experiments where the probability measure for the
second stage depends on the outcome of the first stage’s random experiment.

Formally, instead of a single measure p, on (Q,,§>) (as in (Z7)), we now assume that
for each w; € €, we are given a separate measure y(ws,-) : §» = R on (0, 32). In
this setting, we obtain a measure of the event A € ¢ (F; ® §,) by multiplying the mea-
sure u(dw,;) with the measure of the intersection A(w;). Formally, we obtain

p(A) = [ o (wn Aw)) u(da). 2.8

Note that for each A, € §,, the measures in {¢,(w;, ) | w; € O} induce a function on Q,
namely (-, Az) + O - R : w; = py(wi, Ay). Further, note that for the integral in
Eq. Z3) to be well-defined, the function w; — y, (w;, A(w;)) must be Borel measurable.
It can be proved, that this is the case if we require the functions y, (-, A,) : Q; - R to
be Borel measurable for all A, € §,, i.e. if (-, A,) is Borel measurable for all A, € §,
then y, (w;, A(w;)) is Borel measurable w.r.t. (), §;) forall A € 0 (F1 ® 5>).

The construction of a 2-dimensional measure on ¢ (§, ® §) from the measure y; and
the measures y,(w;, ) is described formally in the next theorem:
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Theorem 2.16 (Two-dimensional product measure theorem). Let (Qy, 51, p1) be a
measure space with o-finite measure y, and let (Q,,§,) be a measurable space. More-
over, for each w; € O, let pr(ws,-) : §» = R be a measure on (Q,,F>) such that for
each A, € §,, the induced function p,(-, Ay) + Oy — R wy = py(wi, A,) is Borel
measurable.

If the uy(wy, -) are uniformly a-ﬁniteﬂ, then

po(eF) RS A [ s (enA() m(de)

is the unique measure such that for measurable rectangles (A; x A,) € § ® §, it holds

u(Arx A,) = '[Al a1, Az) p(dws).

The measure u is o-finite; it is a probability measure if y, and each of the y,(w,-) are
probability measures.

Proof. The proof can be found in [ADD00, Thm. 2.6.2]. O

As we mostly consider probability measures (which are uniformly o-finite), we can con-
clude from the above theorem, that given a probability space (Q;, §1, p1) and a family
of probability measures {¢,(wy, ) },, ., on the measurable space (Q,,§>) such that the
induced functions (-, A,) are Borel measurable for all A, € §,, the integral

p(A) = [ (@ Aw)) w(dw)

is the uniquely determined probability measure on the product o-field o (F; ® J>).

With Thm. 16, we have a means to construct measures on two-dimensional prod-
uct o-fields. Moreover, it enables us to define the Lebesgue integral in two dimensions.
Therefore, let QO = Q) x Q, and § = 0 (F ® §2) as before. Analogous to the derivation
of the (one-dimensional) Lebesgue integral, if we are to derive the (abstract) Lebesgue
integral of a two-dimensional function h : O - R>, we have to assume that / is Borel
measurable, i.e.

h:(Q,3) ~ (R”, B(R”)).
Then

/Qh(wl,wz) p(dw, dw,) (2.9)

"The class of measures y,(w;, ") is uniformly o-finite iff there exist By, B,, ... € §, and corresponding
ki, ko, ... such that Q, = U2, B; and p(wy, B;) < k; for all w;.
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is the abstract Lebesgue integral of h. However, Eq. (Z9) does not give a clue of how to
compute with such integrals. More precisely, from an algebraic point of view, it is useful
to express the integral [, h(w;, w,) p(dw;, dw,) as an iterated integral (in this case, as
two integrals w.r.t. O, and (,, respectively). Furthermore, for algebraic reasoning it is
often useful if we can exchange the order of integration. In the remainder of this thesis,
we make heavy use of both techniques; this is backed up by Fubini’s theorem, which is
stated next:

Theorem 2.17 (Fubini’s theorem). Let (Q;,5) and (Q,,F,) be measurable spaces,
Q=0 x0, § =0(51®3F2). Further, let y; : § - RS, be a o-finite measure and
let ur(wy,-) :+ o — R be uniformly o-finite measures for each w, € Oy such that
w(HA) : (Q,81) — (RS, B(RS)) forall A € Fs.

Ifh: (Q,F) - (R*,B(R*>)) is a Borel measurable function such that the integral
Jo h(w1, 02) p(dwy, dw,) exists, then the integrals sz h(wy, ;) pr(wy, dw,) also exist
for almost all wy, € Qy [p,]. Further, the function E(wl) = sz h(wy, w;) Ur(wy, dwy) is
Borel measurable and

th(wl,wz) u(dor, da) = /Q /th(wl,wz) wa(wn, dwy) w(dwr).

e

Proof. For a proof, we refer the reader to [ADDO00, Thm. 2.6.4]. o

In the case that the measures y,(w;, -) do not depend on wy, i.e. if the measures y,(w;, )
in Thm. 17 are all equal and independent of w;, we use y = y; x y, to denote their
product measure on o (F; ® §,). In the special case that g = y; x y,, Fubini’s theorem
permits to change the order of integration:

Corollary 2.1 (Changing the order in iterated integration). Let (Q;,$, 1) and
(Q2, T2> p2) be measure spaces with o-finite measures py and p,. Further, let Q = O x Q,,
S=0($1985) and p = py x pp. If h: (Q,§F) - (R, B(R>)) is a Borel measurable
function such that [, h(wi, w;) u(dw;, dw,) exists, then

/h(wl,wz) pt(dwl,da)z):/ / h(wy, wy) pr(dwy) p(dawy) (2.10)
0 o Jao,

= /;22 /;)lh(wl,wz) pi(dw) pr(dwy). (2.11)

Proof. To see that Eq. (ZI0) holds, apply Thm. ZIA with y,(w;,-) = y, for all w; € Q.
Then Eq. (Z11)) follows by symmetry. m]
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2.5.3 Measures on finite-dimensional product spaces

In the previous section, we have introduced the construction of a measure for two-di-
mensional product spaces and established the theory necessary to extend Lebesgue inte-
gration to those product spaces. With these preliminaries, the next step is rather straight-
forward; in fact, we only generalize the ideas of the two-dimensional case to all finite-
dimensional product spaces:

Theorem 2.18 (Finite-dimensional product measure and Fubini’s theorem). Let
(Q;,F:), i = 1,2,...,n be measurable spaces, Q = X', Q;, § = 0(QL,§;) and
let u; : Q - R be a o-finite measure. For each j € {2,3,...,n -1} and tuple
(wl, Wy s wj) € XL Q, let pj(wr, 0y, ..., wj,+) : §j = RS be a measure. Moreover,
assume that the induced function

!,[j(-,~,,,,,-,C):QIXQZX---ijxng—)IR;’)

is Borel measurable for each C € § ., i.e. {(wl,wz, o)) | p(w, w05, C) € B} €
o (®f=1 Si)for all Be B(RE). Let O = XL, Q; and § = 0 (QL, §).

(a) Product measure theorem:
There exists a unique measure y on § such that for each measurable rectangle A; x
Ay x-ox A, e QLT it holds:

B Arxa) = [ e [ (o den)

fA Mn—l(wl)wb---)wn—Z)dwn—l)/; (@1, 0y ...y Wy 1, dw),).
n—1 n

(b) Fubini’s theorem:
Ifh:(Q,F) - (R>,B (R>)) is a Borel measurable function such that the integral
Jo By, w3, ..., w,) u(dwy, dw,, ..., dw,) exists, then

fhdu=f m(dwl)f uz(wl,dwz)---f U1 (@1, @2, Wyp, dWy_y)
Q O Qy Qp-1

_/Q h(wy, sy .. s ) pn( @1, @25, 01, dy)
and each of the integrals w.r.t. puj(wy, ..., wj"), j = 1,2,...,n exists for al-

most all (w1, w,...,w;) and is a Borel measurable function (szl Q;, ®{:1 S,-) -
(R, B(R>)).

Proof. The proof can be found in, e.g. [ADD00, Thm. 2.6.7]. O
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So far, the product measure theorem (Thm. ZI8@)) only states how to define the mea-
sure 4 on measurable rectangles in ®, §;. To obtain the measure of an arbitrary element
in their product o-field § = 0 (®!, F:), we use Fubini’s theorem: Obviously, if A € §,
then the indicator function I, is Borel measurable with respect to §. If we set h = I,
in Thm. ZI8(D), we obtain an explicit representation of the measure of A in form of the
iterated integral

#(A): /;2 ,ul(d(l)l)./;2 [/‘2((01,()1(02)“‘./;2 [/tn,l(wl,a)z,...,a)n,z,dwn,l)

/;2 h(wb W, ..., wn) #n(wh Wy, ..., Wy, dwn)-

Similar to the two-dimensional case and Corollary 21} Fubini’s theorem also permits
to change the order of integration in the n-dimensional case provided that the measures
4wy, ws, ..., wj,-) do not depend on the values of w, w,, ..., w;, i.e. if for each j =
1,2,...,n there exists a measure y; on §; such that y;(w;) = pj(wy, ws, ..., wj,-) forall
(wl, ces wj_l) € X{.:ll Q;: If this is the case, we denote by y = p; x pp x--- x p,, the product
measure on §.

Now;, let y = py x pyp x -+ x p, be such a measureand let h : (Q,F) - (R, B(R*>))
be a Borel measurable function such that the integral f, h dy exists. Then

/hd#:f #il(da’il)/ #iz(da’iz)“‘f h(winwiza--wwin)#in(dwin)
Q Qil Qiz an

for any permutation (i, i,...,i,) of {1,2,...,n}.

2.5.4 Infinite product spaces

In this section, we extend the construction of the product o-field and the correspond-
ing product measure theorem to countably infinite products and the corresponding mea-
sures. A fundamental tool in this construction are the so-called cylinder sets:

Definition 2.18 (Cylinder set). Fori=1,2,..., let (Q;,T:) be measurable spaces. Then
Q = X2, Q; is the set of all tuples of the form (w,, w,,...), where w; € Q; for all i € N.
For a set B" ¢ X}, Q;, let

B, = {(wl,wz,...) e X Q; | (w, w,...,0,) eBn}
i=1

be the cylinder set induced by the base B". The cylinder set B, is measurable iff B" €
0 (QL,5:). If B" € X, Q; is a Cartesian product, its induced cylinder B, is an infinite
rectangle; moreover, if B" € @', §;, then B, is an infinite measurable rectangle. We use
Q2,5 and 0 (®:2, i) to denote the class of infinite measurable rectangles, respectively
the smallest o-field they generate.
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Informally, a cylinder set B, with base B" ¢ X[, ; can be constructed as follows:
Take each finite sequence (wy, ws,...,w,) in the base B" and extend it in all possible
ways, that is, by all infinite extensions (@41, Wps2,--.) € X2, Qi. The result is a set
of infinite sequences {(wy, Wz, ..., Wy, Wyr1, W2 - -+) € X5y | (Wps1> Wpsas - -) € X521}
that have (wy, w,, ..., w,) as a common prefix. Then the cylinder set B, is the union of
all those extensions of n-tuples in B”. FigureZA4ldepicts the cylinder set construction. To
ease notation, we sometimes also use Cyl(B") to denote the cylinder B, induced by the
base B".

Cylinder sets are the building block of infinite product spaces. Therefore, let us con-
sider their properties in more detail: For the moment, let 25 = {B,, | B" € 0 (", T:)} be
the class of measurable cylinders.

Then 27 is a field: Obviously, Q; € §; is a measurable base of Q; hence Q € 20. For
the closure under complement, note that the complement of a measurable cylinder is
induced by the complement of its base, which is measurable. Moreover, any measurable
cylinder A,, € 20 with a finite base A™ can also be represented by a longer base, i.e. by a
base of the form A" = A™ x X!, .| Q;, where n > m. To see that 20 is closed under finite
union, let A,,, B, € 4l be measurable cylinders with bases A” and B" and assume w.l.o.g.
that m < n. Then (A"x X", ., Q;) UB" € 0 (Q",§;) is a measurable base of A,, U B,,.
Therefore A,, u B, € 4. With this extension in mind, it can be proved along the same
lines as for the proof of Lemma [ZI0, that the class of finite disjoint unions of (infinite)
measurable rectangles forms a field.

In order to relate measurable cylinders and measurable rectangles, we note that both
classes generate the same o-field. Hence, the infinite product o-field o (20) and the o-
field 0 (®:,§;) generated by the class of infinite measurable rectangles are the same:

Lemma2.11. Fori=12,..., let (Q;,§;) be measurable spaces. Then

a(él)g) - U(QH). (2.12)

XT:]._QI_‘,,

o0
><i:n+1 ‘Qi

cylinder B,

Figure 2.4: Construction from a cylinder set from a finite-dimensional base.
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Proof. Let n range over N. Further, recall that by definition it holds that ¢ (®:%,F;) =
0 ({B,|B"e®",5:}) and 0 (20) = 0 ({B, | B" € 0 (R, 5:)}). We split the proof of
Eq. @I2) in two parts:

e 0(®2,F:) € 0 (20): This follows directly, as the fact that @, F; € 0 (®L, F:)
implies 0 ({B, | B" € ®7.,5:}) S0 ({B, | B" € 0 (Q,T:)})-

e 0 (W) c 0(®;2F:): To establish this direction, we have to prove the inclusion
0({B,|B"€0(®"LTi)}) € o({B,|B"e«®",T:}) Hence, it suffices to show
that all measurable cylinders B, are in ¢ (®;2, §:). Therefore, let B, € 20 be a
measurable cylinder with a measurable base B" € 0 (®7, §;) of length n.

With the good sets principle, let

n (o)

¢ = {B" € a(®§i) | By € 0(®§")}

i=1 i=1

be the class of measurable bases which induce cylinders in 0 (®;7, ;). Note that
by definition, both o(®?:1 5 i) and 0(®§’:I T i) are o-fields; hence, € is a monotone
class. Further, the field 4 of finite disjoint unions of measurable rectangles of di-
mension n (cf. Def. on page A3) is contained in €. Then o(4) S € by the
monotone class theorem. By Lemma 20l it holds that o(4l) = 0 (®!, §;); hence

0 (®L;3i) € €.
Therefore, let B, € 20 be a measurable cylinder with base B" € 0 (®, §;). Then
B" € €. Thus, B, € 0 (®:, §:), proving the claim. o

As a consequence of Lemma ZTI, from now on we use 0 (®:2, §;) instead of o(20J) to
denote the smallest o-field generated by the class of measurable cylinders.

With these definitions, we are ready to derive the product measure theorem for the
infinite case. As within this thesis we only need to consider probability measures on
infinite product spaces, we restrict the exposition to the case of probability spaceﬁ and
do not consider the case of arbitrary measure spaces.

Theorem 2.19 (Ionescu-Tulcea extension theorem). Let (Q,,F,) (withn = 1,2,...)
be measurable spaces and § = 0 (®:,§;). Further, let P, be a probability mea-
sure on §) and for each n = 2,3,... and for all (wy, wys...,w, 1) € XI5 Q, let
P,(w1, s, ..., W, 1,") be a probability measure on §,,. Assume that for eachn =1,2,...
and A € F,, the induced function P,(-,A) : X! Q; - [0,1] : (0, 3,..., W, 1) =
P,(wy, wy, ..., w, 1, A) is measurable w.r.t. o (®7:’11 &).

?In fact, the Ionescu-Tulcea construction that is used in the proof of Thm.ZI9 does not apply to arbitrary
measures in a straightforward way.
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Forn=1,2,..., let P, : 0 (®,§;) = [0,1] be the induced probability measure on the
n-dimensional product o-fields (cf. Thm.[ZI8), that is

Py(B) = [ R(de) [ Poondw) [ Pra(@n0n 002 doyn)

/;) IB”(wb w2>---)wn) Pn(wl)wZ)--->wn—1)dwn)

forall B" € 0 (R, §;). There exists a unique probability measure P on § such that for all
n € N, P agrees with P! on n-dimensional measurable cylinders, that is, for all measurable
bases B" € 0 (®",F;) it holds

P,(B") = P(B,),

where B, = {(w1, ws,...) € Q| (w1, w3, ..., w,) € B"} is the cylinder induced by B".

Proof. We do not go into the details here, but refer the reader to [ADDO00, Thm. 2.7.2].0

The intuition for the infinite product measure theorem is simple: In fact, it states that
if we have measures for all measurable bases, we obtain a unique measure on measur-
able cylinders if we define the probability P(B,) of a cylinder B, € o (®",F;) as the
probability P} (B") of its base B" € 0 (§,§).

The fact, that simply setting P(B,,) = P/ (B") yields a well-defined probability measure
is not so clear. To see this, recall that any given cylinder B,, has several bases of different
lengths. For example, if n > m, any extension of B of the form B" = B™ x X, ., Q; in-
duces the cylinder B,,. However, a consequence of the uniqueness property in Thm.
is that the probabilities of those alternative bases all coincide with P! (B"). Therefore, it
does not matter which base we choose to define the measure of B,,.

2.6 Concluding remarks

In this section, we gave a survey of the measure theoretic foundations that are needed
throughout this thesis. As will turn out in the next section, we need the cylinder set
construction and infinite product o-fields to define infinite trajectories of continuous-
time Markov decision processes and interactive Markov chains. Moreover, the Lebesgue
integral and Fubini’s theorem allow to define their semantics precisely.

Most of the material presented here is based on chapters one, two and four of the
excellent book “Probability & measure theory” by Robert Ash and Catherine Doléans-
Dade [[ADDO0]. Other references include the book “Real Analysis and Probability” by
Richard Dudley [Dud02]] and “Probability and Measure” by Patrick Billingsley [Bil95].
Some remarks about the difficulties in extending the notion of length to a class of subsets
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of the reals that is larger than the Lebesgue measurable sets can be found in the German
book “Stochastik fiir Informatiker” by Rudolf Mathar [MP90]] and in [Ben76].

The proofs of Lemma 2.6l and Lemma as well as the proof of Lemma [ZI]] are
mostly omitted in the literature. Hence, they have been proved anew and adapted to
Ash’s notation, which is used throughout this thesis.

Finally, some enlightening details about the Vitali set construction, especially about
the cardinality of the sets involved, can be found in the English translation of Kanovei’s
paper [Kan9ll]. The remaining material presented in Sec. 23]is mostly based on a lecture
note [VRS92]] from Radboud University, Nijmegen.






3 An overview of stochastic models

Proof is the idol before whom
the pure mathematician
tortures himself.

(Sir Arthur Eddington)

In this thesis, we discuss a variety of probabilistic and stochastic models that describe
the system behavior either in discrete or in continuous time. Therefore, this chapter in-
troduces the basic models that we will use throughout the thesis. For each model, we try
to convey its informal behavior before we formally define its semantics.

As our models evolve in time, their behaviors are described as the outcomes of com-
pound random experiments which can be formalized in an infinite-dimensional product
space, where each dimension corresponds to a fixed time-point. We refer to Sec. 2.5 4 for
the probability theoretic construction of such spaces. The underlying mathematical tool
that allows us to reason about these models formally, is called a stochastic process.

Accordingly, this overview chapter starts by shortly introducing the concepts of dis-
crete and continuous stochastic processes. Then we discuss the special cases of discrete-
and continuous-time Markov chains in more detail, as their properties are essential for
the class of models that we are confronted with. Most of the material that we provide here
is based on the standard textbook [Kul95], which provides an excellent introduction to
Markov processes.

In the second part of this chapter, we introduce nondeterminism in Markov chains
and thereby obtain discrete- and continuous-time Markov decision processes, where the
latter are at the core of our studies in the forthcoming chapters. Discrete-time Markov de-
cision processes are discussed in the textbook [Put94] in great detail. Moreover, [[Put94]
contains an introduction to continuous-time Markov decision processes in Chapter 11.

3.1 Stochastic processes

As we aim at an algorithmic verification mechanism for nondeterministic and stochastic
systems, we are mostly interested in the subclass of stochastic processes that have a finite
state space, as they can be stored in finite memory. Within the scope of this thesis, we
therefore restrict to systems that have a finite state space. In this setting, a stochastic
process is defined as follows:
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Definition 3.1 (Stochastic process). A stochastic process on a finite state space S is a
collection { X, },., of random variables X,, where the parameter t ranges over a parameter
set T. Each X, takes on values that are in the finite state space S.

Usually, the parameter ¢ is interpreted as time; accordingly, for ¢ € T, the value of X is
the state that is occupied by the stochastic process at time ¢. In case of a discrete stochastic
process, the parameter set T is a subset of N (finite or countably infinite), whereas for
continuous stochastic processes, the set T is a connected subset of R,o. To ease notation,
we use the natural numbers to refer to the discrete time parameters and the nonnegative
reals for the continuous time domain.

To describe one possible evolution of a stochastic process, let 7: T — S be a function
such that 77(t) € S describes the state that the stochastic process occupies at time ¢. Each
such function describes a trajectory of the underlying stochastic process; in mathematics,
each m: T — S is called a sample path of the stochastic process.

Now, a stochastic process {X;}, , evolves randomly along one of its sample paths.
Therefore, a sample path can be seen as one possible outcome of the compound random
experiment that is associated with the entire stochastic process. To link this view of a
stochastic processes to the measure theoretic results of the previous chapter, we define
the sample space of a stochastic process as the collection of all its sample paths, i.e. we set
Q={n:T—- S8} =38T. Accordingly, each random variable X, is a measurable function
X, : (Q,F) = (S,25), where § denotes the o-field generated by the measurable cylin-
derdl. Hence, given a sample path 7: T — S, the random variable X; maps 7 to the state
that is occupied on 7 at time ¢, i.e. X,(7r) = 7(t).

Now, let P be a probability measure on the measurable space (Q,F). If we are inter-
ested in the probability that at time ¢ € T, the stochastic process is in state s € S, we have
to compute the probability measure of the set of all sample paths that are in state s at
time t. Formally, this probability can be denoted as follows:

P({X,=s}) = P(X7(5))
—P({n: T~ 8| X,(m) =s})
—P({n:T~S|n(t)=s)).

3.2 Markov chains

Markov chains are a prominent subclass of stochastic processes; they are particularly pop-
ular, as their analysis is relatively easy, while their expressiveness suffices to describe a
broad variety of stochastic phenomena that change randomly over time. As instances of

'In Chapter @lwe only defined countably infinite cylinders. This concept can be generalized to uncount-
able cylinders (see [ADD00]); however, it is not needed in the context of the thesis.
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stochastic processes, Markov chains can either be discrete or continuous, depending on
their underlying notion of time.

The Markov property distinguishes Markov chains from other stochastic processes: In-
formally, it states that the behavior of a Markov chain in a state s € S at time t € T is
independent of the states that have been visited before. Hence, it only depends on the
current state s and the global time ¢. This locality makes Markov chains especially attrac-
tive for an analysis. The formal definition of a Markov chain with a finite state space can
be stated as follows:

Definition 3.2 (Markov chain). A stochastic process {X,} . with a finite state space S
and a parameter set T is a Markov chain iff for all n € N and for all decreasing sequences
of time instances t,.; > t, > t,.1 > - > t; > to € T and states s; € S, it holds that

P ({th+1 = 5n+1} | th =Sy th71: S”—I’thfzz Sp_2s .. ’Xto — SO)
= /2 ({th+1 = Sn+1} | th = Sn) .

Definition B2 formalizes the Markov property: Intuitively, it states that if the current
time is t, and n+1 steps of a Markov chain have been observed at time points ¢, < #; <
t, < -+ < t,, the probability to be in state s,,,; at time t,,, > t,, does only depend on the
state s, that is occupied at the current time ¢, and not on the states s¢, sy, ..., s,_;, that
have been occupied before at times to, t;, ..., t,;.

Note that the Markov property does not state that being in state s at time ¢ implies that
the probability to be in state s,,,; at a later time #' = t+§ € T is the same for all times ¢ € T.

Hence, in general, the probability to move from a state s,, within § time units to state s,
may vary depending on the time  at which we are in state s. Stated differently, the future
behavior of a Markov chain may depend on the current time t.

However, within this thesis, we assume the Markov chains to be invariant to time shifts.
Such Markov chains are called time-homogeneous:

Definition 3.3 (Time-homogeneous Markov chain). A Markov chain {X,} ., is time-
homogeneous iff for all states s, s’ € S and for all times t' > t € T it holds that

P(Xu=5}|Xi=5)=P({Xps =5} | Xo=5).

In the following, we restrict to time-homogeneous Markov chains and discuss their
discrete- and continuous-time variants. By definition, both share the appealing property
that for a given current state s, the future evolution of the Markov chain is completely
determined by the state s alone. In particular, it does neither depend on the states that
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have been visited in the past (Markov property), nor does it depend on the amount of
time that has passed (time-homogeneity).

In the next section, we start the discussion with the conceptually simple model of
discrete-time Markov chains.

3.2.1 Discrete-time Markov chains

The elements of the parameter set T of a discrete-time Markov chain (DTMC) are inter-
preted as discrete-time steps. Accordingly, the set T is usually identified with the natural
numbers.

The values of the random variables X, of a DTMC {X,}, ., are understood as the
state that the DTMC occupies after n time steps have passed. As before, the Markov
property states that the probability to move from the state X, = s, to a state X,,.; = 5,11
is independent of the trajectory that led into state s,,. Moreover, we assume any DTMC
to be time-homogeneous. In the discrete-time setting, this implies that

P{Xu=5}|Xu=5)=P{Xpn=5}|Xmn=5) (3.1)

for all discrete time points m,n € N. Hence, the probability to move from state s to
state s’ does neither depend on the state sequence that has been traversed before, nor
does it depend on the number of time steps that have passed.

Let {X,}, be a DTMC and define

pos =P({Xi=5"} | Xo=5). (3.2)

Then p; ¢ is the probability to move from state s to state s’, independent of the number
of steps or the trajectory taken so far. Taking the p, ¢ together, they form the one-step
transition probability matrix P, where P € [0, 1]°"° is defined by P(s,s’) = ps. Note that
there are no deadlock states in the definition of a Markov chain; therefore Y .5 P(s,s’) =
1 holds for all states s € S.

Definition 3.4 (Stochastic matrix). A matrix P ¢ [0,1]°"°

it holds Y.y s P(s,s") = 1.

is stochastic iff foralls € S

From the definition, it comes as no surprise that the one-step transition probability
matrix P of a DTMC is a stochastic matrix, i.e. the probabilities to move from a state s to
some successor state s’ € S sum up to one:

Lemma 3.1. Let {X,},. be a DTMC. Its one-step transition probability matrix P is a
stochastic matrix.
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Proof. Lets € S. Then it holds

Y P(s,s) = > pov=> P({Xi=5"} | Xo=5)

s'eS s'eS s'eS
P({XieSnXy=5s}) P({Xo=s})

P({Xo=s})  P({Xo=s})

We are nearly done in completely describinga DTMC: The only missing item is an initial
distribution which specifies the probability to start in a certain state s. We use v € Distr(S)
to denote an initial distribution and interpret v(s) as the probability to start in state s € S.

Now recall, that the random variable X, describes the state in which the DTMC starts.
Hence, v specifies the probability distribution associated with the random variable Xj.
As we will see, the initial distribution and the matrix P uniquely determine a DTMC,
which is characterized by the probabilities

—P({X €S} | Xo=5) = L o

P({Xy=5s})=P(X;'(s)) =P({n:N S| n(n) =s}).

According to our previous remark, an initial distribution v serves as the probabil-
ity distribution of the random variable X, i.e. P ({Xy =s}) = v(s). Moreover, by the
Markov property and time-homogeneity, each p; ¢ is equal to the conditional probability
P ({X,11 =5'}| X, =s). As we have the probability distribution for X fixed by v, we can
use the conditional probability P ({X; = s} | X, = s) to obtain the probability distribu-
tion for X;, thatis

P({Xi=s}) =Y P({Xo=5}) P({Xi=5"} | Xo=5).
seS
In the same way, we obtain the probability P ({X, = s'}) = Y s P({ X1 = s})-P({ X, = s'} |
X, = s) from the probability P ({ X; = s}). Obviously, this inductive idea extends to all X,,.
Formally, we obtain the probability distribution of X, by the matrix vector multiplication

PoX;l=7-P", (3.3)

where v = (v(s0),v(51),...,v(s,)). Equation (B3] formalizes the transient behavior of
a DTMC. Having the one-step transition probability matrix P and the initial distribu-
tion v, one can compute the probability distribution for each random variable X,, of the
associated DTMC. We conclude that a DTMC is completely described by P and v:

Theorem 3.1. A DTMC is uniquely determined by a one-step transition probability ma-
trix P € [0,11°° and an initial distribution v € Distr(S).

Proof. The proof follows directly from the Markov property and the restriction to time-
homogeneous DTMC:s. Its details can be found in [Kul95, Thm. 2.2]. O
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Theorem Bl allows for another interpretation of DTMCs: From a modeling point of
view, a DTMC can be imagined as a transition system model, where each transition from
a state s to a successor state s’ is labeled with the probability p; + and moreover, the state
changes occur at discrete clock ticks that are global to the system.

Therefore, for the remainder of the thesis, we define a DTMC as follows:

Definition 3.5 (Discrete-time Markov chain). A discrete-time Markov chain is a tu-
ple D = (S,P,v), where S is a finite, nonempty set of states, P : S x S — [0,1] is a
stochastic matrix and v € Distr(S) is an initial distribution.

This definition allows for a graphical representation of DTMCs, the so-called state
transition diagram. We introduce this representation by means of an example:

Example 3.1. Consider the DTMC D depicted in Fig. BIt The state space is the set S =
{s0, 1, $2, 83 }. Moreover, the initial distribution and the one-step transition probability ma-
trix are given as follows:

1 1 1

0 7 3 3

(11 o & 19
v=(—,—,0,0) and P-= 22
22 07 0%
001 0

With these two ingredients, we can compute the probability distribution of any random
variable X,, of the DTMC’s stochastic process { X,, } .- For example, we obtain the following
distributions for the first two time steps in D:

P(X,=)=9-P- (o,l,i,i) and  P(Xy=:)=7-P?- (0,3,1,3).
2712712 16 3 48
In Sec. Bl a sample path of a stochastic processes {X,},., is defined as a function
7 : T — S with the intuition that if the outcome of the stochastic process is 7, 7(t) = s
means that the process is in state s at time point t € T. Thus, in the special case of a
DTMC {X,},.» a sample path is a function 77 : N - S. However, in the remainder of
the thesis we use an alternative (but equivalent) representation of sample paths, that is
directly related to the transition diagram of a DTMC. Instead of using a function N - S,
we denote sample paths as countably infinite sequences of states.
Using this notation, a path in a DTMC has the form

TT=8y—>8 —> 8§ —> 8§ —>

and describes the sequence of states that have been traversed in the state transition di-
agram of D. The link to the sample path definition in Sec. B is established by not-
ing that each infinite sequence 7 is in a one-to-one correspondence with a sample path
' :N— S :nw n[n], where n[n] = s, denotes the (n+1)-th state on 7.
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Figure 3.1: The state transition diagram of the DTMC.

Additionally, we sometimes also consider finite paths. Accordingly, we let Pathsy, de-
note the sets of paths of length n in D, where the length of a finite path 7 is denoted |7|
and determined by the number of states on 7. Consequently, Pathsy, = (J52, Paths” is the
set of all finite paths in D and Paths}, denotes the set of all infinite paths in D. In the
following, the reference to D is omitted whenever it is clear from the context.

The geometric distribution and the memoryless property

A DTMC is closely related to a geometric distribution: Imagine a sequence of random
experiments, which either succeed with probability p € (0,1] or which fail with proba-
bility (1 - p). Now, let X be a random variable for the number of trials that we need to
undertake until we succeed for the first time. Formally, we can describe the probability
that the n-th experiment is the first that succeeds as follows [ADDO0Q, p. 328]:

P({X=n})=(0-p)""p.
Hence, the probabilities P({X = n}) for n = 1,2,3,... form a geometric sequence. To
see this, note that P({X = n+1}) is obtained by multiplying P({X = n}) with the con-
stant factor (1- p). With these preliminaries, the geometric distribution has the discrete
probability distribution function F(#n) given by

F(n)=P({X <n})=>P({X=1i}). (3.4)

n
i=1

The last term in Eq. (34) is a geometric series. Using the well-known formula }}_, ark =
a(rn+171)

——, we can express F(n) as follows (where a =1and r = (1- p)):

(A-p)-1
(1-p)-1
Hence, we can also interpret F(n) as the probability that we do not see # failures of the

random experiment in a row.
An interesting property of the geometric distribution is that it is memoryless:

F(n):ga—p)k-lp:pg(l—p)k:p 1o p)
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Theorem 3.2 (The geometric distribution is memoryless). Let X be a random vari-
able with a geometric distribution with parameter p € (0,1). Then

P{X>n+k}|X>n)=P({X>k}). (3.5)

Hence, the geometric distribution is memoryless. Moreover, all discrete probability distri-
butions that are memoryless are geometrically distributed.

Proof. We first prove Eq. (3.3):

P{X>n+knX>n)} P{X>n+k})
P({X>n}) - P({X>n)

P{X>n+k}|X>n)=

From the derivation of the probability distribution function F, we know that P ({X > x}) =
1-P({X <x})=1-F(x).Hence

PUX>nek)) 1-Firk) 1-(=(py™) _ (=p)™*
P({X > n}) 1-F(n)  1-(1-(01-p)")  (1-p)" '

Now P ({X > k}) =1-F(k) = (1 - p)*, thereby proving Eq. B3).

We prove that the geometric distribution is the only discrete probability distribution
which is memoryless: We proceed by contraposition and assume that Y is a discrete
random variable which is memoryless, but not geometrically distributed. Further, let
Fi(y) = P({Y > y}). As Y is memoryless, it must hold that P({Y >n +k} | Y > n) =
P ({Y > k}). By the law of total probability, we obtain

Fy(n+k)=P({Y>n+k})
=P{Y>n+k}|Y>n)-P({Y>n})
=P({Y>k})-P({Y >n})
= Fy(k) - Fy(n)

for all n,k € N. Therefore F5(2) = Fy(1)? (choose n=k=1) and Fy(3) = Fy(1) - Fy(2)
(with k=1and n=2). But then F{(3) = F;(1)°.

According to this reasoning, we have that Fy,(m) = F;(1)™ for all m € N,,. Now, the
only discrete function g that satisfies g(m) = g(1)™ has the form g(m) = g™ for some
g € R. Hence, F,(m) = q™ for some q € (0,1). Moreover, Fy(m) =1- F;(m) =1-q™,
which is the distribution function of the geometric distribution with parameter p =1-g4.
Hence we obtain a contradiction, as the random variable Y is geometrically distributed.o

To see how the geometric distribution is related to our definition of a discrete-time Markov
chain, recall that we require a DTMC to have the Markov property. Now, the time that a
DTMC spends in a given state s is geometrically distributed. To see this, let (S,P,v) bea
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DTMC and fix an arbitrary state s € S. If the random variable N (defined on {1,2,3,...})
describes the number of time steps that the DTMC remains in state s, then

P({NZI}) =1-pss
P({NZZ}) (1 pSS) : s,s
P({N:3}) (1 Pss)' Ps.s

Hence, we have that N is geometrically distributed with p =1 - p,.

This is not a random coincidence: Intuitively, the Markov property states that the in-
formation that the DTMC has been in a state s for a certain amount of time already, must
not influence the distribution of the remaining sojourn time.

At this point, we conclude the discussion of DTMCs, inevitably leaving many theoret-
ical gaps open. However, we have covered the fundamental properties that we will need
in the remainder of this thesis. An otherwise important topic that we have ignored com-
pletely, is the definition of a DTMC’s steady state. It can be imagined as the probability
to be in a given state of the DTMC after a (very) long time. However, in the controlled
Markov processes that we investigate later, steady states generally do not exist. Hence,
we do not go into the details here but refer to the broad selection of literature about the
topic, for example [Kul95].

3.2.2 Continuous-time Markov chains

After having introduced discrete-time Markov chains, this section discusses their contin-
uous-time analogue. A continuous-time Markov chain (CTMC) is a Markov chain { X, },_;
with parameter set T = Ry, such that each random variable X, describes the state of the
CTMC at time point ¢.

Compared to DTMCs, the definition of CTMC:s is slightly more involved. Similar to
DTMC s, the Markov property also applies to CTMCs: If a CTMC is in state s, € S at
time t, € Ry, its future behavior does not depend on the states s,,_1, 5,2, . . ., 51, So, that
have been observed at some time points t,_; > t,, > ... > t; > t5 € Ry. Formally, the
Markov property for CTMC:s is stated as follows: Let A € S be a set of states and n € N.
For all decreasing sequences of time points t,,; > t, > === > t; > t; € Ry and states
Sp>Sn_is- .- 5S1, S0, it holds that [Hav00, Sec. 4.1]

P ({thﬂe A} | th = Su» th%: Syu—1>+-- ,th =S Xto = S())

P({Xyc A} | X=s). OO

It is important to note a subtle difference to the discrete-time case: There, Eq. (B.1)) (see
page G8) summarizes the Markov property and time-homogeneity for DTMCs by con-
sidering a discrete time step. As this discrete notion of a time step does not exist in
CTMCs, the probability P ({X,,,,€ A} | X, = s,) in Eq. (B8) depends on the amount of
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time A, = t,,; — t,, that has passed since the last time (¢, in our notation), the state of the
CTMC has been observed. We will come back to this point later, when we discuss the
transition probabilities of a CTMC.

The second important property of a CTMC is time-homogeneity. Together with the
Markov property in Eq. (B.6), time homogeneity is expressed as follows:

P({X,, cA}| X, =s,)=P({XpecA}| Xo=5,). (3.7)

Therefore, Eq. (3.7) implies that the future behavior of a CTMC depends only on A; and
on the current state s,,. In particular, it does neither depend on the previous history (by
Eq. 39)) nor on the amount of time ¢ that has passed (cf. Eq. (3.7)) before the current
state was entered at time ¢,,. In Eq. (37) and Eq. (B.6) we may interpret ¢, as the current
time and ¢ + A, as the time in the future, when we observe the state of the CTMC again.
For a time period A; > 0, the probability to move from the current state s, to a state in
the set A € § within A, time units is determined by some parameter A € R., such that

P({Xa, €A} | Xo=5,)=A-Ar+0(A,), (3.8)

where the second summand o(A,) denotes the probability that multiple transitions oc-
cur within time interval [0, A;). The Landau notation o(A,) that is used in Eq. (B.8) is
defined such that for functions f, g : R - R it holds that f € 0(g) < lim,_ % = 0.
Therefore, for small enough A,, the probability that we “miss” intermediate transitions
can safely be ignored.

With these remarks, we can interpret Eq. (3.8) as follows: If the time A, that has passed
since the last observation of the CTMC's state is short enough, the probability to move
from state s, to a state in the set A scales linearly with parameter A > 0.

Hence, the knowledge about the current state of a CTMC and the parameters A com-
pletely describe the future behavior of a CTMC. In the discrete-time case, the number of
steps thata DTMC sojourns in a state is geometrically distributed (cf. Sec. BZT). Similarly,
the Markov property and time-homogeneity imply that the sojourn times in a CTMC
obey the exponential distribution. Before we continue the discussion of the behavior of
CTMC:s, let us shortly recall the important properties of the exponential distribution:

The exponential distribution

The exponential distribution is a continuous probability distribution which is determined
by a rate parameter A € R.,. Figure B2 plots its cumulative distribution function for
different rate parameters.

Definition 3.6 (Exponential distribution). Let A € R, be a rate, t,z € Ry, and

fi(t) = Ae™ and
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Figure 3.2: Plot of the exponential distribution (cdf) for rates A = 0.2,0.5,1 and 4.

Fy(z) = /OZfA(t) dt - _[Ozae—h dt=1- e,

Then f, is the probability density function and F) the camulative distribution function
of the negative exponential distribution.

From Def.B.6l we can directly conclude:

Corollary 3.1. The rate A € R, uniquely determines an exponential distribution.

In contrast to DTMC, where a transition between a pair (s,s’) € S x S of states are
taken at discrete time steps with a certain probability P(s,s’), CTMCs are continuous
stochastic processes. Therefore, the transitions in a CTMC are characterized by a transi-
tionrate R(s,s"). Ina CTMC, the value R(s, s') is interpreted as the rate of an exponential
distribution which governs the transition’s delay. Similar to the DTMC case, a CTMC is
completely characterized by its transition rate matrix R and an initial distribution. As we
have seen in Sec. B2 the time that a DTMC stays in the same state (given by the number
of discrete time ticks) obeys a geometric distribution. The exponential distribution is its
counterpart in the continuous-time domain:

Theorem 3.3 (The exponential distribution is memoryless). Let X be a random vari-
able with an exponential distribution. Then

PU{X>x+k}|X>k)=P({X>x}) (3.9)

for all x,k € Ryy. Hence, the exponential distribution is memoryless. Moreover, any
continuous distribution which is memoryless is an exponential distribution.
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Proof. The proof is similar to that of Thm.BZand can be found in, e.g. [Kul95, p. 189].0

If X and Y are two independent, exponentially distributed random variables with
rates A; and A,, then the minimum of X and Y is again exponentially distributed:

Lemma 3.2. Let X ~ Exp(\,) and Y ~ Exp(A,) be independent random variables with
rates Ay, A, € Ryg. Then P ({min(X,Y) < z}) = (1 - e-W+42)2) for all z € Ry,

Proof. For the proof, we consider the joint distribution of X and Y:
P({min(X,Y) <z}) = Py ({(x,y) € R%; | min(x, y) < z})
= ’[000 (’/(;Oolmin(x,y)Sz(x)y) e L ey dy) dx
- fo fwa“ Aae™ dy dx + fo Z fy Thie T dye Y dix dy
- /OZ AL e dx 4 /OZ Nae2r oMy dy
- fz Ao~ (i) gy 4 fz e ieh)y g,
0 0

= /z (Al + Az) . e_(A1+A2)t dt — (1 _ e_(A1+A2)Z) . -
0

Hence the class of exponential distributions is closed under minimum.
In a similar way, we can prove that the probability that the outcome of the random

experiment associated with X is less than that of Y is given by the fraction MTM :

Lemma 3.3. For two independent random variables X ~ Exp(A,) and Y ~ Exp(,) with
rates A, Ay € Ry it holds P({X < Y}) = MTM.

Proof. Again by the joint distribution function:

oo y
P({X<Y})=Pyy ({(x,) eRY [ x < y}) = / Ape (f Ay dx) dy
0 0
= '/‘“’Azef)tzy (1_641)/) d)’zl— /‘w/lze,)tzyef)hy dy
0 0

) A )
=1- ~h+2)y gy =1 - 2. / —(h+h2)y
1 /0 e dy T (A +1y)e dy
A, M

Tt M+ A

=1
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Obviously, we obtain P ({Y < X}) = T M in exactly the same way. Moreover, we can
prove in the same way as in Lemma 3.3 73 that the probability that the value of the i-th
random variable is the smallest of a sequence of independent random variables X; ~
Exp(Ay)fork=1,2,...,nis < ZZ o . Finally, as the exponential distribution is continuous,

we have for any exponentially distributed random variable X that P ({X = c¢}) = 0 for all
c € Ryo.
With these preliminaries, we are ready to fully describe the behavior of a CTMC:

The definition of continuous-time Markov chains

A continuous-time Markov chain is defined by its transition rates R(s,s’): For states s
and s’, the value of R(s, s”) specifies the rate of the transition that leads from state s to its
successor state s’. If no such transition exists then R(s,s’) = 0. The values R(s, s") € Ry
form the transition rate matrix of a CTMC . Roughly, it is the continuous-time counter-
part of a DTMC’s one-step transition probability matrix.

If X, ¢ ~ Exp(R(s,s")) denotes the random variable that is distributed with rate R(s, s),
then X can be understood as the delay that is needed for the transition from state s
to state s’ to execute. For multiple successor states, consider the situation depicted in
Fig. B3t Here, transitions lead from state s, to states s;,s, and s;. Each of them has an
exponentlally distributed delay, described by the rates R(so, s1), R(s¢,s2) and R(so, s3),
respectively. Two obvious questions arise if we consider the behavior in state sy:

(a) What is the probability to take the transition to, say, state s,?

(b) How long is the sojourn in state s4?

The three transitions that leave state s, compete for execution, that is, the first transition
whose delay expires, executes and determines the successor state. Therefore, we may
reformulate question (@) and ask for the probability that the delay of the transition that
leads to state s, expires before the delays of the other two transitions. Formally, this
corresponds to the probability that the sample drawn for the random variable X

less than the samples drawn for X, ,, and X, ;:

0,52

0,51

P ({XSO »$2 = 50 31} {XSO »$2 = 50)53 }) ¢

As the random variables are independent, we obtain in the same way as in the proof of
Lemma[B.3 that

R(So, 52)
R(sg, 1) + R(sp,52) + R(s0,83)

P({XSOSZ > 031} {XSOSZ > 30,33}) =

The situation depicted in Fig.B.3lis known as a race condition, as the outgoing transitions
compete for execution according to their associated rates.

To answer question (D), note that the sojourn time in state s, is governed by the time
that it takes for the first transition to execute. As this equals the minimum delay of the
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Figure 3.3: Race condition in a (fragment) CTMC.

outgoing transitions, the sojourn time in state s, is described by the random variable Y, =
min { X, 5, Xsy.5,> X505 - By LemmaB.Zl we conclude that the probability distribution of
the sojourn time Yj in state s is

P({Yo <z}) = P({min (X5 X0 Xepury) < 2}) = 1= 7 (REus)mRE2)mR052))2
=1- ¢ Elo)z,

Hence, the sojourn in state s, is exponentially distributed with the sum of the rates of all
transitions that leave state so. Formally, this sum is the exit rate of state s, and defined as
E(s9) = Yyes R(s0,5") = R(s0,81) + R(s0,52) + R(sp,53). Thus, the sojourn time Y in a
state s is obtained by the equation

P{Y<z))- /OZE(s)e-E@f dt = (1- e 5%

As in the case of DTMCs, we also use state transition diagrams to graphically represent
CTMCs, where we augment the transitions with the corresponding entry in the CTMC'’s
rate matrix (instead of the probabilities that are given by a DTMC’s one-step transition
probability matrix).

Definition 3.7 (Continuous-time Markov chain). A continuous-time Markov chain is
a tuple (S, R, v), where S is the finite set of states, R : S xS — Ry is the two-dimensional
rate matrix and v € Distr(S) is an initial distribution.

As done in [BHHKO3]], we assume that the CTMC does not contain deadlock states
and require that E(s) = Y .5 R(s,s") > 0 for all states s € S.

If we abstract from the sojourn times in a CTMC, we obtain its embedded DTMC: Let
(S,R,v) bea CTMC. Its embedded DTMC (S, P, v) is given by the probability matrix P
defined as P(s,s’) = RE(S(’;)’ ) Intuitively, for states s,s’ € S the value of P(s,s') is the
probability that the transition that leads from state s to state s’ in the underlying CTMC
executes first. In this way, the embedded DTMC abstracts from the timing information

in a CTMC and only considers its time-abstract behavior.
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3.3 Nondeterminism in stochastic models

In the previous section, we discussed discrete and continuous time Markov chains. These
models are complete in the sense, that their underlying stochastic process is uniquely
determined. In this section, we extend the notion of a Markov chains and also allow that
nondeterministic choices may occur in the model. Thereby, we arrive at the definition of
discrete- and continuous-time Markov decision processes.

We follow the same route as in Sec.B.2and consider discrete-time Markov decision pro-
cesses first. Afterwards, Sec. discusses continuous-time Markov decision processes
in detail.

3.3.1 Discrete time Markov decision processes

Discrete-time Markov decision processes [Bel57, [How71, Ber95, [Put94] (MDPs) have al-
ready been discovered in the late 1950’s. They are applied widely in mathematics and oper-
ations research. Moreover, with value iteration [Bel57)] and policy iteration [How60], two
techniques exist which are well understood and permit to solve MDPs algorithmically.

In computer science, MDPs are of particular interest: As discovered by Vardi [Var85],
they allow us to model the behavior of randomized distributed algorithms. An example
of such an algorithm is a leader election protocol, where ties are broken by probabilistic
choices [IR90].

Furthermore, the support of nondeterminism in MDPs allows us to use abstraction
techniques such as simulation relations to reduce the state space of discrete-time Markov
chains and MDPs [DJJLOI]. In this application, states with different behavior are grouped
together, yielding a set of different possible probabilistic behaviors. As the identity of the
underlying states is hidden in the abstract system, their different behaviors give rise to
nondeterministic choices. In this way, abstracting DTMC:s yields discrete-time Markov
decision processes.

Each state of an MDP is equipped with a finite set of one-step transition probability dis-
tributions, each of which is uniquely identified by an action. Hence, the actions indicate
the nondeterministic choices available in a state.

Definition 3.8 (Discrete-time Markov decision process). A discrete-time Markov
decision process (MDP) is a tuple (S, Act,P,v), where S and Act are finite, nonempty
sets of states and actions and v € Distr(S) is an initial distribution. Moreover,
P : SxAct xS — [0,1] is a three-dimensional probability matrix which satisfies
Yyes P(s, a,5") € {0,1}.

Let M = (S, Act,P,v) be an MDP. An action a € Act is enabled in a state s € S iff
Yes P(s, a,s”) = 1. Accordingly, the set

Act(s) ={aeAct| Y P(s,a,s') =1}
s'eS
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is the set of enabled actions in state s. We require that |Act(s)| > 0 for all states s € S. Note
that this is no restriction, as any deadlock state with Act(s) = @ is never left. Therefore, it
can safely be equipped with a self-loop transition P(s, a, s) = 1 for some action « € Act
without altering the MDP’s semantics.

As for DTMCs and CTMCs, the initial distribution v quantifies the probability that the
MDP starts in a certain state. We say thata state s € S is an initial state of the MDP M if its
initial distribution is degenerate and of the form v = {s > 1}. In this case, the evolution
of the MDP definitely starts in state s. In principle, Def. B8lcould be extended to allow for
sets of initial distributions. However, to simplify the technicalities, throughout this thesis,
we assume that nondeterministic models are equipped with a fixed initial distribution.

The behavior of an MDP can be described as follows: The first state of the MDP is
determined by the initial distribution v. When entering a state s € S, each enabled action
a € Act(s) corresponds to one possibility to resolve the nondeterministic choices that are
represented by the set of enabled actions Act(s). More precisely, each action identifies a
probability distribution P(s, «,-) € Distr(S), where P(s, «, s") is the probability that the
MDP moves from state s to successor state s’. In general, several actions are enabled in
state s, denoting different probability distributions. Therefore, to reason about probability
measures in MDDPs, it is necessary to resolve the nondeterminism by choosing one action
from the set Act(s).

Markov decision processes, whose set of enabled actions are singletons, i.e. if |Act(s)| =
1 holds for all s € S, are semantically equivalent to DTMCs. To see this, note that such
an MDP does not contain any nondeterministic choices as only one selectable action
remains in each state. Conversely, each DTMC can be construed as an MDP of the above
form. Therefore, the class of DTMCs is a proper subclass of MDPs.

Note that the Markov property also holds for MDPs, that is, after an action a € Act(s)
has been chosen, its effect only depends on the current state s and not on the states that
have been traversed before.

Example 3.2. Figure[B.4 depicts an MDP with initial state s,. A nondeterministic choice
occurs between actions « and B upon entering state s;; all other states are deterministic,
that is, their sets of enabled actions are singletons. If action « is chosen in state s, the
probabilities to move to states s, or back to sy are P(s;, a, ;) = % and P(s;, a,s0) = %,
respectively. For action f3, the probability to reach state sy or state s, is zero; instead, we
stay in state s; with probability P(s;, ,s1) = 3 and move to state s; with the remaining

probability P(s,, 8, s3) = 1. &

4

Formally, a path is a finite or infinite sequence of states and actions. Whereas paths in
MDPs are time abstract, we need to consider time-dependent paths later. To distinguish
between the two variants, we mark the sets of time-abstract paths with subscript abs. Ac-
cording to this notation, Paths},, = S x (Act x §)" denotes the set of all paths of length #;

abs

similarly, Paths},, = |32, Paths),. and Pathsy,, = S x (Act x §)“ denote the sets of finite

abs abs
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Figure 3.4: An example of a discrete-time Markov decision process.

and infinite paths, resp. For notational convenience, we describe paths in the form

@o (451 o2
TT=8) —>8§ —> Sy —> *-.

If 7 is a finite path that ends in state s,, we use 7} = s, and || = n to denote the last
state on 7 and the length of 7, respectively. Informally, a time abstract path records the
states and actions that are traversed by an MDP and thereby describes one instance of
the random behaviors of an MDP together with the actions that have been chosen.

At this stage, we cannot assign probabilities to sets of paths in 2P<w: To see why,
reconsider state s; from the MDP in Ex. Up to now, we cannot answer questions
like “What is the probability that being in state s;, the next state is 532", as the probability
depends on whether action & or action f are chosen in state s;. Even if we assume that 8
is chosen, this does not imply that f is chosen again, if state s, is re-entered later.

Schedulers solve this problem by quantifying the nondeterministic choices in each
state of an MDP. In the following definition, we slightly generalize the intuition of a sched-
uler and consider randomized schedulers, which can not only decide for a single action,
but may also yield a probability distribution over the next actions:

Definition 3.9 (MDP scheduler). Let M = (S, Act,P,v) be an MDP. An MDP sched-
uler for M is a mapping D : Paths),, — Distr(Act) such that D(7)(a) > 0 implies
a € Act(m)) for all w € Paths,.

The condition in Def. B9 implies that if a scheduler assigns a positive probability to an
action «, this action is indeed enabled in the current state 7).

The combination of an MDP M and an MDP scheduler D for M uniquely determines
the probabilistic behavior of the MDP. Informally, when M enters a state after it has tra-
versed path 7, the scheduler D resolves the nondeterministic choice between the available
actions in the current state 77|. If action « is chosen, the resulting probability distribution
P(n},D(ml),-) governs the next state that is occupied by the MDP.

To measure probabilities in an MDP, we use the smallest o-field of subsets of Paths,),,
that is generated by the measurable cylinders (cf. Sec. 2Z.5)); we denote it by § paths, - Hence,
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the elements of Fpse have the form

{m € Paths,,

abs | U Hn}

for some cylinder base I1" ¢ Paths},,. Observe that in the discrete-time setting, no
measurability issues arise as all sets are finite or countably infinite. Therefore, we do
not need to restrict ourselves to measurable cylinder bases but can simply assume that
I1" C Paths,,.. Accordingly, we use § Paths", = 2Pathsas a5 the o-field over subsets of paths
of length n.

The definition of the probability measure of MDPs is standard and can be found in,
for example [dA97]. However, to ease the understanding of the probability measure for
continuous-time Markov decision processes which is introduced in Sec. we restate
the definition for MDPs here in the same notation:

Definition 3.10 (Probability measure). Let M = (S, Act,P,v) be an MDP and D be
an MDP scheduler for M. The probability measure Pr), ;, on (Pathsubs 2P “”’Szhs) is induc-
tively defined as follows:

Prg,D : 3Pathsg [0 1] Z ({S}) and

sell
Prﬁg Spathsm - [0,1]: T~ Z Per({ﬂ}) Z D(m)(a) Z In(n—>s) P(n),a,s").
rrePaths acAct s'eS

Note that Iy is an indicator function such that Iy(7) = 1 if 7 € IT and 0, otherwise.
Definition BI0inductively derives a family of probability measures, each defined on sets
of paths of some (finite) length n: Note that a set of paths of length 0 is just a set of states.
Obviously, the probability to start in a state from the set IT° ¢ S is given by the sum of
the initial probabilities for all states s € IT°.

By the inductive definition, we may rely on the measure for sets of paths of length # in
measuring paths of length n+1. More precisely, in Def. BI0 we obtain the probability of
a set of paths IT € Paths);! by multiplying the probability of all paths of length # with all
one-step extensions; the indicator I is then used to project on the set II.

At this point, the definition of Pr} , might appear overly complex. However, this
generality allows us to define the probability measures in the continuous-time case (cf.
Sec. B32) in a very similar way. Let us formally prove that Def. BI0 indeed coincides
with the semantics of MDPs that is found in the literature: As each § paths?,, Delongs to
a discrete probability space, the measure of a set of paths 1" C Paths), is defined by
the sum of the probabilities of all elements in IT". To map our definition to the stan-
dard notation as given in [dA97, Sec. 3.1.2], note that the probability of a single path

=5 —> 5 —> - 2> s, is given by the product

p(D, 1) = v(n[0] HP(n L, i +1]) - D(soﬂslg---msi)((xi).
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Now a simple inductive proof shows that our definition of the probability Pr/ , (TI") of
the set of paths IT ¢ Paths),, coincides with that used in [dA97, [BK08]:

Lemma 3.4 (Probability measure). Let M = (S, Act,P,v) be an MDB, D an MDP
scheduler for M and 11" ¢ Paths),, for some n € N. Then

pr, () = Y p(D,m). (3.10)

mell”

Proof. We prove Eq. (3.I0) by induction on n:
1. The induction base follows trivially, as Pr) ,, (TI°) = Y0 v({s}) = ¥ pero p(D, 7).

2. In the induction step (n ~ n +1), we use as induction hypothesis that Pr/) ,, (II") =
Y zern P(D, ) holds for all 11" € Paths),.. Then

abs*

PrﬁfDl (H”“) = Z Pry ({m}) Z D(m)(«) Z Lo (72 % s') P, a,s")

n !
nePathsyy, acAct s'eS

Z p(D,m) Z D(m)(«) Z Lo (7 5 s")-P(ml,a,s")

n !
nePaths);, aeAct s'eS

Yoo Y Ia(nm 5 p(D,7)-D(m)(a) - P(ml, a,s")

nePatthhs acAct s'eS

= Z ZZImH(ﬂis')p(D,ﬂis')

nePaths), a€Act s'eS

=) p(D,m 5. O

elIn+1

Ultimately, we are interested in the probability measure on sets of infinite paths. The
probability measures Pr} |, for sets of paths with length n that are obtained in Def. BI0
directly extend to a unique probability measure on the o-field §puge, - Recall that Fpamse,
is the smallest o-field generated by the measurable cylinders.

The measure theoretical arguments that justify the cylinder set construction have been
discussed in detail in Sec. Here, we only state the definition of the probability mea-

sure Pr), on cylinders. Given a cylinder B,, € §punss, with cylinder base B” € Fpp,gr, » We
define

Pr‘v‘)’D(Bn) = Prﬁ’D(B").

By the Ionescu-Tulcea extension theorem (Thm.ZI%on page[), this definition suffices to
uniquely determine the probability of all events in § Paths®, - Therefore, we have completed

the construction of the probability space (Pathsf;’bs, Srathse, > Pry) D) that is associated with
an MDP M = (S, Act, P, v) and an MDP scheduler D for M.
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The MDP schedulers that we have considered so far are history dependent: Upon en-
tering a state s of an MDP, the decision taken by an MDP scheduler D depends not only
on the current state s, but on the history 7 that led into s. In particular, D’s decision may
be different each time state s is entered.

However, in many cases, simpler schedulers suffice. More precisely, if the measure
of interest is the maximal (or minimal) probability to reach a set of goal states in an
MDP, a deterministic and positional scheduler exists which induces the optimal probabil-
ities [dA97],[BK08, Lemma 10.102]. An MDP scheduler D is positional iff D(7r) = D(7")
for all 7, 7’ € Paths,,, with | = 7'|; moreover, it is deterministic iff for all s € S there
exists a € Act such that D(7) = {a — 1}.

The situation becomes more complicated if we aim at finding a scheduler that opti-
mizes (i.e. maximizes or minimizes) the reachability of a set of goal states within a certain
number of steps. For such step-bounded reachability probabilities, the class of determinis-
tic hop-counting schedulers suffices. A scheduler is hop counting ift D(m) = D(n’) for all

7, i’ € Paths,,, with ), = 7’| and || = |7/

Example 3.3. Reconsider the MDP M depicted in Fig. The positional MDP sched-
ulers D, and Dg are uniquely determined by Dy(s,) = {« ~ 1} and Dg(s1) = { ~ 1}. The
induced probability to reach state s; within 2 steps is derived as follows:

We consider the event O=2 {s3} = {m € Paths},, | 3k < 2. n[k] = s3} and compute the
probabilities Pry) |, (O<*{s3}) and Pryp, (0<% {s3}), respectively:

Pryp, (<>S2 {53}) - Pr‘vU,Da(C)’l({So =5, % 53})) = % and
% o 1 11 5
Prﬁ’,Dﬁ (<>32 {53}) = Pr::))Da(Cyl({So — S l) $3,80 — 81 i 53})) — E + E . Z _ § N

3.3.2 Continuous time Markov decision processes

The focus of this thesis is on the analysis of stochastic models which combine nondeter-
minism and exponentially distributed delays. More precisely, we strive to extend contin-
uous-time Markov chains (cf. Sec. BZZ2) with nondeterministic choices. Following the
nomenclature in the discrete-time case, where nondeterministic extensions of DTMCs
are referred to as MDPs (cf. Sec. B3], the corresponding continuous-time model is
called a continuous-time Markov decision process (CTMDP) [Mil68b, IMil68a, [Put94].

The behavior in a state of a CTMC is completely determined by the exponentially dis-
tributed delays of its outgoing transitions. This is not the case in a CTMDP, where transi-
tions are labeled with both, a rate of an exponential distribution (as in CTMCs) and an
action, which names a nondeterministic choice.

Intuitively, the behavior of a CTMDP is as follows: Upon entering a state, one of the
actions that are available according to the state’s outgoing transitions must be chosen non-
deterministically. After that, the behavior in that state is governed by the exponentially
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distributed delays of those transitions, that correspond to the chosen action. The defini-
tion of a CTMDP differs from that of an MDP in that the transition probability matrix is
replaced by a rate matrix which specifies the transitions’ delay time distribution:

Definition 3.11 (Continuous-time Markov decision process). A  continuous-time
Markov decision process (CTMDP) is a tuple C = (S, Act,R,v) where S and Act are
finite, nonempty sets of states and actions, R: S x Act x § — Ry is a three-dimensional
rate matrix and v € Distr(S) is an initial distribution.

IfR(s,a,s") = A and A > 0, an a-transition with rate A leads from state s to state s’.
A is the rate of the negative exponential distribution which governs the transition’s de-
lay. Therefore, the a-transition executes in time interval [a,b] € R, with probability
1 ([a,b]) = fab AeM dt = (e7*4 — e7"?). The function 7, corresponds to the cumu-
lative distribution function of the exponential distribution with rate A. It extends to a
probability measure on the Borel o-field B (R, ) in the standard way.

Similar to the semantics of MDPs, the actions of the transitions that leave a state s € §
of a CTMDP constitute the set of enabled actions in that state:

Act(s) ={aeAct|3s"e€S. R(s,a,s") > 0}.

The exit rate of a state s € S under action « is the sum of the rates of all a-transitions that
leave that state; formally, E(s, a) = ¥ .5 R(s, @, s"). Note that in general, the exit rate of
a state differs depending on the enabled action that is considered.

Upon entering state s, an action from the set Act(s) is chosen nondeterministically,
say a. The exit rate of state s under action « determines its sojourn time: By choosing «,
all transitions that are labeled with actions 8 # « get blocked. The subsequent behavior
in state s equals that of a CTMC (cf. Sec.B.Z.2): The remaining a-transitions compete in a
race, which is won by the a-transition whose randomly drawn delay expires first. Hence,
the sojourn time in state s is governed by the minimum of the exponentially distributed
delays of all outgoing a-transitions. The random variable that describes the minimum of
exponential distributions is again exponentially distributed, namely with the sum E(s, )
of the rates of the competing a-transitions.

At the same time, the probability to move to a given a-successor state s’ of s is also
determined by the outcome of the race: It corresponds to the event that an a-transition
which leads to state s’ executes first. When leaving state s with action «, the probability to
jump to a successor state s’ is denoted P(s, «, s”), where P : SxAct xS — [0, 1] is the three-

dimensional transition probability matrix defined by P(s, a,s’) = Réz’;i’;)/) if E(s,a) >
0 and P(s,a,s’) = 0, otherwise. In this way, each CTMDP (S, Act, R, v) induces the
embedded MDP (S, Act, P, v), which abstracts from the CTMDP’s timed behaviors and
only considers its branching probabilities.
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Similar to MDPs, we assume that Act(s) # @ for all states s € S of a CTMDP. In this
way, we avoid deadlock states which complicate the definition of the underlying stochas-
tic process. Note that for our purposes (i.e. for timed reachability analysis and CSL model
checking), this is no restriction as all deadlock states s € S can easily be equipped with a
self-loop of the form R(s, a, s) = 1 for some arbitrary « € Act. As we assume that a dead-
lock state is never left, this yields an equivalent CTMDP that satisfies our requirement.

Example 3.4. When entering state s, of the CTMDP in Fig. one action from the set of
enabled actions Act(s;) = {«, B} is chosen nondeterministically, say «. Next, the rate of the
a-transition determines its exponentially distributed delay. Hence for a single a-transition,
the probability to go from s, to s; within time t is 1 — e Rlvas)t =1 — =01,

In Fig. a race occurs in state s, if action f3 is chosen: Two [-transitions (to states s,
and s;) with rates R(sy, B, s;) =15 and R(sy, B, s3) = 5 become available and state s, is left as
soon as the first transition executes. The sojourn time in state s, is exponentially distributed
with rate E(sy, B) = R(s;, 8,52) + R(s1, B, s3) = 20. The probability P(sy, B, s;) to move to
state s, is R(sy, B, s2)/E(s1, B) = 0.75. &

We call a CTMDP deterministic iff |Act(s)| = 1for all states s € S. In this case, no nondeter-
ministic choices exist and the CTMDP corresponds to a CTMC. Reversely, any CTMC
corresponds to a deterministic CTMDP. Therefore, CTMDPs are a conservative exten-
sion of CTMCs.

The measurable space

To measure the probability of events in a CTMDP, we use paths to represent a single
outcome of the associated random experiment. Opposed to the paths for MDPs that
were defined in Sec. B3 the timed paths of a CTMDP also capture the sojourn times in
each state. In this way, a timed path describes the complete trajectory of the CTMDP:

Definition 3.12 (Timed paths). Let C = (S, Act,R,v) be a CTMDP. Paths"(C) = S x
(Act x Ry x 8)" is the set of paths of length n in C; the set of finite paths in C is defined as
Paths™ (C) = U,en Paths”, and Paths” (C) = (S x Act x Ry)” is the set of infinite paths
in C. Accordingly, Paths(C) = Paths” (C) v Paths®(C) denotes the set of all paths in C.

We write Paths instead of Paths(C) whenever C is clear from the context. Moreover, if
no ambiguity arises, we refer to the time-abstract paths in MDPs and the timed paths in
CTMDPs simply as paths.

@0,to a1,y Xn—1>tn-1

A single timed path is denoted 7 = s s s, where |71| = n is the
length of 7 and 71| = s, is the last state of 7. We use abs(7) = s, a2 to

refer to the time-abstract path induced by 7.
For k < |n|, m[ k] = sy is the (k+1)-th state on 7; if k < |71, §(7, k) = t is the time spent

ot ittt ®j-1tj-1

in state sy. If i < j < |n|then 7[i..j] denotes the path-infixs; — s;4; S
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«,0.1 o, 1

Figure 3.5: Example of a CTMDP.

of . Finally, for infinite path 7, we use 7@t to denote the state that is occupied on 7 at
time point ¢ € R,. Formally, 7@t = n[k] where k € N is the smallest index such that
Yk o t; > t. If no such k exists, 7@t is undefined.

Note that Def. does not impose any semantic restrictions on paths. In particular,
the set Paths may contain paths which do not comply with the rate matrix of the underly-
ing CTMDP. However, the definition of the probability measure (cf. Def. B.I5 on page[80)
justifies this, as it assigns probability zero to such sets of paths.

To define the probability space that is induced by a CTMDP and a scheduler, we rely
on the measure theoretic results from Chapter 2

Our goal is to measure the probability of (measurable) sets of paths. Therefore, we first
define a o-field of sets of combined transitions which we later use to define o-fields of sets
of finite and infinite paths. The concept of a combined transition goes back to [W]06}
Joh07]. Informally, a combined transition is a tuple («, t,s") which entangles the deci-
sion for action & with the time-point ¢ at which the CTMDP moves to successor state s’
Formally, for a CTMDP C = (S, Act, R, v), let Q = Act x R,y x S be the set of combined
transitions in C. To define a probability space on , note that S and Act are finite; hence,
the corresponding o-fields are defined as Fa, = 24 and Fs = 25. Any combined tran-
sition occurs at some time point ¢ € Ry, so that we can use the Borel o-field B(R,,) to

measure the corresponding subsets of Ry,.
@00 a1,t An—1>tn-1

Any path 7 = s 8] s, of length n can be extended by a combined
transition m = (&, t,,S,41) to a path of length n + 1. This extension is denoted 7 o m.
Hence, any path can be regarded as an initial state and a (finite or infinite) concatenation
of combined transitions from the set ). Obviously, this is closely linked to the definition
of product o-fields which are discussed in detail in Sec.

Recall that a Cartesian product is a measurable rectangle if its constituent sets are ele-
ments of their respective o-fields. For example, in our case the set A x T x §’ is a mea-
surable rectangle if A € Faoy, T € B(Ryg) and §' € Fs. We use Far ® B(Ry) ® §s to
denote the set of all measurable rectanglesﬁ. It generates the desired o-field § of sets of
combined transitions, i.e. § = U(SM ®B(Rs) ® &g).

Now § may be used to infer the o-fields §p,us of sets of paths of length n: §pyye is

2Recall our notation: s ® B(Rso) ® §s is not a Cartesian product itself; instead, it is the set of all
Cartesian products. For details, see Def. I8 on page B2
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generated by the set of measurable (path) rectangles, that is
Gpans = 0 ({So x My x - x M, | Sy € Fs, My € F,1< i < n}).

Intuitively, §p, s consists of all possible (even countably infinite) unions and intersec-
tions of measurable path rectangles of length n.

Example 3.5. For the CTMDP in Fig. the event “from s, we directly reach state s;
within 0.5 time units” and the event ‘action « is chosen in state s, and we remain in s
for less than 0.2 or more than 1 time units” are described by the Cartesian products I1; =
{s1} x Act x [0,0.5] x {s3} and IT, = {s;} x {a} x ([0,0.2) U (1, 0)) x S. I1; and 11, are
measurable rectangles whereas their union I1; U I1, is an element of the o-field §p 0. ¢

The o-field of sets of infinite paths is obtained by applying the cylinder set construction
which is discussed in detail in Sec. 252k A set C" of paths of length 7 is called a cylinder
base; it induces the infinite cylinder C, = {m € Paths” | n[0..n] € C"}. A cylinder C, is
measurable it C" € Fpyyen; C, is called an infinite rectangle if C" = Sy x Ag x Ty x ... x
Ay x Ty xS,and §; €S, A; € Act and T; € Ryy. It is a measurable infinite rectangle, if
Si€Fs, A € §aq and T; € B(R,o). We obtain the desired o-field of sets of infinite paths
as the minimal o-field generated by the set of measurable cylinders; formally, §pypee =
0( U2 {Cn | C" € Fpams }) Finally, the o-field §p,y,s+ over finite and infinite paths is the
smallest o-field generated by the disjoint union (J;2 ) T pams" Y S parhse-

The probability measure

As for MDPs, we use schedulers to define the semantics for CTMDPs. More precisely, a
CTMDP and a scheduler induce a unique probability measure on the measurable spaces
that we have defined above.

A scheduler quantifies the probability of the next action based on the history of the
system: If state s is reached via finite path 7, the scheduler yields a probability distribu-
tion over Act(7m|). The class of measurable schedulers that we use here has been defined
in [WJ06} Joh07]. A measurable scheduler can incorporate the complete information
from the history 7 that led into the current state when making its decision. In particular,
it may yield different decisions depending on the time that has passed on 7 or in single
states on 7.

In fact, there exists a plethora of scheduler classes which differ both in the information
they can base their decision on as well as on the time, their decision is due. A detailed
discussion of this topic follows in Chapter @l For now, we do not go into those subtle
details and stick to the general definition of measurable schedulers:

Definition 3.13 (Measurable scheduler). Let C = (S, Act,R,v) be a CTMDP. A map-
ping D : Paths™ x F 4 — [0,1] is a measurable scheduler iff D(,-) € Distr(Act(ml)) for
all v € Paths” and the functions D(-, A) : Paths” — [0,1] are measurable for all A € § .
We use GM to denote the set of all measurable schedulers.
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In Def. the measurability condition states that for any measurable set of proba-
bilities B € B([0,1]) and any set of actions A € Fa., the set {7 € Paths™ | D(m, A) € B}
belongs to §p,y+ (for details, we refer to [WJ06])).

Similar to the MDP definition, the support restriction D(7,-) € Distr(Act(m])) states
that whenever D(7)(«) > 0, the action « is enabled in state 7z|. This prevents a measur-
able scheduler to choose actions that are not available in the current state.

Note that we can equivalently specify any GM-scheduler D : Paths” x §a — [0,1] asa
mapping D’ : Paths”™ — Distr(Act) by setting D’(n)(A) = D(m, A) for all 7 € Paths™ and
A € Fae; to further simplify notation, we also use D(7, -) to refer to this distribution.

To derive a probability measure on §p,use, we first define a probability measure on
combined transitions, i.e. on the measurable space (Q, §):

Definition 3.14 (Probability on combined transitions). Let C=(S, Act,R,v) be a CT-
MDP and D a GM-scheduler on C. For all m € Paths™(C), we define the probability
measure up(7,-) : § = [0,1] such that

up(m, M) = «ActD(ﬂ’da)-[I;:?E(ﬂi’a)(dt)—[S Iy(a,t,s") P(m),a,ds’).  (3.11)

Here, we use I;(«, t, s) to denote the indicator for the set M € Q, thatis, I(«, t,s) =1
if the combined transition («, t,s) € M and Iy(«, t,s) = 0, otherwise. Intuitively, for a
given finite path 7 and a set M of combined transitions, yp(7, M) is the probability to
continue from 7} by one of the combined transitions in M. For a measurable rectangle
Ax T x §" € § and time interval T, we obtain

up(m,Ax TxS8")=> D(m{a}) P(nl,a,S")- / E(nl,a)- e EOige (312)

acA T

which is the probability to leave 7| via some action from the set A within time interval T
to a state in §'.

Lemma 3.5. For any n € Paths, the function up(m,-) : § — [0,1] is a probability
measure on (Q,§).

Proof. This follows from [ADD00, Theorem 2.6.7], for D(r,) is a probability measure
and all #/g () as well as P(7l, , -) are probability measures for a € Act(r}). i

To extend this to a probability measure on §p,y,sn, We assume an initial distribution v €
Distr(S) for the probability to start in a certain state s and inductively append sets of
combined transitions.
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As the probability measures in Def. (see below) depend on the Lebesgue integral
of a function involving the measure yp, we have to show that yp : Paths” x § - [0,1]
is measurable in its first argument, i.e. that for all M € § and B € ®B([0,1]) it is the case
that pp (-, M) (B) € §pans+- The following theorem stems from [WJ06] and is restated
here only for the sake of completeness:

Theorem 3.4 (Combined transition measurability [W]J06, Theorem 1]). Let

C = (S,Act,R,v) be a CTMDP and D a GM-scheduler. For all A € §ay it holds:
D(-,A) : Paths” — [0,1] is measurable iff VM € §, up(-, M) : Paths" — [0,1] is
measurable.

Hence pp : Paths™ x § — [0,1] is measurable in its first argument whenever D is a
GM-scheduler. Note also, that the restriction up : Paths” x § — [0,1] is measurable with
respect to $pms. With these preconditions, we can define the probability measure on
sets of finite paths as follows:

Definition 3.15 (Probability measure). LetC = (S, Act, R, v) be a CTMDP. The proba-
bility measure on (Paths", §pans ) is defined inductively as follows:

Pryp i Bpane > [0,1] 1> > v({s}) and

sell

Prt s Syt — [0,1] 511 P (dr) fﬂ Iu(7w o m) pp(m, dm).

Paths"

Informally, Def. B3 derives the probability measure Pr);}) on sets of paths IT of length
n+1 by multiplying the probability Pr}, ,(dm) of a path m of length n with the probabil-
ity up(m, dm) of a combined transition m such that the concatenation 7 o m is a path
from the set II.

One further remark is in order here: Formally, we have not yet proved that the nested

n+1

integral in the definition of Pr}, yields a measurable function with respect to Fpays. To
bridge this gap, we first show that the functions

fu : Paths"™ - [0,1] : 1 ’/;)IH(no m) up(m,dm)

are measurable for all IT € Fp . To see this, first note that {m € Q | mom € I1} € § for
all 77 € Paths"™ If T = Sy x My x - x M,,_, is a measurable rectangle such that M; € § for
0 < i < n, we obtain

M, ifﬂES()XM()X"'XMn_Z

{(meQlmomell} = :
1%} otherwise.
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Hence, for measurable rectangle IT, the set {m € Q | o m € [T} is measurable.

Now, let [T = I uIl,and M; = {m € Q | mom € II;} for i = 1,2. By the induction
hypothesis, M; € §; further, {m € Q | mom € I} = M; U M,. As § is closed under
countable union, M; U M, € §. For the complement I1¢, define M = {m € Q | mom € IT}.
By the induction hypothesis, M € §. Further observe that {m e Q | mom e I1°} = {m €
Qlmom¢Il}={meQ|momell}=Mc. Then M¢ € § follows since M € § and § is
closed under complement. Now the functions fi; can be restated as follows:

11 Paths"™ > [0,1]: 7w~ pup(n, {me Q| momell
14

which is measurable with respect to §p,, -1 by Theorem B.4 where yp is restricted to
Paths™™".

By Def. we obtain measures on all o-fields §p,, of subsets of paths of length #.
This extends to a measure on (Paths®, §pse ) as follows: First, note that any measurable
cylinder can be represented by a base of finite length, i.e. B, = {7 € Paths” | n[0..n] € B"}.
Now the measures Pr)) ;, on §p,s extend to a unique probability measure Pry ;, on §paps
by defining Pry ,(B,) = Pry ,(B"). Although any measurable rectangle with base B”
can equally be represented by a higher-dimensional base (more precisely, if m < n and
B" = B™ x Q"™ then B, = B,,), the Ionescu-Tulcea extension theorem (Thm. on
page B1)) is applicable due to the inductive definition of the measures Pr} , and assures
the extension to be well defined and unique.

One important property is still missing: We have not proved yet, that the functions
Pr} }, are indeed probability measures. The next lemma makes up for that:

Lemma 3.6. Pr} , is a probability measure on (Paths", §pus) for all n € N.

Proof. By induction on n. v is a probability measure on (S, §s) and so is Pry ;,. In the
induction step, n > 0 and

Prip() =

Paths" ™!

Prﬁ’})l(dﬂ)/ﬂln(nom) pp(m, dm).

By the induction hypothesis, Pr}; ) is a probability measure; the same holds for up (7, -) by
LemmaB.3l As the product yields a probability measure again (see Thm.[2.J6l on page 46
or [ADDO00), 2.6.2]), the claim follows. m]

Definition inductively appends transition triples to the path prefixes of length n
to obtain a measure on sets of paths of length n+1. In some of our proofs, we make use
of the fact that paths can also be constructed reversely: More specifically, we will later
need to split a set of paths into a set of prefixes I and a set of suffixes I1. Thus we define
the set of path prefixes of length k > 0 as PPref* = (Fs x et x B(Rso))* and provide a
probability measure on its o-field §pp, i
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Definition 3.16 (Prefix measure). Let C = (S, Act,R,v) be a CTMDP and D a GM-
scheduler on C. For I € pp,, o« and k > 0, define

poW= [ Pidn) [ Demda) [ 1(n ) neen(de).

Paths*™!

As Pr’v‘_D1 is a probability measure, so is yk p-Ie§ PPref* and IT € Fp,yn, their concate-
k+n

nation is the set I x IT € §,_,, 3 its probability Pr, ' (I x IT) is obtained by multiplying

the measure of prefixes i € I with the suffixes in IT:

a0,t0 X—25tk—2 Ap—1>tk-1 .

Lemma 3.7. Let I1 € §py and I € &PPrefk. Ifi=s Sk-1 isa
path prefix from I, define v; = P(sx_1, ak_1,-) and D;(m,-) = D(i o m,-). Then

Pre (I x T1) = f ‘u’V"D(di)[ Lnn(iom) Prip(dm). (13
Paths" P

PPrefk

Proof. By induction on n: Let IT € §p 0, i.e. II € S.
P10 = [ prii(an) [ Ynn(mom) po(mdm)
Pat
=/ " pr’;,;(dn)f D(n, da) f qE(ﬂw)(dt)/len(ﬂHs’) P(nl, a, ds')
Paths*™!
= ,/(sxActh>o)k va(d(ﬂ—> fljxn(ﬂ—>s) P(r),a,ds")

- Ep(d(m = f Lo(m 25 s") PO (ds').
_/(SxActhw)k !/lV,D( ( )) . 1x11( ) Pry p.(ds')

In the induction step (n ~ n + 1), we assume as induction hypothesis that (3.13)) holds
for n and prove its validity for n + 1:

Priml(Ix D) = . Pr’jf;(dn)/ﬂllm(ﬂo m) up(m, dm)

=f k Pr’v‘j}(d(ion’))/IIXn(ion’om) up(ion,dm)
Paths®*" Q

: f uk o (di) Prﬁi)Di(dn’)/ (i o' om) up(ion’,dm)
(SxActxRs0 )k Paths" Q

- [ pio(di) [ pr o (@) [ Tn(ion om) up, (7' dm)
(SxActxRs)k Paths Q

= k d'/ R e m) Pri‘h (dm O
-/(SxActx[RZO)k‘uv’D( 2 Paths" pa(fem) Pryip, (drm).

[li=3
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Lemma[BZjustifies to split sets of paths and to measure the components of the resulting
Cartesian product; therefore, it abstracts from the inductive definition of Pr} ,.

A class of pathological paths that are not ruled out by Def.B.I2are infinite paths whose
duration converges to some real constant, i.e. paths that visit infinitely many states in a
finite amount of time. For n = 0,1,2,..., an increasing sequence r, € Ry is Zeno if it
converges to a positive real number.

Example 3.6. The sequencer, =Y., zi n € N is Zeno, as it converges to 2. ¢

In the remainder of this thesis, we rule out Zeno behaviors. To justify this, let us prove
that the probability of a set of paths with Zeno behaviors has probability 0. To prepare
for this proof, the next lemma states that the probability that after a certain number of
steps, the sojourn time is always less than 1 time unit, is 0:

Lemma 3.8. Let k e Nand B =8 x QF x (Act x [0,1] x S)*; then Pr? ,(B) = 0.

Proof. The proof goes along the lines of [BHHKO3, Prop. 1]:
As S and Act are finite, we can define A = max{E(s,a)|seS,a € Act}. Forn > 0,

let B" = S x QF x (Act x [0,1] x §)" be a measurable base and B, the induced infinite
measurable rectangle. By induction on 7, we show that Pry ,(B,) < (1-e™)™

1. In the induction base, let n = 0. Then Pr¢,,(B,) = Prk ,(Sx QF) =1=(1- e’
2. As induction hypothesis, let Pr¢ ,(B,,) < (1 - e~*)". For B,.,; we obtain:
Pr¢,(Bys) = Prigt! (B x Act x [0,1] x S)
= /Bn up(m, Act x [0,1] x S) Priti¥(dn)

) ,/B( . D(m{a}) P(nl. . 8)- _/[0’1] E(nl, Oc)e’E("l’“)tdt) Priv¥(dm)

= /Bn 2,4: D(m,{a})-P(nl,a,S)- (1_ e—E(m,a)) Pr:fbk(dﬂ)
< (l—e—l)-’[Bn > D(m,{a}) P(nl,a,S) Pry(dn)

acAct

<1
<(1-e)- [ Pri(dm) = (1- ) Prd(BY)
o
— (1_ e*A) 'PrstD(Bn) < (1_ e,A)I’H—l .

Now B, 2 B, 2 --- and the B, converge to B, i.e. B, | B; hence Pr ,(B,) — Pry ,(B) by
Lemma[Z2 (cf. pagel[d). Further lim,_,o. Pr¢,(B,) < lim, (1—e*)" = 0. As Pr¢, is
a measure (and hence nonnegative), it follows that P} ,(B) = 0. m]
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With this result we can prove the following theorem which justifies to generally rule out
Zeno behavior:

Theorem 3.5 (Converging paths theorem). The probability measure of the set of con-
verging paths is zero.

Proof. Let ConvPaths = {50 foh, 1 RalN | 0ot converges}. For m € ConvPaths,

the sequence Y77, t; converges; thus #; converges to 0 and there exists k € N such that
t; <1forall i > k. Hence ConvPaths € Uy, S x QF x (Act x [0,1] x §)“. By Lemma[B.8,
Pry (S x QF x (Act x [0,1] x §)@) = 0 for all k € N. Thus we obtain

Prs)’D(kaS x QOF x (Act x [0,1] x 8)“) < Y Pre (S x QF x (Act x [0,1] x 8)) = 0.
- k=0

But then ConvPaths is a subset of a set of measure zero; hence, on §p s completedﬁ with
respect to Pry , we obtain Pr ,(ConvPaths) = 0. O

3.4 Conclusion

Markov chain theory is an extremely broad field in mathematics. In this chapter, we only
discussed the preliminaries that are essential for the remainder of the thesis. More details
about CTMCs and DTMCs can be found in the textbooks [KS76} [Kul95]. More details
about MDPs can be found in [Bel57, [How71, Ber95] and in the textbook [[Put94].

Compared to the other models presented in this chapter, CTMDPs have received less
attention. As do the seminal papers of Miller [Mil68b) IMil68al], most of the results that
are known for CTMDPs concentrate on optimizing reward-based measures such as the
finite horizon expected state-based reward, the infinite horizon discounted state-based
reward or the long run expected average reward. Details about the results that are known
in mathematics can be found in [Put94] and in the survey paper [GHLPRO6].

Lately, CTMDPs are considered in the field of game theory, where the model has
become known as a continuous-time stochastic 13 player game. However, the results
mostly concentrate on time-abstract schedulers [BEK¥09]. The same holds for the re-
sults in [BHKHO5], which are closely related to those of this thesis:

In [BHKHO3S], the authors provide an algorithm to optimize time-bounded reacha-
bility probabilities for time-abstract schedulers on a subclass of CTMDPs. This thesis
extends these approaches in different respects. Most notably, we lift the restriction to
certain subclasses of CTMDPs and consider strictly better time-dependent schedulers.
These contributions are described in detail in the following chapters.

>We may assume Fpaie to be complete, see Def. 241



4 Schedulers in CTMDPs

Nothing is more difficult, and
therefore more precious, than
to be able to decide.

(Napoléon Bonaparte)

Schedulers in CTMDPs and other variants of randomly timed games can roughly be
classified as to whether they use timing information or not. In the literature, the analysis
of CTMDPs is mostly focused on determining optimal schedulers for criteria such as the
expected total reward, the expected long-run average reward (cf. the survey [GHLPRO6])
and unbounded reachability probabilities [Put94]. For such comparatively simple crite-
ria, time-abstract schedulers suffice. Stated differently, providing the scheduler with in-
formation on the amount of time that has passed does not improve its decisions for such
properties. When analyzing such criteria, it therefore suffices to either fully abstract from
the timing information in the CTMDP or to abstract from it at least partly by transform-
ing the CTMDP into an equivalent discrete-time MDP. The latter process is commonly
referred to as uniformization [Put94, p. 562],[GHLPRO6].

In comparison to the properties stated above, the focus of this thesis is mostly on time
bounded reachability objectives such as the maximum probability to hit a given set of
goal states during a finite time-interval. As we will see in this chapter, the maximum
achievable probability of such events strongly depends on whether the underlying sched-
uler class uses timing information or not.

In the previous chapter, we have introduced the class of generic measurable schedulers.
Itis complete in a sense, as the corresponding GM-schedulers may use the complete infor-
mation about the trajectory that led into the current state. For example, a GM-scheduler
can access the state history and the sojourn time in each individual state of the history.

In this chapter, we investigate schedulers more closely and define a hierarchy of posi-
tional and history-dependent schedulers which refines the notion of measurable sched-
ulers from Sec. As it turns out, an important distinguishing criterion is the level
of detail of timing information the schedulers may exploit, e.g. the delay in the last state,
the total time that was spent during the trajectory that led into the current state, or all
individual state residence times.

In general, the delay that has to pass in a state s before the CTMDP jumps to a successor
state s is determined by the action that is selected by the scheduler when entering state s’.
In the second part of this chapter, we therefore investigate under which conditions this
resolution of nondeterminism may be deferred: More precisely, we identify the subclass
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of locally uniform CTMDPs and show how its schedulers delay their decision up to the
point at which the current state s is left.

Rather than focusing on a specific objective, we consider this delayed nondeterminism
for arbitrary measurable events. The core of our study is a transformation — called local
uniformization — on CTMDPs which unifies the speed of outgoing transitions per state.
Whereas classical uniformization [Gra9l, (GM84, [Jen53] adds self-loops to achieve this,
local uniformization uses auxiliary copy-states. In this way, we enforce that schedulers in
the original and uniformized CTMDP have (for important scheduler classes) the same
power, whereas classical loop-based uniformization permits a scheduler to change its
decision when re-entering a state through the added self-loop.

Therefore, locally uniform CTMDPs permit to defer the resolution of nondeterminism,
i.e., they dissolve the intrinsic dependency between state residence times and schedulers,
and can be viewed as MDPs with exponentially distributed state residence times. This
characterization provides the basis for Chapter B where we develop an approximation
algorithm which computes time-bounded reachability probabilities in locally uniform
CTMDPs.

Organization of this chapter. SectionE.Iproposes a hierarchy of scheduler classes and
refines the notion of generic measurable schedulers from Sec. In Sec. we de-
fine local uniformization and prove its correctness. Section .3 summarizes the main re-
sults and Sec. 4 proves that deferring nondeterministic choices induces strictly tighter
bounds on quantitative properties.

4.1 A hierarchy of scheduler classes

In Sec. we have defined the probability of measurable sets of paths with respect to
GM-schedulers. However, this does not fully describe a CTMDDP, as a single scheduler
represents only one way to resolve the CTMDP’s nondeterministic choices. Therefore, in-
stead of a single scheduler, we consider scheduler classes that group schedulers according
to the information that they use for making a decision:

Given an event IT € §p,y, a scheduler class induces a set of probabilities — one for
each scheduler in the respective class — which reflects the CTMDP’s possible behaviors.

In this chapter, we propose a variety of scheduler classes (see the lattice depicted in
Fig. ) and investigate which of them preserve the minimum and maximum probabili-
ties under local uniformization.

We start our discussion and recall the notion of GM-schedulers: As proved in [W]06],
they are the most general class definable on arbitrary CTMDPs. More precisely, the au-
thors prove that all probability measures that conform to a CTMDP’s set of valid paths
are induced by some GM-scheduler. The intuition is as follows: If paths 7; and 7, end
in state s, a GM-scheduler D : Paths™ x §44 — [0,1] may yield different distributions
D(m,-) and D(m,,-) over the next action, depending on the entire histories 7; and ,.
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GM = THR
T
TTHR TPR
N
TTPR TAHR
|
TAHOPR
[

TAPR

Figure 4.1: A hierarchy of scheduler classes.

Note that 71 and m, contain the state sequence that was traversed, the sojourn time in each
of those states and the action that was chosen to move from one state to another. Hence,
we also refer to GM-schedulers as time- and history-dependent randomized schedulers.
On the contrary, a scheduler D is time-abstract and positional (a TAPR-scheduler), if
D(m,-) = D(m,,-) for all m,m, € Paths™ that end in the same state. As D(7,-) only
depends on the current state, it can be specified as a mapping D : S — Distr(Act).

Example 4.1. For TAPR scheduler D with D(sy) = {a ~ 1} and D(s;) = {p ~ 1}, the in-
duced stochastic process of the CTMDP in Fig. is the CTMC depicted in Fig.
Note however, that in general, randomized schedulers do not yield CTMCs as the induced
sojourn times are hyper-exponentially distributed. Hence, a continuous-time Markov de-
cision process with an associated randomized scheduler is a slight misnomer, as a hyper-
exponentially distributed sojourn time does not obey the Markov property, in general. How-
ever, this can safely be ignored, as we will see in the next chapters that considering determin-
istic schedulers (which obviously induce exponentially distributed sojourn times) suffices to
optimize time-bounded reachability properties. &

For TAHOPR-schedulers, the decision may depend on the current state s and the length
of m and m, (hop-counting schedulers); accordingly, they are isomorphic to mappings
D : 8§ x N — Distr(Act). Moreover, D is a time-abstract history-dependent scheduler
(TAHR), if D(m;,-) = D(7,-) for all histories 71, 77, € Paths™ with abs(m) = abs(m,):
Given history 7, TAHR-schedulers may decide based on the sequence of states and ac-
tions in abs(7). In [BHKHO5], the authors show that TAHOPR- and TAHR-schedulers
induce the same probability bounds for timed reachability which are tighter than the
bounds induced by the class of TAPR-schedulers.

Time-dependent scheduler classes generally induce probability bounds that exceed
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(a) An example of a CTMDP. (b) Induced CTMC.

Figure 4.2: An example of a CTMDP and its induced CTMC (under a TAPD-scheduler).

those of the corresponding time-abstract classes [BHKHOS]. As they are the main focus
of this thesis, we discuss them in greater detail here:

If we move from state s;_; to state s;, a timed positional scheduler (TPR) yields a dis-
tribution over Act(s;) which depends on the current state s; and the time it took to go
from state s;_; to state s;; thus, the class of TPR-schedulers extends TAPR-schedulers with
information on the delay of the last transition.

Similarly, total time history-dependent schedulers (TTHR) extend TAHR-schedulers
with information on the time that passed up to the current state: If D € TTHR and 7y, 71, €
Paths™ are histories with abs(m;) = abs(m,) and A(m;) = A(m,), then D(my,-) = D(7my, ).

Here, we use A(m) = Y., t; to denote the total time that is spent on a finite path 7 =
a0,to apt An—1>tn-1

So s o s, € Paths*. From the definition of TTHR, it follows that
TTHR ¢ GM. Intultlvely, a TTHR-schedulers may depend on the accumulated time
(that is, on A(7r)), but not on sojourn times in individual states of the history. Hence, for
general events, the probability bounds of TTHR-schedulers are less strict than those of
GM-schedulers. However, this does not hold for time-bounded reachability probabilities.
To optimize them, an even simpler class of time-dependent schedulers suffices:

For the properties that we investigate in this thesis, the class of total time positional
schedulers (TTPR) is of great importance: A TTPR-scheduler is given as a mapping D :
S x Ryg — Distr(Act). Intuitively, it expects the current state in its first argument; the
second argument is the total amount of time that has passed before the current state was
entered. Hence, TTPR-schedulers are similar to TTHR-schedulers but abstract from the
state-history: For two histories 71, and 7, D(711,-) = D(m,,-) if 1 and 71, end in the same
state and if the total amount of time that was spent on 7m; and 7, is the same, that is, if
A(m) = A(m,).

TTPR-schedulers are of particular interest, as they induce optimal probability bounds
with respect to time- and interval bounded reachability objectives: To see this, consider
the probability to reach a set of goal states G € S within ¢ time units. If state s is reached
via 7w € Paths” (without visiting G), the maximal probability to enter G is given by a
scheduler which maximizes the probability to reach G from state s within the remaining
t—A(m) time units. Obviously, a TTPR scheduler is sufficient in this case. In Chapter[Bl we
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will come back to this issue (cf. Thm.B2Zon page[[24) and formally prove this claim for a
slightly different class of schedulers. However, the proof carries over to TTPR-schedulers,
trivially.

A further remark is in order here: In [BHKHO5] it is proved that TAHOPD-schedulers
(i.e. deterministic TAHOPR-schedulers) suffice for optimizing time-bounded reachability
objectives under all time-abstract schedulers. This is similar to the continuous-time case,
where for time-dependent schedulers it is sufficient to measure the total amount of time
that has passed. In particular, information about the state- or action-history (as it is
provided by TAHR- and TTHR-schedulers) is proved to be unnecessary.

Example 4.2. Reconsider the CTMDP depicted in Fig. and assume that we aim at
maximizing the probability to move from state s, to state s; within a given time bound z €
R.o. Obviously, an optimal TTPR scheduler has to choose action « in state sy: If it chose f3,
the CTMDP would move to state s, and stay there forever. Thus, we may assume that state s,
is entered via action « after a sojourn in state sy of duration t, € Ry.

Being in state s,, a nondeterministic choice between actions « and f3 occurs: If a is cho-
sen, state s, is left with exit rate E(s;, ) = R(s;, «,s3) + R(s1, &, 84) = 3. However, the
probability P(s;, a,s3) = Rés(ls’f;f;) to enter state s5 (instead of state s4) is only . If action 3
is chosen, the situation is different: Although the rate for leaving state s, under action f is
the same (i.e. E(s1, ) = R(s1, 8,52) = 3), we do not enter the goal state s; directly. Instead,
the transition from state s, to state s; with rate R(sy, 3, s3) = 1 induces an additional delay.
However, note that if action 3 is chosen in state s,, we reach state s; with probability 1.

Obviously, the optimal decision in state s, depends on the time z — t, that remains to
reach s; when t, time units have been spent in state sy, already. With this reasoning, we
obtain an optimal TTPR-scheduler D as follows: Define D(sy,0) = {a ~ 1} and D(sy, t,) =
{a—1}ifty>z—1n (2 + $3/105) and D(s1, o) = {B = 1}, otherwise.

The derivation for D is as follows: The probability to move within the remaining x = z—t,
time units from state s, to state s; with action « is given by the function a(x) = 3 (1- ™).
For action f3, the corresponding function b(x) is given by the convolution to go to state s;
via state s,. Hence b(x) = fox (36*”1 fox_t1 e b dtz) dt,. Fig. @3 depicts the two cumulative
distribution functions. Now, let d € Ry be the unique solution of the equation a(x) = b(x);
then d = In (% +3 105). Obviously, if more than d time units remain, i.e. if z — to > d, the
optimal decision in state s, is action 8. On the other hand, if z — t, < d, it is more profitable
to choose action «.

For now, we note that (a) time-abstract schedulers obviously do not suffice to obtain the
maximum probability and (b) that the scheduler D is a deterministic TTPD-scheduler. ¢

With the preceding informal description of the scheduler classes that are mentioned
in Fig. &1} we define them formally as follows:

Definition 4.1 (Scheduler classes). Let C be a CTMDP and D a GM-scheduler on C. If
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Figure 4.3: Reachability in z — f time units.

m and ' range over Paths”™ (C), the scheduler classes are defined as follows:

D e TAPR <~ nal=n'| = D(n)=D(x')

D e TAHOPR <= (nl=n'|Aln|=|n|)= D(n)=D(x')

D € TAHR <= abs(m) =abs(n') = D(m) = D(n')

D e TTHR < (abs(m) = abs(n') A A(m) = A(n')) = D(n) = D(n')

D e TTPR <~ (nl=nlAA(n)=A(n")) = D(n) = D(n')

D e TPR = (nl=nAd(m|n-1])=8(",|n'-1)) = D(n) = D(n").

Def. B justifies to restrict the domain of the schedulers to the information the respec-
tive class exploits. In this way, we obtain the characterization in Table A1l

In the next section, we come to a transformation on CTMDDPs that unifies the speed
of outgoing transitions and thereby allows us to defer the resolution of nondeterministic
choices: Intuitively, if the sojourn time in a state does not depend on the scheduler, the
decision needs not be taken when entering that state, but may be delayed up to the point
when the state is left.

4.2 Local uniformization

Generally, the exit rate of a state depends on the action that is chosen by the scheduler
in that state. Intuitively, this dependency requires that the scheduler selects the action to
continue with directly upon entering a state: Imagine a state s with Act(s) = {«, $} such
that E(s, «) # E(s, 8): If the nondeterministic choice between a and 3 was not resolved
immediately when entering state s, it is unclear whether the delay in state s is distributed
according to E(s, «) or according to E(s, f3).

For general CTMDPs, we assume that schedulers decide directly each time the CT-
MDP enters a new state. In particular, if state s is entered at time ¢ and action « € Act(s)
is chosen by the associated scheduler D, we do not consider the case that D decides for a
different action at some later time t + ¢ during the sojourn period in state s.
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| | scheduler class | scheduler signature
5 positional (TAPR) D : S — Distr(Act)
£ £ | hop-counting (TAHOPR) | D:S xN Distr(Act)
s 2 time abstract . ,
® history dependent (TAHR) D: Pathsy,  Distr(Act)
timed history full timed history
dependent (GM) D : Paths™ — Distr(Act)
= total time history sequence of states & total time
g2 dependent (TTHR) D : Paths;,; x Ryo — Distr(Act)
= % total time last state & total time
o positional (TTPR) D : S x Ry — Distr(Act)
. s last state & delay of last transition
timed positional (TPR) D: S x Ro - Distr(Act)

Table 4.1: Proposed scheduler classes for CTMDPs.

However, such schedulers are interesting as they may correct decisions that have been
made earlier during the sojourn in the current state: For example, such a scheduler could
switch to another action if the sojourn takes longer than a given threshold.

In this chapter, we make a first step towards such scheduler classes. Therefore, we
identify a strict subclass of CTMDPs where the states’ sojourn time distributions are in-
dependent of the action that is chosen in the current state. For this subclass, we are able
to disentangle the sojourn time distribution and the scheduling decision. More precisely,
we define locally uniform CTMDPs which require that all exit-rates are state-wise con-
stant for the available actions:

Definition 4.2 (Local uniformity). A CTMDP (S, Act,R,v) is locally uniform iff
there exists u : S — Ry such that E(s, a) = u(s) forall s € S and o € Act(s).

In locally uniform CTMDPs, each state s has a unique exit rate u(s); hence, its sojourn
time distribution does not depend on the action that is chosen by the scheduler. In this
way, locally uniform CTMDPs allow to delay the scheduler’s decision until the current
state is left. As an implication, we can define a new class of schedulers, which decides
only upon leaving the current state. Such schedulers allow to resolve the nondetermin-
istic choice when the sojourn in the current state is over. Hence, they are referred to as
late schedulers to distinguish them from the early schedulers that are defined for general
CTMDPs.

As we will see in Sec. .4} late schedulers profit from the fact that they can defer their
decision to the end of a state’s sojourn time: In particular, they can incorporate the time
that was spent in the current state into their decision, which is why they strictly outper-
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form early schedulers (cf. Sec. EE4).

Moreover, note that late schedulers on locally uniform CTMDPs are equivalent to
schedulers that can take back their decisions during the sojourn in a given state: To see
this, note that in a locally uniform CTMDDP, the decision that determines the CTMDP’s
stochastic behavior is the one that is taken precisely when leaving the current state. All
previous decisions do not influence the associated stochastic process.

Due to their interesting properties, this section investigates locally uniform CTMDPs
more closely. Therefore, we postpone the discussion about late schedulers to Sec. E-4land
Chapter Bl where we consider them in more detail. As the prerequisite for late schedulers
are locally uniform CTMDDPs, let us first define a transformation on general CTMDPs —
called local uniformization — which achieves local uniformity and investigate its proper-
ties with respect to early schedulers:

Definition 4.3 (Local uniformization). LetC = (S, Act, R, v) be a CTMDP and define
u(s) = max{E(s, ) | a € Act(s)} for all s € S. Then C = (S, Act,R, V) is the locally
uniform CTMDP induced by C, where S = S u S, Sep = {s* | E(s, ) < u(s)} and

R(s,a,s") ifs,s'eS

R(s,as) = R(t,a,s") z:fs=t“/\s’eS
u(s) - E(s,a) ifseSns =s*
0 otherwise.

Further, v(s) = v(s) if s € S and 0, otherwise.

Local uniformization is done for each state s separately with uniformization rate u(s).
If the exit rate of s under action « is less than u(s), we introduce a copy-state s* and an
a-transition which carries the missing rate R(s, «,s*) = u(s) — E(s, «). Regarding s¢,
only the outgoing a-transitions of s carry over to s*. Hence s¢ is deterministic in the
sense that Act(s*) = {a}.

Example 4.3. Consider the fragment CTMDP in Fig. where A =Y A;and A;, pu >0
for i =0,1,2. It is not locally uniform as E(sy, «) = A and E(so,3) = A + u. By applying
our transformation we obtain the locally uniform CTMDP in Fig. as follows: We
set u(sg) = A + p and introduce the copy-state s§. As E(so, ) < u(so), we add a new a-
transition from state s, to its copy-state s§ with rate y. Further, all a-transitions of state s,
(and only those) carry over to state s§; hence, a-transitions lead from state s{ to states s,
and s, with rates A, and A,, respectively. Accordingly, the a-self-loop in state s, in Fig.
induces a new «a-transition in Fig. which leads from state s back to state s. &

Local uniformization of C introduces new states and transitions in C. The paths in C
reflect this and differ from those of C; more precisely, they may contain sequences of
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(a) Fragment of a non-uniform CTMDP.  (b) Local uniformization of state s.

Figure 4.4: How to obtain locally uniform CTMDPs by introducing copy states.

transitions s > s¢ > s where s% isa copy-state. Intuitively, if we identify s and s¢, this

corresponds to a single transition s I, i C. To formalize this correspondence, we
derive a mapping merge on all valid paths 7 € Paths*(C) with 77[0], 7} € S: If [71] = 0,
merge(7) = [0]. Otherwise, let

s 25 merge(Tr) if7[0] € S

a, b —
merge(s > T) =3~ . ,.v el
s —— merge(m') ifm=s*—">T7.

Note that the function merge is defined only for valid paths, that is, for paths 7 whose tran-
sitions correspond to existing transitions in the underlying CTMDP C. Ignoring invalid
paths is justified by the fact, that the set of invalid paths always has probability measure 0
(cf. Def. B14), independent of the scheduler.

Naturally, merge extends to infinite paths if we do not require 7 € S; further, merging
a set of paths IT is defined element-wise and denoted merge(TT).

! !
aoto gy %0fo anh anty g, b

Example 4.4. Let 7 = s So 5 Sy s5 s3 be a path in C. Then

— ag,to+t(, ap,h az, b+t
merge(T) = so 1 Sy S3. &

Intuitively, the function merge collapses the copy states that are introduced in the lo-
cally uniform CTMDP C and maps to valid paths in the underlying (not locally uniform)
CTMDP (. For the reverse direction, we map sets of paths in C to sets of paths in C. To
do so, note that any single path in C corresponds to a countably infinite set of paths in C:

ot . . — )t !
Let s) —= s, be a path in C; it corresponds to the set {n = 5o 5 580 D g [t t = to}

of paths in C. We formalize this extension to paths in C as follows:
If I € Paths(C), we define

extend(I1) = {ﬁ € Paths(C) | merge(T) € H}.

To conclude this section, let us state some natural properties of the functions merge and
extend which prove useful to establish the formal results in the remainder of this chapter:
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Lemma4.1. LetC be a CTMDP and 11;,11,, . .. € Paths(C). Then the following proposi-
tions hold:

1. TI, € T1, = extend(I1,) < extend(I1,),
2. I} n I, = @ = extend(I1;) n extend(I1,) = & and

3. Uextend(I1;) = extend(U Hk).

Proof. We prove each claim separately:

1. IT; ¢ II, = extend(IT;) < extend(Il,) follows directly from the definition of
extend(I1): To see this, note that if IT; € II,, then it holds

{ﬁ € Paths(C) | merge(T) € Hl} c {E € Paths(C) | merge(T) € Hz} .

2. We prove the claim by contraposition: Therefore, assume that IT; n I, = @ but
7 € extend(I1;) N extend(I1,). Then

7€ {7 € Paths(C) | merge(7') € II; A merge(7') € I, } .
But IT, n I1, = @. Hence we obtain the desired contradiction.

3. For any set I € N we have that

U extend(T1;) = |J {7 € Paths(C) | merge(7) € Iy}

kel kel

= {ﬁ € Paths(C) | merge(T) € gﬂk} = extend(U Pk). O

kel

In the following, we investigate which classes of early schedulers induce the same prob-
ability measures for paths in a CTMDP C and the corresponding set of paths in C. Thus,
we identify the scheduler classes for which local uniformization is a measure preserving
transformation.

For the proof, we proceed stepwise and first adopt a local view: In Sec. EZ1, we show
that the probability of a single step in C in which the nondeterministic choice has already
been resolved equals the probability of the corresponding steps in C. The results are used
in Sec. to define a scheduler D on C that corresponds to a given scheduler D on C
and induces the same probabilities.
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4.2.1 One-step correctness of local uniformization

Consider the CTMDP in Fig. where A = Z Aiand A; > 0 for i = 0,1,2. Assume

% 2L is the probability to move to state s;.

Hence the probability to reach state s; in time 1nterval [0,¢] is

that action « is chosen in state sy; then

pIY
X/o n(dt). (1)

Let us compute the same probability for C depicted in Fig.4.4(b)} The probability to go

R(so.wsi) _ M

E(s0,0) )
i(sg,a,si) _ v N . -
Totw) - TeE 1 WE instead move to state s§ and only then to s;. In this case, the

probability that in the time interval [0, ¢], an a-transition executes in state s, followed
by one of s is [,/ (A+p) e+ [ Ye=M2 dt, dt,. Hence, we reach state s; with action
in at most ¢ time units with probability

from s, to s; directly (with action «) is A ot ; however, with probablhty

Ai ¢ 7 A [t -t p
/\+#/0 rlz\+y(dt1)+)t+‘u-x'/(; 77)L+H(dt1) o 1’],\( tz). (42)

It is easy to verify that ([&I)) and (.2)) are equal:

Lemma 4.2 (Local correctness). Let C and C be the CTMDPs depicted in Fig. For
i€{0,...,2}, A, u > 0 and t € Ry it holds

T [ - 7 [ a0+ 5

Proof. We can rewrite the right-hand side in Eq. (3] as follows:

/ M (A1) /O Tndn). (43)

i t t—t
/(/\+y)e (et g 4~ ﬁ/ (/\+‘u)e’(“”)“’[ Xe M dt, diy
+u)h ¢ /\ —(A+tu)t - 1
_A/e@wf iy + £ /0 (i (1 - g=A0-1)) g,

=Aif o gy B A /te—(kw)ndtl_ﬂ'—’\f/te—(lw)n—k(t—tl)dtl.
0 A Jo A Jo

/\+{4

Note that the first two integrals are equal. This yields

t . Ai t
(1 ) [ et gy A [ g
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By rewriting the term A; (1 + %), we obtain the factor (A + ) and the exponential density
for rate (A + p):

. t A t
— %f ()L+‘u)e—(/1+y)t1 dtl— !"A/\z f efytl—)ttdtl
0 0

= % (1- e (1) - /"T)‘ie—)u /Ot e dt,
= & (1 — et _ oA /t —uh ¢ )
pe e 1
A 0
— % (1_ e (A+p)t _ e—/xt(l_ e—/n))
— % (1_ e—()Hy)t _ e—At + e—()Hy)t)
= % (1 - ef’“) O

Thus the probability to reach a (non-copy) successor state in {s, s;,s,} is the same
for C and C. It can be computed by replacing A; with ¥ A; in Eq. @) and Eq. @2).
Further, note that the result of Lemma .2 extends naturally to finitely many successor
states {so,$1,...,S,}. Moreover, if the interval [0, ¢] is replaced by an element from the
Borel o-field B(R,,) and all integrals are interpreted as Lebesgue-integrals, we obtain
a straightforward extension of Lemma[.7Z to the class of Borel measurable sets of time
points.

Next, we prove that Equalities (1]) and ([#2) are preserved even if we integrate over a
Borel-measurable function f : R,y — [0,1]. To keep our notation as simple as possible,
we only consider the probability to reach an arbitrary non-copy state within a Borel mea-
surable set of time points T € B(R,). Compared to Lemma 2 we therefore replace
the rate A; to move to the i-th non-copy successor state by the cumulated rate A = ) A,
to go to any non-copy state:

Lemma 4.3 (One-step timing). Let f : R,y — [0,1] be a Borel measurable function and
T € B(Rs). Then

[0 mld) = 5 [ £ munan

44
i u ,[lew(dh) -/;19]:101 + 1) ma(dty).

(4.4)

Proof. As usual when proving properties about Lebesgue integrals of Borel measurable
functions, we prove the claim stepwise and work our way up from nonnegative simple
functions (cf. Def. on pageB9) to arbitrary nonnegative Borel measurable functions
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(cf. Def. ZT4). First, assume that f : R,y — [0,1] is a simple function. If T ¢ Ry, then it
is easy to see that f o Iy is again a simple function. With this remark, we can rewrite the
Lebesgue integral on the right hand side of Eq. (£.4)) and obtain

J 50 miedn + ) [ o) mdn)
s 1T<t) men

/\ R>o
[ qw(dtl)[ F(t+ ) Tr(h+ 6) ma(dty).

)L+[1

)L+[1

Note that in order to rewrite the innermost Lebesgue integral, we further make use of the
factthatt, e Te t) < t; + t, € T. Applying Fubini’s theorem (Thm. 217 on page E7),
we can switch to a two-dimensional product. In this way, we continue:

AR ORIOFIIED

’ Af# /RR fti+ ) To(ti+ t2) (e < m ) (d(hs 1))

/\+{4

The assumption that f(¢) is a simple function implies that also f o I : R,y — [0,1] and
f iRy - [0,1] : (1, t2) = f(f + t,) are simple functions. Now let {x, x,,...,x,} be
the (finitely many) values that f o I takes in R and define A; = (f o 1) (x;) and
A’ = ' (x;) forall j = 1,2,...,r. With these choices, we can continue to rewrite our
integral as follows:

A r ,
:A_'_#JZ;X:J 11/1+[4(A )+ ‘u; (11/1+HX11/1)(A])
r /\ u ,

A’ /
(e e () 1 (e ) (4)

M* -

A
Xj (/\Jr# Meu(Aj) + —— )L+[,l A>OxRE? (h+ tz)(m+,4 X m)(d(tb tz)))

.
Il
—_

Now we can apply Thm. ZIZ reversely and come back to an iterated integration:

ol
ixj(

=l

¢
T ) eyt [omean) [ 1 () man)

‘ “ f /
A+ u Meu(Aj) + Ay Jry M (dt1) A]-eﬂt?(dtz))
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;zr; ’[Am(dt)ZZr;xj'm(Aj): ’[Tf(t) m(dt).

Here, the equality (*) follows by extending LemmaM-2lfrom intervals to Borel-measurable
subsets of R( which can be done easily by replacing the Riemann integrals over intervals
in the proof of Lemma[.2 by the corresponding Lebesgue integral over measurable sub-
sets of R,.

Further, if f : R,y — [0,1] is Borel measurable, then Thm. 211l (on page B&)) implies
that there exists a sequence of nonnegative simple functions f, such that f, (t) - f(t) for
all t € Ryo. Further, Eq. (4) holds for all f,. With the monotone convergence theorem
(Thm. on page[38)), we obtain

/. f(t)m(t) dt=lim [ fy(0)m(dr)

‘,}LTO )H ff(t ) Mu(dt) + )f f(t1+t2 m(dtz))
-l [ A0 0+ Wun / msa@t) [_filt+ 1) m(de)
“M,}gn;ff(t Meu (1) dt

+ f#m o, St 82) Tr(t ) (s x ) (A1)

-1 [0 man

)L —[i [4 R>0><R>0f(tl + 1) - Ir(t + 1) (’7“# X ’h) (d(t,t2))

[ 70 maeu(an +

A+;4 . M (dty) ’/;etlfn(t1+t2) m(dt). -

The equality of the terms (1)) and [@2) proves that the probability of a single step in C
equals the probability of one or two transitions (depending on the copy-state) in C.

In the next section, we lift this argument to sets of paths in C and C. Further, note that
we did not consider nondeterministic choices yet. This gap will also be bridged in the
next section, where we infer a scheduler D from a given scheduler D that makes use of
the strong relation between the CTMDP C and its locally uniform counterpart C.

4.2.2 Local uniformization is measure preserving

In this section, we prove that for any GM-scheduler D € GM(C) and for each CTMDP C
there exists a GM-scheduler D € GM (C ) in C such that the induced probabilities for the
sets of paths IT and extend(I1) are equal.
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However, as C differs from C, we cannot use D to infer probabilities on C directly. In-
stead, given a history 7 in C, we define D(7, -) such that it mimics the decision that D
takes in C for history merge(7). This is formalized as follows: For all 7 € Paths™(C),
define the GM-scheduler D such that

D(m,-) if7w[0], ) € S Amerge(m) =7
D(m,-)=4{{a~1} if7l=s"€S,

Yz otherwise,

where y5 is an arbitrary distribution over Act(7| ): If merge is applicable to 77 (i.e. if T is a
valid path in C and 77[0] and 7| are non-copy states), then D(7, -) is the distribution that
Dyields for path merge(7) in C; further, if 7}, = s* then Act(s*) = {a} and thus D chooses
action a. Finally, C contains paths that start in a copy-state s®. But as ¥(s*) = 0 for all
s* € S¢p, they do not contribute any probability, independent of D(7, -). For such paths,
as well as for invalid paths, the scheduler decision y; can be chosen arbitrary without
altering the probability measure.

Based on the definition of the scheduler D, we are now going to prove that the prob-
ability measure that D induces on C for the event extend(I1) is equal to the probability
of IT in C under scheduler D.

Therefore, consider a measurable base B € §p,» of the form B = Sy x Agx Ty x...x S,
in C. Then B corresponds to the set extend(B) of paths in C. As extend(B) contains paths
of different lengths, we resort to its induced (infinite) cylinder Cyl(extend(B)) and prove
that its probability equals that of B. To clarify notation, note that we use Cyl(B") = B,
to denote the infinite cylinder B, € Paths® that is induced by a finite-dimensional base
B" € Paths" (cf. Sec. 254 on page E9).

Lemma 4.4 (Measure preservation under local uniformization). Let C =
(S, Act,R,v) be a CTMDP, D a GM-scheduler on C and B = Sy x Ag x Ty x --- x S, €
Sratns” (). Further, let C = (3, Act,R, V) be the locally uniform CTMDP induced by C.
Then there exists a GM-scheduler D such that

Prﬁ,D(B) = lTrg)’B(Cyl(extend(B))), (4.5)

where lTr;) B is the probability measure induced by D and v on § p,, @)

Proof. To shorten notation, let B = extend(B) and C = Cyl(B). We prove the claim by
induction on the length # of the measurable base B:

In the induction base (n = 0), it holds that B = S,. Therefore Pr) ,(B) = ¥,z v(s) =
YgV(s) = P_rg)ﬁ (B) = Pry 5(C) and Eq. @&3) follows.

In the induction step, we extend B with a set of initial path prefixes I = Sy x Ag x Tj
(see Def.B.I6 on pageB2) of length one and consider the base I x B which contains paths
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oflength n +1:

Pri(IxB) = '/; Pry . (B) uy,p(di) (* by LemmaBZ*)
= f Pri;5,(C) wyp(di) (* by ind. hyp. )
I

=Y v(s) Y. D(s,a) / W%E(E) Ne(sa)(dt)  (*wherei = (s,a,t)¥)
s€Sy acAg To

-3 %(s) 3 D(s,a) f Pr 5-(C) Ns(ea (dt). (* by Def. of 7, D *)
5€So achy o

f(s.at)

The probabilities W%E(E) define a measurable function f(s, «,) : Ry — [0,1] where
f(s,a,t) = P_r%fi (C)ifi = (s, a, t). Therefore, we can apply Lemma[3 and obtain

PrA(IxB) = 2 ¥(s) 3 D(ss): [Ploso) [ (5, ) Mg (@)
s€So acAp 0 (46)

+P(s, a,5%) /R ME(s.a) (A1) /ret f(s,a. i+ 1) ﬂf(sa,a)(dtZ)]-

To rewrite this further, note that any path prefix i = (s, «, t) in C induces the sets of path
prefixes I, (i {s —>} and I, (i {s LN LN |+t = t} in C, where the set L(i)
corresponds to those path preﬁxes that reach a state in S directly, whereas the prefixes
that are contained in the set I, (i) take the detour via a copy-state s to a state in S.

As defined in LemmaB7 v;(s") = P(s, «,s’) is the probability to go to state s’ when
moving along prefix i in C. Similarly, for C we define -(s’) as the probability to be in
state s’ € S after a path prefix i € I;(i) u I,(i): If i € I;(i) then we move to a state
s’ € S directly and do not visit a copy-state s®. Thus, v:(s’) = P(s,a,s’) for i € I;(i).

)
S)

that we move there directly. Therefore, if i € I;(i), it holds that v-(s") = P(s,a,5) =
P(s,a,S) - vi(s").

If instead i € I,(i), then i has the form s 20, s« 22 hence, the transition from
state s to the copy-state s® has already been taken. Therefore v=(s’) = P(s%, a,s’) is the
probability to end up in state s’ when leaving the copy-state s%. By the definition of s¢,
this is equal to the probability to move from state s to state s’ in C directly. Hence v;(s") =
vi(s') if i € I,(i).

As defined in LemmaBZ D;(m,-) = D(i o 7,-) and D; i(7m,0) = D(io7,-). From
the definition of D, we obtain that D;(7,-) = D(7,- -) forall i e L(i))uL(i)and 7 €
extend(r). Hence, it follows that if i = (s, &, t) and i € I;(i) U I,(i) it holds

Further, P(s, &, s") in C equals the conditional probability P(S 2% to enter s in C given

5 (0) - {P(s «,8) - Prep(C) ifiel(i) @)

Pry5:(C) if i € L(i).
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With these remarks, we can rewrite Eq. (L.6)) further. Therefore, note that the first sum-
mand in Eq. (B.6) corresponds to the set I, (s, a, t) whereas the second summand corre-
sponds to the set I,(s, a, t; + t,). If we apply Eq. @7) to the right-hand side of Eq. ([{.6)),
we obtain

Pr(1xB) = Y. 3(s) Y D(s,) [ PR 5.(C) s (d)

s€So acAy

+ . 9(s) > D(s,a) - P(s, &, %)

seSo acAp

' f.; M(s) (A1) fToetl Pr5.5.(C) N5(se 0 (d12).

Applying Def. BI6lallows us to integrate over the sets of path prefixes I = Ui (i) and
I, = Ujer (i) which are induced by I = Sy x Ag x Ty and to obtain

PRI B) = [ P 5 (C) Fap(di) + [, PP, (€) )
= Pry5(I x C) + Prog(I, x C)
= Pry5(Ix C)
- ﬁ%v,ﬁ(f x Cyl(extend(B)))
= ﬁg),ﬁ(cyl(extend(l x B))).

In this way, the equality Pr"(I x B) = Pr; B(Cyl(extend(l x B))) follows, completing
the induction step. ]

Lemma E4 holds for all measurable rectangles B = Sy x Ay x Ty x ... x §,; however,
we aim at an extension to arbitrary measurable bases B € §pus7(c)- To achieve this, we
follow the standard arguments in measure theory (cf. Sec.[Z5.4). In essence, we construct
a monotone class and use the monotone class theorem to extend our result from the field
of finite disjoint unions of measurable rectangles to the class of measurable bases. As the
proof technique is interesting in itself, we provide the details here for completeness:

First, let &puysn(cy be the class of all finite disjoint unions of measurable rectangles.
Then each element of & p,en(cy has the form B, v B, u -+ u B, with each B; being a
measurable rectangle as defined above. By Lemma ZI0 (cf. page B3), we know that the
set & pysn () forms a field.

Lemma4.5. Let C = (S, Act,R,v) be a CTMDB D a GM-scheduler on C and n € N.
Further, let C = (S ,Act, R, V) be the locally uniform CTMDP induced by C and let D be
the scheduler that corresponds to D. Then it holds for all B € & pyy,sr (c):

Pry ,(B) = P_r‘;v’B(Cyl(extend(B))).
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Proof. As B € Gpyysr(cy, it has the form B = \k, B; for pairwise disjoint measurable
rectangles B; of length n. Thus

k k
Pr" ,(B) Per(U1 Bi) =Y Pri,(B:) (*asB,nB;=@foritj*)
i= =
k —-—w
=Y Pr;p (Cyl(extend(B,-))) (* by Lemma 4 *)
i=1
k
- p—r;jﬁ(u Cyl(extend(B;))) (* by LemmalLI(2) *)
i=1
= P_rgﬁ(Cyl(extend(B))). (* by LemmaFI¥3) *) O

With the monotone class theorem (Thm. 22 on page 22), the preservation property
extends from Bp,y to the o-field §p,n: Here, the definition of a monotone class (cf.
Def. 23 in Sec. is applied to a class of subsets of Paths": A class € of subsets of
Paths" is a monotone class iff it is closed under in- and decreasing sequences: if I € €
and IT ¢ Paths" such that IT, € IT; € --- and U2, 1T = II, we write IT; 1 IT (similarly for
I, | II). Then € is a monotone class iff for all IT; € € and II ¢ Paths” with I, 1 IT or
I | IT it holds that IT € €.

Lemma 4.6 (Monotone class). Let C = (S,Act,R,v) be a CTMDP with GM-
scheduler D; further, let C = (S,Act, R, V) be C5s induced locally uniform CTMDP
and D € GM(C) the scheduler induced by D. The set

€ = {B € Fruner(c) | Prip(B) = Pris(Cyl(extend(B))) )

is a monotone class.

Proof. We consider increasing and decreasing sequences of sets of paths in ¢:

o Assume that IT? € € for i = 1,2,..., and that the sets I1” form an increasing se-
quence that converges from below to the limit I1", that is, IT? 1 I1". The fact that
o-fields are closed under limits and that I} € §pus(cy for all i = 1,2,. .. implies
that IT" € §puns(c)- Therefore, it remains to show that

Pry ,(I1") = E%B(Cyl(extend(rl"))).

By definition of &, Pr" ,(I17') = Pr;, 5(Cyl(extend(T11))) for all i € N. Therefore,
the limits also agree. More precisely, we have established that

lim Pr} (I1}) = lim ﬁg’ﬁ(Cyl(extend(H?))). (4.8)
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Further, both Pr} ;, and ﬁ? D are measures on 3§ pyys () and § Paths® (C)» respectively.
As IT? 1 I1" is an increasing sequence, it follows by Lemma I and the definition
of Cyl that also Cyl(extend(I1,;)) 1 Cyl(extend(I1,)).

From here, we obtain by Lemma[Z2 that

lim Pry ,(I1}) = Pry ,(IT")  and (4.9)
lim P_rgiﬁ(Cyl(extend(H?))) = P_rg,ﬁ(Cyl(extend(H”))). (4.10)
Thus, we have proved that
Pry (I1%) &3 lim Pry ,(T1}) &3 lim Pry 5(Cyl(extend(I1})))
(ZR10)

=" Pry5(Cyl(extend(11"))).

 Now, let IT? € & and IT} | II". This case is analogue, as lim;_ Pr), ,(II}) =
Pry, ,(I1") also holds for decreasing sequences IT? | II". Hence, the proof goes
along the same lines as the one done before for increasing sequences. o

Lemma 4.7 (Extension). Let C = (S, Act,R,v) be a CTMDB D a GM-scheduler on C
and n € N. Further, let C = (S ,Act, R, V) be the locally uniform CTMDP induced by C,

and D € GM(C) the scheduler that corresponds to D. Then it holds for all measurable
bases B € Fpyps(c) that

Pry ,(B) = P_r‘;v’B(Cyl(extend(B))).

Proof. By Lemmal.8 € isa monotone class and by Lemma.3lit follows that & p,,e (¢ S
¢. Thus, tIE monotone class theorem (cf. Thm. Z2) applies and §p,» € €. Hence
Pry ,(B) = Prg’B(Cyl(extend(B))) for all B € Fpyps- i

LemmaM.4land its measure-theoretic extension to the o-field are the basis for the major
results of this chapter. We discuss them in the following section.
4.3 Preservation results for local uniformization

The first result states the correctness of the construction of the scheduler D, that is, it
asserts that D and D assign the same probability to corresponding sets of paths.
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Theorem 4.1. LetC = (S, Act,R,v) be a CTMDP and D a GM-scheduler on C. Further,
let C = (S,Act, R, V) be the induced locally uniform CTMDP and D the scheduler that
corresponds to D. Then it holds for all I1 € §pyyso that

Pré (I1) = Pryp(extend(I1)).

Proof. Each cylinder IT € §pu (c) is induced by a measurable base [ADD00, Thm. 2.7.2];
hence IT = Cyl(B) for some B € §pyyst(cy and n € N. But then, Pry ,(IT) = Pr}) ,(B).
Further, it is easy to verify that extend(Cyl(B)) = Cyl(extend(B)). Thus Pr} ,(B) =
ﬁgﬁ(extend(ﬂ)) by Lemma7 O

With Lemma[.4and its extension, we are now ready to prove that local uniformization
does not alter the CTMDP in a way that we leak probability mass with respect to the most
important scheduler classes:

Theorem 4.2. Let C = (S, Act,R,v) be a CTMDP and let C = (S, Act,R,v) be its in-

duced locally uniform CTMDP. For all I1 € §punse ¢y and each scheduler class ®© from the
set {GM, TTHR, TTPR, TAHR, TAPR} it holds that

sup Pry,(IT) < sup Prs py (extend(11)). (4.11)
De®(C) D'e®(C)

Proof. By Thm.[.1 the claim follows for the class of all GM-schedulers, that is, for © =
GM. For the other classes, it remains to check that the GM-scheduler D used in LemmaF4
also falls into the respective class. Here, we state the proof for TTPR: If D : § x R,y —
Distr(Act) € TTPR, define D(s,A) = D(s, A) if s e Sand D(s%, A) = {a > 1} for s* € S,,,.
Then Lemma 4 applies verbatim. O

Note that Thm. .2 does not mention the scheduler classes TPR and TAHOPR. This is for
good reason: In Thm. B4, we will construct a counterexample that disproves Eq. (@11
for these scheduler classes: Note that although we obtain a GM-scheduler D on C for
any D € TPR(C) u TAHOPR(C) by Thm. ]} D is not guaranteed to lie in TPR(C) (or
TAHOPR(C), respectively). Hence, Eq. @II) does not hold directly for all scheduler
classes that are subsets of GM.

For the main result, we identify the scheduler classes, that do not gain probability mass
by local uniformization:
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Theorem 4.3. Let C = (S, Act,R,v) be a CTMDP, C = (S, Act, R, V) its induced locally
uniform CTMDP and I1 € §payso(c). Then

sup Pry,(IT) = sup Pry p(extend(T1))  for® € {TTPR, TAPR} .
De®(C) D’eD(C)

Proof. Theorem proves the direction from left to right. For the reverse, let D’ «
TTPR(C) and define D € TTPR(C) such that D(s,A) = D'(s,A) forall s € S, A € Rs.
Then D = D’ and Prs p (extend(11)) = Pry ,(IT) by Thm. 1 Hence the claim for TTPR
follows; analogue for D’ € TAPR(C). o

Conjecture 4.1. We conjecture that Thm.H.3| also holds for GM and TTHR. For D' €
GM(C), we aim at defining a scheduler D € GM(C) that induces the same probabilities
on C. However, a history m € Paths” (C) corresponds to the uncountable set extend() in
C such that D'(7,-) may be different for each 7 € extend(r).

As D can only decide once on history m, in order to mimic D’ on C, we propose to weigh
each distribution D'(7, -) with the conditional probability of d7 given extend(m).

In the following, we disprove Eq. @I1)) for TPR- and TAHOPR-schedulers. Intuitively,
TPR-schedulers rely on the sojourn time in the last state; however, local uniformization
changes the exit rates of states by adding transitions to copy-states.

Theorem 4.4. For & € {TPR, TAHOPR}, there exists a CTMDP C = (S, Act, R, v) and
a measurable set of paths I1 € Fpapso (¢ Such that

sup Pry,(IT) > sup lTr;))D,(extend(H)).
De&(C) D'e®(C)

Proof. We give the proof for TPR: Consider the CTMDPs C and C in Fig. and

Fig. respectively.

Let IT € §punse(c) be the set of paths in C that reach state s; in 1 time unit and let
TI = extend(I1). To optimize Pr* (1) and ﬁg o (T1), any scheduler D (resp. D’) must
choose {a — 1} in state s,. Nondeterminism only remains in state s;; here, the optimal
distribution over {«, 8} depends on the time ¢, that was spent to reach state s;: In C and C,
the probability to go from s; to s; in the remaining ¢ = 1-t, time units is f,(¢) = 3 -1
for a and f3(t) = 1+ e — 3e~* for f. Fig. shows the cumulative distribution
functions (cdfs) of f, and fz; as any convex combination of « and 8 results in a cdf in the
shaded area of Fig.[4.5(b)} we only need to consider the extreme distributions { « ~ 1} and
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(a) Local uniformization of Fig. |4.2(a) (b) From state s; to state s3.

Figure 4.5: Timed reachability of state s; (starting in s;) in C and C.

{B ~ 1} for maximal reachability. Let d be the unique solution (in R.) of f,(t) = fz(t),

o,to

i.e. the point where the two cdfs cross. Then D, (s) = s1,-) = {a 1} if 1-t; < d and
{B = 1} otherwise, is an optimal GM-scheduler for IT on C and D,,; € TPR(C)NnTTPR(C)
as it depends only on the delay of the last transition.

For II, D’ is an optimal GM-scheduler on C if D’ (s, b, s1>+) = Doyt (50 b, S1,°) as
before and D'(sy = s 2 o) ={am1} if 1-to—t; < d and {f = 1} otherwise. Note
that by definition, D’ = D,,; and D,,; € TTPR(C), whereas D’ ¢ TPR(C) as any TPR(C)

. . it t o
scheduler is independent of t,. For history 7 = sy —> s& = s,, the best approximation

of t, is the expected sojourn time in state s, i.e. m For the induced scheduler D'’ ¢
o,to

TPR(C), it holds D" (s;, ) # D’(sy —> ¢ 0, s1) almost surely. But as D, is optimal,
there exists & > 0 such that Pr; ,,,(TT) = Pry. Doyt (TI) - . Therefore

sup P_r;U,D,,(ﬁ) < P_r;’,m(ﬁ) = Pr‘v",DDPt(H) =supPry ,(IT).
D"eTPR(C) DeTPR(C)

For TAHOPR, a similar proof applies that relies on the fact that local uniformization
changes the number of transitions needed to reach a goal state. O

This proves that by local uniformization, essential information for TP and TAHOPR
schedulers is lost. In other cases, schedulers from TAHR and TAHOPR gain information
by local uniformization:

Theorem 4.5. There existsa CTMDP C = (S, Act, R, v) and a set of paths I1 € Fpumnse(c)
such that

sup Pry,(IT) < sup lTr;iD,(extend(H)) for & = {TAHR, TAHOPR} .
De&(C) D'e®(C)
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Proof. Consider the CTMDPs C and C in Fig. and Fig. resp. Let II be the
time-bounded reachability property of state s; within I time unit and let IT = extend(I1).
We prove the claim for TAHR: Therefore, we derive D € TAHR(C) such that Pry ,(IT) =
SUPpveranr(cy Pry.p (IT). For this, D(so) = {a = 1} must obviously hold. Thus, the only

nondeterministic choice occurs in state s; for time-abstract history s 2 s, where D(so 5
s1) = u, p € Distr({a, }). For initial state s,, Fig. .6(a)] depicts Pre,(IT) for all u €
Distr({a, B}); obviously, D(sy — s;) = {8+ 1} maximizes Pr,,(II). On C, we prove
that there exists D’ € TAHR(C) such that Pr¢, (I1) < Pry ps(I1): To maximize Pr;, 5, (1),
define D'(sy) = {a ~ 1}. Note that D’ may yield different distributions for the time-
abstract paths sy — s; and sy — s& — s; for u, . € Distr({a, 8}) such that y = D'(sy =
s1) and p, = D'(sp = s& 5 s,) the probability of IT under D’ is depicted in Fig.
for all u, u, € Distr({a, B}). Clearly, Pr ,,(TI) is maximal if D'(s, — s) = { = 1}
and D'(sy = s¢ 5 s;) = {a ~ 1}. Further, Fig. .6(b) shows that with this choice of
D', Pr; p(TI) > Pry ,(IT) and the claim follows. For TAHOPR, the proof applies analo-
gously. ]

With these counterexamples, we complete our discussion of local uniformization and
come back to the question that was raised at the beginning of Sec. The motivation to
study locally uniform CTMDPs is to delay the scheduling decision until the current state
is left.

As we have seen, for TTPR- and TAPR- schedulers, any given CTMDP can be trans-
formed into a locally uniform one while preserving all measures. Moreover, in this thesis,
we are particularly interested in time-bounded reachability objectives; for them, we know
that TTPR schedulers are sufficient, that is, we do not need to consider any other class of
schedulers to obtain the optimal reachability probabilities.

However, a word of caution is necessary at this point: The results of this chapter might
lead to the conclusion, that for time-bounded reachability objectives, one can transform
an arbitrary CTMDP into a locally uniform one and investigate it with respect to late
schedulers. Albeit possible, there is still an open theoretical problem in this approach:

The results of this chapter do not prove in any way, that local uniformization preserves
measures with respect to late schedulers. Obviously, for such a proof, we need to define
the semantics of non-locally uniform CTMDPs under late schedulers. However, in this
setting, the scheduling decision and the sojourn time distribution become dependent
on each other. The natural result are measurable schedulers that decide continuously
during the sojourn in the current state. However, the implications of such a definition
are ongoing research and outside the scope of this thesis.
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Figure 4.6: Optimal TAHR-schedulers for time-bounded reachability.

4.4 Delaying nondeterministic choices

In this section, we finally discuss late schedulers in more detail. As stated previously, we
therefore have to assume that the given CTMDP is locally uniform.

In the following, we show how local uniformity permits to derive the class of late sched-
ulers which resolve the nondeterministic choices in the current state only upon leaving
that state. Intuitively, a late scheduler may exploit information about the current state’s so-
journ time for its decision. As a consequence, we prove in this section that late schedulers
on locally uniform CTMDPs induce more accurate probability bounds than the class of
(early) GM-schedulers.

To begin, assume that C = (S, Act, R, v) is a locally uniform CTMDP and D is a GM-
scheduler on C. Then E(s, a) = u(s) for all s € S and « € Act (cf. Def. 7). This indepen-
dence of the exit-rate from the action that is chosen implies that the measures 75, ) in
the integral in Def. B.J4do not depend on a. Thus, we may exchange the order of integra-
tion in Eq. (3I1) by applying [ADDO00, Thm. 2.6.6]. More precisely, we can rewrite the
measure on combined transitions given in Def. B4 (see on page [/9) to account for the
fact that the sojourn time distribution becomes independent from the scheduler. Hence,
for locally uniform CTMDPs and late schedulers, the measure pup (7, M) as defined in
Eq. (BII) can be restated as follows:

up(m, M) = fR Mty (d1) fA D(mda) [S Li(a,t,s') P(s,a,ds’).  (4.12)

Formally, Eq.@I2) now permits to define late schedulers as measurable mappings D :
Paths™ (C) x Ry x §aer — [0,1] that extend the class of GM-schedulers by also consider-
ing the sojourn time in the current state, that is, in state 7r}. Formally, the class of late
schedulers (denoted ML) is defined as the set of all measurable mappings Paths™(C) x
Rso X §ae — [0,1] which satisfy D(7, t, ) € Distr(Act(nl)) forall t € R,y and 7 € Paths™.

The details of the adaptation of the probability measures to late schedulers are dis-
cussed in Chapter Bl (see also Def. B.J on page [[16), where we develop an approximation
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algorithm which computes the maximum time-bounded reachability probabilities in lo-
cally uniform CTMDPs under late schedulers.

Note however, that local uniformity is essential for the derivation of late schedulers:
In the general case, the measures 7, (dt) and a late scheduler D(7,t, d«) are inter-
dependent in t and a; hence, in Def.BJ4l up(7,-) is not well-defined for late-schedulers.
Intuitively, in general CTMDPs the sojourn time ¢ of the current state s depends on D
while D depends on t.

Let ML and GM denote the classes of late and GM-schedulers, respectively.

Theorem 4.6 (Comparison of early and late schedulers). Let GM and ML denote the
classes of early and late schedulers. Further, let C = (S, Act, R, v) be a locally uniform
CTMDRP Then it holds for all 1 € Paths”(C) that

sup Pry ,(IT) < sup Pry ,(I1). (4.13)
DeGM DeML

Moreover, Inequality @13) is strict in general.

Proof. By definition, GM ¢ ML; to see this, let D, : Paths™(C) x §ae = [0,1] € GM be an
early scheduler and define the late scheduler D; : Paths™(C) x Ryy x Faer — [0,1] € ML
such that D;(m,t,-) = D,(m,-), where t is the sojourn time in 7} that is available to
the ML-scheduler. With this construction, any GM-scheduler can be considered as an
ML-scheduler which ignores the sojourn time in ). Further, the probability measures
induced by D, and D; are equal by definition. Thus, Inequality @I3) follows directly.

Now we come to the second claim and prove that ML-schedulers generally induce
strictly larger probability bounds than GM-schedulers: Let C be the locally uniform CT-
MDP depicted in Fig. and let IT be the time-bounded reachability probability for
state s; and time-bound z = 1. As we have seen in Ex. .2 on page[89] the optimal choice
for an early scheduler if state s, is entered and 1 time unit remains to reach state s; is ac-
tion 8 (as1> In (% + é\/ﬁ), cf. Ex.£2). Therefore, we obtain the maximum reachability
probability for early schedulers:

1 -4 1 3
sup Pre (1) = /0 (3€3tl /0 e " dtz) dt; =1+ 56’3 - Ee’l ~ 0.4731.

DeGM

On the other hand, the optimal late scheduler can be derived as follows: Assume that
the sojourn in state s, lasts for ; time units. If the scheduler chooses « upon leaving s,
the CTMDP enters state s; with probability 1. On the other hand, action § incurs an ad-
ditional delay with rate 1, but reaches state s; with probability 1. We derive the minimum
amount of time d € R, that needs to remain after the sojourn in state s, is over, such that
the probability induced by choosing 8 is larger than 3 (i.e. the probability induced by a).
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Figure 4.7: Late schedulers outperform early schedulers.

Formally, we seek d € R such that the ML-scheduler D with

{/5»—)1} ift<d

{a —~1} otherwise

D(sy,t) = {

is optimal. For the CTMDP in Fig. and a fixed d € R, the probability to move
from state s; to state s; within z time units is given by the function v, where

| Y S “h
v(d,z) = 3 /Z_d3e 1 dt1+/0 (36 1~’/(; e 2 dtz) dt
1 z z—d
= 3730 dt + / 3e73 — 372177 g,
3 —/;—d ! 0 ( ) !

Here, the second integral corresponds to the convolution of the delays of the transitions
that lead from state s, via state s, to state s;. Intuitively, in the first integral, the sojourn in
state s falls into the interval [z — d, z]; hence, time is short and action « is chosen. The
second integral corresponds to sojourn times f, € [0, z — d |, where we favor f3 over a. To
prove the claim, it suffices to consider the time horizon z = 1: In this case, Fig.
depicts the probability v(d,1) for all 0 < d < z = 1; analytically, it is easy to derive
that v(d, 1) is maximal for d = d,,,,, = In3 —In2.

Hence, if the remaining amount of time z — t, after leaving state s, is less thanIn3-1In 2,
we choose action «a; otherwise we choose action f. This yields the scheduler D(s;, t;,-) =
{B~1}iff; <1+In2-1n3 and {«a ~ 1}, otherwise. Finally, computing the maximum
achievable probability under the late scheduler D as derived above yields probability

Prop(I) = v(dpan 1) =1+ %—3 _ %e‘l - 0.4876.
Hence, D induces a probability which is approximately 1.45% higher than the maximum
probability that can be obtained by early schedulers. Therefore, we have proved that op-
timal ML-schedulers perform strictly better than optimal GM-schedulers. O
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4.5 Conclusion

In this chapter, we study a hierarchy of early scheduler classes for CTMDPs and investi-
gate their sensitivity for general measures with respect to local uniformization. This trans-
formation is shown to be measure-preserving for TAPR and TTPR schedulers. Moreover,
in contrast to TPR and TAHOPR schedulers, GM, TTHR and TAHR schedulers cannot
lose information to optimize their decisions. TAHR and TAHOPR schedulers can also
gain information. We conjecture that our transformation is also measure-preserving for
TTHR and GM schedulers.

The starting point for considering local uniformization was the observation that locally
uniform CTMDPs separate the sojourn time distribution from the scheduler decision
which allows us to define strictly more powerful scheduler classes compared to those
that are proposed for general CTMDPs.

Hence, it was a natural question to investigate means to uniformize early CTMDPs.
However, more research is necessary in this direction, as we did not prove that local
uniformization is measure preserving for late schedulers and general CTMDPs.

Moreover, the slightly simpler structure of locally uniform CTMDPs allows us to de-
rive an approximation algorithm that computes time bounded reachability probabilities
in locally uniform CTMDPs. This will be the topic of Chapter Bl






5 The analysis of late CTMDPs

The only reason for time is so
that everything doesn’t
happen at once.

(Albert Einstein)

In this chapter, we develop a discretization technique which allows us to analyze time-
bounded reachability probabilities in late CTMDPs. As we have seen in the previous
chapters, the sojourn time distribution of the current state in a CTMDP generally de-
pends on the action that is chosen by the associated GM-scheduler. This dependency
requires the scheduler to decide early, that is, when entering the current state. Therefore,
we sometimes refer to the class of GM-schedulers and the associated CTMDPs as early
schedulers and early CTMDPs, respectively.

In contrast to general CTMDPs and GM-schedulers, Chapter @ has introduced local
uniformization and motivated the use of late schedulers (from the class ML): More pre-
cisely, we have seen in Sec. B4l that for locally uniform CTMDPs late schedulers generally
outperform the early schedulers from Sec. This comes as no surprise, as in locally
uniform CTMDPs, the states’ sojourn time distributions do not depend on the sched-
uler’s choice. Hence, local uniformity allows us to delay the scheduling decision until the
current state is left, resulting in the class of late schedulers. However, another result of
Sec. B4l is that late schedulers are well-defined only for locally uniform CTMDPs.

Up to now, the motivation to consider locally uniform CTMDPs and late schedulers
may appear to be merely technical. However, this would be a wrong conclusion, as we
will see in the forthcoming chapters that local uniformity is a property that is commonly
found in controlled queuing systems (cf. the case study in Sec. B4l at the end of this chap-
ter) and stochastic Petri net formalisms such as GSPNs (cf. Chapter §). Moreover, the
ideas and techniques developed in this chapter carry over to interactive Markov chains
(cf. Chapter [6) whose Markovian states can be considered locally uniform. Therefore it
is fair to say that the ideas presented in this chapter provide the essence of the approxi-
mations used throughout this thesis.

From a technical perspective, local uniformity is an extremely useful property when it
comes to the analysis of CTMDPs. Therefore, the focus of this chapter is on the analysis
of locally uniform CTMDPs under late scheduling disciplines.

Its main contribution is a solution method for the time-bounded reachability problem
in locally uniform CTMDPs: We propose a technique to compute the maximum proba-
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bility to reach a set G of goal states within a given time bound z under all late schedulers.
More precisely, we prove that for time-bounded reachability, it suffices to consider total
time positional deterministic late schedulers (TTPDL) which base their decision only on
the elapsed time and on the current state. Exploiting this result, we characterize the max-
imum time-bounded reachability probability as the least fixed point of a higher-order
operator which involves integration over the time domain. This allows us to reduce the
time-bounded reachability problem for locally uniform CTMDDPs to the problem of com-
puting step-bounded reachability probabilities in discrete-time MDPs. More precisely,
we approximate the behavior of the CTMDP up to an a priori specified error bound € > 0
by defining its discretized MDP such that its maximum step-bounded reachability prob-
ability coincides (up to €) with the maximum time-bounded reachability probability of
the underlying CTMDP.

In this way, we derive a quantifiably correct approximation method that solves the
time-bounded reachability problem for locally uniform CTMDPs by reducing it to the
step-bounded reachability problem in MDPs. The latter is a well studied problem [[Put94]
and can be solved efficiently by linear programming techniques, policy iteration [How60]
or value iteration algorithms [Bel57, Ber95]]. Hence, our approach is also efficient from a
complexity theory point of view. More precisely, we rely on the value iteration algorithm
and prove that the worst-case time complexity of our approach is in O(m - (Az)?/e),
where m denotes the number of transitions in the locally uniform CTMDP and A is its
maximal exit rate.

Although we present all results only for maximum time-bounded reachability proba-
bilities, all proofs can easily be adapted to the dual problem of determining the minimum
time-bounded reachability probability.

Organization of this chapter. Section B introduces the probability measures for lo-
cally uniform CTMDPs and late schedulers in full detail. In Sec. 5.2, we develop a fixed-
point characterization for the maximal time-bounded reachability probability in locally
uniform CTMDP. Moreover, we prove that total time positional schedulers suffice to max-
imize time-bounded reachability objectives. Section 5.3 defines the discretization, which
reduces the time-bounded reachability problem in locally uniform CTMDPs to a step-
bounded reachability computation in an MDP. The case study in Sec. B4 shows the appli-
cability of our approach by analyzing the best- and worst-case finishing probabilities in
the famous stochastic job scheduling problem. Finally, Sec. 5l concludes the chapter.

5.1 Locally uniform CTMDPs

As a preparation for the development of our approximation, let us recall the definition
of locally uniform CTMDPs and introduce their probabilistic semantics in detail. As we
have seen already in Sec. B4} the motivation for considering locally uniform CTMDPs
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is the fact that they allow us to define a special class of late schedulers which generally
induce strictly better probability bounds than the standard GM-schedulers.

More precisely, in the standard definition of CTMDPs (cf. Def. BI1)), the exit rate of
a state depends on the action that is chosen in that state. This is not the case in locally
uniform CTMDPs: Here, we require that the exit rate (and hence the sojourn time dis-
tribution) in a state is the same for all enabled actions in that state. Accordingly, we
consider the subclass of locally uniform CTMDPs. It is characterized by Def. B2 (see
page[T) which is equivalent to stating thata CTMDP C = (S, Act, R, v) is locally uniform
iff VseS. Va, B e Act(s). E(s,a) = E(s, B).

Hence local uniformity ensures that the sojourn time in any state does not depend
on the action that is chosen in that state. Hence, we may use E(s) = E(s, «) for some
a € Act(s) to denote the exit rate of state s. In the remainder of this chapter, we assume
that all CTMDPs are locally uniform and only mention this restriction where necessary.

Example 5.1. Consider the CTMDP C in Fig.ol It is locally uniform as in state s, the exit
rate under action « is E(so, &) = Y.ges R(50, @, 8") = R(sg, &, 55) + R(sp, a0, 83) =1+2=3
which equals the exit rate E(so, B) = R(so, B, 51) = 3 of state s, under action 3. Apart from
the fact that it is locally uniform, the behavior of the CTMDP C is as usual: The choice
between actions o and f3 in state s, is nondeterministic. If a is chosen, the a-transitions to
states s, and s3 compete for execution. The motivation for local uniformity is the fact, that
the sojourn time in s, becomes independent of the action that is chosen. In any case, it is
exponentially distributed with rate E(s,) = 3. ¢

5.1.1 Probability measures in locally uniform CTMDPs

As we already observed in Sec. -4, locally uniform CTMDPs allow us to define ML-
schedulers that cannot be defined for general CTMDPs and which perform strictly better
than general GM-schedulers. In Sec. BT we will come back to this issue and define the
semantics of late schedulers in locally uniform CTMDPs in more detail.

A turther remark is necessary before we do so: Obviously, locally uniform CTMDPs
are a strict subclass of ordinary CTMDPs: Hence, the construction of their associated
measurable spaces remains unaltered and all definitions from Sec. (see page [70)
carry over to the current setting. The probability measures defined on those measurable
spaces change however when considering late schedulers:

5.1.2 Measurable late schedulers

The restriction to locally uniform CTMDPs allows us to define a new class of schedulers
which we refer to as “late” schedulers. In the classical setting (cf. Sec. B.3.2), the scheduler
immediately decides for an action when entering a state. Intuitively, this is a necessity as
the state’s sojourn time distribution is determined by the action that is chosen by the
scheduler.
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Figure 5.1: Example of a locally uniform CTMDP.

In locally uniform CTMDDPs, the setting is different as the state’s sojourn time distribu-
tion is independent of the selected action. Intuitively, no matter which action the sched-
uler chooses, the sojourn in the current state remains unaffected. Therefore it is natural
to consider schedulers that delay their decision up to the point when the sojourn time has
elapsed and the nondeterminism must be resolved in order to obtain the successor-state
distribution. This argument leads to the definition of ML-schedulers, which postpone
their decision up to the point when the current state is left. Thereby, they are able to addi-
tionally incorporate the current state’s sojourn time into their decision. This is why they
expect the sojourn time in the current state as an additional argument:

Definition 5.1 (Measurable late scheduler). A late scheduler for a CTMDP
(S, Act,R,v) is a mapping D : Paths” x Ryy x Fax — [0,1] where D(m,t,-) €
Distr(Act(m})) for all t € Ry and m € Paths™. A late scheduler D is a measurable
late scheduler (ML-scheduler) iff the functions D(-,-, A) : Paths” x Ry, — [0,1] are
measurable for all A € F .

Similar to the definition of GM-schedulers (see Def. B13), the measurability condi-
tion for ML-schedulers states that for all A € F4, and B € 95 ([0,1]) it must hold that
{(n,t) | D(m,t,A) € B} € 0 (Fpans x B(Rsy)).

Intuitively, the behavior of an ML-scheduler is described as follows: Let 7 be a finite
path ending in state s with |Act(s)| > 1. If state s is left after ¢ units of time, then D(7, ¢, -)
is the probability distribution over Act(s) which resolves the nondeterminism in state s
for history m and sojourn time t. For an ML-scheduler D, the argument ¢ only refers to
the time spent in the current state s. However, D can infer the total time ¢, that has passed
before taking the decision D(7, t) from the sojourn time ¢ and the timing information
contained in the trajectory 7: Formally, we therefore set ¢, = A(7) + t.

Let ML(C) denote the class of ML-schedulers for a locally uniform CTMDP C; we omit
the reference to C whenever it is clear from the context. Further, a scheduler D € ML
is deterministic if for all 77 € Paths™ and t € R, the distribution D(7, ¢,-) is degenerate;
otherwise, it is randomized. Where appropriate, we use D(7, t) to denote the distribution
D(m, t,-). If D € ML is deterministic and D(7, t) = {a — 1}, we identify the distribution
{a ~ 1} and action «.

In the following, we focus on total time positional late schedulers [Mil68a, NSK09]
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which decide only based on the current state and the total elapsed time ¢,, that is, they
consider the sum of the time that has elapsed during the trajectory 7 and the sojourn
time in the current state:

Definition 5.2 (Total-time positional late scheduler). Let C = (S, Act,R,v) be a CT-
MDP and D € ML. The scheduler D is a total-time positional randomized late scheduler
(TTPRL) iff for all my, m, € Paths™ and for all t,, t, € Ry it holds that

(7T1l, = 7T2l, N A(T[l) +hH = A(T[z) arF tz) = D(T[], tl) = D(T[z, tz).

A TTPRL-scheduler yields the same distribution for trajectories m; and m, if m; and
7, end in the same state (the current state) and if the sums of the time that has passed
on path 7 (resp. path 7,) and the sojourn time #, (resp. ;) of the current state are equal.
Therefore, any TTPRL-scheduler D’ is isomorphic to a mapping D : SxR,, — Distr(Act),
where D(s, t,) = D'(m, t) for all paths 77 € Paths” and t € Ry with A(7)+¢t = t,and 7| = s.
For the other direction, any measurable mapping D : § x Ry — Distr(Act) induces the
TTPRL-scheduler D’ with D'(7, t) = D(7}, A(7)+t). To ease notation and to distinguish
between ML and TTPRL-schedulers, in the following we use this one-to-one correspon-
dence and specify TTPRL-schedulers as functions D : S x R,y — Distr(Act). As before,
if D(7, t) is degenerate for all 7 € Paths™ and t € Ry, the scheduler D is deterministic;
accordingly, we use TTPDL to denote the subclass of deterministic TTPRL-schedulers.

5.1.3 Probability measures

Given a CTMDP C, each ML-scheduler D induces a unique stochastic process on C.
However, due to the different scheduling discipline of ML-schedulers (compared to GM-
schedulers) we have to adapt the definition of the induced probability measures. There-
fore, we follow the lines of Sec. and make adjustments where necessary. As it turns
out, we only have to adapt the probability measure yp(7,-) for sets of measurable com-
bined transitions (cf. Def. B.I4); all further definitions carry over without modifications.

Recall that paths in a CTMDP can be seen as a finite (or infinite) concatenation of
combined transitions; we stick to the notations of Sec. and use Q = Act x Ryg x S
and § = 0 (Fax ® B(Rs) ® §s) to denote the set of combined transitions and their
associated o-field.

Definition 5.3 (Probability of combined transitions). Let C = (S, Act,R,v) be a CT-
MDP and D € ML. For all 7t € Paths”, define the probability measure up(7,-) : § — [0,1]
where

ptD(n,M):/ qE(ﬂl)(dt)/ D(n,t,doc)/IM(oc,t,s') P(s,a,ds").
Rxo Act S
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Recall that #5(,,) is the exponential distribution of the sojourn time ¢ of the state
which has rate E(7]); further, I, is the characteristic function of M € §. In fact, as in
Sec. pp(7, M) is the probability to continue with some combined transition in M,
given that we hit the current state 7] along the trajectory 7. However, for late schedulers
D € ML, up, refers to a slightly different probability measure where the scheduler knows
the amount of time that has passed in the current state.

Having the probability measures pp (7, -) at hand, we now can define the probabilities
of measurable sets of paths in exactly the same way as for early schedulers. We restate the
definition here for completeness:

Definition 5.4 (Probability measure). Let C = (S, Act,R,v) be a CTMDP and D ¢
ML. For n > 0, we define the probability measures Pr, , on the measurable space
(Paths” s S Paths™ ) inductively:

Prg,D F Spans > [0,1] 1 T Z v(s) andforn>0:
sell

Pl s Soanr = [0,1] T [ Prid(dm) [ (o m) up(m,dm).
> > Q

Paths" ™!

All other results, especially the extension to measurable cylinders and to the o-field
over infinite paths carry over from Def. on page

5.2 A fixed point characterization for time-bounded
reachability

In this section, we aim at computing the upper bounds on the probability to reach a
set G € S of goal states within a given time bound z (denoted <[%?1G) with respect to
the class of ML-schedulers.

Definition 5.5 (Maximum time-bounded reachability). Let C = (S, Act,R,v) be a
CTMDP, G c S, s € S and z € Ry. Then

P55+ S x Rog = [0,1] 1 (5,2) > sup Prét ,(0*1G)
DeML

is the maximum time-bounded reachability for the set G of goal states and time bound z.

We omit the superscripts C and G of p55, if they are clear from the context. Any sched-

uler D € ML induces the reachability probability function Pr¢ ,,(1G) : Ry — [0,1],
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which is continuous by definition. As the following lemma proves, continuity — and
thereby measurability with respect to B(R,,) — extends to the function p,,,.(s,-):

Lemma 5.1. The functions p.(s,-) : Rsg = [0, 1] are continuous and measurable.

Proof. We have to prove that for all s € S and z € R,,,

;ir(l)l+ Pmax($:2=0) = prmax(s, 2) = (shr(l)l Pmax(s, 2+ 6). (5.1)

By definition, the reachability probability functions Pr; D(<>[°"] G) are continuous and
monotone; thus, their point-wise supremum p,,,.(s,-) is also monotone. However, the
proof that p,..(s,-) is continuous is not that easy. To see why, note that in general, the
pointwise supremum of a countable family of continuous functions is not guaranteed to
be continuous. Hence, a more detailed argument is necessary:

To prove that p,,..(s,-) is continuous, we proceed by contraposition and assume that
there exists z € R, such that (&) is violated: Assume that p,,..(s,) is not continuous
from the left at point z € R, i.e.

Je > 0. (Slir(% Prmax(5:2=0) = pmax(s, 2) — €. (5.2)

Then choose D € ML such that Pr‘Vi,D(O[O’Z]G) = Pmax(s,z) — & for some & < 5. By def-
inition, the function Pr¢ ,(&11G) : Ryg — [0,1] is continuous. Further, Pr¢ (s, 2’) <
Pmax(s,2") for all z’ € Ry by definition of p,,,,. Therefore, lims_q+ Pr‘v”s,D(<>[°’z*5]G) <
limg_g+ Pmax(s,z — §). Hence

Pmax(s,2) =& = Prt’s,D(O[O’Z]G)
= lim Pry (0l%%G)

< lim pax(s, z - 6).
§—0*
But then, lims_o+ Pax($,2 = 8) > Pimax(s,2) = &> Prax(s, z) — &, contradicting (52)).
Similarly, we prove by contradiction that p,,,.(s,-) is right-continuous: Assume that
Pmax($, ) is not right-continuous, that is, there exists z € R, such that

Je > 0. 8111’(1)’1+ Pmax(5:2+0) = pax(s, 2) + €. (5.3)

This implies that there exists a scheduler D € ML that satisfies limy_o- Pry |, (<>[°’Z+ 3] G) =
lims_o+ Pmax(s,z+ &) — & for some & < £. As before, the function Pr‘;’S,D(O[O"]G) : Ry —
[0,1] is continuous. Further, Pry ,(s,2’) < pmax(s,2’) for all 2/ € R, by definition of
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Pmax- Therefore, Pr‘v"S,D(O[O’Z]G) = limg_, o+ Pr‘v"s)D(O[O’”‘s] G) =lims o+ pmax(s,z+8) = &
Hence

. _ — T w [0,z+8]
5im ppac(s,z+ 6) = £ = lim Pry ,(OL%*01G)
= Pre ,(o1#G)

< Prnax($, 2).

But then, lims_o+ Prax($, 2+ 8) < Prmax($,2) + & < Pmax(s, z) + €, contradicting (E3).
Thus, puax(s, ) is continuous. As continuity implies measurability [ADDOO, p.36], the
claim follows. O

The next theorem shows that the function p,,,, is the least fixed point of a higher order
operator Q) which is defined on measurable functions F : S x Ry — [0,1]. This result is
essential for the discretization developed in Sec. B3l It has been inspired by a similar
fixed point characterization which is used in [BHHKO03, Thm. 1] to derive the probability
of time-bounded until formulas in CTMC:s.

Theorem 5.1 (A fixed point characterization for time-bounded reachability). Let

C = (S,Act,R,v) be a CTMDP and G € S a set of goal states. Then p. is the least
fixed point of the higher-order operator Q : (S xRyo = [0,1]) = (S xRy — [0,1])
which is defined for s € S, z € Ry, and measurable function F : S x Ryy — [0,1] such
that Q(F)(s,z) =lifs € G and fors ¢ G:

Q(F)(s,z) = [)ZE(s)eE(S)t - MAX gepct ZSP(S, a,s")-F(s',z—t) dt. (5.4)

Proof. The proofis splitin two parts: First, we show that p,,,, is a fixed point of Q. Second,
we prove that p,,, is the least fixed point of Q by decomposing the event GL?1G with
respect to the number # of transitions that are needed to reach a state in G. By induction
on 1, we then prove that p,,..(s, z) < F(s, z) for any other fixed point F of Q and all s € S
and z € R.,.

We prove that p,,,, is a fixed point of Q as follows: If s € G, then p,u.(s,z) =1 =
Q (Pmax) (s,2) and the claim follows. If s ¢ G, we proceed as follows. Let II(z, n) be the

set of all infinite paths 7 = s SN 1 A such that s, €Gands; ¢ Gforalli <n

and Y/ t; < z. Further, let p,,.(s,2) = supp.,q Pré 5 (Ul II(z, i)) be the least upper
bound on the probability to reach G within z time units with at most #n transitions.
In a first step, we prove that p’tl (s, z) = Q(p?,..) (s, z). By definition we have:

Q(p:lnax)(s, Z) = /(; E(S)e*E(S)t . maxaeACt Z P(S, Qa, S/) . pz/lax(sl’z _ t) dt

s'eS
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/ E(s)e®9" maxuean Y P(s,a,5") - sup Pry, D,(UH(z—t i)) dt.  (5.5)

s'eS D’eML i=0

c(a)

For given state s € S, a given number of transitions n € N, a given time bound z
and a fixed sojourn time ¢, we define the function ¢ : Act — [0,1] such that c(a) =
Yoes P(s,a,8") - suppraar Pr:l/,D’(U?:O II(z - t,i)). Further, let y € Act denote a max-
imal action for state s and time t, i.e. c(y) = maxzeaqc(a). Obviously, any convex
combination of actions does not yield values larger than ¢(y): More precisely, it holds
c(y) = SUP e Distr (Act) Duacehct u(a) - c(a).

Now,let D € ML,s € S, a € Actand t € R,y. We define the ML scheduler Dy, ; such that
Deat(m,t)(B) = D(s <> 7, t')(B) for all 7 € Paths”, p € Act and t' € Ry,. Hence, Ds

yields the same decisions for history  as the original scheduler D does for the history

a,t a,t a,t ®0,to ar,h ®0,to a,t
s—>ﬂ,wherewedeﬁnes—>n—s—>50—>51

we can rewrite (B.5):

1f7r—50—>51——>-- Thus,

OPhuc)(5:2) = [[E©eFO sup Y u(a)

ueDistr(Act) aeAct

c(a)

Y P(s,a,8) - sup Prv,D,(UH(z—t i)) dt

s'eS

= /OZE(S)eE(S)t - sup Z D(s, t)((x) . Z P(S, (X,S')

DeML qeAct s'eS

Prg)s,,DW(@ M(z-t,i))dt
i=0

» sup zE(s)e_E(s)t- > D(s,t)(a)- > P(s,a,s")

DeML v 0 acAct s'eS

~Prf5,’D$M(GJ M(z-t,i))dt
i=0

n+l

= sup Pry D(U M1(2,1)) = Phax(s,2)-

DeML

Note that in the above derivation, we swap the supremum sup,,,,, and the integral to
obtain equality (). In this case this can be done, as each late scheduler D € ML is a
function which expects the integration variable ¢ as an argument: To see this, fix some ¢ €
[0,z] and let D*!, D*2, ... be a sequence of schedulers that converges to the supremum,
that is

sup . D(s,t)(a)- Y P(s,a,s) ~Pr‘v"S,)Ds,M(L’:°1JOH(z— t,i)) dt

DeML geAct s'eS
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=lim ) D"(s,t)(a) - > P(s,a,s") Prio (O (z-t, 1)) dt.
s sat Tizg

1— 00
acAct s'eS

If we define a sequence of ML-schedulers D' such that Di(s, t) = D% (s, t) forall t € [0, z],
then the probabilities induced by the sequence D' converge pointwise to the supremum
by construction. Hence, equality () follows.

Thus pril(s,z) = Q(pr..) (s, 2); further, Prop. B (Prop.Edlis given below on page[[23))
states that lim,,_ o, p",.(S,2) = Pmax(s, z) for all s € S and z € R,,. Therefore

Pmax(s,2) = lim pr,.(s,2) = lim po.(s, 2)

= 111’1’1 Q(pzmx)(s’ Z) = ‘Q‘( 111’1’1 szx)(s> Z) = Q(Pmax)(5> Z)’
proving that p,,,, is a fixed point of Q). In the above derivation step, note that by definition
of Q one can show that lim,_.., Q(p?,..)(s,2) = Q(limn%o Phax) (5, 2):

z
lim Q(pzm)(s,z) =lim [ E(s)e PO maxyen Y P(s,at,8") - prac(s’sz—t) dt
n—o0o 0

nmee s'eS
z
= f E(s)e *O" maxeess Y P(s,a,8") - lim p (s, 2z - t) dt
0 s'eS oo
= Q(lim p7.,.) (s, 2).

It remains to show that p,,,,, is the least fixed point of Q). From the first part, we know that
Pmax 18 a fixed point of Q and that p7+l (s,2) = Q(p”,.,) (s, z). Now, let F : SxR,o — [0,1]
be another fixed point of Q. By induction on n, we show that p?, ., (s,z) < F(s, z) for all
n € N. For the base case, p%,.(s,z) = 1= Q(F(s,z)) = F(s,z) ifs € G and p%,,.(s,2) =

0 < F(s, z), otherwise. Further,

p:lntllx(s’z) = Q(pqunux)(s’z)

= /OZE(s)eE(S)t Maxgeacr » P(s,0,8") - pho(s’,z— 1) dt
(* by the induction 5he}gfgpothesis *)

< /OZE(s)eE(S)t - Maxgeae », P(s,a,s") - F(s',z—t) dt

= Q(F(s,z)) = F(s, z). -

Hence, F(s,z) > lim, o P (S, 2) = Pmax(s, z) and the claim follows. O

In the proof of Thm. B.Jl we need to exchange the order of taking the limit and the
supremum. This is justified by the following proposition:
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Proposition 5.1. LetC = (S, Act,R,v) bea CTMDPB, s € S, G € S and z € Ry. Further,
let T1(z, i) be defined as in the proof of Thm. Bl Then

lim sup Pr‘v"s’D(L’TJ I1(z, 1)) = sup Pr¢ (<>[0,z]G)_
i=0

=% peML DeML

Proof. Recall that I1(z, i) = {m € Paths® | n[i] e GAVk < i. n[k] ¢ GAY L, 8(m, k) < z}.
Let IT, := U, (2, i); then II, € I1,.,; and I1,, 1 ©021G. By [ADDO0, Thm. 1.2.7(a)], it
holds for all D € ML that Pr¢ ,(T1,) - Pr ,(©[%2G) for n — co. As this reasoning ap-
plies to all D € ML, it holds that sup{Pr¢ ,(IL,) | D e ML} — sup{Pr* ,(Ol°4IG) | D e
ML} for n —» oco. Therefore we can conclude that lim,_, ., sup {Pr‘v"s)D(Hn) | De ML} =
Suppey Pre p(O4G). m

Let us come back to Thm.El Intuitively, the term E(s)e f()* on the right-hand side
of Eq. 54 corresponds to the density of the sojourn time in state s; accordingly, if state s
is left at time ¢, we multiply with the maximum probability (with respect to all actions
a € Act) to reach a goal state in G via action « within the remaining z — ¢ time units.

5.2.1 Optimal TTPDL schedulers

Given the fixed point characterization of Thm. 5l we now define a TTPDL scheduler
which induces the probabilities p,,,.. Note that the fact that this is possible has an im-
portant implication: Obviously, the additional information available to ML-schedulers is
irrelevant for achieving maximum time-bounded reachability probabilities!

A scheduler D € ML is optimal for the set of goal states G and time bound z iff for
all D’ € ML and s € § it holds that Pr‘v"s,D,(O[O’Z]G) < Pr‘v"s,D(O[O’Z]G). Further, for € > 0,
D € ML is e-optimal for G and z if’f‘Pr‘v”bD(O[O’z] G) — Prmax (5, z)‘ < eforalls € S. Note that
up to now, it is not clear whether an optimal scheduler exists. We answer this question
in the affirmative by first defining a TTPDL scheduler D? and then proving that D? is
optimal (cf. Thm. B2)):

Definition 5.6 (The scheduler D?). LetC = (S, Act,R,v) be a CTMDP, G < S a set of
goal states and z € Ry a time bound. Given an arbitrary (fixed) total order < on Act, we
define the TTPDL scheduler D* such that for alls € S and t, < z:

D*(s, t,) = m(in{(x € Act(s) | VB e Act(s). f(s,z—tn B) < f(s,z—tr, )},

where f(5,2',y) = Xues P(5, 95 8") - Pmax(s'52"). If t, > z, set D*(s, t;) = min. Act(s).
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Here f(s,z — t,, ) denotes the maximum probability to reach a state in G within the
remaining z — ¢, time units via action f for the case that ¢, time units have expired on
the path that led to state s and in state s itself. However, multiple actions a may exist that
maximize f(s,z — t,,«). Hence, we fix some total order < to ensure uniqueness of D-.
Note that Def.5.@limplies that D?(s, t,+t) = D* (s, t) foralls € S, t,z € Ryp and t,, < z.

Exploiting the measurability of p,,,, (cf. Lemma[.Tl), we show that D? is measurable:

Lemma 5.2. The schedulers D* are measurable for all z € Ry,.

Proof. Let z € Ry be a time bound and let < be the total order on Act as given in Def. 5.6l
Then D? is defined by

D*(s,t;) = min{a € Act(s) | Vf € Act(s). f(s,z—t,, B) < f(s,z—tz, )}
and depends only on the function

f(:2,9) = D P(5,9,8") - Pmax(s’,2") = ) P(s,7,5") - sup Pr‘v”S,)D,(O[O’z’]G).
s'eS s'eS D’eML
By LemmaP]l the function p,,,.(s, -) is continuous; this implies that p,,,.(s,-) is mea-
surable with respect to the Lebesgue-measure on B (R.,). Hence, the functions f(s,-, y) :
R0 — [0,1] are measurable. Now D*(s, t,) = a iff f(s,z—t,, ) = maxgeac f (5,2~ tr, B)
and « is minimal with respect to <. Measurability of D? now follows from the fact, that
the maximum of measurable functions is again measurable and that by <, the minimal
action is uniquely determined. O

With the measurability of D?, we are now able to prove that the scheduler D? indeed
maximizes the probability of reaching G within at most z time units for any initial state s:

Theorem 5.2 (Optimality). Let C = (S, Act,R,v) be a CTMDB G < S a set of goal
states, s € S an initial state and z € Rsq a time bound. Then

Pre o (O%G) = poax(s, 2).

Proof. For the proof, we define total time step counting positional late schedulers which
are a superclass of TTPRL schedulers that also considers the number of transitions taken
before reaching the current state: A scheduler D € ML is a total time step counting posi-
tional late scheduler (T'TSCPRL) iff Vm;, m, € Paths™. Vt,t, € Rsy. (ﬂll = ) A |m| =
M| AA(m) + t = A(my) + ;) = D(my, t,) = D(m,, t,). Hence, any TTSCPRL scheduler
D e ML can be expressed equivalently as a function D’ : § xN xR,y — Distr(Act), where
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D’(ﬂi, 7], A(m) + t)= D(m, t) for all 7z € Paths” and t € R,,. Note that TTSCPRL sched-
ulers extend TTPRL schedulers, as they additionally depend in their second argument on
the number of transitions that have occurred up to the current state. A TTSCPRL sched-
uler D is deterministic (TTSCPDL) iff Vs € S. Vc € N. V¢, € Ryg. Ja € Act. D(s, ¢, t;) =
{a ~ 1}. To ease notation, we assume that TTSCPDL schedulers are given as mappings
of the form D : S x N x Ryy — Act.

For the proof, we define the TTSCPDL schedulers D? : S x N x Ry, — Act with respect
to the total order < on Act used in Def. 5.6 such that

Di(s, ¢, t,) = min{a € Act(s) | VB € Act(s).

fl(s,n—c-1z—t, ) Sf'(s,n—c—l,z—t,,,oc)},

where f'(s,n',2',y) = Yges P(s, 9, 8")Suppraa P”fs,,D'(Uﬂo I1(2',i)). Hence D% (s, c, t,)
is the optimal action if n — ¢ — 1 steps and z — ¢, time units remain to reach a goal state
in G.

Now, let p2,..(s,2) = supp.y; Pr‘v"s)D( g, (2, z)) be defined as in the proof of Thm.5l
Further, we define g7, (s,z) = Pr(v‘i,pg(U?:o M(z,i)) and guax(s,2) = Pre ,.(O4G).
Thus, we aim at proving that p,,.x = gmax; as a first step, we show by induction on # that

pzmx = qux:

1. In the induction base, we distinguish two cases: If s € G, then p9,.(s,z) =1 =
qgmx(s’ Z); OtherWise’ pgmx(s’z) = 0 = qgmx(s’z)‘ Hence’ p(r)nax = q(r)nax'

2. To prove the induction step, we use the fact (cf. the proof of Thm. ) that p7tl =
Q( pﬁmx). As induction hypothesis, assume that p? . = g% ... Then

Pl (s,z) = Q(pzm) (s,2) (* as shown in the proof of Thm.E11*)

z
= f E(s)e PO maxyepn Y P(s,at,8") - prac(ssz—t) dt
0 s'eS

(* definition of D%, *)
= [TE(6)e I Y B(5, D3y (5,0, £),51) - pl(s - )
0

s'eS
(* applying the induction hypothesis *)
= [ B S P(5, D3t (5,0,1),5) - G552 - 1) dt
0 s'eS
(* definition of ¢7,,.*)

z n
- [ E(s)e B0 S P(s, D7y (5,0,8),5°) - Pre () TI(2 1)) dt
0 s'eS ST =0
(* see Remark B below *)

z n
- [0 E(s)e’E(s)tS;; P(s D (5,0, 0,5)PFe (ot (UTI(1)) d
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(* by definition of Pr; pe.,")

n+l
=Pr¢

ooz, (UTI(z 1)) = gis(s, 2).

i=0

Remark 5.1. In the derivations above, we use D%, (-,-*1,-*") to denote the TTSCPDL sched-
uler that is given by D%, (-,-*,-*1) + & x N x Ryg — Act with D%, (-, ") (s, ¢, t,) =
D?,.(s,c +1,t+ t,). Note that from the definition of D% and the function f', it follows
directly that D% (s,c+1,t + t,) = D5 (s, ¢, t;) foralls € S, ceN, t < z and t, € Ry,.

With the above induction, we have shown that p” . = g%, for all n € N. Now it remains
to prove that g”,,. = Gmax for n — oco. Therefore, note that

lim f'(s,n,z’,y) = lim ) P(s,y,s’)- sup Pr¥, D,(U (2, 1)) (* def. ™)
n—o00 =00 7es D’eML < i=0

= > P(s,y,s') - lim sup Pr¢ ,,([JTI(z, 1))
= premr T izo

s'eS

= > P(s,y,s') - sup Pr;”,’D,(O[O’Z']G) (* by Prop.BIF)
s'eS D'eML  °

=f(s,2.y).

As D? and D? are defined with respect to functions f and f’, respectively, it follows that
for n - oo, D%(s, ¢, t,) = D*(s, t,) forall c e N, s € S and ¢, € Ry. Thus for n — oco:

Dpar(5:2) = Pre 1 (T2, 7)) = Pre o (O%G) = Guuax(s, 2).
i=0
Now the claim follows as we have for all s € S and z € R,:
Pmax(s,2) = lim p..(s,2) = lim q7,,,(s,2) = Gax(s, 2). =

The proof of the theorem is quite technical. Therefore, we give another, slightly more
intuitive but formally not completely correct argument and explain why the technical
details (such as the introduction of TTSCPDL schedulers) in the formal proof of Thm.
are indeed necessary:

By Thm.EJ} it holds for all s € S and z € R, that

Pmax($,2) = Q(Pmax)(sa z)

z
= / E(s)e PO maxyepn Y P(s,t,8") - pax(s’sz— 1) dt
0 s'eS

_ [ TE(s)eFON S P(s, DF(5, 1), ) - (52 — 1) dt,
0

s'eS

Applying this equality recursively to the term p,,..(s’, z — t) shows that D? induces the
probability p,...(s,z) for the event Gl%?1G and initial state s. To see this, note that
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D7 tn(s,t) = D*(s, t, + t) for all £, < z and t € R,; hence, the scheduler D>* at time ¢’
which is used in the next recursion step (i.e. within p,,(s’, z—t)) equals D? at time ¢ +¢'.
Hence the above equation yields a recursive definition of p,,,, which depends only on D=.

However, the above reasoning uses an inductive argument on z, although the domain
of z (i.e. the positive reals) is not well-founded. Therefore, in the formal proof of Thm.
we use induction on the number n € N of transitions available to reach G within time z
and resort to step counting TTSCPDL schedulers.

A direct consequence of Thm.[B.2is the existence of optimal schedulers. Further:

Corollary 5.1. TTPDL schedulers suffice to maximize time-bounded reachability proba-
bilities.

5.2.2 Piecewise-constant schedulers

In Def. B3 the upper bound p,,,,, on the maximum time-bounded reachability probabil-
ity of a set G of goal states is defined with respect to the class of ML-schedulers. Corol-
lary B allows us to only consider the subclass of TTPDL schedulers to compute p,ax.
i.e. we restrict to schedulers of the form D : § x R,y — Act. However, TTPDL sched-
ulers are still continuous in their second argument. To obtain schedulers with a finite
representation, we now introduce piecewise-constant TTPDL schedulers.

They prove to be useful for the scheduler synthesis that we discuss in Sec. E3.41 As we
will see, a byproduct of our discretization technique is an e-optimal 7-scheduler which
approximates the optimal reachability probability up to an a priori specified error ¢ and
which changes its decisions only in between time-intervals of length 7.

Definition 5.7 (Piecewise-constant TTPDL scheduler). Let C = (S, Act,R,v) be a
CTMDP and D : S x Ryy = Act a TTPDL scheduler. D is piecewise-constant iff for
all s € S and a € Act(s) there exist disjoint intervals A ,, Al ,, A2, ... € Ryq such that

forall t; € Ryg: D(s,t;) = & < t, € U2 AL .. A piecewise-constant scheduler D is
non-Zeno zf|{A’$a |inf Al , < z}| < oo forallz € Ryy, s € S and a € Act.

We use PCDL to denote the set of all piecewise-constant and non-Zeno TTPDL sched-
ulers. Intuitively, for a state s € S and a given time-bound z, a PCDL-scheduler changes
its decision for an action only finitely many times: The intervals A! , in Def. BZ describe
the time-periods, in which the scheduler chooses action « constantly if the current state
is s. The non-Zeno assumption implies that only finitely many decision epochs occur up
to time z.
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(a) Time-bounded reachability example. (b) Optimal PCDL scheduler in state s,.

Figure 5.2: Maximizing time-bounded reachability objectives with PCDL schedulers.

Theorem 5.3 (PCDL schedulers maximize time-bounded reachability probabilities).
Let C = (S, Act,R,v) be a CTMDP, G € S a set of goal states, s € S an initial state and
z € Ry a time bound. Then

pmax(s) Z) = Ssup Prtl,D (O[O’Z]G) :

DePCDL

Proof. The proof relies on a measure theoretic argument: As D? is measurable and deter-
ministic, the sets A, = {¢, € Ry | D*(s, t,) = a} are Borel measurable for all s € S and
a € Act. The approximation theorem (cf. Thm. 24 on page 24) then permits to approxi-
mate each set A, arbitrarily closely by a finite number of intervals which give rise to a
PCDL scheduler.

Therefore, let s € S, a € Act and define A, = D(s,-)"'(«). By definition, D? is a
measurable scheduler. Hence A, € 8. Now let B, be a field of subsets of R, that
generates the o-field B, i.e. let 0(B,) = B. Given ¢ > 0, we can apply Thm. Z4 to
approximate the set A;, by a set B;, € ‘B, up to an error of &. More precisely, let 0 :
B - R, be the Lebesgue measure defined by the distribution function ®( y) = y for
y € Ryo. Thus, we use the Lebesgue measure 6 to measure the “length” of measurable
subsets of Ryg. If AA B = (AN B)uU (B~ A) denotes set difference, Thm.Z A assures that
B, exists such that 0 (A, A Bsy) < €.

For B, we choose the set of finite disjoint unions of right semi-closed intervals; as B,
isafieldand 0(B,) = B, this is a valid choice (see also Lemmal.6land Def.[Z7). As B, €
B, there exist n;, € N and disjoint intervals B?, ..., B¢yt such that By, = U7 Bi,.
Now we are ready to construct a scheduler D? which approximates D? up to an error of
¢ as follows: D%(s,t,) = a < t, € |Ji*y B ,. By definition, D? is a piecewise constant
and a non-Zeno scheduler. Thus D? € PCDL for all ¢ > 0; further, from the fact that
0 ({t, € Ry | D*(s,t;) # D(s, t;)}) < €& we obtain for the probability measures on com-
bined transitions (cf. Def. B3) that lim,_q yp:(7,-) = pp-(7,-) for all 7 € Paths”. This
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extends inductively (cf. Def. 5.4) to the probability measure on infinite paths, i.e.
{:if)r(}Prti,Dg (Q[o,z]G) =Pre (<>[0,z]G) = Punax(5, 2).

Now the claim follows, as D? € TTPDL for all € > 0. o

The e-optimal schedulers that we compute in the discretization algorithm in Sec. .31
yield a special subclass of PCDL schedulers, where the time intervals on which the schedul-
ing decision remains constant all have the same length 7 > 0. To formally reason about
such schedulers, we introduce 7-schedulers as a special subclass of PCDL schedulers:

Definition 5.8 (7-scheduler). Let C = (S, Act,R,v) be a CTMDEB, 7 € R, and D ¢
PCDL. Then D is a t-scheduler iff for all s € S and k € N:

Ja € Act(s). Vit € [kt,(k+1)T). D(s, t,) = a.

Any PCDL scheduler is a 7-scheduler if its choices remain constant on intervals of
length at least 7. As it turns out, the probabilities induced by PCDL and by 7-schedulers
converge for small 7

Theorem 5.4 (Limiting 7-scheduler). Let C = (S, Act,R,v) bea CTMDB G ¢ S a set
of goal states, z € Ry a time bound and s € S an initial state. For any scheduler D € PCDL,
there exist T-schedulers D, such that

limPry p (01*1G) = Pri  (01°71G).

Proof. As D € PCDL, there exist n,, € N and disjoint intervals B, ..., Bgy" for all
s € Sand a € Act such that D(s,t,) = aiff t, € Bl , for some i < ng,. If 7 - 0,
we can approximate those intervals arbitrarily closely, that is, there exist schedulers D,
such that D.(s,-)'(«) - D(s,-)™(e). Similar to the proof of Thm. B3| this implies that
lim,_o pp, = pp and therefore

limPre, (0%4G) = Pre, (0l%4G),

70
proving the claim. o

Example 5.2. Recall the locally uniform CTMDP C that was used to introduce late sched-
ulers in Sec. 4} It is depicted again in Fig. The e-optimal schedulefll that maximizes

"The scheduler depicted in Fig.[5.2(b)is the result that is computed by our implementation when maxi-
mizing the time-bounded reachability probability for state s, with time-bound z = 4.
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the time-bounded reachability probability for the set G = {s,} of goal states and for time
bound z = 1.5 is depicted in Fig. As expected, its decisions coincide with the theo-
retical derivation that we made in the proof of Thm. B8l for the optimal ML-scheduler (see

pagell09). &

5.3 Computing time-bounded reachability probabilities

In the preceding section we have established the theory which is necessary for the main
contribution of this chapter. In particular, we will make use of the fixed-point charac-
terization in Thm.5Jland the fact (provided by Thm.5.2) that we may restrict ourselves
to TTPDL schedulers. With these preliminaries, we are now ready to reduce the prob-
lem of computing maximum time-bounded reachability in CTMDDPs to the problem of
maximizing the step-bounded reachability probability in (discrete-time) MDPs.

The latter is a well-studied problem which can be solved efficiently, e.g. by value itera-
tion algorithms [Ber95]. The discretization that we use for our reduction is defined such
that it is exact up to an a priori given error bound ¢ > 0; hence, the results can be made
arbitrarily precise. We study the complexity of our approach and show how to synthesize
e-optimal schedulers automatically.

5.3.1 Discretizing time in locally uniform CTMDPs

As before, let C be a locally uniform CTMDP, G ¢ S a set of goal states, s € S an initial
state and z € R, a time bound. We aim at computing p,u..(s, z) up to an a priori fixed
error € > 0. If s € G, this is trivial as p,..(s,z) =1 for all z € Ryy. To compute p,qx(s, 2)
for s ¢ G, we use the fixed point characterization of p,,,, from Thm.EI More precisely,
consider the first sub-interval [0, 7] of the integral in Eq. (54) separately and split the
whole integral accordingly:

Pmax($,2) = Q(Prax) (5, 2)

= / E(s)e PO maxyepn Y P(s,t,8") - prax(s’sz — 1) dt
0 s'eS (5 6)

z
+ / E(s)e PO maxyepn Z P(s,,s")  pax(s’sz—t) dt.
T s'eS

Now;, let A(s,z) and B(s, z) denote the first, resp. second summand in Eq. (56). Shifting
the range of integration in B(s,z) by (-7), the next Lemma derives a straightforward
recursive representation of the probability B(s,z) which can easily be used for our dis-
cretization purposes:
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Lemma5.3. Foralls€ S, z € Ry and 7 € [0, z] it holds that

B(s,z) = e EOT. p (s, z - 7). (5.7)

Proof. We proceed as follows:
z
B(s,z) = / E(s)e ™ *O" maxuea Y. P(s,0,5") - Pran(s’,2 = t) dt
T s'eS

zZ-=T
= / E(5)e PO max enc Z P(s,00,8")  pmax(s’sz= (t+ 1)) dt
0 s'eS

zZ-T
- / E(s)e B e O max,ea > P(s,0,8") - prax(s’,z — (t+ 7)) dt
0

s'eS
zZ-T
= e FOIT. / E(s)e”®O" maxeeacs Y. P(s,0,5") - pran(s’s (2= 1) — 1) dt
0 s'eS
Pmax(s,2—T)
=e PO p (5,2 - 1). m]

Note that the factor e£()7 in Eq. (57) is the probability that no transition occurs in
state s in the first 7 time units. Hence, B(s, z) is the maximum probability of the event that
starting from state s, the set G is reached within z time units while no transition occurs in
the time interval [0, 7]. To be more precise, let #[o ;] : Paths” — N be the random variable
which describes the number of transitions that occur in time interval [0, 7]. Then, it
holds that B(s,z) = supp,,; Pr¢ ,, (OGN #1 = 0). With the same reasoning, the
first summand A(s, z) of (5.6) is the maximum probability to reach G within time z with
at least one transition taking place in [0, 7]. Hence,

A(s,z) = sup Pr‘js,D(O[O’Z]G N #[0,) > 1).

DeML

Now, decompose the underlying event of A(s,z) into disjoint subsets according to the
number of transitions that occur in time interval [0, 7]:

(X

(O[O’z]G N #[O,T] > 1) =" (O[O’Z]G ﬂ#[o’r] = 1’1).

B
]
—

Accordingly, let A,(s,z) be the maximum probability to reach G in z time units with
exactly n transitions occurring in the first time slice [0, 7]. In this way, we maximize the
probability of each event (GL2G n #y ] = n) separately:

A,(s,z) = sup Pry (<>[°’Z]G N#o, = n) . (5.8)
DeML
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To relate A(s, z) with the probabilities A, (s, z), observe that

A(s,z) = sup Pry (<>[°’Z]G N#[0,0 2 1)

DeML
= sup Prﬁi’D(U (<>[0’Z]G N#o = n))
DeML n=1 (5.9)
< Z( sup Prfs’D (<>[°’Z]G N#or] = n)) .
=1 \DeML

= iAn(s,z).

The next major step is to derive an analytic expression for the probability A, (s, z):

Lemma5.4. Let C = (S,Act,R,v) be a CTMDEB G < S a set of goal states, s € S an
initial state, z € Ry a time bound and v > 0 a step duration. For A(s,z) as defined in

Eq. (.8 it holds

T
Ai(s,z) = fo E(s)e PO maxyepn > P(s,a,58") - e FEIED . p (s’ z - 1) dt.
s'eS
(5.10)

Note that A, (s, z) is the maximum probability to reach G within z time units and that

exactly one transition occurs within time interval [0, 7]. This is reflected in the integral
in Lemma[E:4k Here, the integration variable ¢ corresponds to the precise point in time
when state s is left; further, if we move to state s’ after ¢ units of time, we stay in the
successor state s’ for at least (7 — t) time units (i.e. the time that remains in the first
step duration) with probability e~£(-)(==0)_ Finally, we multiply with p,...(s’,z—1), i.e.
with the maximum achievable probability to reach G in the remaining (z — 7) time units,
starting in state s’.
Proof. Let E = (©l%21G n #[,; = 1) be the event that corresponds to the probabil-
ity Ai(s,z). Given an ML scheduler D, the measure of the event E differs from the
time-bounded reachability event <&!%?1G in the additional requirement that exactly one
transition occurs in time interval [0, 7]. Hence, we obtain the probability

Pry (OGN0 =1) :,[ E(s)e™®"- 3 D(s,t)(a)
0

acAct

Y P(s,a,8) - e (=0 . ppe (O[O’Z’T]G) dt. (5.11)

ot
s'eS VSI,D(S—)','+(T7[))

The term e~£()(=) in Eq. (&1 is the probability that after leaving state s at time point ¢
and entering the successor state s/, no transition occurs for the next (7 — t) time units.
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The ML-scheduler D(s > -,-*(*=0) is defined such that if 7 = s' - 7" for some

7" € Paths”, then D(s =5 -, +(=0) (71, t) = D(s <> ', t), where 7’ = s/ = ey

Hence, if state s is left at time t and no transition occurs in the successor state s’ within
the following T ¢ time units, then D(s = -,-*(-0)) decides on the remaining path as D
does on the suffix of the complete path. Note that due to the memoryless property of the
exponential distribution, we may split the sojourn time in state s’ in two parts: First, the
sojourn in state s’ before 7 and the remaining sojourn time. Hence Eq. (5.I1J) expresses
the probability to reach G from state s within time bound z and that exactly one transition
occurs in time interval [0, 7].

With these preliminaries, we introduce the ML-scheduler D7, which induces the maxi-
mum probability for the event E. Similar to the scheduler D, it is deterministic; however,
it is not fully positional: To ease its definition, let g(s, «, t) € [0,1] be the maximum prob-
ability to reach G in z time units, if state s has been left at time # and action & has been
chosen and no transition occurs in the remaining 7 — ¢ time units:

ﬂll

g(s,a,t) = S P(s,a,5) - e E0 L gup P (ol=G).

s'eS D’eML

We obtain D? : Paths™ x Ry — Act as follows: If || = 0, then 7 = s for some s € S and
Di(s,t) = min. {a € Act(s) | Vf € Act(s). g(s, B, t) < g(s, a, t)}. Otherwise, we know
that at least one transition has occurred. Hence, we define Df such that it optimizes the
probability to reach G in the remaining time z — (A(7) + t). Therefore we set D (7, t) =
D*(m), A(m) + t) if 7] > 0.

Now we prove that D? is optimal w.r.t. E by contraposition: Assume that there exists
D' € ML such that Pry ,(E) > Pr‘v"s,Df(E ). By the following derivation, this leads to a

contradiction:

T
Pry o (E) = /0 E(s)e EO. S D'(s,t)(a)- 3 P(s, a,s") - e EEED

aeAct s'eS

- Pr¢ (ol*=71G) dt

at
vy, D! (s—>-,+ (=)

T
3/ E(s)eEO N D'(s,t)(a) - Y P(s,a,8") - e EEDED
0

aeAct s'eS

. Sup Prg)s,’D (<>[0,Z—T]G) dt

DeML

< / E(s)e EO!
0

- MAX geAct Z P(s,a,s") - e FCDE0 L gyp Pry (O[O’Z_T]G) dt
s'eS DeML

g(s,a.t)

T
= / E(s)e 5O 3 P(s, Di(s, t),s") - e D sup Pre [ (071G dt
0 €S DeML <
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= f E(s)e EO . N P(s, Di(s, t),s") - e E0  pre o (0l%71G) dt
0 s'eS v

= Pry p: (E).
Hence, the scheduler D7 yields the maximum probability for the event E and we obtain

A(s,z) = sup Pry (<>[0’Z]G N#0,7] = 1)
DeML

= / E(S)e‘E(S)t . Z DIZ(S, t)(a) . Z P(S, (X,S’) e BN G-
0

aeAct s'eS
Pt (ol*=IG) dt
VSI,DIZ(S—>.’.+(T—t))
= / E(S)e—E(s)t . Z P(S, Df(s, t))sl) e B -1
0 s'eS
w 0,z—T
Pre e (O17G) dt

= / E(S)eiE(S)t . Z P(S, DT(S, t),S’) . eiE(s,)(T*t)
0 s'eS

. Pr::l/,Dz—T (0[0,271] G) dt

- f E(s)e PO S P(s, Di(s,£),5) - e FD L p (s, 2— 1) dt
0 s'eS

T

= / E(s)e O maxgeas Y, P(s,at,5") - e HEOTD p o (s 2 1) dt,
0 s'eS

completing the proof. O

Now we approximate the probability A(s, z) from below via a new probability X (s, z),
which is closely related to A;(s,z): More precisely, we obtain X(s,z) by bounding the
probability e=£()(==9) in Eq. (5I0) from above by 1. Hence A,(s, z) < X(s, z); moreover,
by a continuity argument we can prove that X (s, z) < A(s, z).

With these two inequalities and the definition of X (s, z) we establish an error bound
for our discretization. Formally, the following sandwich lemma proves that X (s, z) con-
verges to A(s, z) for 7 — 0:

Lemma 5.5 (One-step approximation). Let C = (S, Act,R,v) bea CTMDP, G € S a
set of goal states, A = max,sE(s), s € S an initial state, z € Ry a time bound and 7 > 0
a step duration. If we define

X(s,z) = / E(s)e *O" maxueas Y. P(s,0,5") - Prax(s’,2 - T) dt, (5.12)
0 s'eS

then X (s, z) approximates A(s, z) in the following sense:

(Ar)?

X(s,z) <A(s,z) < X(s,2) + (5.13)
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Proof. To establish the lower bound in Eq. (513), it suffices to note that

T
A(s, z) & f E(s)e ™ * 0" maxuean Y P(s,0,5") - Prax(s’s 2= t) dt.
0 s'eS —_—

2Pmax (5’,Z—T)

By definition, for all s’ € S, the function p,..(s’,-) is monotonically increasing in its
second argument, that is, for increasing time bounds z, the maximum reachability prob-
ability puax(s’,z) increases. Reversely, the function p,,..(s’,z — t) is monotonically de-
creasing for increasing t.

Hence t < 7 implies that p,,.,(s’,z = t) > puax(s’, z — 7) and we obtain

A(s,z) > f E(s)e”®O" maxuean Y. P(s,0,5") - Pruan(s’s2 - T) dr &2 X(s,z).
s'eS

For the upper bound in Eq. (513)), let us first investigate the relation between X(s, z)
and A,(s, z). By LemmaB.4] we derive:

Ai(s,z) = f E(s)e PO maxgean Y P(s,a,8") - e EOED o p (52— 1) dt
eS8 —_—
<1

/ E(s)e PO maxyepn Z P(s,a,s")  pmax(s’,z— 1) dt

s'eS
X(s,z).

Therefore, we have proved that X (s, z) is an upper bound for A, (s, z); formally:
Ai(s,2) < X(s,2). (5.14)

In the next step, we also obtain an upper bound for the sum Y72, A, (s,z): To see how
this works, recall that for an exponential distribution with rate A and a time interval [0, 7],

the Poisson distribution p (1, A1) = e - ol ) expresses the probability that # transitions
occur within [0, 7]. This allows us to derlve an upper bound, first for each A, (s, z) sepa-
rately:

Ay(s,z) = sup Pre [ (O%4G n# = n) < sup Pré |, (#0.) = 1)

DeML DeML (5 15)
AT, (/\T)n '

<p(nAt)=e" o

Moreover, by maximality of A, the probability that more than » transitions occur in any
state s € S within time interval [0, 7] is at most

Z p(i,At) = e Z (AT =e - R,(A1), (5.16)

i=n+l i=n+l
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where R, (x) = ¥, & 7 is the remainder term of the Taylor expansion of f(x) = e* for
the point 0. By Taylors theorem, there exists £ € [0, A7] such that

(n+1) et "
Rn(m)zﬁ-(m"“: ISy (A7), (5.17)

where f("*) denotes the (n + 1)-th derivative of f.
Summarizing the above reasoning, we obtain an upper bound for the error that is
induced by approximating A(s, z) by only considering X (s, z):

A(s, 2) =2 ZA (s,z) < X(s z) + ZA (s,z) < X(s z) + Zp(n A7)
= X(s,z)+e‘AT-R1()LT).

By Taylor’s theorem and Eq. (517), there exists & € [0, A7] such that R(A7) = %f (A1)
For an upper bound, choose { maximal in [0, A7]. Then

-At At e 2 (/\T)z

A(s,z) < X(s,z) +e -RI(AT) <X(s,z)+e - 7(/\7) =X(s,z) + T

(Ag)z , completing the proof for the upper bound. O

By Eq. (5.13), we can approximate A(s, z) from below via X (s, z), allowing for an error
(M) . Thus, for 7 — 0* it holds that X(s,z) = A(s,z). We use the one-step

error bound 0 2) later in Thm.BE3to derive the overall error bound for our analysis.

of at most

5.3.2 Reduction to step-bounded reachability in MDPs

Based on X (s, z) and B(s, z), we are now ready to derive a discretization for p,,,.(s,z) in
a locally uniform CTMDP C with respect to a step duration t:

Definition 5.9 (Discretization). Let C = (S, Act,R,v) be a CTMDE, and let T > 0 be a
step duration. The induced MDP C, = (S, Act,P,,v) is defined such that for all s,s" € S
and a € Act(s):

1-e EG)7).P(s,a, s’ ifs4s
N e %
(1- e EO7) - P(s,a,5') + e EOT  ifs =",

Further, for all a ¢ Act(s), we define P.(s,a,s") = 0.

In the MDP C,, each step corresponds to one time slice of length 7 in the CTMDP C.
For a single step and a fixed successor state s’ # s, P.(s, a, s") equals the probability that
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a transition to s’ occurs within 7 time units, given that « is chosen. In case that s’ = s,
the first summand of P (s, «, s) is the probability to take the loop back to s; the second
summand denotes the probability that no transition occurs within time 7 and thus s = s'.
Let pSr..(s, k) be the maximum probability to reach G starting from state s in at most k
discrete steps in the (discrete time) MDP C,. Obviously pf,{ax(s, k) =1ifs € G and
pffax(s, 0) = 0ifs ¢ G. Further, for s ¢ G and k > 0, pffax(s, k) is defined recursively:

P55, k) = maxgeae Y, Po(s,a,8") - pSe (s’ k = 1). (5.18)
s'eS
The next theorem proves that the probability to reach G from state s within at most k =

steps in the discrete-time MDP C, converges from below (for 7 — 0) to the corresponding
time-bounded reachability probability in the CTMDP C:

Theorem 5.5. Let C = (S, Act,R,v) be a CTMDB, A = max,sE(s), G €S a set of goal
states, z € Ry a time bound and k € N, the number of discretization steps, such that
7 = %. Then it holds for all s € S:

(A2)?
2k

e (55 K) < Praax(5,2) < Priae(s, k) + (5.19)
p

The proof is by induction on the number k of discretization steps, where the lower and
upper bounds are established for each step of length 7 using LemmaBb4land LemmaBG3

Proof. Recall that p¢_ (s,z) = A(s,z) + B(s,z) and X(s,2) < A(s,z) < X(s,2) + (A;)Z by
Eq. (&13). We prove Eq. (519) by induction on k:

1. For k = 1, we have z = 7. If s € G, then p&5.(s,1) = 1 = p_ (s, 7), proving (GI9);
if k = 1and s ¢ G, the lower bound in (EI9) holds as pfnfax(s,l) = maxaeAct(l -
e FO7) . P(s,a,G) = X(s,T) < pSu(s, 7). For the upper bound, note that s ¢ G
implies B(s, 7) = 0. Thus p$,.(s,7) = A(s,7) + B(s, 1) = A(s, 7). By LemmaBE3l
we know that A(s, 7) < X(s, 1)+ @ Moreover, X (s, 7) = pix(s, T) by definition.

Therefore pC,,. (s, T) < plax(s, T) + %

2. For the induction step, together with Lemma B.5] (which provides X(s,z)) and
Lemma[.3 (the analytic expression for B(s, z)) we have

X(s,z) +B(s,z) = [/TE(s)e_E(S)tmaxaeAct Y P(s,a,8) - pla(ssz- 1) dt]
0

s'eS
+[e O p(s.z= 7))



138 5.3 Computing time-bounded reachability probabilities

- [maeens P a5 p(sz 1) [ E()e O di]

s'eS 0
e planlsz 7))

= maxaeAct[(l - e’E(S)T) Y P(s,a,8") - pla(s 2 - T)] (5.20)

s'eS
+ [T pl (5,2 - 7))

By definition of P, (s, a, s") (where the second summand in Eq. (520) corresponds
to the special case of s = s’), we derive from Eq. (5.20):

X(s,2) + B(s,2) = Maxgeaer Y. Pr(s,a,8") - pS (s’ 2= 7). (5.21)
s'eS

First we consider the lower bound on the left part of Eq. (519): By induction hy-
pothesis, it holds that pSr.(s',k —1) < pC,.(s',z - 7) forall s’ € S. Then

pfmx(s, z) > X(s,z) + B(s, 2)

&2 MAX gepct Z P.(s,a,s") - p¢, (s',z— 1)

s'eS
i.h.
> Maxgenc Y, Po(s, a,8") - plr (s, k= 1) = p&r (s, k).
s'eS

The proof for the upper bound is as follows: By Lemma[BJ3] it holds that A(s, z) <
X(s,z) + % Together with Eq. (5.21]) we derive

Prax(5:2) = A(s,2) + B(s, 2)
(A7)?

<X(s,z) + - +B(s,z)

AtT)?
(v ( 2) + MAX gepct Z P.(s,a,s") -pgwx(s',z— 7).
s'eS

Applying the induction hypothesis, we obtain
(A(z-1))?

2
(A1) + MAX e res Z P.(s,a,s") (pfyfax(s', k-1)+ m)

pgmx(s’z) < 2
s'eS

()2 (Mz-1))? e
= + 2(k=1) + maxaeActS;; P.(s,a,s")-plr (s’ k-1).
(5.22)

2
From here, we complete the induction step: Therefore, rewrite the summands @

and (Az(f ]:1)))2 in the right part of Eq. (522)) further:

(A1) (Mz-1))" _ (A0)*k(k-1) +(M(z- 1))k
2 2(k-1) 2k(k-1)

(fask= 2%
T
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) (M-

T

2k - =2
Mz(z—-1)+ A (z—-1)*- %
) 2k =T
M1z +A22(z-1) AM(1z+22-12) (A2)°
) 2k ) 2k T2k

In this way, the right part of Eq. (522) can be simplified to pir.(s, k) + (Az) . D

Example 5.3. Consider the CTMDPC in Fig. To compute the maximum probability

to reach G = {s,} within z time units up to a precision of €, choose k € N such that & > (A;;() ,

where A = max,sE(s) = 3. The step duration T = % induces the discretized MDP C, which
is depicted in Fig. &

5.3.3 Algorithm and complexity

Let C = (S, Act,R,v) be a locally uniform CTMDP, G a set of goal states and z a time
bound. For some error bound ¢ > 0, let k be the number of steps needed to satisfy ¢ >

(Az) . Then 7 = % induces the discretized MDP C; of C with step duration 7. By Thm.
the maximum probability to reach G within z time units in C can be approximated (up to
¢) by maximizing the step-bounded reachability p5y,. for G in C, within k steps. The latter
can be computed efficiently by the well-known value iteration approach [Ber95]. Briefly,
it starts with a probability vector v, with vo(s) = 1if s € G and 0, otherwise. In each
iteration, v; is obtained from v, ; according to Eq. (5I8). In each round, i corresponds
to the number of steps in the MDP C;; hence, #;(s) equals pSr.(s, i).

The value iteration approach on the discretized MDP C, has the following complex-
ity. Fors € S and a € Act(s), let post(s,a) = {s' € S|R(s,a,s") >0} be the set of
a-successors of state s. The size of C is denoted by m = ¥ g ¥ eac [POSE(s, @)|. In the
worst case, C; is obtained by adding a self-loop for each state s € S and action « € Act(s).
Thus, the size of C; is bounded by 2m. For a given error bound ¢, it is easy to derive the

2
number k of value-iteration steps: By Thm. B3, |p6,,.(s,2) — poax(s, k)| < % Letting
(Az) < &, we conclude that the smallest k to guarantee ¢ is (A ) . In each value iteration

step, the update of the vector v; takes time 2m. Thus, the worst case time complexity of
our approach is O(m - (Az)?/¢).

5.3.4 Synthesis of e-optimal schedulers

Let C, G, z, k, T = 7 and C; be as before. A byproduct of the value iteration on the
discretized MDP C, is an e-optimal scheduler for the set of goal states G and time bound z.
More precisely, in any of the i value iteration steps, for each state s € S, an action a;
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(a) The CTMDP from Fig. Bl (b) The MDP induced by its discretization.

Figure 5.3: The discretization of a locally uniform CTMDP.

is chosen according to Eq. (5I8). In this way, we obtain a history-dependent (or, to
be more precise, step-dependent) scheduler for the MDP C,. This scheduler induces a
7-scheduler (denoted D) of the original CTMDP C as follows: D.(s,t,) = a; if t; €
[(k—1i)7,(k —i+1)7). The following theorem shows that D, is an ¢-optimal scheduler
in the underlying CTMDP C:

Theorem 5.6 (e-optimal scheduler). The scheduler D, is an e-optimal scheduler for C
w.r.t. the maximum time-bounded reachability probability.

Proof. Let C = (S, Act, R, v) be a locally uniform CTMDDP, G a set of goal states and z
a time bound For some error bound ¢ > 0, let k be the number of steps needed to

satisfy ¢ > ( . Let C; be the induced MDP with 7 = %, and D, be the 7-scheduler as
described. To show that D, is an e-optimal scheduler for C w.r.t. the maximum time-
bounded reachability probability, we prove that for all states s € S it holds that

‘Prg)s,Dr (O[O,Z]G) - pfnTax(S’ k)‘ <E

It is sufficient to show the following equality:
porc(s, k) <Pre (<>[ ]G) S (s, k) +e. (5.23)
By Theorem B3 the upper bound can be shown directly:
)L 2
et (019G) £ f(5:2) < il k) + T2E < (5. K) e
Now we discuss how to show the lower bound of Eq. (E23)). First, note that under any

TTPDL scheduler D, the CTMDP C is totally stochastic and for s ¢ G, the probability
Pr¢ ,(©°41G) can be computed by:

Pry , (0l4G) = f E(s)e®O0. Y P(s,D(s, 1),5') - Pré, , (0l+1G) dt.
s'eS
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Note D, is a TTPDL scheduler, thus it holds that

z

pre . (o4G) = [ E(s)e*®t. S P(s,D.(s,t),s") - Pr ol1G) dt.

vs,Dr 0 vs”DT
s'eS

This integral can then be split into two parts A(s,z) and B(s, z) at time ¢ = 7: it follows
in a similar way as Eq. (5.6) with the difference of taking the action D, (s, t) instead of
the maximum over all « € Act. The lower bound can then be established by induction
on k, by adapting the lower bound proof of Eq. (519) of Thm. G5 appropriately. o

5.4 A case study: The stochastic job scheduling problem

We illustrate the applicability of our approach by considering the stochastic job schedul-
ing problem (sJSP) from [BDESI]. In their paper, the authors analyze the expected time
to complete a set of stochastic jobs on a number of identical processors under a preemp-
tive scheduling policy. An instance of the sJSP is a tuple (m, n, u), where m > 2 is the
number of processors, ] = {1,..., n} is the set of stochastic jobs and y : | - R, specifies
the jobs” exponential service times, i.e. y(i) is the rate of job i. Each time a job finishes,
the preemptive scheduling allows us to assign each processor one of the k remaining jobs,
giving rise to ( :; ) nondeterministic choices.

The sJSP can be considered as a locally uniform CTMDP: A state of the sJSP is a tuple
(R, W), where R, W c ] are the sets of running and waiting jobs, respectively. When a
job j € R completes, the decision which jobs to schedule next is nondeterministic.

An action a € Act ((R, W)) is a preemptive schedule: If state (R, W) is left because
ajob j € R finishes and if « : R — 2R°W is chosen, the set a(j) defines the jobs that
are executed next. In each state (R, W), let Act((R,W)) = {a : R » 2RW|Vj ¢
R.j¢ a(j) Ala(j)] < m A|a(j)| maximal}. For a € Act ((R, W)), we define the a(j)-

successor (R’, W’) of (R, W), denoted (R, W) LN (R’, W'), such that R’ = «(j) and

W= (RuW)~ ({j} va())):

Definition 5.10 (Modelling the sJSP as a CTMDP). Let P = (m,n, u) be a sJSP and
(R, W) a state. The induced CTMDP (S, Act,R,v) is defined such that S = 2/ x 2/,
v={(R, W) =1}, Act = Ur,wyes Act ((R', W')) and

. a(j) ’ /

if (R, W) — (R', W') and

otherwise.

R((R, W), a, (R, W")) = {g(i)

Thus, given state (R, W), for every job j € R and action «, there exists an a-transition
with the rate y(j) of job j that leads to the «(j)-successor (R, W’).
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Figure5.4(a) depicts a fragment of the CTMDP induced by the (2,4, u) sJSP with ini-
tial state (R, W) where R is given by the underlined process identifiers (i.e. R = {1,3})
and W = {2,4}. Action «; represents a replacement strategy where jobs {3,4} are exe-
cuted next if job 1 € R finishes first and otherwise, the next jobs are {2,4}. Similarly, for
action ay, the jobs {2,4} (or {1,4}) are scheduled next if job 1 (job 3, resp.) completes
first.

The stochastic job scheduling problem is a classical example of a queueing system. At
the beginning of this chapter, we claimed that local uniformity is commonly found in
this setting. In fact, for our model of the sJSP we can prove local uniformity:

Lemma 5.6 (The sJSP is locally uniform). For any sJSP P = (m, n, u) and all initial
states, the CTMDP model induced by Def. 510 is locally uniform.

Proof. From Def. it directly follows that for all states (R, W) it holds

E((R,W),a)= > R({(R,W),a, (R, W)

(R",W"eS
= 2. RURW)a, (R, W) =2 u(j).
a(j) jeR
(RW)—> (R, W’)
Hence, E ((R,W),a) = E((R, W), ) forall &, § € Act ((R, W)). i

Applying the results from Sec. we are now able to algorithmically compute the
maximum and minimum probabilities to finish all jobs within some time bound z. In
Fig. we plot the maximum and minimum probabilities to finish jobs {1,...,4}
over a time bound z € [0,15] for different values of u. The probabilities that are shown
in Fig. 5.4(b) were obtained by implementing the discretization approach of Sec. B3 for
maximum and minimum time-bounded reachability. Clearly, for equally distributed job
durations, i.e. if u(i) = u(k) for all i, k, the maximum and minimum probabilities
coincide. However, if u(i) # u(k), the probabilities depend on the scheduling policy:
In [BDESI], the authors prove that a shortest expected processing time first (SEPT) strat-
egy minimizes the expected completion time of the sJSP; reversely, the longest expected
processing time strategy (LEPT) is proved to maximize the expected completion time.

Although we consider a different quantitative measure (i.e. maximum time-bounded
reachability instead of expected completion time), we observe in our examples, that the
e-optimal 7-scheduler that maximizes the reachability probabilities adheres to the SEPT
strategy; moreover, the optimal 7-scheduler for the minimum probabilities obeys the
LEPT strategy.
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(a) Fragment of the CTMDP model. (b) Best and worst case probabilities.

Figure 5.4: Modeling and analysis of the stochastic job scheduling problem.

5.5 Conclusion and related work

In this chapter, we have introduced an efficient discretization algorithm in PTIME that
solves the problem of computing time-bounded reachability probabilities in locally uni-
form CTMDPs with respect to time- and history-dependent late schedulers.

To the best of our knowledge, this is the first time that an automatic analysis of time-
bounded reachability objectives becomes feasible for time-dependent schedulers. More-
over, the main advantage of our approach is that we are able to bound the error that is
induced by the approximation algorithm in advance. In particular, the maximal admissi-
ble error € > 0 can be specified a priori.

The computation is done by applying the well-known value iteration algorithm [Ber95]]
to the CTMDP’s discretized MDP. We choose the value iteration approach over other
methods like LP-solvers, as it has major advantages in our setting: During the value it-
eration steps, it is possible to extract the optimal scheduling decisions and to synthesize
an e-optimal 7-scheduler whose decisions maximize the reachability objective. Further,
the iterative computation allows us to compute time-bounded reachability probabilities
incrementally: As a byproduct of the value iteration for a time bound z, we obtain the
reachability probabilities for all smaller time bounds z’ < z (where z’ is a multiple of 1)
with minimal computational overhead.

Related work. In the literature, the analysis of CTMDPs has received scant attention.
Most of the existing results focus on optimizing criteria such as the expected total re-
ward [GHLPRO6, IMil68al] or the expected long-run average reward [dA97, IGHLPROG,
Mil68bl]. Directly related to the results of this chapter is the work in [BHKHO5], which
provides an algorithm that computes time-bounded reachability probabilities in globally
uniform CTMDPs. However, its applicability is severely restricted, as global uniformity
— which requires the sojourn times in all states to be identically distributed — is hard to
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achieve. We shortly discuss the reason for this:

The approach for the analysis of time-bounded reachability probabilities that is taken
in [BHKHO5] refers only to time-abstract schedulers, which are strictly less powerful
than time-dependent ones [BHKHO5, INSK09)]. Moreover, as observed in [BHKHO05],
the uniformization approach that is known from Markov chain theory does not work for
CTMDPs and time-abstract scheduler classes: Intuitively, uniformization introduces self
loops (or copy states, in case of local uniformization) in the CTMDP model. Thereby
uniformization changes the structure of the model. These structural changes expose
significant information to history dependent (but time-abstract) schedulers and can be
used to estimate the timed behaviour of the system (although the scheduler class is time-
abstract). A formal proof of this is included in [BHKHO5]. Due to similar reasons, lo-
cal uniformization fails for all non-trivial time-abstract scheduler classes as proved in
Sec. .3 (see page [[03).

Recently, maximal reachability probabilities in CTMDPs have been studied in stochas-
tic timed games [BEQY, BEK*09]: However, the authors of [BEK*09] also consider the
strictly weaker classes of time abstract schedulers, while [BE09] addresses the decidabil-
ity problem for qualitative reachability probabilities in stochastic timed games, that is,
reachability probabilities that are 1 or 0, respectively.

Hence, both approaches differ considerably from our results: The time-dependent
scheduler ML-schedulers that we use are proved to be strictly more expressive (that is,
they generally induce strictly higher probability bounds) than the time-abstract sched-
ulers that are considered in the related work. To the best of our knowledge, no analysis
techniques are known for time-dependent scheduler classes.

Therefore, this chapter extends the existing results considerably: We provide an efhi-
cient algorithm that computes time-bounded reachability probabilities for the class of
time- and history-dependent schedulers up to an a priori given error bound . Moreover,
we relax the restriction to global uniformity in [BHKHO5] and allow different states to
have different sojourn time distributions.



6 Model Checking Interactive Markov
Chains

It is what | sometimes have
called "the separation of
concerns”, which, even if not
perfectly possible, is yet the
only available technique for
effective ordering of one's
thoughts, that | know of.

(Edsger W. Dijkstra)

Interactive Markov chains (IMCs) comprise both nondeterministic choices and expo-
nentially distributed delays. Hence, in the family of stochastic models they are related to
CTMDPs. However, subtle differences exist: Whereas CTMDPs closely entangle nonde-
terminism and stochastic behavior in their transition relation, IMCs strictly separate the
two aspects and distinguish between Markovian and interactive transitions.

The different approach taken in IMCs is not surprising, given the fact that IMCs orig-
inate in stochastic extensions of classical process algebras. As such, they overcome the
absence of hierarchical and compositional facilities in purely stochastic dependability
models like CTMCs and SPNs [Mol81, [Nat80]]. Apart from IMCs, many efforts have
been undertaken to vanquish this limitation, including formalism like the stochastic Petri
box calculus [MVCROS]], Statecharts [BHH*09] and in particular, the TIPP [GHR93],
PEPA [Hil96l] and EMPA [BG98, BGOI] process algebras. In this thesis, we focus on
IMCs which share most of the other approaches” benefits while preserving a succinct
and accurate semantics.

Since IMCs smoothly extend labeled transition systems (LTSs), the model has received
attention in academic and in industrial settings [BCH*08, (CGH*08} (CHLS09]. In prac-
tice however, the theoretical benefits have partly been foiled by the fact that for a long
time, the analysis of IMCs was restricted to those instances, where the composed IMC
could be transformed into a CTMC.

Beyond these special cases, IMCs also support nondeterminism which arises both im-
plicitly from parallel composition and explicitly by the deliberate use of underspecifica-
tion in the model [HHKO2]]. In contrast to CTMC-based models, all of these aspects can
neatly be represented in the IMC formalism; therefore, IMCs are strictly more expressive
than CTMCs.
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The work in [[Joh07] is the first approach towards an analysis of nondeterministic IMCs,
i.e. of IMCs that cannot be transformed into a CTMC. It relies on a measure preserving
transformation from IMCs to CTMDPs and the time-bounded reachability algorithm
from [BHKHO5]. The latter relies on globally uniform CTMDPs which are obtained by
the transformation in [[Joh07, BHH*(9] if the underlying IMC is also globally uniform,
that is, if all Markovian states have the same sojourn time distribution.

Apart from these special cases, no analysis techniques exist for the general setting
where IMCs are neither globally uniform nor can they be transformed into an equiva-
lent CTMC. In this chapter, we close this gap and provide a model checking algorithm
that works for arbitrary IMCs. Our approach extends the discretization technique that is
used in Chapter B Instead of only considering time-bounded reachability objectives, we
extend our results to time intervals, that is, we maximize the probability to visit a goal
state during a given time interval. We then use a fixed-point characterization to discretize
an IMC and to obtain an interactive probabilistic chain (IPC) [CHLS09]. Our main contri-
bution is the proof that the IPC’s maximum step-interval bounded reachability coincides
(up to &) with the maximum time-interval bounded reachability probability in the under-
lying IMC. As a final step, we adapt the value iteration algorithm to IPCs and compute
the step-interval bounded reachability probabilities.

On the specification side, the continuous stochastic logic (CSL) [ASSB96, BHHKO3]
permits to specify a wide variety of performance and dependability measures. It has orig-
inally been devised for model checking CTMCs. Therefore, Sec. [&.5 proposes an adap-
tation of CSL to IMC which enables us to reason about the maximum and minimum
achievable probability for CSL path formulas. We then develop an algorithm to automat-
ically model check CSL formulas on arbitrary IMCs.

The crucial point in model checking CSL is the computation of time-interval bounded
reachability probabilities. Having achieved the latter, we obtain a model checking algo-
rithm which has a worst-case time complexity of (9(|®| (n26 + (m + n?) - (Ab)?*[e)),
where |®| denotes the size of the CSL formula, 7, m are the number of states and transi-
tions of the IMC, resp., and b and A are the maximum upper time interval bound in ®
and the IMC’s maximum exit rate, respectively.

As in the previous chapter, we present all results only for maximum time-bounded
reachability probabilities. However, all proofs carry over when minimizing the interval-
bounded reachability probabilities.

Organization of this chapter. Section[6.]lformally introduces IMCs. In Sec. 6.2 we ob-
tain a fixed-point characterizations for time-interval (and step-interval) bounded reach-
ability in IMCs (respectively in IPCs). A major contribution are the correctness proofs
in Sec. 6.3 which provide the theoretical basis for the value iteration algorithm that we
present in Sec. Section [6.5 introduces the logic CSL and discusses how the interval
bounded reachability analysis can be applied to the model checking problem for CSL
on IMCs. Finally, we provide some experimental results obtained by our prototypical
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implementation in Sec.

6.1 Interactive Markov chains

IMCs strictly separate interactive from Markovian transitions; therefore, they can be
seen as a fully orthogonal extension of labeled transition systems with exponentially dis-
tributed delays. This enables compositional modeling with intermittent weak bisimula-
tion minimization [Her(02] and even allows us to augment existing untimed process alge-
bra specifications with random timing [HKO00, BHH*09]. Moreover, the IMC formalism
is not restricted to exponential delays but permits to encode arbitrary phase-type distribu-
tions such as hyper- and hypoexponentials [Pul09]. An excellent and detailed discussion
of the advantages of the IMC modeling formalism can be found in the paper [BHKO06].

6.1.1 Preliminaries

Opposed to CTMDPs, interactive Markov chains (IMCs) disentangle the relation be-
tween Markovian and nondeterministic behaviors: Therefore, IMCs strictly separate Mar-
kovian from interactive transitions. We restate the definition of IMCs from [Her02]:

Definition 6.1 (Interactive Markov chain). An interactive Markov chain is a tuple
M = (S,Act,IT,MT,v) where S and Act are nonempty sets of states and actions,
IT € S x Act x § is a set of interactive transitions and MT € S x R,y x S is a set of
Markovian transitions. Further, v € Distr(S) is the initial distribution.

We distinguish external actions in Act, from internal actions in Act; and set Act =
Act, u Act;. The reason for this distinction is that IMCs may be composed via synchro-
nization over the set of external actions Act,, while internal actions in Act; are not ob-
servable from the outside environment. For a detailed discussion of the compositional
aspects of IMCs, we refer the reader to [Her(02]. For the scope of this thesis, we consider
closed IMCs [Her02, [Joh07]], that is, we focus on the IMC M that is obtained as the final
outcome of the composition. Accordingly, M is not subject to any further synchroniza-
tion and all remaining external actions can safely be hidden. In our analysis, we therefore
assume that Act, = @ and identify the sets Act and Act;.

For Markovian transitions, we use A and y to denote rates of exponential distributions.
Moreover, IT(s) = {(s,a,s") € IT} is the set of interactive transitions that leave state s;
similarly, for Markovian transitions, we set MT(s) = {(s,A,s") e MT}. A state s € S is
Markovian iff MT(s) # @ and IT(s) = @; it is interactive ifft MT(s) = @ and IT(s) # @.
Further, s is a hybrid state ifft MT(s) # @ and IT(s) # @; finally, s is a deadlock state iff
MT(s) = IT(s) = @. We use MS € S and IS ¢ S to refer to the sets of Markovian and
interactive states in M.
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Figure 6.1: Example of an IMC with Markovian and interactive states.

For a Markovian state s € MS, we define R(s,s’) = > {1 (s, A,s") € MT(s)} as the rate
to move from state s to state s’ and E(s) = Y ..s R(s, s") as the exit rate of state s; further,

postM(s) = {s" € S| R(s,s’) > 0} denotes the set of successor states of state s. The discrete
R(s,s")
E(s) -

Example 6.1. Let M be the IMC depicted in Fig. The semantics of Markovian states
equals that of a CTMC state: More precisely, consider the Markovian state s, and the tran-
sition (9,0.3,s,) € MT(s) (depicted by a solid line) that leads from state s to state s, with
rate A = 0.3. The transition’s delay is exponentially distributed with rate A; hence, it expires
in the next z € Ry time units with probability [ Ae *dt = (1- e 0%%). As state s, has two
Markovian transitions, they compete for execution and the IMC moves along the transition
whose delay expires first. Clearly, in such a race, the sojourn time in s, is determined by the
first transition that executes. As the minimum of exponential distributions is exponentially
distributed with the sum of their rates, the sojourn time in a state s is determined by the
exit rate E(s) of state s. In general, the probability to move from a state s € MS to a suc-
cessor state s' € S equals the probability that (one of) the Markovian transitions that lead
from s to s" wins the race. Accordingly, for state s, of our example, we have R(sy, s;) = 0.3,
E(so) =0.3+0.6 = 0.9 and P(sp,s,) = 3. 2

branching probability to move from state s to state s’ is P(s,s’) =

For interactive transitions, we adopt the maximal progress assumption [Her(02, p. 71]
which states that internal transitions (i.e. interactive transitions labeled with internal ac-
tions) trigger instantaneously. This implies that they take precedence over all Markovian
transitions whose probability to execute immediately is 0. Therefore all Markovian tran-
sitions that emanate a hybrid state can be removed without altering the IMC’s behavior.
This allows us to assume throughout this chapter that MT(s) N IT(s) = @ forall s € S.

To ease the development of the theory, we assume w.l.o.g. that each internal action
a € Act has a unique successor state, denoted succ(«); note that this is no restriction, for
if (s,a,u), (s, &, v) € IT(s) are internal transitions with u # v, we may replace them by
new transitions (s, «,, u) and (s, «,, v) with fresh internal actions «, and «,.

The internal successor relation ~; € S x S is given by s ~; " iff (s, a, s”) € IT; further-
more, the internal reachability relation ~ is the reflexive and transitive closure of ~;.
Accordingly, we define posti(s) = {s' € S | s ~; s’} and Reach’(s) = {s' € S | s ~* 5'}.

Finally, entering a deadlock state results in a time lock, as neither internal nor Marko-
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vian transitions are available. Therefore, we equip deadlock states s € S with interactive
self-loops (s, a, s). Note that the occurrence of time locks breaks compositionality; how-
ever, note that our analysis takes place on the closed model which is the monolithic result
that is obtained after all compositions.

We justify the modification of deadlock states as follows: Whereas each interactive
or Markovian state has an associated sojourn time distribution (which is either 0 or an
exponential distribution), the sojourn time in deadlock states remains unquantified. In
this case, we encounter a time lock situation where the global time does not proceed any
further: If a deadlock state is reached at global time t,,,4, the probability distribution of
the associated stochastic process {Xf}te[Rzo is undefined for time-points t > f4.,4. The
same phenomenon occurs if a closed IMC eventually remains in a cycle of interactive
transitions. In this case, the global time also stops, resulting in a time lock. Hence, the
two situations are semantically equivalent which justifies to equip any deadlock state with
an interactive self-loop.

Note however, that our approach also allows for a different deadlock state semantics,
where the global clock continues; in this case, we would add a Markovian instead of an
internal self-loop.

6.1.2 Paths in interactive Markov chains

To unify the notation for interactive and Markovian transitions, we introduce a special

action 1 ¢ Act and let ¢ range over Act, = Act u {1}. In this way, we can denote a finite

00,to o1, Op—1>tn—1
path as a sequence 7 = s s o s s, where s; €S, 07 € Act, and t; € Ry

for i < n. We write s; iR si+1 for Markovian and s; &l si+1 for interactive transitions
in 71. As before, || denotes the length of path 7. Moreover, n[k] = s; and (7, k) = t;
refer to the (k+1)-th state on 7 and its associated sojourn time. Accordingly, A(7,i) =
i ti is the total time spent on 7z (where A(7,0) = 0) when reaching state 7[]. If 7 is
finite with || = n, then A(7) = A(m, n) is the total time spent on 7; similarly, 7 = s,
is the last state on 7. The path infix between the (i+1)-th and the (j+1)-th state of 7 is
denoted n[i..j].

Because internal transitions occur immediately in IMCs, an IMC can traverse several
states at once. Therefore, we modify the definition of 7@t such that 7@t € (S* uS?)
denotes the sequence of states that are traversed on 7 at time point ¢ € Ry,.

The formal derivation of 7@t is slightly involved: Let i be the smallest index such that
t < A(m,i). Then n[i] is the first state on 7 that is visited at or after time ¢; if no such
state exists, we set 7@t = (). Otherwise we distinguish two cases: If t < A(7, i), we define
n@t = (s;_1);if t = A(m, i), let j be the largest index (or +oo0, if no such finite index exists)
such that t = A(7, j) and define 7@t = (s; ... s;).

. ap,0 a1,0 1,k a3,0 a4,0 L,ts
Example 6.2. Consider the path m = sy — s —> s, — §3 —> S4 —> S5 —> Sg

and let 0 < € < min{t,, ts}. The derivations for the sequences n@0, n@(t,—¢), n@t, and
n@(t,+e) are sketched in Tab.
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Intuitively, the (i+1)-th state on path m (i.e. n[i]) is entered at time A(m,i). To find
the first state of the sequence n@t, let i be the first index on w where at least t time units
have passed. Formally, we have to choose the minimal i that satisfies t < A(m, i). For sucha
minimal i, t < A(7, i) implies that time has passed in the previous state [ i—1] and that we
have been in that state at time point t. Hence, [ i—1] must be a Markovian state and we set
n@t = (n[i-1]). Otherwise t = A(m, i), implying that state n[i] is entered at time point t.
Ifit is an interactive state, further transitions can occur immediately. Hence, we look for the

maximal index j, for which A(m, j) still equals t and define n@t = (n[i]...n[j]). o
We write s € (s;...s;) if s € {s;,...,s;}; further, for states s € (s;...s;) we define
Pref({s;...s;),s) = (si»...sx), where s = s, and k is minimal. If s ¢ (s;...s;), we set

Pref((s;...s;),s) = (). The definitions for time-abstract paths are similar.

6.1.3 Events and measurable spaces

A path 7 (time-abstract path 7n’) as defined in Sec. is a concatenation of a state
and a sequence of combined transitions (time-abstract combined transitions) from the
set Q = Ry x Act; xS (Qups = Act, x S); hence, m = sg 0o my o my o... o m,_; with
m; = (ti,0,8101) € Q (m; = (05,5i41) € Qaps). Thus Paths" (M) = S x Q" is the set
of paths of length 7 in an IMC M; further, Paths™ (M), Paths” (M) and Paths(M) are
the sets of finite, infinite and all paths in M. To refer to time-abstract paths, we add
the subscript abs; further the reference to M is omitted wherever possible. The measure-
theoretic concepts are mentioned only briefly, as they directly carry over from the defi-
nitions for the CTMDP case (cf. Sec. B3 2 on page[76): Events in M are measurable sets
of paths; as paths are Cartesian products of combined transitions, we define the o-field
F =0 (B(Rs) x Fact, X Fs) on subsets of Q where Fs = 2° and Fa, = 24,

The product o-field §pyy of measurable subsets of Paths” is defined as usual, that
iS, Spamnsr = 0 ({So x My x -+ x M, | Sp € s, M; € §}). As for CTMDPs, the cylinder-set
construction [ADDO00] extends this to infinite paths: A set B € §p, is called a base of an
infinite cylinder C where C = Cyl(B) = {7 € Paths” | n[0..n] € B}. Finally, the cylinders
generate the o-field Fpape = 0 (UpZo {CYI(B) | B € Fpams' })-

t<A(mi)| 0 1 2 3 4 5 6 |mini|maxj| n@t
0 v v v v v v 0 2 (s08182)
th—e¢ X X X Vv v v Vv 3 NA (s2)
t) X X X Vv v v Vv 3 5 (835455)
hte |X X X X X X v | 6 | NA | (s5)

Table 6.1: An example for the derivation of 7@t for interactive Markov chains.
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6.1.4 Resolving nondeterminism by schedulers

An IMC M is nondeterministic ift for some s € IS, there exist interactive transitions
(s,a,u),(s,B,v) € IT(s) with u # v: For example, nondeterminism arises in the IMC
in Fig. In state s, two internal transitions (with actions « and f3) lead to states s;
and sy, respectively. By the maximal progress assumption, they both execute instanta-
neously at time point 0. Hence, no order of execution can be fixed, which leads to the
situation that the successor state of state s, (either s; or s4) is not uniquely determined. To
resolve this nondeterministic choice, we use schedulers: If M reaches state s, along a his-
tory m € Paths”, a scheduler yields a probability distribution over the set Act(7}) = {«, §}.
Formally, we define the set of enabled actions in an interactive state s € IS of an IMC as
follows:

Act(s) ={acAct|3Is'e€S. (s,a,s") €IT}.

IMC schedulers are closely related to CTMDP schedulers and most of the concepts
from Sec. B3 and ChaptersEandBlapply analogously. The only notable difference is the
distinction between interactive and Markovian states: Nondeterminism does not occur
in the latter, as the successor states are probabilistically quantified. Hence, the only source
of nondeterminism are competing internal transitions in interactive states.

Definition 6.2 (Generic measurable scheduler). A genericscheduler on an IMC M =
(S, Act, IT, MT, v) is a partial mapping D : Paths” x Fay > [0,1] such that D(m,-) €
Distr(Act(nl)) forall w € Paths” with 1t} € IS. A generic scheduler D is measurable (that
is, a GM scheduler) iff for all A € F o, D7(A) : Paths™ — [0,1] is measurable.

Measurability states that {7 | D(7, A) € B} € Fpype+ holds for all A € Fa, and B ¢
B([0,1]); intuitively, it excludes schedulers which resolve the nondeterminism in a way
that induces non-measurable sets. Recall that no nondeterminism occurs if 7} € MS.
However, we slightly abuse notation and assume that D(7,-) = {1 ~ 1} if 7} € MS so
that D yields a distribution over Act,. In this way, we can treat a GM-scheduler D as a
total function D : Paths™ x Fae, — [0,1].

A GM scheduler D is deterministic iff D(m,-) is degenerate for all 7 € Paths™. We
use GM (and GMD) to denote the class of generic measurable (deterministic) sched-
ulers. Further, a GM scheduler Dy is time-abstract (GM ) iff abs(7) = abs(n’) implies
Dahs(ﬂ, ) = Dahs(ﬂ', )

Example 6.3. If state s, in Fig.[6.1lis reached along path m = s, 24 s, then D(m) might

. T . 15, Lo
yield the distribution {(x > 1,0~ %} whereas for history n' = s 2% 5, it might return
a different distribution, say D(m) = {a ~ 1}. o
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6.1.5 Probability measures for IMCs

In this section, we define the probability measure [Joh07] induced by D on the measur-
able space (Paths®, Spunse ). We first derive the probability of measurable sets of com-
bined transitions, i.e. of subsets of (:

Definition 6.3 (Probability of combined transitions). Let M = (S, Act,IT, MT,v)
be an IMC and D € GM. For n € Paths”, we define the probability measure pp(m,-) :

§ —[0,1]:

Yaeact(ny) I (@, 0, succ(a)) - D (7, {a}) ifml €IS

6.1
S, E()e O3 s Ty (L, t,8") - P(s,s') dt  if m) € MS. (51

up(m, M) :{

As usual, Iy denotes the indicator function for the set M. Intuitively, yup (7, M) is the
probability to continue along one of the combined transition in the set M. For an interac-
tive state s € IS, it is the probability of choosing a € Act(m]) such that («, 0, succ(«)) is
a transition in M. Stated differently, we sum up the probabilities of all combined transi-
tions in M that lead immediately with an interactive transition to a successor state of 7.
If s € MS, up(m, M) is given by the density for the Markovian transition to trigger at
time ¢ and the probability that the IMC moves to a successor state s” according to a com-
bined transition in M. As paths are inductively defined using combined transitions, we
can lift the probability measure pp(7, ) to Fpans as usual:

Definition 6.4 (Probability measure). Let M = (S, Act,IT,MT,v) be an IMC
and D € GM. For n > 0, we define the probability measures Pr, |, inductively on the
measurable space (Paths", T paps ):

Pr) b Bpame = [0,1] 11— Z v(s) and

sell

PRt Spapes > (01T [ Pl (dm) fQ Iu(7w o m) pp(m, dm).

6.1.6 Interactive probabilistic chains

In this section, we introduce interactive probabilistic chains (IPCs) [CHLS09] which serve
as the discrete-time analogon of IMCs. In an IPC, Markovian transitions are replaced by
probabilistic transitions. As a consequence, no delay time distribution is associated with
probabilistic states. Therefore, taking a probabilistic transitions corresponds to a discrete
time step in the IPC.
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The semantics of interactive transitions remains the same as in the IMC case. Open
IMCs can synchronize over the set of external actions, whereas internal actions are unob-
servable for the environment.

Definition 6.5 (Interactive probabilistic chain). An interactive probabilistic chain
(IPC) is a tuple P = (S, Act,IT,PT,v), where S, Act,IT and v are as in Def. 6.1 and
PT : 8 xS - [0,1] is a transition probability function s.t. Vs € S. PT(s,S) € {0,1}.

A state s in an IPC P is probabilistic iff . PT(s,s’) = L and IT(s) = &; PS denotes
the set of all probabilistic states. The sets of interactive, hybrid and deadlock states are
defined as for IMCs, with the same assumption imposed on deadlock states. Further, we
assume any IPC to be closed, that is (s, a, s’) € IT implies «a € Act;. Hence, Act, = @ and
we identify the sets Act; and Act.

As for IMCs, we adopt the maximal progress assumption [Her02, p. 71]; hence, internal
transitions take precedence over probabilistic transitions and their execution takes 0 dis-
crete time steps. In this way, we obtain a full correspondence between IMCs and IPCs,
as in both cases internal transitions consume no time.

Definition 6.6 (IPC scheduler). Let P = (S, Act,IT, PT,v) be an IPC. A partial func-
tion D : Paths),, = Distr(Act) with D(r) € Distr(Act(ml)) is a time-abstract history-

abs

dependent randomized (GM ) scheduler.

Note that in the discrete-time setting, measurability issues do not arise. Moreover, we
extend D € GM, to a complete function D : Paths),, — Distr (Act,) and assume that
D(m) = {L~ 1} iff m| € PS. To define a probability measure on sets of paths in P, we
define the probability of a single transition:

Definition 6.7 (Combined transitions in IPCs). Let P = (S, Act,IT,PT,v) be an
IPC, s € S, 0 € Act,, € Paths),, and (0,s) € Qu a time-abstract combined transi-
tion. For scheduler D € GM s, we define

PT(nl,s) ifnlePSAnc=1

M“Dhs(ﬂ, {(0,5)}) ={D(m, {o}) ifnlelSAsucc(o)=s
0 otherwise.

abs

For a set of combined transitions M S Qg we set u} (ﬂ,M) =

Z(a,s)eM xuanS(S’ {(0’5)})'
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(a) An example of an IMC. (b) Its embedded IPC.

Figure 6.2: An example for an IMC and its embedded IPC.

The measures u%* extend to a unique measure on sets of paths in P in the same way

as it was shown for the IMC case in Sec.

Example 6.4. Each IMC induces an embedded IPC: Consider the IMC M in Fig.
with initial state s, and interactive states s, and ss. A scheduler D has to resolve the nondeter-
minism in state s;: If m = so 20 5o 2 sy ds the path that led into state s,, then D(7)(«) is
the probability that « is chosen in s,. In Fig. we depict the embedded IPC emb(M)
of M: 1t is obtained by disregarding M s timed behavior and considering the IMC's discrete
branching probabilities P(s, s") only. Hence emb(M) is the IPC (S, Act, PT,IT,v), where

PT(s,s") = R]gs(’;)’) if s € MS and PT(s,s") = 0, otherwise. o

6.2 Interval bounded reachability probability

We discuss how to compute the maximum probability to visit a set G € S of goal states
during a given time interval I. Therefore, let Z be the set of nonempty intervals over the
nonnegative reals and let Q be the set of nonempty intervals with nonnegative rational
bounds. Fort € Rypand I € Z, we define ot = {x—t|xelArx>t}and @t =
{x +t|x eTI}. Obviously,if I € Q and ¢ € Q,, thisimplies[© t € Qand [ & t € Q.

6.2.1 A fixed point characterization for IMCs

Let M be an IMC. For a time interval I € 7 and a set G € S of goal states, we define the
event GG = {m € Paths” | 3t € I. 3s' e n@t. s’ € G} as the set of all paths that hit a state
in G during time interval I. The maximum probability induced by &!G in M is denoted
pMt (s, I). Formally, it is obtained by the supremum under all GM schedulers:

pat(s,I) = sup Pre ,(O'G). (6.2)

DeGM

For a scheduler D € GM, s € S and interval I € Z with inf I = a and sup I = b, consider
the functions Pr¢ , (O'61G) : t » Pr® (&19G). Then Pre |, (O™°L1G) is piecewise
continuous in Ry, by definition. As the following lemma proves, continuity (and thereby
measurability) extends to pat.(s,I6 [-]):



6.2 Interval bounded reachability probability 155

Lemma 6.1 (Continuity of p.). Let M = (S, Act,IT,MT,v) be an IMC, G € S a set
of goal states and I € T an interval. The functions pil. (s, 1o []) : Ryy — [0,1] : £
p%x(s, Ie t) are piecewise continuous and measurable for all s € S.

Proof. For continuity, we prove that for all s € S and t € (R, \ inf I it holds that
lim pot(s,Te(t-98))=p)t(s,Iet)= lim pat(s,Te(t+68)).  (63)

Observe that t = 0 and ¢ = inf I are the only discontinuities of Pr; D(<>19tG): To see this,
notethat0 ¢ Ietfort <infland 0 € I © t for t > inf I. Hence, if ¢t = inf I, interactive
transitions may reach a goal state directly without requiring integration over the time
domain.

Further, observe that Pry ,(s,]©t') < p)t (s,]©t') for all t’ € Ry, by definition of
pM . To prove that pA! (s, [©[]) is piecewise continuous, we proceed by contraposition
and assume there exists ¢t € (R, \ inf I') such that Eq. (&3)) is violated: Here we consider
left-continuity and distinguish two cases: Assume that p (s,I 6 [-]) is not continuous

from the left at point ¢ € Ry and that there exists ¢ > 0 such that
alirg pf‘n’éx(s,le (t-9)) = pf‘n’éx(s,le t) - e (6.4)

Now, choose D € GM such that pM (s,Iet) - Pr‘;’S)D(OIGtG) = & for some & < 5. Then

Pra(s,1© 1) = = Pri (019G = lim Pry ,(0"°0G)

< (Slir(% pM (s,Te (t-9)).

But then, lims_o+ AL (s, 16 (t-8)) > pat.(s,1ot)— &> pA (s,I©t)—¢, contradicting
Eq. &4). For the second case, assume that left-continuity at ¢ is violated because there
exists € > 0 such that

lim pat(s,Te(t-98))=p)t(s,Iot)+e. (6.5)

Choose D € GM such that limg_g+ Pr¢ , (G109 = limgoe piL. (s, 10 (t-8)) — & for
some ¢ < £. Then

Pra(s: 10 1) 2 Pry) 5 (0°'G) = lim Pry (0200 G)
= lim pri(s.,Te (1-0)) - &

But then, limg_o+ pL.(s, 16 (t-0)) < pM (s, 1ot)+ &< pM (s, I6t) +¢, contradicting
Eq. @3). Thus, pi. (s, I © [-]) is piecewise left-continuous. The fact that it is piecewise
right-continuous follows along the same lines. Hence, p21 (s, I©[-]) is piecewise contin-
uous. As piecewise continuous functions are Borel measurable [Ros00} Prop. 3.1.8], we

are done. m]
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Based on the measurability of p{‘n’;x(s, Ie []), we are now ready to derive a fixed point

characterization of the maximum probability p%x(s, I ) More specifically, we prove that

Pt is the least fixed-point of a higher-order operator Q:

Theorem 6.1 (Fixed point characterization for IMCs). Let M = (S, Act,IT,PT,v)
be an IMC, G € S a set of goal states and I € T a time interval with infI = a and
supI = b for some a, b € Ry. The function pit. : S x T — [0,1] is the least fixed point of

the higher-order operator Q : (S xZ — [0,1]) - (8§ xZ — [0,1]), which is defined as
follows:

1. For Markovian states s € MS:

fob E(s)e E®)t. %, o P(s,s')-F(s',1ot) dt ifs¢G
e 64 [CE(s)e PO Y sP(s,s") - F(s',1ot)dt ifseG.

Q(F)(s,I) = {

2. For interactive states s € IS:

Q(F)(s,I) = 1 ifseGand0el,
o max{F(s’,I) |5'€P05ti(s)} otherwise.

Proof. The proof is split in two parts: First, we prove that p is a fixed point of Q and
second, we show that it is the least fixed point.

Recall that in Eq. (62) we defined p)!.(s,I) = supp.cy Pr;”bD(<>I G). To prove that
pMis a fixed point of Q, we first provide a disjoint decomposition of the event &!G: Let
y(m, n) be the time interval which is spent in the n-th state of path 7z, measured in abso-
lute time. Formally, y(7, n) = [A(ﬂ, n), A(rm, n+1)) if A(m,n) < A(m, n+l)and y(7,n) =
{A(n, n)}, otherwise. Now define the set T'(I, n) of all paths whose (n+1)-th state isin G
and lies within time interval I, thatis, I'(I, n) = {7 € Paths” | n[n] € G Ay(m,n) n I #+ &}.
To achieve a disjoint decomposition of O!G, set II(I, n) = T(I,n) \ UjZy T'(1, k). Then
OIG =2 II(1, n). For D € GM it holds:

Pr‘v"’D(OIG) = Pr‘v"’D(GOH(I, n)) = i:(:)Pr‘v"’D(H(I, n)).

Further, let pir' (s, 1) = suppcey Pre p (WUo II(I, i)) be the upper bound on the prob-
ability to visit G during time interval I and within at most # transitions. First, we show

that pat™ (s, I) = Q(pat) (s, I). It suffices to consider two cases:

1. Lets € MS and assume that s ¢ G (the case s € G follows similarly). Then:

b
Q(ptr)(s,1) = /0 E(s)e 200 3 P(s,s) - phtr(s, Tot) dt

s'eS
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= / E(s)e B 3 P(s,s) - sup Pry, D(U M(Iet,i))dt.
0 s'eS DeGM
(6.6)

Let D e GM,s € S, 0 € Act, and t € R,,. We define the GM scheduler D, ;
such that D, ,(7) = D(s 2> 7) for all 7 € Paths". Hence, D, yields the same
decisions for history m as the original scheduler D does for the history s 2 om,

o,t 00,to 01,1 0-t0 o1, h .
--. This

wherewedeﬁnes—>7r—s—>so—>51 cif o= g =% 5 2

shift allows us to rewrite Q( pyry ) (s, I) further.

Q(p,%x )(s,I) = sup E(s)e’E(s)t Y P(s,s) -Pr‘v"s,)Ds,l)t(GJ I(Iet, z)) dt
i=0

DeGM s'eS
n+l

= sup Pry D(U (1, i )zpf‘n’é;c”“(s,l).

DeGM

2. Now let s € IS. If s € G and 0 € I, it holds that Q( pir) (s, I) = 1 = pot*'(s, I) and
we are finished. Otherwise

Q(pXtmy(s, 1) = MAXgeposti(s) P (s 1) = maxsleposti(s)( sup Pr‘V"S,,D(U I1(1, z)))
DeGM i=0
= maxoceAct(s)( Sup sm(a) D(U H(I 1)))
DeGM

= SUP MaXyenct(s)Pre e )DMO(U I1(1, 1))

DeGM
n+l
= sup Pri (LTI 0)) = pii(s D).
DeGM

It is easy to see that pi/(s,I) converges to pM (s, I): By definition, ", TI(I, i) —
O!IG for n — +o00. Further, Lemma Z2@) implies that for each D € GM we have that
lim, o Pry , (Uit II(1, 7)) = Pry , (O'G). As this applies to all D € GM, it holds
sup{Pr¢ (WL I(1,i)) | D € GM} — sup{Pr D(<>1G) | D € GM} for n — +o0.
Taking the limit on both sides of the equation Q(ppir)(s,I) = piti*(s, 1) yields that
Q(pM ) (s, 1) = pM (s,1). Hence pM s a fixed point of Q.

It remains to show that p2_is the least fixed point of Q). Therefore, let F : SxZ — [0,1]
be another fixed point of Q. By induction on the number of (interactive and Markovian)
transitions 71, we show that p/tr'(s,I) < F(s,I) forall n € N.

1. In the induction base, it holds that pjt(s,I) =1 = Q(F(s,I)) = F(s,1) ifs € G
and a = 0; otherwise p9,..(s,I) =0 < F(s,I).

2. For the induction step, we distinguish between Markovian and interactive states:
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(a) Letse MSand s ¢ G (the case s € G can be shown similarly). Then

Pt (s, 1) = Q(pikt) (s, 1)

b
- f E(s)e B0t T P(s,8') - pii(s', o t) dt
0

s'eS

b
< / E(s)e 2. 3 P(s,s') - F(s', Iot) dt (* ind. hyp. *)
0 s'eS

= Q(F(s,I)) = F(s,I). (* F is fixed point *)

(b) Now lets € IS. If s € G and 0 € I, we have Q(F)(s,I) = F(s,I) =1 >
ptil (s, I). Otherwise, the induction hypothesis yields

Pona (1) = QP ) (5, 1) = MAXreposs (5 Pt (8> 1) < MAXreposs (9 F (57, 1)-

By definition of Q, we have maxy c,oi () F(s', 1) = Q(F)(s,I) = F(s,I), prov-
ing that pytr (s, 1) < F(s, ).

Hence, F(s,1) > lim,_o pt(s,I) = pM (s,1) and the claim follows. O

max

Example 6.5. The fixed point characterization suggests to compute pt. (s, I) analytically:

Consider the IMC M depicted in Fig. 61 and assume that G = {s;}. For I = [0,b],
b > 0 we have pM (s3,1) = 1 and pM (s, 1) = 1 - e %%, For state s,, we derive that

max max

pM (s, 1) = fob et (2-pM(ssTot)+L-pM (s5,10t)+2-pM (s5,101))dt. In in-

max max

teractive state s,, we obtain that p)t (s, I) = max {pM (s4, I), pAL.(s1, 1)}, which yields
that pM (so,1) =f0b0.9e*°-9t-(§ pM(snIet)+ 1 pM (s,,1et))dt. o

max max max

From this example, it is easy to see that an IMC generally induces an integral equation
system over the maximum over functions, which is not tractable. Moreover, the iterated
integrations that occur are known to be numerically unstable [BHHKO3].

Therefore, we resort to a discretization approach: Informally, we divide the time hori-
zon into small time slices. Then we consider IPCs as a discrete-time model which we
define such that its steps correspond to the IMC’s behavior during a single time slice.

First, we develop a fixed-point characterization for step bounded reachability in IPCs.
Then we reduce the maximum time interval bounded reachability problem in IMCs to
the step interval bounded reachability problem in the discretized IPC. Finally, we show
how to solve the latter by a modified value iteration algorithm.

6.2.2 A fixed point characterization for IPCs

Similar to the timed paths in IMCs, we define r@n € $*uS*® for the time abstract paths in
IPCs: Let #7(m, k) = |{i < k | n[i] € PS}|; then #"5(, k) is the number of probabilistic
transitions that complete up to the (k+1)-th state on 7. For fixed n € N, let i be the




6.2 Interval bounded reachability probability 159

smallest index such that n = #75(7, 7). If no such i exists, we set 7@n = (); otherwise i
is the index of the state that is reached on path 7 directly after the n-th probabilistic
transition executed (or the first state on 7, if n = 0). Similarly, let j € N be the largest
index (or +oo, if no such finite index exists) such that n = #5(7, j). Then j denotes
the position of the (7n+1)-th probabilistic state on 7. With these preliminaries, we define
T@n = (Si>Sis1» - - - » Sj-1, $j) to denote the state sequence after the #n-th and up to the (n+1)-
th probabilistic state of 7. Intuitively, 7@n is the sequence of states which are traversed
during the (n+1)-th discrete time unit.

To define step-interval bounded reachability in an IPC P, let [k,, k;] S N be a step
interval. Then

otkak]lG = {71 € Paths, | 3n € {ky ko +1,...,ky}. 35" e n@n. s' € G}

is the set of paths that visit G between discrete time steps k, and k;, in P. Accordingly,
we define the maximum probability for the event Gk ]G:

p;,n)ax(s>[kaakh]): sup PrZ)D(O[kmkh]G).

DGGMahS

Now, we are ready to provide a fixed point characterization for p7, .

max:*

Theorem 6.2 (Fixed point characterisation for IPCs). Let P = (S, Act,IT, PT,v) be
an IPC, G ¢ S a set of goal states and 1 = [k,, k]| a step interval. The function
Pl is the least fixed point of the higher-order operator Q : (S xNxN - [0,1]) —
(S xNx N — [0,1]) which is stated as follows:

1. For probabilistic states s € PS:
1 ifseGnrk,=0

Q(F)(s, [karkp]) =10 ifs¢Grky=ky,=0
Yoes PT(s,s") - F(s',[kaskp] ©1) otherwise.

2. For interactive states s € IS:

1 ifseGandk,=0
MaXgeposi(s) F (', [Kas kp])  otherwise.

Q(F)(s, [k ks ) ={

Proof. The proof goes along the same lines as the proof of Thm.[6.1 First, we decompose
the event Glkoki] into disjoint subsets. Therefore, define

T ([ka» ko], 1) = {m € Pathsy, | n[n] € G Ak, <#™5(m,n) < ky} .
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To achieve a disjoint decomposition of Gkeki G, we set TI([ ky, ky |, n) = T([ ko, ko], 1) N

"o T([ka kp], 7). Then TI([k,, k], ) is the set of paths that visit G in the probabilistic
step interval [k,, k; ] for the first time after exactly n (probabilistic or interactive) transi-
tions. Then Okek]G = (%2 H([ka, ky],n). Thus, it holds for all D € GM s

Prép(otkeklG) = Per(UH( [kaski],m) ) = ZPer( (ko k], 7).

We maximize the probability of the sets [JI H([ka, ky], ) separately: Therefore, let

(s (ke ky]) = sup Pré D(UH( karke] 1))

DGGMabS

be the upper bound on the probability to reach G during the probabilistic step inter-
val [k, ky ] with at most n (interactive or probabilistic) transitions. Now we show that

P (55 [kas k1) = Q (piiic) (s, [kas ko ]):

1. Lets € PS: If s € G and k, = 0, we have p,x" (s,[0,k;]) = 1. Further, by defini-
tion of Q, it also holds that Q (p}i) (s, [0, ky]) = 1. Hence Q (pin) (5, [0, ks ]) =

Pt (5,0, kp]) and we are done.
The case s ¢ G and k, = k;, = 0 is similar: We have p}.:" (s,[0,0]) = 0, as no
probabilistic step may occur in step interval [0, 0]. Further Q (p}) (s, [0,0]) = 0

by definition of Q. Hence Q (p}i) (s, [0,0]) = pli (s, [0,0]) and we are done.

In the remaining cases, we proceed as follows:

Q(phr) (s, lkasks]) = 0 PT(s,5") - phon(s's [kas k] ©1)

s'eS
= Y PT(s,s")- sup PrV,D(U T([ka kp] ©1, z)) (6.7)
s'eS DeGM gps

For D € GM . s € S and o € Act, we define the scheduler D, € GM, such that
D,,(m) = D(s > n) for all 7 € Paths’,.. This allows us to derive from Eq. (6.2)
that

Q(phi) (s: ke ks]) = sup 37 PT(s,s") - PrV,DM(LjJOH([ka,kb]el,i))

DeGM gps s'eS

n+l1

- sup Pr¢ D(UH( ko k], 1)) = Pt (5, Tas o)),

DGGMabS

2. Second, we prove that Q (pmux) (s, [ka>kp]) = pmu’;“ (s, [ka» kp]) for interactive
states s € IS: If s € G and k, = 0, it holds that p.". (s,[0,k;]) = L. Further, the
definition of Q implies that Q (plix) (s, [0, ky]) = 1. Hence Q ( pini) (s, [0, ks ]) =

P (5,10, kp]).
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For the other cases, it holds that
Q (PEZ}C) (S’ [km kb]) = maxs’eposti(s)p,rln);gc(sl’ [kaa kh])

= MAXgeposti(sy SUP Pry, D(O H( ko, kp], ))

DeGM 45 i=0
= sup maxaeAct(s)P Veuee(a)» Dsa(U H( ka,kb ))
DeGM 45 i=0
n+l
- sup Pr¢ D(UH( Kaks]s 7)) = PRt (s [kas ks ).

DGGMabS

Hence, O (pﬁ;;}() (s, [ka» kb]) pﬁa’}(“([ku, ky], s). Further, pZZ;ﬁC(s, [kas kb]) converges
t0 pha(s, [kas ky]) for n — +o0: To see this, note that o TI( [k, ks ], i) 1 Ok for
n — +oo. But then Lemma[ZZ implies for all D € GM,, that

lim Pre ,((UTI([kas ko], 7)) = Pre , (O1R1G). (6.8)
n—oo > i=0 $>
Now, let TTI(n) = ([ka, ky], ) As Eq. (&38) applies to all D € GM 4, it implies that

sup{PrvbD(H(n)) | D € GMups} — sup{Pr¢ ,(Olk=k]G) | D € GMa} for n — +oo.
Taking the limit on both sides of the equation Q(pha) (s, [ka, k]) = pht (s, [ka» k3 ])
yields that Q (p7..) (s, [ka» kb]) Pho (s, [kar kp]). Hence p? . is a fixed point of Q.

It remains to show that p? is the least fixed point of Q: Thus, let F be another fixed
point of Q. By induction on n, we show that pmax( s, [ka» kh]) < F(s, [ka» kh]):

1. For the base case, pmax(s, (k. kb]) =1= (F(s, [kas kb])) = F(s, [ka» kb]) ifseG
and k, = 0 and pmax( s, [ka» kb]) =0< F(s, [ka» kh]), otherwise. To see this, note
that in the event I1([k,, k, |, 0) a G-state must be visited before any (probabilistic
or interactive) transition executes.

2. For the induction step, we distinguish two cases:
(a) Letse PS:If s ¢ G (the case s € G is similar), then

P (5, [kas ko ]) = Q(priai) (s: ks o)
= > PT(s,s") - phi (s, [kar ks ] ©1)

s'eS

< 3 PT(s,s") - F(s, [kar kp] ©1) (* ind. hyp. *)

s'eS
= Q(F(s, [ka-ks])) = F(s, [ka> kp]). (* Fisa fixed point *)

(b) The case s € IS: If s € G and k, = 0, we have pﬁ;{}“(s, [0, kb]) = 1; further,
F(s,[0,kp]) = Q(F) (s,[0,ky]) = 1. Hence plii (s, [0, ks]) < F (s, [0, kp]).
Otherwise, applying the induction hypothesis yields

Pt (s, [kar ki ]) = Q (pht) (s, [ka» ko)
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= maxs’epost"(s)pﬁz:)lc(sl’ [ktl’ kb])
< maxsfepostf(s)F(s', [ka, kb])

The definition of Q implies maxycposi (s F (s> [ka» ko ]) = Q(F)(s, [Kar ko)) =
F(s, [ka» kb]), proving that pZZ;{}C“(s, [ka» kb]) < F(s, [ka» kb]).

Hence F(s, [ka» kh]) > lim,,_ 00 pﬁ;’}c(s, [ka» kb]) = pfzax(s, [ka» kb]), proving the claim. O

Observe the similarity in the treatment of interactive states in the fixed point charac-
terizations for IMCs and IPCs: In an interactive state, the recursive expression of the
time-interval bounded reachability in an IMC does not decrease the time interval I for
interactive states, whereas for IPCs, the recursive expression does not decrease the step
interval [k,, k;].

In this way, we have established a close relationship between IMCs and IPCs which
allows us to discretize an IMC into an IPC. The details are the topic of the next section.

6.3 A discretization that reduces IMCs to IPCs

For an IMC M and a step duration T > 0, we define the discretized IPC M, of M as
follows:

Definition 6.8 (Discretization). An IMC M = (S, Act,IT,MT,v) and a step dura-
tion T > 0 induce the discretized IPC M, = (S, Act, IT, PT, v), where

(1-e7E©7) - P(s,s") ifs#s'

6.9
(1 — e‘E(S)T) P(s,s") + e EOT ifs =4 (6.9)

PT(s,s") = {

Recall, that P(s,s") = Rézj)/ ) is the discrete branching probability in the IMC M. More-
over, the term (1 - e~E()7) is the probability to leave state s within 7 time units; accord-
ingly, eF()7 denotes the probability to stay in state s for at least 7 time units.

Therefore, we can see that in M, each probabilistic transition PT(s,s’) > 0 corre-
sponds to one time step of length 7 in the underlying IMC M: More precisely, PT(s,s’)
is the probability that a transition to state s’ occurs within 7 time units. In case that s’ = s,
the first summand in PT (s, s") is the probability to take a self-loop back to s, i.e. a tran-
sition that leads from s back to s executes; the second summand denotes the probability

that no transition occurs for the next 7 time units and the system stays in state s = 5.

6.3.1 Approximating time-bounded reachability probabilities

In the next two sections, we prove the correctness of the discretization given in Def.
To compute the probability pjt. (s, [a,b]), we analyze step-interval bounded reachabil-

max
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ity in the discretized IPC M, where each step approximately corresponds to 7 time units.
The goal of this section (cf. Thm.[g.3below on pagel[7]) is the proof that pmax( [ , [9”)

T
converges from below to pmax( s, [0, b]) if - 0. Note the restriction in the type of inter-

vals that we allow here: We only consider intervals with closed lower bound 0. Therefore,
in this section we only deal with time-bounded reachability probabilities. This is similar
to the discretization that we have devised for locally uniform CTMDPs in Sec. B3l We ad-
dress the more complex issue of computing interval-bounded reachability probabilities
(where we also allow for lower bounds greater than 0) in Sec.

Let M = (S, Act, IT, MT,v) be an IMC, G < § a set of goal states, I = [0,b] € Q a
time interval with b > 0 and A = max,.ysE(s). Further, let 7 > 0 be such that b = k; 7 for
some k;, € N. Formally, we aim to prove the inequality

A 2
p%;(s, [O’kb]) < pmax(s I) < Pmax( S, [0, kb]) + kb : ( ;) .

Both the upper and lower bounds will be proved by induction on k;,. Because of
the constraint k, € N, the induction base is k, = 1. For the induction step (k, ~
k,+1), we must establish the connection of the probability pmax(s, I ) in the IMC M and

pmax( [0, kb]) in its discretized IPC M.
This is the main task of the next section, where we first approximate pmax(s I ) recur-
sively in terms of pmax(s Ie T) by exploiting the fixed point characterization of pAt.

which we have established in Thm. 6]l Intuitively, we express the probability pmx( )
as the sum of the integration from 0 to 7 and the integration from 7 to b. Based on this
idea, Lemmal6.3 establishes the one-step approximation of pmax(s, I )

One-step approximation

We approximate the probability pmax(s I ) for all Markovian states s € MS\ G by reducing
it to an expression that depends on pmax(s, Ie T). Since s ¢ G, we obtain a recursive

definition of pmax(s, I ) which is based on the fixed point characterization which is given
by Thm. 61l Noting that b > 7, we obtain:

P, 1) = Q (pt) (s,1) = fo E(s)e EOr. ZSP(s ,s') (s Tet) dt. (610)

We let A(s,I) denote the probability that at least one Markovian transition executes at
some time point ¢ € [0, 7]. Accordingly

A(s,I) = fE(s EOLNP(s,8") - pa (s 1o t) dt. (6.11)

s'eS

Splitting the integral on the right-hand side of Eq. (€.I0) then yields

M5, 1) = A(s, 1) + f E(s)e PO T P(s,') - pM (s, To 1) dt

s'eS
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b-t
=A(s, 1) + / E(s)e EOWD N p(s,s') - pht (s To (t+71)) dt
0 s'eS

b-t
= A(s,I) + e FO)T. / E(s)e B0 S P(s,s') - ppl (s, To (t+ 1)) dt
0 s'eS
=A(s, 1) + e EOT. pM (s, Te 7).

B(s)I)

Then B(s, I) is the probability that no Markovian transition occurs before time 7 (given
by the term e~£()7) multiplied with the probability to reach a G-state within the remain-
ing time interval I © 7 (given by the term p,..(s, I © 7)).

From the above derivations, we obtain the result that if s € MS and p} (s,I) is not

determined directly (which is the case if b = 0 and s ¢ G orif s € G), we may express
pM (s, 1) recursively:

p%x(s,l) = /OTE(S)e—E(s)t . Z P(s,s") 'Pﬁﬁx(s’,le t) dt

s'eS

A(s.) (6.12)

“E(s)r ~pf‘nﬁx(s,le 7).

+ e

B(s,I)

This recursive characterization of the IMC’s behavior in Markovian states permits to de-
rive our discretization: If we define the random variable #[, ;) such that

#1007 : Paths® > N:m e [{i e N[ n[i] e MSA A(m,i +1) < T}

Informally, #[o,(7) is the number of Markovian transitions that have completed on
path 7 within the first 7 time units. For a given 7 > 0, we use #[( ;] to decompose the
event &G into disjoint sets of paths and obtain

8

OIG = (0'Gn#p. =n).

0

B
Il

The term B(s, I) is already suitable for our discretization: Its first factor represents the
probability that no transition occurs during the first discretization step, and p21 (s, [©7)
corresponds to the achievable probability in the following discretization steps.

Similarly, A(s,I) is the probability that starting in state s, at least one transition (or
equivalently, one or more transitions) occurs in time interval [0, 7]. However, its analytic
expression given in Eq. (&11]) must be refined before it can be used for a discretization.

Therefore, let us investigate A(s,I) in more detail. Using the random variable #p, .,

we can characterize the event that is associated with the probability A(s, I). This yields

A(s,I) = sup Pr‘V"S)D(OlG N #1012 1).
DeGM
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Further, we can consider each event (<>I Gn#p = n) separately and maximize its prob-
ability. Accordingly, define

A,(s,I) = sup Pr‘;’S’D(OIG N#0, = n) (6.13)

DeGM

for all n > 1. To relate A(s,I) and A, (s, I), observe that

A(s,I) = S%%Pr‘v"w(@ (<>IG N#0, = n))

n=1

= sup iPr‘;’S,D(OIG N #[oq] = n)
DeGM y=1

<> sup Pry D(<> G N#[, = n) ZA (s,1).
n=1 DeGM
With these preliminaries, we can approximate the probability A(s,I) by another term
X (s, ) which is closely linked to our discretization. The difference between A(s, I) and
X (s, I) that makes X (s, I) suitable for our approximation and A(s, I') not, is the fact that
X(s,I) does not require an integration over the time interval [0, 7]:

Lemma 6.2 (An approximation for A(s,I)). Let M = (S, Act,IT, MT,v) be an IMC,
G < S a set of goal states, T > 0 a step duration, I = [0,b] a time-interval with b > 1
such that b = k;, 7 for some kj, € Nso. Further, let s € MS \ G and A = maxspsE(s) be the
maximum exit rate in M. We define

X(s,I) = (1 - e‘E(S)T) Y P(s, ) pyt(s TeT). (6.14)
s’'eS

Then X (s, I) approximates A(s, I) in the following sense:

X(s,I) < A(s,I) SX(s,I)+@. (6.15)

Proof. First we show the lower bound. Obviously, the function p)! (s, [0, b]et) is mono-
tone decreasing for increasing ¢. Thus:

A(s,T) = / E(s)e PO 3 P(s,8') - pM (s, To t) dt

s'eS

> [TE(©)e O T R(s,) - pb(s T T) di

s'eS

= S P(s,s) - pM (s Te 1) f E(s)e *O" dt = X(s,1).
0

s'eS
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Hence the lower bound follows. To establish the upper bound, first observe that

Ai(s,I) < X(s,I). (6.16)
To see this, note that
X(s,I) = / E(s)e®&. 3 P(s,s") - pM (s, TeT1)d and
s'eS
Ay(s, ) = / E(s)e PO, Y P(s,s') k(s t,7) - (s, T 1) dt,
s'eS

where «(s’, ¢, ) is the probability that no further Markovian transition occurs in time
interval (t,7]. As0 < «k(s’,t,7) <1forall s’ ¢ Sand t € [0, 7], Eq. (&I8) follows.

In the following, we first consider the relation between A;(s, I) and A(s, I). Recall that
by definition,

A,(s,I) = sup Pry (<>IG N#0, = ”) < sup Pry p (#[O,T] = ”) :
DeGM DeGM

Moreover, #[, ;] = n is defined as the event that n Markovian transitions complete within 7
time units. Further, A = maxysE(s’) is the maximum exit rate over all Markovian states
in M. Thus A,(s,I) is bounded by the Poisson distribution p (7, A7), which gives the
probability that exactly n transitions occur within 7 time units with rate A. As p(n, A1) =
e %, we have that A, (s,I) < p(n, A1) = e - %

If we approximate A(s,I) by considering the term A;(s,I) only, the probability that
we neglect (i.e. the error that we make) is given by the expression A(s,I) — A,(s,I).
This error can be bounded as follows: We have A(s,I) < Y02, A, (s, I); hence A(s,I) —
Ai(s,I) < ¥, Au(s, I). Further, the Poisson distribution provides an upper bound for
each A, (s, I). This yields

As,T) < iAn(s, 1) = Ay(s, 1) + i An(s,T)

SAl(S,I)-f-ip(n,AT) =A1(S I i At (/\T)

=A(s,I)+e -y % = Ay(s,I) + e Ry (A1),
n=2 .

where R;(x) = Y52, % is the remainder term of the Taylor expansion of f(x) = e* at

point a = 0. By Taylor’s theorem, there exists & € [0, A7] such that

Ri(A1) = ! 2;"5) (A1)’ = e; -(A1)°. (6.17)

To derive an upper bound, choose £ maximal in [0, A7]. Then

A(s, 1) <A(s, 1) + Y Au(s, 1) <A(s, 1) + e - Ry(A1)
n=2
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r £ At
T e
2 2
= Ai(s,I) + (’\27) "X (1) + (/\21) ~ )

Lemma [6.2] justifies to use X(s,I) to approximate the probability A(s,I). Now we can
establish the relation between X (s, I') and the one-step transition probabilities in the dis-
cretized IPC M that belongs to M (cf. Def. [6.8)):

Lemma 6.3 (One-step approximation). Let M = (S, Act,IT, MT,v) be an IMC, T >
0 a step duration and let M, = (S, Act,IT, PT,v) be the discretized IPC of M. Further,
let I = [0,b] a time-interval with b > T such that b = k7 for some k;, € No. For all
s € MS \ G it holds

Pra($:1) 2 3 PT(s,s) - pt(s 10 7)  and (6.18)
s'eS
M ! M / (AT)Z
pmax(s,l) < Y PT(s,s") -pmax(s ,Ie T) e (6.19)
s'eS

Proof. Let X(s,1) be defined as in Lemmal6.2l First, we observe:

X(s,I) + B(s,I) = (1 - e’E(S)T) Y P(s,s) -pf‘nﬁx(s’,l o T)
s'eS

X(s,I)
+ e BT ~p%x(s,le T)

B(s,I)

= Y PT(s,s") -p%x(s',l o T).
s'eS

Since pM (s, I) = A(s,I) + B(s, I), the statement follows directly by applying Eq. (&29)
of Lemmale.2 O

Correctness of the reduction to IPC

In this section, we use Lemmal6.3 to prove the correctness of our discretization for com-
puting time-bounded reachability probabilities. However, up to the present point, we
only considered states in the set MS \ G. As a preparation for dealing with interactive
states, the following lemma first handles a few special cases:
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Lemma 6.4. Let M = (S,Act,IT,MT,v) be an IMC, 7 > 0 be a step duration and
M, = (S, Act, IT, PT,v) its discretized IPC. Let G € S be a set of goal states, [0,b] € Q
a time interval such that b = k, 7 for some kj, € N. For all s € S it holds:

(@) pit, (s.[0,0]) = pirtz(s, [0,0]).

(b) If Reach’(s) n MS = & or if Reach' (s) N G # @, then

Pt (5,[0,8]) = pate(s, [0, ky ). (6.20)

Proof. We prove each claim separately:

(a) This case is trivial, as both probabilities are 0 if Reach’(s) N G = & and 1, otherwise.

(b) For this part we consider the two conditions separately:

« If Reach'(s) N MS = @, then state s cannot reach a Markovian state. Hence, no
more time can pass (time lock).

~ If Reach’(s)n G # @, then a goal state can be reached by taking interactive
transitions only. Hence pM_(s,[0,5]) = 1= pitz (s, [0, ky]).

— If Reach’(s) n G = @, we cannot reach G along interactive transitions only.
Thus pM._ (s,[0,5]) = 0 = piz (s, [0, ks ]). m

e If Reach'(s) N G # @, then pM _(s,[0,b]) =1= patz (s, [0, kp]).

With Lemmal6.4we have covered three special cases which do not require a discretization
to determine the reachability probabilities: No time may pass (no probabilistic transitions
may be taken) in the point interval [0, 0] before reaching a G-state. Hence, if s ¢ G
directly, the set G must be reachable via internal transitions (which consume no time)
only. Similarly, if s € IS is an interactive state such that no Markovian (probabilistic)
state is reachable from s, a time lock occurs. In this case, the probabilities p,,..(s,I) and
pte(s,I) are both 1if a G-state is reachable via internal transitions and 0, otherwise.

In the remaining cases, we need the discretization technique to compute the time-
bounded reachability probabilities. In the following Lemma, we therefore establish the
upper error bound of the approximation:

Lemma 6.5 (Upper error bound). Let M = (S, Act, IT,MT,v) be an IMC, G € S a
set of goal states, T > 0 a step duration, [0, b] a time interval with b > 0 such that b = k,t
for some k;, € Nso. Further, let A = max,psE(s). Forall s € S it holds:

2
Pt (5, [0,8]) < pirte(s, [0, kp]) + ke - (AZT iy (6.21)
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Proof. We prove Eq. (€21) by induction on ky:

1. In the induction base, let k; = 1. We distinguish two cases:

(a) The cases € MS: If s € G, we have p, (s,[0,7]) = 1 = pyriz(s, [0,1]) directly.
For s ¢ G we can apply Lemmal6.3 and proceed as follows:

pi(ol0.1) 550 2 pre) il 051 0)
_ Uo7 > PT(s,s") - pi(s',[0,0])
s'eS
_ (o) + Y PT(s,s)- pmux( L [0, 0]) (* Lemmao.4*)
s'eS

= pMe(s,[0,1]) + T

(b) The cases € IS: If Reach' (s) N MS = & or if Reach’ (s) NG # @, the claim follows
by LemmalG4l directly. Otherwise, Reach'(s) NG = @and Y = Reach’(s) n MS,
where Y = {s},5,,...,s,} for some n > 1. For the induction base, let I, = [0, 1]
be the step-interval that corresponds to the tlme interval I = [0, 7]. By the
fixed-point characterizations of p_(s,I) and pi'x (s, 1;), it holds that

max

pmax(s I) max{pmax(sl’ ) pi\n/tix(sz’ ) ""pi\n/;x(sﬂ’l)}
Pz (s, 1a) = max { pyti(si, 1a), ppac(sas La)s - - Pt 1) |-

Case (IQ) implies for all s; € Y that

(A7)*

: (6.22)

p.’/\”gx(s” ) < pmax(snId)

Now pick the state s; with the maximum probability in M: Formally, choose
sk € Y such that pM (s,1) = max(sk, I). Then

Pl 1) = p (s T) T2 pMe (50 1) +

A 2
% < p%;(s,ld) +

(A7)?
-

2. In the induction step (k, ~ kj + 1), we distinguish two cases:

(a) The case s € MS: If s € G, this case is trivial. Otherwise s ¢ G and we apply
Lemmal6.3to derive

10 2
p%x(s, [0,b+ T]) (A7)

+ Z;gPT(S,S,) -p%x(s’, [0,b+71]6 -[)
=TS pr(s, 1) p (4, [0,6])

s'eS
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i

b ()tzf)2 +Zg PT(s,s") - (p?fu;(sﬁ [0.k]) + ks (AZT)Z)
(2 ey

+

= Z PT(s,s") -p%;(s', [0, kb]) + ky

s'eS 2 2
2
= p%;(s, [0, kp + 1]) + (kp+1)- (/\21) )

(b) The case s € IS: The same proof as in case (ID) in the induction base applies
verbatim, if I and I, are defined such that I = [0, b + ] and I; = [0, k; + 1] and
if instead of case ([[d), the case (Zal) of the induction step is used. O

After having established the upper bound, we now complete the proof for the discretiza-
tion of time-bounded reachability probabilities and establish the lower error bound. Again,
we only consider those cases which are not already covered by Lemma 6.4}

Lemma 6.6 (Lower error bound). Let M = (S, Act, IT,MT,v) be an IMC, G € S a
set of goal states, T > 0 a step duration, I = [0, b] € Q a time interval with b > 0 such that
b = ky7 for some kj, € Nso. Further, let A = maxsepsE(s). Then it holds for all s € S:

pote(s, [0, kp]) < iyt (s, [0, B]) . (6.23)

Proof. The proof of Eq. (€.23) is by induction on ky:

1. In the induction base, let k;, = 1 (and hence, b = 7). We distinguish two cases:

(a) The case s € MS: We prove Eq. (6.23) as follows:

P (5, [0,7]) 27 X PT(s,) - pl(s' [0, 7] o 7)

s'eS
= Z;SPT(S,S’) - pat(s,0,0])
= > PT(s,s') - pitz(s',[0,0]) (* Lemmale.41*)
s'eS

= pom(s,[0,1]).

(b) The cases € IS: If Reach' (s) " MS = @ or if Reach’ (s) NG # &, the claim follows
by LemmaG4 directly. Otherwise, Reach’ (s) NG = @and Y = Reach’(s) n MS,
where Y = {s;,s5,...,s,} for some n > 1. For the induction base, let I; =
[0,1] € N be the step-interval that corresponds to the time interval I = [0, 7].
By the fixed-point characterizations of p_ (s, I) and pis (s, I;), it holds that

max

p%x(s’l) = max {p%x(sl’l)’p%x(sz’l)’ s ’p%x(sn’l)}
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Prase(s:1a) = max { pti(s1, 1a), Praic(52: 1)+ > P (55 1a) }

Case (IQ) implies for all s; € Y that
pote(sinIa) < ppte(sin ). (6.24)

Now pick the state s; with the maximum probability in M : Formally, choose
sk € Y such that p%;(s,ld) = p%;(sk,ld). Then

p(5,10) = pie(sioTd) 2 pit(si0T) < p (s, D).

2. For the induction step (k;, ~ kj, + 1), we distinguish two cases:

(a) The cases e MS: If s € G, this case is trivial. For s ¢ G we can apply Lemmale.3
to derive

P[00+ 7)) 0 PI(s, o) plt(s [0, b + 7] @ 7)
s'eS
= > PT(s,s") - pito(s',[0,5])
s'eS
l; > PT(s,s")- (p%;(s', [0, kb]))
s'eS
= pore(s, [0, ky +1]).

(b) The case s € IS: The same proof as in case (D) in the induction base applies
verbatim, if I and I, are defined such thatI = [0,b + 7] and I; = [0, k;, + 1] and
if instead of case (Ia), the case (Za) of the induction step is used. |

Theorem 6.3. Let M = (S, Act,IT,MT,v) be an IMC, G < S a set of goal states, I =
[0,b] € Q a time interval with b > 0 and A = max,ysE(s). Further, let T > 0 be such
that b = k, 7 for some k; € N,o. For all s € S it holds:

M M M (A1)?
pmajc(s’ [0’ kb]) < pmax(s’l) < pma;(s’ [0’ kb]) + kb ’ 5

Proof. The upper bound follows by Lemmal6.5 and the lower bound by Lemmale.dl ©

We conclude the discussion for time-bounded reachability with a small example, which
also allows us to bridge the gap towards interval bounded reachability in the next section:

Example 6.6. Consider the IMC M and its discretized IPC M, in Fig.{6.3(a)land Fig.|6.3(b)
resp. Assume that G = {s,} and fix some 7 > 0 and k € N,,. We consider the time interval

I =0, kt]: In the IMC M, we have p (so,1) = fOkT Ae=M . pM (s, 1 t)dt =1— e M7,

max max

In the IPC M, we derive pM (s0,[0,k]) = X5, (e7¥)"1 (1 - eM) = 1 - e, which is

max
the geometric distribution function for parameter p =1— e o
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(a) The example IMC M. (b) The induced discretized IPC M.

Figure 6.3: Interval and time-bounded reachability in IMCs.

6.3.2 Approximating interval-bounded reachability probabilities

So far, we only considered intervals of the form I = [0,b], b > 0. In what follows, we
extend our results to arbitrary intervals. However, this is slightly involved and several
aspects have to be considered:

(a) If s € MS is a Markovian state and b > 0, then p2?.(s, (0,b]) = pi. (s, [0,b]). How-
ever, this is not true for interactive states: If s, (instead of s) is made the only initial
state in M and M of Fig.[6.3} the probability to reach s, in M within interval [0, b]
is 1 whereas it is O for the right-semiclosed interval (0, b].

(b) Further, the discretization does not work for point intervals: To see this, consider
Fig.[63again: If I = [, 7], then p)! (so,I) = 0, as the probability for the Markovian
transition that leads from state s, to state s; to execute exactly at time 7 is 0. On the

other hand, the corresponding probability in M, is pax (s, [1,1]) = 1 - e,

(c) Now,letI = [k,T, k,7] be a closed interval with k,, k;, e Nand 0 < k, < k. That is, we
consider an interval with a lower bound that is larger than 0. Then, in the IMC M
in Fig.[6.3(a)} we obtain pM (so,1) = k];"f Ae M pM (s, 10t) dt = e Ma™ — g~
whereas for its discretized IPC M, (see Fig.[6.3(D))), we derive

k .
P Tk k]) = X5 (7)™ (1- o) = dher i
i=k,

Clearly, the two probabilities differ in the first term by a factor of e’*. To see the
reason, let k, = 2 and k;, = 3: We have pM (s,[27,37]) = e 2 — e73¥7; however,
in M, itholds pite(s,[2,3]) = e M- (1-eM) + e . (1—e7A7) = A7 — 3N,
This can be explained as follows: As each step in M corresponds to a time interval
of length 7 (cf. Fig.[6.4), the interval bounds 27 and 37 fall in different discretization
steps. Hence in the discretization, we add two step (instead of only one) which leads
to an error.

It is important to note that if we had computed pM (s, (27,37]) instead, we would

max

have obtained the desired result piy<(s, (2,3]) = pi(s, [3,3]) = eV — e=3)7,

In the remainder of this section, we prove that our discretization approach also works
for approximating time interval-bounded reachability probabilities. Similar to Thm.
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Figure 6.4: Discretization steps.

we obtain a “sandwich” theorem (cf. Thm. which provides upper and lower bounds
for the discretization error.

We proceed roughly in the same way as in the time-bounded case. However, the tech-
nical details are different. In particular, the lower bound proof is completely new, as an
important continuity property is violated which holds for time-bounded reachability but
not for intervals with lower bounds that are greater than 0.

Let M = (S, Act,IT,MT,v) be an IMC, G ¢ S a set of goal states, I = (a,b] € Qa
time interval with 0 < a < b and A = maxsE(s). Further, let 7 > 0 be such that a = k, 7
and b = k;, 7 for some k,, k;, € N. Formally, we aim to prove that for all s € S it holds

(Ar)
2

2
p%;(s’ (k“’ kh]) —ka- < p.r/\ngx(s’l) < P%§(5> (kaa kh]) +kp - (A;) +AT.

Similar to the time-bounded case, we begin the discussion in the next section with a
one-step approximation. Then we prove in Sec. [6.3.2 that we can reduce the problem of
computing (time-)interval bounded reachability probabilities in an IMC M to comput-
ing step-interval bounded reachability probabilities in M’s discretized IPC M.

One-step approximation

As for the case of time-bounded reachability, we approximate the interval-bounded reach-
ability probability p21 (s, I) for intervals I = (a,b] with 0 < a < b via a discretization
technique. For a given step duration 7 > 0, we aim to compute the probability that M
moves to a successor state within the next 7 time units. Based on the fixed point charac-
terization for p)!., we distinguish two cases:

1. Lets € (MS~ G): The fact that a < b and b = k;, 7 implies that b > 7. We obtain a
recursive definition of p! (s, I) by the fixed point theorem (Thm.[6&Jon page[56)
as follows:

p%x(s’l) = Q (p%x) (S’I)

b
- f E(s)e EO . Y P(s,s') - pM (s, T o t) dt.
0

s'eS
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Similar to Sec. 63} we can derive that p2 (s, 1) is the sum A(s,I) + B(s, I) for
intervals of the form (a, b]: The term

A(s,I) = / E(s)e 20 3 P(s,s") - ppt(s'. Tot) dt
s'eS

is the probability that a first Markovian transition executes at some time point ¢ €
[0, 7], and B(s,I) = e )7 . pM (5,1 © 7) is the probability that no Markovian
transition occurs before time 7 and that G is visited in time interval I.

2. If se (MSNG) and a = 0, then pM (s,I) = 1and we can stop; hence, no further
recursion is necessary. Otherwise, we have a > 7. This case needs further attention:
Note that by the fixed point theorem we obtain

pat(s, D) = Q(pht)
= et (B S B(s,) (s T 1) dt
0

s'eS
fE(s) O P(s,S)  pran(s’, IO 1) dt
s'eS
As]) (6.25)
v ety [TE()e O Y R(s, o) phi(s T 1) dt.
T s’'eS
B/ (s,I)

Here, as for the previous case, A(s, I) is the probability that a first Markovian tran-
sition executes at some time point t € [0, 7] and that a G-state is hit afterwards
in the remaining time interval I © ¢t. It is important to note that the term B'(s, I )
in Eq. (625) actually corresponds to the term B(s,I) (see Eq. (6.12) on page [64)
used for the derivation of the time-bounded case in Sec.[63.]l This can be seen by
the following derivations:

a
B'(s,I) = e EG)a 4 / E(s)e FOr. Y P(s,s") - ppie (s, 1o t) dt
T

s'eS

= e Ea f E(s)e P05 P(s,s") - prn(ss T (t+ 7)) dt
0

s'eS
= ¢ B0 leE(s)'(“T)+/ E(s)e EOL N P(s,s) - pod (s, 1o (t+ 1)) dt
0 s'eS
= e EOT. pM (5, To T)
= B(s,I).

Therefore, B(s,I) can be interpreted as the probability that no Markovian transi-
tion occurs before time 7 and that G is visited in time interval I © 7.
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From the above derivations we conclude that if s € MSand p2 (s, I) is not determined

max
directlyﬂ, we may express p (s, ) recursively:

p%x(s,l) = ’/(;TE(S)e—E(s)t_ Z P(s,s") 'P%X(S',IG t) dt

s'eS

A(s,]) (6.26)
+e PO pM (s ToT).

B(s,I)

Note that even though we consider intervals with strict lower bounds, we obtain the
same decomposition of p2. (s, I') as obtained in Eq. (&12) in the setting of time-bounded
reachability objectives. For the remaining derivations in this section, let the random
variable #[o ;] and A, (s, I) (see Eq. (€&I3) on page[[63)) be defined as in Sec.

We now derive a lower bound for A(s, I): In fact, this is the crucial part for the correct-
ness of our approximation for intervals with lower bounds a > 0: Opposed to Sec.
where we make use of the fact that the functions p2 (s,[0,b] © t) are monotone de-
creasing for increasing ¢, this is generally not the case if the lower interval bound a is
larger than 0. Thus the way we prove the lower bound in Lemma 6.2 for intervals of the
form [0, b] cannot be adapted to the current setting.

For intervals (a, b], the analogue of Lemmalg.2is Lemmal6.8 where the lower bound is
established differently. In its proof, we make use of the following Lemma which considers

the case of interval bounds I = (g, b] with 7 < a < b:

Lemma 6.7 (A lower bound for A(s,I)). Let M = (S, Act,IT, MT,v) be an IMC, A =
maxs.sE(s) be the maximum exit rate in M, T > 0 a step duration, s e MSand I = (a, b]
a time interval such that 1< a < b and a = k,7 and b = k, 7 for some k,, k;, € N;,. Then

A(s, 1) > Y P(s,s") / E(s)e B0t . g7A=0) . pM (o o 1) dt. (6.27)
s'eS 0

Proof. We have

A(s,T) = /0 E(s)e FOt . Zsp(s,s') M (S T t) di

=S p(s) TE(s)e FO pM (¢ 1o 1) dt.
0

s'eS

'Examples where the value of p2! (s, I) is determined directly include the case where 0 € I and s € G or
the case where a time lock occurs.
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(a) e B0 pM (o To 7). (b) pM (s, Iot).

Figure 6.5: Derivation of a lower bound for A(s, I) as used in Lemmal6.7}

Hence, to prove Eq. (6.27) it suffices to show that for all s’ € S and ¢t € [0, 7] it holds that
e M. pM (s To1)<pM (s Tet). (6.28)
We consider two cases:

1. The case s’ € MS: At time t, we took a transition from state s to state s’ € MS.
Observe that e 6= . pM (' T & T) is the maximum probability for the event
that no transition occurs in state s’ within the next (7 — t) time units and that the
set G is visited thereafter during the time interval I © 7. Formally, it corresponds to
the maximum probability of the event E; = (#[O,T—t] =0n <>19tG) (see Fig.[6.5(a)).
On the right hand side, pM (s',I © t) is the maximum probability of the event
that G is visited during interval I © ¢, no matter how many transitions occur in
the next (7 — t) time units. Formally, the corresponding event is E,g = &G
(depicted in Fig.[p:5(D))). Hence Ejs S E, g Therefore e EC)(=0 . pM (' To ) <
pM (s',1ot). Furthermore, A = maxy.sE(s") implies e (-9 < ¢~E()(7-1) Hence

max

Eq. (6.29) follows.

2. The case s’ € IS: We consider two sub cases, depending on whether a time lock
occurs (the case ([Za)) or not (the case 2h)):

(a) Reach'(s') n MS = @: Note that Reach’(s') n MS = @ implies that only in-
teractive states are reachable from s’, thus the step interval cannot decrease.
Further, I = (a,b] and a > 7 imply that 0 ¢ (Ie 1) and 0 ¢ (I ©t). Hence,
pM (s',1e 1) =0and Eq. (&28) follows.

(b) Reach'(s') n MS # @: Then Reach'(s') " MS = Y, where Y = {s;,55,...,5,}
for some n > 1. Then there exist states s;,s; € Y such that pjt (s',Tet) =

max
pat (s Iet)and pit (s', 1o 1) = p)t.(s;, I © 7). Therefore we obtain

e M pM (s Tet)=e D . pi (s, 1o T)

(*)
< p%x(sj,le t)
< Prix(s 10 1) = Pt (s 1 ©1),

where () follows from case (). O
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With Lemmal6Z and its new lower bound for A(s, I), we are ready to prove a sandwich
lemma that shows that the probabilities X (s, I) approximate A(s, ). It can be regarded
as the extension of Lemmal6.2 to the case of intervals with strict lower bounds:

Lemma 6.8 (One-step approximation of A(s,I)). Let M = (S, Act,IT, MT,v) be an
IMC, G ¢ S a set of goal states, T > 0 a step duration, I = (a, b] a time-interval with
T < a < bsuchthat a = k,Tr and b = k,7 for some k,, k, € Nsq. Further, let s € MS be
a Markovian state and A = maxepsE(s) be the maximum exit rate in M. If we define
X(s,I) asin Lemmal62Athen X (s,I) approximates A(s, 1) in the following sense:

X(S,I)—@SA(S,I)SX(S,I)'F@. (6.29)

Proof. First, let us restate the definition of X(s, I) as given in Lemma.

X(s,1) = (1 - e*E<f>f) Y P(s, ") ppt (s Te ). (6.30)
s'eS

For the prove, we make use of an approximation of the exponential function e *. First,

oo (=x)"

note that by the Taylor expansion, e = 3772, *—~. Further, by Taylor’s theorem it holds
for all x > 0:

e*>1-x and (6.31)

X
e <l-x+ Ex (6.32)
Combining Eq. (6.31]) with Lemmal6.7] we have:

A(s, 1) > Y P(s,s) - / E(s)e EOt . g0 . pM (¢ T o 1) dt
s'eS 0

5 B(s,s) [ E(s)e O (1= A(r - 1) - (s T 0 1)

s'eS 0
=Y P(s,s") - ppt (s 1o1)- /TE(s)e‘E(S)t ~(1-AM(r-1)) dt.
s'eS 0

The integral in the above equation can be simplified as follows:

/TE(s)e_E(S)t dt - fTE(s)e_E(S)t AMr—t) dt

0 0

1- e BO)T —E(s)r
E (s)*

= (1 - e’E(S)T) +E(s)-A-



178 6.3 A discretization that reduces IMCs to IPCs

=(1- -E(s)ry _ _* . E -1+ —E(s)t
(1-e707) By | E® N
Taylor’s theorem

(1_ e—E(s)T) - E? ) (E(s)‘r—1+ ( —E(s)T+ —(E(SZ)T) ))

_ —-E(s)T )L (E(S)T)2
—(1-e <>)_E(S).( : )
_ —-E(s)T /\E(S)T2

= (1- e FOr) - -

> (l—eE(S)T)—@. (*asA > E(s)*)

Therefore, we obtain the lower bound for A(s, I):

A(s,I) > Z P(s,s') - pM (s To1)- [(1 _ e—E(s)r) B M]

s'eS 2

X( I lZP(ss pfnﬁx(s',ler)-@‘l

s'eS
2
= X(s, 1) (/\T) Y P(s,s) - pyt(s.Te 1)
s'eS
<1
2
> X(s, 1) = AT

For the derivation of the upper bound, the respective proof in Lemma[6.2 applies verba-
tim, with A(s, I) defined for right-semiclosed intervals. O

Now that we have established lower and upper bounds for the approximation of the prob-
ability A(s, I), we are ready to extend this result to our discretization. Therefore, in the
next lemma we establish the relationship between the approximation for A(s, I) and our
discretization. It serves the same purpose as Lemma 6.3 in Sec. but also accounts
for the error that is induced by lower interval bounds that are larger than 0:

Lemma 6.9 (One-step approximation). Let M = (S, Act, IT, MT,v) be an IMC, T >
0 a step duration and let M, = (S, Act, IT, PT, v) be the discretized IPC of M. Further,
let I = (a,b] be a time interval with T < a < b such that a = k,7 and b = k, for some
k., ky € Nso. For s € MS it holds:

M . M (o (Ar)?
pmax(s,l) > % PT(s,s") -pmux(s 16 T) -—— and (6.33)

s'eS
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(2

Prac(s:1) < 3 PT(s,5') - prr (s’ T© 7) + (6.34)

s'eS

Proof. The proof goes along the same lines as the proof of Lemma [6.3]if the approxima-
tion result obtained in Eq. (629) of Lemmal6.§ is used. O

Correctness of the reduction to IPC

We first establish the upper bound for Thm. Note that in contrast to the Lemmas
before, we now allow for intervals of the form (0, b], that is, we allow the lower bound a
of the right-semiclosed intervals I to be 0.

Lemma 6.10 (Upper error bound). Let M = (S, Act, IT,MT,v) bean IMC, G € S a
set of goal states, T > 0 a step duration, (a,b] a time interval with 0 < a < b such that
a=k,tand b = k7 for some k, € N and k, € Nso. Further, let A = maxspsE(s). For
all s € S it holds:

max

Pt (5, (a,b]) < piti(s, (kas ko) + ko - (AZT)Z + 7. (6.35)

Proof. We prove Eq. (6.35)) by induction on k,:

1. In the induction base, let k, = 0 (implying a = 0). We consider three cases:
(a) The cases e MS~\ G:

Pirax (55 (0, 8]) = pr (5, [0, b])

2
< Pt (5[0, Ky 1) + K - (AZT) (* by Thm.B3*)
" 17)?
D pite (s, [Lks]) + K - ( 21)

A 2
= Pl (5, 0 k) + Ky

where (#) follows from the fact that s ¢ MS \ G implies pix (s, [1,b]) =
Ptz (5,[0,b]). Hence, if a = 0, Eq. (633) even holds for a tighter upper bound.

(b) The cases € MSN G: In this case, the discretization induces an additional error
which can be bound from above by the term A7: In contrast to case (Ia)), in the
case that s € MSNG we have that pM (s, (0,b]) = 1, whereas pix (s, (0, ky]) =
Ptz (s,[1,ky]) > e, Intuitively, the discretization requires one discretiza-

tion step to pass, in which the goal state s could be left. The probability for this
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to happen is (1 - e~£()7) which can be bounded by the Taylor expansion as
follows: (1- e £()7) < (1-e*) = (1- (1- At + R,(A1))), where R, (A1) > 0.
Hence (1 - e~£()7) < A7. With these remarks we can derive

Pk (5, (0.6]) = it (5 [0,]) < pit (5, [0, ka)) + Ky - 17

< pie(s,[1,kp]) + ke - (A 2) + At

2
= pMe (5, (0,kp]) + ky - (AZT) + AT.

(c) If s € IS, we distinguish two cases:
i. If Reach'(s) n MS = @, then pM (s, (0,b]) = 0 = phtz (s, (0, ky]).
ii. Otherwise, Reach'(s) n MS # @ and Reachi(s) N MS = Y for some Y =
{s1,82,...,s,yandn >1. Let [ = (0,b] and I; = (0, k; |. Then
Pt (5, 1) = max { ppt. (s, 1) s ot (52, 1) -, e (52, 1)} and
P (5 1a) = max { i (s1, 1) » pasc (525 1a) 5+ -5 Pt (s L) -

Now choose s € Y such that pM (s,I) = pM (sk,I). Depending on
whether s; ¢ G or s, € G, cases ([d) or (1)) apply, respectively. Hence

2
(A1) + AT
2

pi\n/;x(s’l) pmax(sk’ ) mux(sk’ld) + kb

2
max (S Id) + kh ();-) + At

2. For the induction step (k, ~ k, +1), assume Eq. (6&35) holds for k,. We show that
it holds for k, + 1. Therefore, we distinguish two cases:

(a) The case s € MS: Since a + 7 > 7, we can apply Lemmal6.9land obtain:

Pt (avrb]) 2 (M * L PT(ss)  pria(s s (a+ mb] ©17)
Sk - 3 PT(5) - (< (0= 7]
S ()‘T + R PT(ss). (P8(s" (kara 1)+ (ks - )- ) +dr)
= L PT(s.s) pte(s's (e Ky = 1]) + (ky = 1) @ + @ Y

M (/\‘l')2
:pma;c(s’(ka"_l)kb])"'kh' > + AT.
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(b) The cases € IS: We consider two cases: If Reach’ (s)nMS = @, the claim follows
directly, as p21. (s, (a,b]) = pf\nﬁ;(s, (ka» kp]) = 0. Otherwise Reach' (s)nMS #
@ and Reach'(s)nMS = Y for some Y = {s,55,...,s,} and n > 1. Now let I; =
(k. +1,kp] € N be the step-interval that corresponds to the time interval I =
(a + 7, b]. By the fixed-point characterizations of pM (s, I) and pitx (s,1,) it
holds that

pi\n/tix(s’l) = max {pi\n/;x(sl’l)’ p%x(SZ’I)’ s ’pi\n/;x(sﬂ’I)}

pote(s,14) = max { pyt(si, Ia), pte(ss La)s . oo piti(sun Ia) } -

Case (2a)) implies for all s; € Y that

M M (Ar)?
pat (s 1) < pte(sin Ia) + k- AT (6.36)
Now pick the state s; with the maximum probability in M: Formally, choose
sk € Y such that pM (sk,l) = pM (s,1). Then

max

p%x(s’ I) = P%x(sk, 1)

6.3G 2
p%;(sk,ld) + kh . ()L;) + AT

(A7)?
<piti(s, Ip) +ky - + At O
P2 1) + Ky >
We continue and prove the lower bound of Thm. Again, we consider right-semi-
closed intervals (a, b] and also allow for the case a = 0:

Lemma 6.11 (Lower error bound). Let M = (S, Act,IT, MT,v) be an IMC, G € S a
set of goal states, T > 0 a step duration, I = (a,b] € Q a time interval with 0 < a < b
such that a = k,7 and b = k,7 for some k, € N and k;, € N,o, k, < ky. Further, let
A = maxgepsE(s). For for all s € S it holds:

L it (s, a,b)). (637)

p%;(s’ (kaa kb]) - ka
Proof. The proof is by induction on k,:

1. For the induction base, let k, = 0 (implying a = 0). We consider two cases:
(a) The case s € MS:

Pinax (5, (0,6]) = ps (5, [0, 8])
> pie(s,[0,ky])  (* by Thm. B3)
> P (5, [L Ky ])
= P (5, (0, ko ]) -
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(b) The case s € IS: We distinguish two sub cases, depending on whether a time
lock occurs or not:

i. If Reach'(s) n MS = @, then pM (s, (0,b]) = 0 = phtz (s, (0, ky]).
ii. Otherwise, Reach'(s) N MS # & and Reach'(s) n MS = Y for some Y =
{s1,82,...,s,yandn >1. Let [ = (0,b] and I; = (0, k; ]. Then
pi\n/rix (S’I) = max {p%x (SI’I) ’pf\n/rix (52>I) dee ’p%x (SH’I)} and
P (5:1a) = max {pytc (s, 1a) s Pz (52, 1) 5> Pz (s La) -

Now, choose s; € Y such that piii(sk, I;) = pi(s, I;). Then case (Ia)
applies and we obtain

Ptz (8,14) = poti(sio Ia) < pte(sis I) < pt (s, 1).

2. For the induction step (k, ~ k, + 1and a ~ a + 1), assume that Eq. (€37) holds
for k,. We show that it also holds for k, + 1. Therefore, consider two cases:

(a) The case s € MS: Since a + 7 > 7, we can apply Lemmal6.9and obtain:

Pra(> (a+7,0]) "2 3 PT(s,8") - pi(s's (a+ 7 b] ©17) = (AZT)Z
s'eS
2
= L PT() p(s's (a0 - 7)) - v
i.h. / a (/\T)z (/\T)z
: S%PT(S’S)'(I)%"(S’(k“’kb_l])‘k”’ 2 )_ 2
. (A1)

= p%;(s, (k. +1, kb]) - (k,+1)

(b) The cases € IS: We consider two cases: If Reach’ (s)nMS = @, the claim follows
directly, as pM (s, (a,b]) = p%;(s, (ka»kp]) = 0. Otherwise, Reach'(s) n
MS # @. Hence, Reach'(s) n MS = Y for some Y = {s;,55,...,5,} and n > L
Now let I; = (k, + 1, ky | € N be the step-interval that corresponds to the time
interval I = (a + 7, b]. By the fixed-point characterizations of p (s, I) and
pf\nﬁ; (s, I;) it holds that

p%x(s’l) = max {p%x(sl’l)’p%x(sz’l)’ s ’p%x(sn’l)}
Pz (s, 1a) = max {pyta(si, 1), portic(s251a)s -+ Peai(sus 1a) } -

Case (2a) implies for all s; € Y that

2
(s 1) (ko +1) - D)

Sp.r/\nzx(shl)- (638)
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Now pick the state s; with the maximum probability in M: Formally, choose
st € Y such that p%;(s,l) = p%;(sk,l). Then

A 2 A 2
Pt (s, 1) - (kv 1) - B2 gt (1) - (kv P2
M (s 1) < pit(s.1). .

With the technical details in Lemmag.J0land Lemmal6.I1, we have established both a
lower and an upper error bound. They are the main result of this section and summarized
in the following theorem, which states the correctness of our approximation technique
for right-semiclosed intervals:

Theorem 6.4. Let M = (S, Act,IT, MT,v) be an IMC, G € S a set of goal states, I =
(a,b] € Q a time interval with 0 < a < b and A = max,ysE(s). If T > 0 is such that
a=k,tand b = k,7 for some k, € N and kj, € N, then it holds for all s € S:

M (AT)Z M M (M’)2
pma’r‘(s’(k“’kb])_k“. 2 Spmax(S’I) Spma;(s’(km kb])+kb' 2 +AT.
Proof. The claim follows directly from Lemma[GI0land Lemma 6.1 O

With the results of Thm. [6.3 and Thm. we have a correct approximation for in-
tervals of the form [0, b] and (a, b], respectively. This suffices to also establish the cor-
rectness for open and left-semiclosed intervals and for closed intervals that have a lower
bound that is larger than 0:

Theorem 6.5. Let M = (S, Act,IT, MT,v) be an IMC, G € S a set of goal states and
T > 0 a step duration. Further, let I € Q be a time interval with infI = a and supl = b
such that a < b and a = k,7 and b = k7 for some k, e N and k;, € N.o. If0 ¢ I it holds
forallseS:

(M)’

max

2
Prrai(s (Kas k1) = kg < pat (s, 1) < pite (s, (ko ko)) + K - ()‘21) .

Proof. We consider the following cases according to the form of the interval I:

1. The case I = (a, b]: Follows directly from Thm.

2. The case I = [a, b]: By the assumption 0 ¢ I, we have a > 0. For s € MS, [a, b] can
be replaced by (a, b] without changing the probability. For s € IS, a > 0 implies
also that pM (s, 1) = pM (s',I) for some Markovian state s’. Thus,

max

P55 1) = Ponax(s'5 1) = Pran(s's (@, B]) = pre(s, (a, b])
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The claims follows then by applying the first case.

3. ThecaseI = (a,b) or I = [a,b): Since b > 0, this case can be proved in a similar
way as the previous one. m

For the remaining cases, note that for all states s € S and time interval I = & it holds that
pM (s, I) = 0. As we have shown in the introductory remark, the discretization does not
work for general point intervals [a, a]. However, if I = [0, 0], an interactive reachability
analysis suffices to compute p2! (s, I), which is either 1 or 0. Hence, these cases do not
require a discretization as the probabilities can be determined directly.

6.4 Solving the problem on the reduced IPC

In Sec..3lwe have proved that the interval-bounded reachability probability in an IMC M
can be approximated arbitrarily closely by computing the corresponding step-interval
bounded reachability probability in M’s induced (discrete-time) IPC. However, we did
not propose an efficient method to compute the latter.

In this section, we will fill this gap. In order to be as general as possible, we consider
an arbitrary IPC P = (S, Act,IT, PT,v) and a set of goal states G ¢ S together with a
step-interval [k,, k; | with k,, k, € N, k, < k.

We discuss how to compute pﬁax(s, [ka» kb]) via a modification of the well known
value iteration algorithm [Ber95] for MDPs. However, the adaptation is more involved
than the one used in Sec. B3 dlfor locally uniform CTMDPs, as we have to extend the algo-
rithm to correctly handle interactive transitions. More precisely, our adaptation needs to
consider step intervals that correspond to the number of probabilistic steps that are taken.
This is reflected in our algorithm which only decreases the step counter for probabilistic,
but not for internal transitions.

As done before, we discuss step bounded reachability first and extend our results to
step-intervals later.

6.4.1 Maximum step bounded reachability

We aim at computing pfzax(s, [0, k]) for some k > 0. This works as follows: In each
step i = 0,1,..., k of the value iteration, we use two vectors ¥; € [0,1]° and @; € [0,1]°,
where v; is the probability vector obtained from u;_; by one step in the classical value iter-
ation algorithm and u; is obtained by computing the backwards closure along interactive
transitions with respect to v;_;.

Each of the k value iteration steps consists of two phases. We describe the i-th value
iteration step:

1. First, v; is computed: For the first value iteration step, we set v,(s) = 1 if s € G and
Vo(s) = 0, otherwise. In the subsequent steps, the vector v; is obtained as follows:
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If s € PSn G, then ¥;(s) = 1. If s € PS \ G, then v;(s) is the weighted sum of the
probabilistic successor states s’ of s, multiplied by the result ii;_;(s") of the previous
value iteration step. Finally, for interactive states, the result from the previous value
iteration step propagates into v;. Formally, for all 0 < i < k:

1 ifsePSNG
Vi(s) = Xyes PT(s,s") -t 1(s") ifse PS\G (6.39)
Ui(s) ifselS.

2. In the second phase, u; is obtained by the backwards closure of v; along internal
transitions. Formally, the vector u; is obtained according to the following equation:

u;(s) =max{v;(s") | s ~; s'}.

Note that for efficiency reasons, the set {s’ € S | s ~ s’} can be precomputed by a
backwards search in the interactive reachability graph of P.

After k value iteration steps, p%, .. (s, [0, k]) equals the probability i (s).

6.4.2 Maximum step-interval bounded reachability

In this part, we compute p% (s, [ks, ks]), for interval bounds 0 < k, < ky. As be-
fore, the computation proceeds stepwise and produces a sequence of probability vectors
Vo> Ug, V1, Uss . . . Vi, » tg,. 10 allow for lower step bounds k, > 0, we split the value iter-
ation in two parts: In the first k, — k, value iteration steps, we proceed as before and
compute the probability vectors vy, tg, . . . , Vi,—k, > Uk,—k,- 1hus, we compute the probabil-
ities p¥ . (s,[0, ky—k,]) forall s € S.

The vector vy, _k, provides the initial probabilities of the second part, which consists
of the remaining k, value iteration steps. For these, we change the way the vectors v; are

computed. Instead of Eq. (&39), we use the defining equation

. 0 ifselS
Vi(s) = B . (6.40)
Yes PT(s,s") - ti;_1(s") ifsePS

to determine the vectors v;. The definition of the vectors #; remains unmodified.

To motivate this definition, note that the value iteration algorithm proceeds in a back-
wards manner, starting from the goal states. Hence the first k;, — k, value iteration steps
correspond to the specified step interval and we set v;(s) = 1if s € G. However, the re-
maining k, steps corresponds to the first k, transitions that are taken by the IPC. Hence,
those steps do not fall into the specified step interval. More specifically, in Eq. (&.40) we
do not set ¥;(s) = 1 if s € G, since the fact that a goal state has been hit before k, steps
have occurred does not influence the step-interval bounded reachability probability.
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Finally, in order to avoid that the probabilities of interactive states s € IS erroneously
propagate in the vectors i;(s) from the first to the second part, we define v;(s) = 0 for
all s € IS (instead of v;(s) = 1;_1(s) as in the first part). We illustrate this by means of an
example.

Example 6.7. We compute p?, . (s,[1,2]) in the IPC P in Fig. [6.8 for initial state s, and
goal state s3: In the first part, apply the value iteration to compute iiy: Vo(s) = 1if s = s3
and 0, otherwise. By the backwards closure, iy = (1,0,0,1). Thus pF .. (s0,[0,0]) = 1,
as sy can reach G by the interactive a-transition. For Vi, we have v,(so) = tiy(so) = 1 and
Vi(s1) = 3uo(s3) + 3Uo(s2) = 3. In this way, we obtain v, = (1, 3 i,l) and 1) = (1, . i,l).
With the probabilities uy, the first part ends after k, — k, = 1 value iteration steps. As k, =1,
one iteration for the lower step bound follows. Here v,(so) = V2(s3) = 0 as so,s3 € IS;
further vy(sy) = 31 (s3) + 311(52) = 2 and V,(sy) = 31 (52) + 31 (s3) + i (s1) = 3. Finally,
i = (2,2,1,1). Therefore, we obtain that pl,,.(so, [1,2]) = ii2(s0) = 2. 2

6.4.3 Correctness of the modified value iteration

The following theorem states the correctness of the value iteration algorithm that is in-
formally described in Sec. More precisely, we prove that the probability i, (s) is
equal to the maximum step-interval bounded reachability probability p7 .. (s, [ka, ks ])-
Although intuitive, the description in Sec. does not separate the first from the
second part of the value iteration algorithm formally. For the correctness proof, we there-
fore have to extend our notation slightly: Let [k,, k; | with k,, k, € N and k, < k; be a
step-interval. Then n = k;, — k, is the number of iteration steps in the first part. Accord-
ingly, the second part consists of the remaining k, iterations. The idea is to annotate the
vectors with the number n = k;, — k, of value iteration steps that belong to the first part.
Therefore, we consider vectors Vg, ug, Vi’ Uy, ..., V[, , where v, vy, ..., V] are com-
puted according to Eq. (©39) and v},,;, V}.,,, ..., ¥} are derived according to Eq. (€.40).
Theorem 6.6 (Maximum value iteration). Let P = (S, Act, IT, PT,v) be an IPC, G C
S a set of goal states, s € S a state and [k,, ky | with k,, k, € N, k, < k;, a step interval.
Further, let n = ky — k,. For i =0,1,..., ky, we define the probability vectors ui’ € [0, 1]°
and v!' € [0,1]°: Initially, v2(s) = 1if s € G and ¥ (s) = 0, otherwise. Further, for i > 0
we set

Yoes PT(s,s") -1l ((s") ifsePSA(s¢GVi>n)

5(s) 1 ifsePSNGAi<n
vi(s) =
’ u (s) ifselSAni<n

0 ifselSni>n.

For the vectors i, we define i (s) = max {v!(s") | s ~F s'} for all i < k. Then it holds

i

pZax(s’ [ka) kb]) = ﬁzb (S) (641)
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Observe that if k, = 0, Thm.[6.6 simplifies to the value iteration for the step-bounded
reachability computation. Moreover, if k, > 0, the same value iteration is also used in
the first n = k;, — k, steps when maximizing the step-interval bounded reachability for
an interval [k,, k; |. However, in the remaining k, steps, the vectors v/ are defined such
that visiting a goal state does not imply a probability of 1. We come to the formal proof
of Thm.

Proof. First, note that by definition of ~7, it holds that ui (s) = v/ (s) for all probabilistic
states s € PS. We prove Eq. (6.4])) by induction on ky:

1. For the induction base, assume that k, = 0. As k, < ky, this implies k, = 0. We
distinguish between interactive and probabilistic states:

(a) The case s € PS: If s € G, then p., (s,[0,0]) = Q(pr.)(s,[0,0]) =1 =

max

vJ(s); further, as s € PS it holds that u{(s) = ¥](s), as desired. With the same
reasoning, p..(s,[0,0]) = Q(pF,.)(s,[0,0]) =0=9)(s) = ud(s) if s ¢ G.

max

(b) Thecases € IS: As p?,,. is theleast fixed point of 2, itholds that p7, (s, [0,0])

max

lif Reach' (s)nG # @ and p,,. (s, [0,0]) = 0, otherwise. Hence p/,_.(s, [0, 0])

max
max {VJ(s') | s ~F s’} = ud(s).

2. In the induction step (k;, ~ k;, + 1), we use as induction hypothesis that
VseS. Vk, <k,. pzzax(s, [ka,kb]) = ﬁ,’jb(s), where n = k; — k,,.

The goal is to prove that p%,. (s, [ka, ky +1]) = ii*L, (s) for all k, < ky + 1. We do

max kp+1
so by considering two cases, depending on the state s:

(a) Assume that s € PS. Then 4! (s) = v*! (s). If s € G and k, = 0, then

kb+1 kb+l

Phas(s:[0,ky +1]) = Q (pha) (5, [0,k +1]) = 1= 9171 (5) = 6, (s). Other-
wise s ¢ G or k, > 0. If k, > 0 we proceed as follows:
Pfiax(s, [Ka> ky + 1]) =Q (pzax) (s, (ko> kp + 1])

= > PT(s,8") - phroe(s's [ka = 1 ks])

s’'eS
"N PT(s,s) - (s
s’'eS
=V, (s) (* by def. of ¥}, (s), as n+1 < ky+1%)
= ﬁZZil(S)- (fassePS*)

If k, =0and s ¢ G, we derive:
pﬁax(s’ [0’ kb + 1]) = Q (pﬁax) (S’ [0’ kb + 1]) = Z PT(S’S,) 'p,,nZax(S,’ [0’ kb])
s'eS

LY PT(s,8') g, () = Y, PT(s,8') ikt (s).

s'eS s'eS
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Observe that by definition, v/ = ¥ and u! = u!" for all m > i. Hence:

p;ln)ax(s> [0> kb + 1]) = Z PT(S,S, kb+1(s )

s'eS

S P 0) = H) = )
s'eS

(b) The case s € IS: We consider two cases:

i. The case that k, = 0 and Reach'(s) n G # @: If Reach’(s) n G # @, then

il.

pP_ (5,[0,ky +1]) = 1. To see this, choose some state s’ € Reach'(s) n G
and apply Q iteratively until s’ is reached.

By definition, we have uk"“(s) = max{vk“l(s”) | s ~7 s"}. Further, if
s € PS it holds by definition that " +1(s ) = 1. This implies u k”l(s) =11If
s’ € IS, we derive v vk () = *k”“(s ) = uk”(s’) pmax( ,[0, kh]) =1by
applying the induction hypothesis to the term uk"(s’) Again, vk () =1

implies that u k”“(s) =1 and we are done.
The case that k, > 0 or Reach'(s) n G = @: We derive
Pras($ [Kas ko +1]) = Q (Pax) (55 [Kar ky +1])

= max {pho (s, [ka» ky +1]) | s’ € Reach'(s) }
= max {pzax(s’, [ka» kp + 1]) | s" € Reach'(s) n PS}

(* the case s € PS before *)
= max {1}, (s") | s’ € Reach' (s) n PS}
(* u,’z*il(s) = VZ++11(S) for s € PS*)

= max {V{*},(s") | s’ € Reach'(s) N PS} .

Now, if Reach’(s) n G = @, it holds that max{¥"*. (s') | s’ € Reach'(s)} =

kyp+1
vyl (s”) for some s” € Reach’ '(s) N PS. Therefore, we obtain i (s) =
max{v{*} (s") | s’ € Reach’ '(s) N PS}, as desired.

Otherwise, k, > 0 and Reach'(s)nG = {s1,s3,...,s;} forsome j > 1. If 5;
GnIS, k, > 0 implies that k, +1 > n +1and hence v7*! (s;) = 0. Therefore

kp+1
max{v{*},(s") | s" € Reach’ '(5)} = Vil (s”) for some s” ¢ Reach'(s) n PS
and we conclude max{v;*},(s") | s" € Reach’ '(s) N PS} = i (s). O
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Figure 6.6: Example IPC.

6.4.4 Complexity considerations

Let M = (S, Act, IT,MT,v) bean IMC, G € S a set of goal states and let I € Q be a time

interval with b = sup I. For the error bound ¢ > 0, choose kj, such that

(A1)”
2

ky - +Ar<e.

With 7 = k%, the smallest such k; is k;, = [)‘szzizm’] Then the step duration 7 induces
the discretized IPC M. By Thm. pM (so,I) can be approximated (up to ¢) by the
step-interval bounded reachability pia.(so, (ka» k3 ]) in the discretized IPC M.

We derive the complexity of our approach: Therefore, let n = |S|and m = |IT|+|MT|be
the number of states and transitions of M, respectively. In the worst case, M has # states,
and m + n transitions, due to the self-loops which are introduced in the discretization (cf.
Def.[6.8 on page[[62).

In each value iteration step, the update of the vector v; takes at most m + n time units.
When computing ii;, we assume that the sets Reach’(s) are precomputed: In the gen-
eral case, the best theoretical complexity for computing the reflexive transitive closure
is in O (n*%°), as given by [CW87]. Let m* ¢ S x S denote the reflexive and transitive
closure along interactive transitions. As m* € § x S, the number of transitions in m*
is bounded by n2. Hence, with an appropriate precomputation of m*, updating u; takes
time O(n?).

Altogether, for k;, = [)‘szzizm’] value iteration steps, the worst case time complexity of

our approach is 2376 + (m+n+n?)-(Ab)-(Ab +2) [(2¢) € O(n2~376 +(m+n?)- ()Lb)2 /e)

6.5 Model checking the continuous stochastic logic

The crucial point for model checking CSL is to compute the maximum and minimum
probability to visit a set of goal states in some time interval I. In this section, we there-
fore apply the results from Sec. [6.3 and reduce the CSL model checking problem to the
time-interval bounded reachability computation. However, this only works for a slightly
restricted subset of the logic CSL. We address this restriction in detail in Sec.



190 6.5 Model checking the continuous stochastic logic

Model checking CSL relies on state labellings; hence, we introduce a finite set AP =
{a,b,c,...} of atomic propositions and consider state labeled IMCs, where a state labeling
function L : § — 24P assigns to each state the set of atomic propositions that hold in that
state.

6.5.1 Syntax and semantics of CSL

The continuous stochastic logic (CSL) [BHHKO3) [CDHS06] is devised for specifying
quantitative properties of continuous-time Markov chains. In the first part of this sec-
tion, we therefore extend its semantics to the nondeterministic setting. However, we
omit the steady-state operator from classical CSL [BHHKO3], as a steady-state generally
does not exist in controlled Markov chains or IMCs.

Definition 6.9 (CSL syntax). For a € AP, p € [0,1], I ¢ Q an interval and < ¢
{<,<,2,>}, the syntax of CSL state and CSL path formulas is defined by the following
grammar rules:

Q= a|-@|OAD|Py(p) and  ¢:= XO|OU .

Intuitively, a path 7 € Paths® satisfies the next formula X'® (denoted 7 = X'®) if the
first transition on 7 occurs in time-interval I and leads to a successor state in Sat(®).
Similarly, 7 satisfies the until formula @ U! ¥ if a state in Sat('¥) is visited at some time
point ¢ € I and before that, all states satisfy state formula ©.

Intuitively, the semantics of the probabilistic state formula Py, (¢) is defined such that
s = Pap(¢) holds if the probability of the set of paths that start in state s and that satisfy
the CSL path formula ¢ meets the bound specified by < p.

Definition 6.10 (CSL semantics). Let M = (S, Act,IT, MT, AP, L, v) be a state labeled
IMC, s € S a state, a € AP an atomic proposition, I € Q a time interval, < € {<,<,>,>} a
comparison operator and 7 € Paths” an infinite path.

For CSL state formulas, we define:

SEa <~ acl(s)
sE-® <~ sHO
SEOANY <= sEDOAsEVY

sEPyp(p) < VDeGM.Pry ,{mePaths’ | mE ¢} dp.

The semantics for path formulas is defined as follows:

mEXO <~ n[l]ED®AI(7m,0)el
TEQOU'Y <= 3Ftel Isen@t.se Y AVs €Pref(n@t,s).s' = O
AVt €[0,t).Vs" e n@t'. s" = ©.
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Some remarks are in order: First, the semantics of the until path formula is slightly
more involved compared to the original definition in [BHHKO3]]: Due to interactive tran-
sitions that execute instantaneously, an IMC may traverse a (finite or infinite) sequence
of states in 0 time units. Therefore 7 = ® U V¥ is defined such that it holds if there exists
a state sequence @t that is traversed at some time ¢ € I and on 7@t, a \V-state is visited.
Moreover, for 7 = @ U! ¥ to be satisfied, all previous states on 7@t and all states visited
at times ' < t must satisfy ®.

Second, to decide the probabilistic CSL state formula P4,(¢), we need to distinguish
two cases: If 4 = < or < = <, it suffices to verify that p (s, ¢) < p. Reversely, if 4= > or

max

d = >, we need to compute the infimum p* (s, ¢) and to check whether p (s, ¢) < p.

min

6.5.2 Model checking algorithm for CSL

The model checking algorithm that we present in this section works only for a subset of
all CSL formulas. More precisely, we restrict to path formulas ® U’ ¥ where ¥ = © if
inf I > 0. Note however, that albeit this restriction we preserve most of the expressivity of
CSL: For example, the CSL operator &/ can still be derived, as OI® = tt U! @ for CSL
state formula ®@. Moreover, it does not apply to time-bounded reachability objectives, i.e.
to the case where inf I = 0. Hence, the restriction does hardly ever hamper the practical
applicability of our approach. Intuitively, its consequence can be stated as follows: If we
consider interval-bounded until formulas with inf I > 0, we require that on any path 7
which satisfies the formula @ U, the validity of ® needs to be resolved by a state which
satisfies ¥ and .

To model check an IMC with respect to a state formula ®@ from this subset of CSL,
we successively consider the state subformulas ¥ of @ and calculate the sets Sat(¥) =
{s € S| s = ¥}. For atomic propositions, conjunction and negation, this is easy, as

Sat(a) ={seS|acL(s)},
Sat(-¥) =S\ Sat(¥) and
Sat(\l"l AN \I"z) = Sat(‘I’l) n Sat(\yz)
In the remainder of this section, we therefore discuss the probabilistic operator P, (¢)
for next and until formulas. To decide Sat (Pg,(¢)), it suffices to maximize or minimize

the probability Pr; , ({7 € Paths” | m = ¢}) with respect to all schedulers D € GM. Ac-
cordingly, we define

pat(s,9) = sup Pre , ({m e Paths’ | m = ¢}) and
DeGM
M _ 1) W
pmin(s’ ‘P) - Dlerg;\/[PrvS’D ({ﬂ € Paths | TE (P}) .

As done throughout this chapter, we only consider the details for maximizing the prob-
ability Pry ,, ({m € Paths” | m = ¢}) and leave out most of the details for computing the
minimum probabilities, which can be done similarly.
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The next formula

Computing pit (s, X1®) is straightforward: We proceed inductively on the structure of
the formula and assume that Sat(®) is already computed. Then we distinguish two cases,

depending on whether state s is a Markovian or an interactive state:

(a) Ifs € MSisa Markovian state, no nondeterminism occurs and we derive p (s, X1®)

as done for CTMCs in [BHHKO3]]: Let a = inf I and b = sup I; then

D5, X1@) = /bE(S)eE(S)t~ Y. P(s,s') dt

s’eSat(D)
=P (s,Sat(D)) - (e—E(S>a _ e—E(s)b) ’

where P (s, 8at(®)) = Yiesu(o) P(s,") is the probability to move to a successor
state s’ € Sat(®) when leaving state s.

(b) Ifs e ISisan interactive state, the probability p{‘n’;x(s, X1 CD) depends on the interval I:

If 0 € I and post'(s) n Sat(®) # @, then pAl (s, X'®) = 1; otherwise it holds that
p{‘n’éx(s,XId)) =0.

The until formula

Computing pL. (s, ® U ¥) is more complex: Let ¢ = ®UY be a time-interval bounded
until path formula with I € Q and the restriction that ¥ = ® ifinf I > 0. As we will see,
this technical restriction is essential for the correctness proof given in Thm. 6.7 below.
As the computation proceeds inductively along the structure of the formula, we may as-
sume that Sat(®) and Sat (V) are already computed. Note that if inf I > 0, the restriction
to until formulas ® U’ ¥ where ¥ = @ directly implies that Sat(¥) ¢ Sat(®D).
We reduce the problem of computing p2. (s, ) and p™ (s, ¢) to the maximum and

minimum interval-bounded reachability problem, respectively. Therefore, define the set
S ={seS|sE-DA-Y}.

of absorbing states: A Markovian state s € MS is called absorbing iff R(s,A,s) > 0 and
R(s,A,s") = 0 forall s’ # s; hence, absorbing states are states with a single Markovian self
loop. Similar to the approach taken for model checking CTMCs and MDPs [BHHKO03,
BdA95], we make all states s € S’ absorbing by replacing all their outgoing transitions
by a single Markovian self loop (s,1, ).

Intuitively this is justified as follows: Let Paths“(s) denote the set of all infinite paths
that start in state s. Then the probability of the set {7 € Paths“(s) | m = @ U' ¥} is 0 for
states s € S”: If a state s € 8% is visited, it violates ® and ¥. But all paths that start in a
(~® A -V¥)-state violate the until formula @’ V. Hence, making those states absorbing
does not alter the probabilities p2 (s, ¢) and pM (s, ¢).
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Theorem 6.7 (Time-bounded until). Let M = (S, Act,IT, MT,AP,L,v) be a state-
labeled IMC, ¢ = ® U Y a CSL path formula with I € Q a time-interval and ©,¥
state formulas such that ¥ = @ ifinf I > 0. Further, let G = Sat('¥) be the set of goal
states and assume that all states s € 8%, are made absorbing. Then it holds for all s € S:

p (s, o U! ‘P) = pM (s,1) and Jiie (s, o U! ‘I’) = pM (s,1).

Proof. 1t suffices to prove that for all paths 7 € Paths” (s), it holds:

TEOU'Y <= 1k OI(Sat(WP)).

We show the two directions separately:

“=7” First,assume that 7 = ®UYY. Let 1 € Paths”. By the semantics of the until formula,

<«

we have:

TEOU ¥ < Ftel Isen@t. s ¥ A Vs € Pref(n@t,s). s’ = ©
AVt €[0,t). Vs" e n@t’. s" E ©.

Thus, for all #’ € [0, t) and s” € 7@t’, we have s” £ ® implying s” ¢ S7,. Moreover,
for all s’ € Pref (n@t, s) it holds that s’ = @, implying that s’ ¢ S?,. Hence, none of
the states is made absorbing. Let n be the index of 7 such that z[n] = s. Then we
have that 7[n] = s £ ¥, implying that 7 = OI(Sat(W)).

Now let 77 be such that 7 = G(Sat(V)). Thus, there exists ¢ € I such that
dsen@t. s = V. (6.42)

Choose the minimal ¢ € I such that Eq. (€.42)) holds. Moreover, for this ¢, choose
the first occurrence of a state s € Sat(¥) in 7@t. Now let n € N be its position
on 7 and consider all states [ k] with k < n. Since 7[k] can reach 7[n], we have
n[k] ¢ 8¢, If inf I = 0, the minimality of ¢ implies that 7z[n] is the first occurrence
of a W-state on 7 and therefore, that 7[k] £ @ for all k < n. If inf I > 0, we know
that [ k] = © or n[k] £ ¥ for all k < n. In the latter case, the restriction to until
formulas where ¥ = @ implies that [ k] = ®. Hence, in both cases it holds that
n[k] = @ for all k < n, proving that 7 = ® U V. i

Theorem 6.7 reduces the problem to compute pA! (s, ® U ¥) and p (s, © U V)

max

for interval bounded until formulas to the problem of computing the interval bounded
reachability probabilities pA! (s, I) and pM (s, I) with respect to the set of goal states G =

max

Sat('¥). The latter can be computed efficiently by the discretization approach introduced
in Sec.



194 6.6 Experimental results

Remark 6.1 (The restricted until formulas). Theorem [6.2 relies on the assumption that
Y = O© forintervals I withinf I > 0. Without this restriction, the direction from right to left
in the proof of Thm.[6.Z does not hold. To see this, assume that ¥ 5> ® and thatinf I > 0. If
onapathm, a (¥ A -®)-state is visited at time t < inf I, say on position k, then w  OU'Y.
However, t[k] ¢ S%, as n[k] & V. Hence, state nt[ k] is not made absorbing. Therefore, the
path 7 is erroneously included in the computation of the reachability probability O'G.

Complexity of CSL model checking

The complexity of the CSL model checking approach is clearly dominated by the interval-
bounded reachability computation: For CSL state-formula @, let |®| be the number of
state subformulas of ®. In the worst case, the interval bounded reachability probability is
computed |®| times. Using the complexity of the value iteration algorithm (cf. Sec. [&44),
the model checking problem has time complexity O(|®|- (n>¥6 + (m + n2) - (Ab)?/e) )

6.6 Experimental results

We consider the IMC in Fig. where Erl(30,10) denotes a transition with an Erlang
(k, 1) distributed delay: This corresponds to k = 30 consecutive Markovian transitions
each of which has rate A. The mean time to move from s, to the goal s, is % =3 with a
variance of % = 2. Hence, with very high probability we move from state s, to state s
after approximately 3 time units. The decision that maximizes the probability to reach s,
in time interval [0, b] in state s; depends on the sojourn in state s. Fig.[6.7(b) depicts the
computed maxima for time-dependent schedulers and the upper part of Tab. [6.7(c)|lists
some performance measurements.

If AP = {g} and s, is the only state labeled with g, we can verify the CSL formula
® = Pyy5 (OP*g) by computing pM. (so,[3,4]) with the modified value iteration. The
result pM (so, [3,4]) = 0.6057 meets the bound > 0.5 in @, implying that s, = .

max

All measurements were carried out on a 2.2GHz Xeon CPU with 16GB RAM.

6.7 Interval bounded reachability in early CTMDPs

In this section, we apply the time-interval bounded reachability analysis that we have
developed for closed IMCs to also solve the open problem of computing time-interval
bounded reachability probabilities in early CTMDPs. Note the difference compared to
Chapter[l where we considered locally uniform late CTMDPs. In this section, we consider
arbitrary early CTMDPs and transform them into an equivalent alternating IMC which
is then subject to the analysis techniques developed so far.

As a model that incorporates continuous-time and nondeterminism, IMCs strictly
separate interactive from Markovian transitions, whereas CTMDPs combine non-deter-
ministic choices with exponential delays. However, CTMDPs can be considered as the
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(a) The Erl(30,10) model M. (b) Time-bounded reachability in M.

problem states & A b prob. time
Er1(30,10) 35103 |10 | 4| 0.672 | 50s
Er1(30,10) 35102 |10 |7 | 0.983 | 70s
Erl(30,10) 35 (107* | 10 | 4 | 0.6718 | 268s

(c) Computation times for different parameters.

Figure 6.7: Experimental results for Erl(30,10).

subclass of strictly alternating IMCs [H]07]. Briefly, an IMC is strictly alternating if all suc-
cessor states of interactive states are Markovian states, and all successor states of Marko-
vian states are interactive states. With this definition, an early CTMDP can be considered
as a strictly alternating (and closed) IMC in which the Markovian and interactive states
are entangled.

In order to reduce the model checking problem for early CTMDDPs to the correspond-
ing problem for IMCs, we define the induced IMC M(C) for an early CTMDP C as fol-
lows:

Definition 6.11 (Induced IMC of a CTMDP). Let C = (S, Act,R,v) be a CTMDP. Its
induced IMC M (C) is the tuple (S’, Act, IT, MT, V") such that

S'=8Su{s*|seSracAct(s)},
IT ={(s,a,5%) |seSAnacAct(s)} and
MT = {(s*,R(s,a,s"),s") | s" e SAR(s,a,s") >0} .

Further, v'(s) = v(s) if s € S and v/(s) = 0, otherwise.

Example 6.8. Consider the early CTMDP in Fig. on page Applying Def.
yields its induced IMC which is depicted in Fig. o
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For model checking purposes, it is useful to extend Def. to state labeled CTMDPs:
A state labeled CTMDP is augmented by a set AP of atomic propositions and a state
labeling function L : S — 24P, We define the labeling L’ of C’s induced IMC such that
the labeling of each interactive state and its corresponding Markovian successor states
coincide. Formally: L’ (s) = L (s) and L’ (s*) = L (s) for all s € S and « € Act(s).

By definition, the induced IMC of a CTMDP C is strictly alternating: Each state s €
S in C becomes an interactive state in the induced IMC which mimics the CTMDP’s
nondeterministic choices: For each action « € Act(s), an internal transition leads from
interactive state s to a newly introduced Markovian state s* which represents the race
between the exponential delays that lead to the successor states of s in the underlying
early CTMDP under action a.

To formally establish the relation between an early CTMDP C and its induced strictly
alternating IMC M, we first observe a correspondence between paths in M and paths
in C: Therefore, let sep : Paths(C) — Paths(M) be such that it separates the scheduler
choices and the Markovian sojourn times on a path 7 € Paths(C). Formally:

ao,to o1, 0,0 o 1,tp 1,0 P 1,51
Sep So — >SS ——> ) =9 So S1 S >

Reversely, we collapse paths in M to obtain the corresponding path in C:

a0,0 gy Lo a0 g Lt «0,to ay,t
col ( so So s St =850 —— 5 —> -

For infinite paths, we thus have a one-to-one correspondence between infinite paths in C
and infinite paths in M. Moreover, each finite path 7 € Paths(C) induces a unique
path 7 € Paths(M) of length [71| = 2|n]; reversely, each path 7 € Paths(M) that starts
and ends in an interactive state maps back to a unique path col(7) in the underlying early
CTMDP. For the following discussion, we extend the definitions of the functions sep and
col to sets of paths in the natural way.

6.7.1 Scheduler correspondence

We aim at establishing a correspondence between sets of paths in the early CTMDP C and
its induced IMC M. Each path 7 € Paths(C) corresponds to the path sep(7) in M, which
starts and ends in an interactive state. Further, the initial distribution in C’s induced
IMC M assigns probability 0 to each path in M that starts in a Markovian state. Hence,
such paths can safely be ignored in the remainder of this section.

The above observation allows us to establish a close correspondence between the sched-
ulers in C and M: Let D¢ € GM(C) be an early scheduler in C and 7 € Paths™ (M) a path
in M. We define the scheduler DM € GM (M) such that

D¢ (col(m)) ifml eISAT[0] €IS
DM (7) =17 if 7}, € ISAT[0] € MS (6.43)
L if | € MS,
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where the scheduler decisions taken on paths 7 that start in a Markovian state can be
chosen arbitrary (as long as D remains measurable), as in our setting, the set of such
paths has measure 0 anyways. Hence, for our purposes we can identify all schedulers
which differ only for the case that 77| € IS and 7[0] € MS.

Reversely, if DM € GM (M) is a scheduler in the strictly alternating IMC M, it corre-
sponds to a unique early scheduler D¢ € GM(C), which is defined for all 7 € Paths”™ (C)
such that D€ (1) = DM (sep(7)).

Hence, there exists a one-to-one correspondence between schedulers in C and M.

6.7.2 Measure correspondence

We first prove that the probability measure that is induced for a set of paths IT € Paths” (C)
by a scheduler D¢ € GM(C) in the early CTMDP C equals the probability of sep(I1) under
the corresponding scheduler D in the induced IMC M:

Lemma 6.12 (Measure correspondence). Let C = (S,Act,R,v) be a CTMDP and
M = (8', Act, IT, MT, V") be its induced IMC. Further, let D¢ € GM(C) be a scheduler
in C and let DM € GM (M) be the corresponding scheduler in M as defined in Eq. (643).
Foralls € S and 1 € Fpapso () it holds that

Prt’s’Dc(H) = Pr‘v"g,DM (sep(H)).

Proof. The proof is along the same lines as in Lemma B4 in Sec. We first prove
the claim for measurable rectangles: Let B = Sy x Ag x Ty x §; x -+- x S, € Fpan(c) be a
measurable rectangle in C. Then B = sep(B) = Syx AgxS;° ToxSix A;x S x Tix Sy x-+-xS,,,
where $ = {s*| s € S; Aa € A;} for 0 < i < n. We proceed by induction on # and prove
for all measurable rectangles B € §pus (c):

Prl e (B) = Pri,m(sep(B)). (6.44)

In the induction base, B = Sy and B = S,. Hence, Pr) pe(B) = Yes, (5) = Yies, V/(s) =
Pr‘v),, M (B). In the induction step, let I = Sy x A, x Tj be a set of initial path prefixes (cf.
LemmaBI6) in C which extend the measurable rectangle B € §pus () to a measurable
rectangle I x B € §p, 01 (¢ of length 1 +1. With i = (s, &, t) ranging over I, we derive

Prie (1xB) = [ Pr1 o(B) bl pe(di)
_ /1 PP (B) il pe (), (* by the ind. hyp.*)

where u* . is the probability measure on initial path prefixes as defined in Sec. B3 on
page82 Now, if i = (s, , t) € [ isan initial path prefixin C, let i = (s, &, 0, 5%, 1, ) be the
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corresponding two-step initial path prefix in M. Then v;(s") = P¢(s, a,s’) = ngs(’s‘i’:)’) =

PM(s%,s") = vi(s"), where PC(s,a,s’) denotes the branching probability from s to s
under action « in C and PM(s%,s") denotes the corresponding probability from state s
to state s’ in M.

Moreover it holds that DM (sep()) = DM (i o sep(m)) = D°(iom) = DS(m) =
DM(sep(r)) for all 7 € Paths™(C). Hence:

Pl (Ix B) = fI PR 1 (B) i) pe (d)

= 2 9(s) ¥ Dsva) [ PR (B) s (A1) (* def of e )

s€So acAy

=Y v(s) > DM(s, ) fT Prif’Dl\,l (B) Ne(soy(dt)  (*succ(a) = s**)
s€So achy 0 i

[P (B) b C def ot o)

= Prifgf\,l (IxB) = Prifgﬁ) (sep(I X B))

Thus Eq. (6.44) holds for all measurable rectangles. To prove that this result extends to
arbitrary measurable sets of paths IT € §p,y0, it suffices to prove (6.44) for any measur-
able base B € §pus. Therefore, let & pyy,en () denote the set of all finite disjoint unions of
measurable rectangles, which forms a field by Lemma 2.0l (see page E3)). Then Eq. (6.44)
directly extends to &py(c): Let B = \W, B; with all B; being pairwise disjoint mea-
surable rectangles in §puns(c)- Then Pry ¢ (B) = Pry ¢ (U;{:o B,-) =¥k, Pry he (Bi) =
Y5, Pri?,DM (sep(B;)) = Pri?’DM (Uf-lo sep(B,-)) = Pri?’DM (sep(B)).
Now, define

Q: = {B € SPaths” | Pr:’DC (B) = Pri?’DM (SeP(B))} :

Then € is a monotone class, i.e. for all B; 1 B and B; | B, it holds B € ¢: Here, we
only give the proof for increasing sequences. Let B; T B. As o-fields are closed under
increasing sequences, we obtain B € §p,y,. Thus, it remains to prove that Pr) .. (B) =

Pru (sep(B)). Therefore, note that sep(B;) 1 sep(B). From Lemma 27 (see page [6),
we obtain

Pr} e (B) = lim Pr} o (B;) = lim PriY ., (sep(Bi)) = Pr2y u(sep(B)).

For decreasing sequences, the same argument applies analogously.

Hence, € is a monotone class. Further, as all sets in & p,,¢ () satisfy Eq. (©.44)), it holds
G pans(cy € €. Thus, the monotone class theorem (Thm. page 22)) is applicable and
states that 0(®) ¢ €. Moreover, by definition of §puus(c), it holds 0(&) = Fpuns(c)-
Therefore we conclude that Eq. (€.44) holds for all B € §p,y+. From here, the claim
follows by the Ionescu-Tulcea extension theorem, which lifts the argument from finite
measurable bases to the infinite product o-field Fpapse- 0
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Now we address the next question: Are there schedulers in M that induce a proba-
bility for the event sep(IT) (where IT € Fpuse(c)) that cannot by mimicked by a “native”
scheduler DC in the early CTMDP C? We answer this question in the negative and use
the one-to-one correspondence to apply Lemmal[6.J2 again:

Lemma 6.13. Let C = (S, Act,R,v) be a CTMDP and M = (S', Act, IT, MT, V") be its
induced IMC. Further, let D € GM(M) be a scheduler in M. Define D¢ € GM(C) such
that Dc(ﬂ) = D(sep(ﬂ))for all 7t € Paths™(C). For all T1 € §pyse ¢y it holds that

Pr‘v",’D(sep (H)) = Pr‘v",’DC(H).

Proof. By Eq. (€43)), the scheduler D™ which corresponds to the early scheduler D€ is
the scheduler D. Hence, LemmagJ2 applies and yields the desired equality. o

Corollary 6.1 (Measure preservation). Let C = (S,Act,R,v) be a CTMDP and let
M = (8", Act, IT, MT, V') be its induced IMC. For all 1 € §pysv(cy it holds that

sup Pr‘v",DC(H)z sup Pr‘v",)DM(sep(H)).

DCeGM(C) DMeGM(M)
Proof. Direct consequence of Lemmal6.J2and Lemmal6.13 ]

Theorem 6.8 (Interval bounded reachability in C and M). LetC = (S, Act,R,v) be
a CTMDP and M = (S', Act, IT, MT,v") be its induced IMC. For a set G ¢ S of goal
states and a time interval I € T define

O!'G = {mePaths(C) | 3t e I. n@t € G} and
O'G = {m e Paths*(M) | 3t e L. n@tn G # B},
where G = G u {s* | s € G A a € Act(s)}. Then it holds

sup  Pr¢ . (<>IG) = sup  Pr¢ . (015). (6.45)
DpCeGM(C) DMeGM(M) ’

Proof. First, observe that Pr, v (015) = Pry, pu (sep (O'G)) for all DM e GM(M).
To see this, note that M is an alternating IMC where each interactive goal state is followed
directly by a Markovian goal state. Then Cor.[6Jlimplies Eq. (6.45). m]
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6.8 Comparison of different scheduler classes

Consider the CTMDP C which is depicted in Fig. To compute the maximum
time-bounded reachability probability for state s, with respect to initial state sy, we apply
Def.[6I1Ito obtain the induced IMC of C, which is depicted in Fig.

By Thm.[6.8 we can compute the maximum time-interval bounded reachability proba-
bility for state s, in the early CTMDP C by applying the modified value iteration algorithm
from Sec. B4 to its induced IMC M (C) and the set of goal states G = {54, SZ}.

In Fig. the curve for early schedulers depicts the results that we obtain for the
maximum reachability probability for intervals of the form [0, z] with z € Q.

Moreover, note that the example in Fig. 6.8l is constructed such that it is locally and
globally uniform. This enables a comparison of all analysis methods and their underly-
ing scheduler classes, that are currently available for CTMDPs. The results depicted in
Fig.[6.9 can be explained as follows:

« AsC islocally uniform, we can compute the maximum time-bounded reachability
for late schedulers according to the approximation algorithm in Chapter Bl The
results depicted in Fig. coincide with our theoretical findings in Chapter Bt
The class of late schedulers outperforms all other scheduler classes.

« For positional schedulers, the only relevant choice is between actions « and f in
state s;; Fig.[6.9 depicts the results for both choices. Hence, the maximum reacha-
bility probability for the class of positional schedulers is the maximum of the two
curves labeled « and f3, respectively.

« Finally, C is globally uniform; hence, the algorithm in [BHKHO5] is applicable,
which computes the maximum time-bounded reachability probability for the class
of time-abstract schedulers. Due to the restricted scheduler class, the obtained
maxima are considerably smaller compared to those that are obtained by time-
dependent schedulers. In fact, in Fig. 6.9 they agree with the maximum that is
achieved by positional schedulers. This is not surprising, as the only nondeter-
ministic choice in C occurs in state s;, which is always entered along the trajec-

o
tory m = sy — ;.

6.9 Related work and conclusions

By providing an efficient and quantifiably precise approximation algorithm to compute
interval bounded reachability probabilities, we solve the long standing open problem in
the area of performance and dependability evaluation [BHKHO35], that is, the CSL model
checking problem on CTMDPs and on arbitrary IMCs.

In the setting of stochastic games, the time-bounded reachability problem has been
studied extensively in [BEK*(9], with extensions to timed automata in [BEQ9]. Closely
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“ﬂ @

(a) The globally uniform CTMDP C. (b) Its induced IMC M(C).

Figure 6.8: Transforming an early CTMDP into its induced IMC.

related to our results in this chapter is the work in [Joh07, BHH*09], where globally
uniform IMCs — which require the sojourn times in all Markovian states to be equally
distributed — are transformed into continuous-time Markov decision processes (CT-
MDPs). Subsequently, the algorithm in [BHKHO35] is used to compute the maximum
time-bounded reachability probability in the resulting globally uniform CTMDP. How-
ever, the applicability of this approach is severely restricted, as global uniformity is hard
(and often impossible) to achieve on nondeterministic models.

Further, the above approaches rely on time-abstract schedulers. From [BHKHO5] and
Chapter Elwe know that they are strictly less powerful than the time-dependent ones that
we consider in this thesis.

Sectione.7is closely related to Chapter B, where we analyze time-bounded reachability
probabilities in locally uniform CTMDPs under late schedulers: From Chapter Blwe know
that in locally uniform CTMDPs, late schedulers outperform early schedulers, which are
the largest class of history- and time-dependent schedulers that is definable on general
CTMDPs [Joh07]].

Although the discretizations used in Chapters B and [@l may appear similar, the ob-
tained results are complementary: In general, transforming IMCs to CTMDPs as done
in [Joh07] does not yield locally (or globally) uniform CTMDPs. Hence, the approach in
Chapter Bl is inapplicable for the analysis of general IMCs. Reversely however, we have
proved in Sec. 6.7 that the problem of computing time-interval bounded reachability in
CTMDPs with respect to early schedulers can be solved by the analysis of the CTMDP’s
induced IMC. In this way, this chapter not only solves the problem of model checking
IMCs, but also yields a CSL model checking algorithm for early CTMDPs under time
and history dependent schedulers.
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Figure 6.9: Maximum time-bounded reachability for the CTMDP and IMC in Fig.



7 Equivalences and logics for CTMDPs

The difference between the
right word and the almost

right word is the difference
between lightning and the

lightning bug.

(Mark Twain)

In Chapter B, we have developed an algorithm to compute time-bounded reachability
probabilities in locally uniform CTMDPs. Moreover, in Sec. we have shown that
similar ideas allow to model check CSL formulas on arbitrary CTMDPs by analyzing their
induced IMC:s. In fact, this is the first time that efficient and quantifiably precise model
checking techniques are available for time-dependent schedulers on arbitrary CTMDPs
and IMCs.

In practice however, both models are mostly used as the underlying semantics of high-
level modeling formalism such as generalized stochastic Petri nets [CMBC93], stochastic
activity networks [SMO00] and dynamic fault trees [BCS07]. These formalism allow to
represent complex models in a compact and structured way. Once the high-level model is
finished, it is transformed into an equivalent CTMDP (or IMC) which is then the starting
point for the analysis.

However, during this transformation, one usually encounters the state space explosion
problem: The unfolding of a rather compact high-level model in many cases yields a CT-
MDP with an exponentially larger state space. For an example, we refer to the GSPN
model of a workstation cluster that we analyze in Chapter

Even though the approximation algorithms that we have developed in the previous
chapters are all in PTIME, the state space explosion problem still renders them inapplica-
ble for large scale applications. This is not surprising, as the same problem also arises in
the classical setting, where CTL and LTL formulas are verified on Kripke structures. To
address this problem, equivalence notions such as strong- and weak bisimulation have
been proposed, which allow to minimize the state space by identifying states that have
similar behavior.

This idea has carried over to the stochastic setting with great success: For example,
bisimulation minimization has become a standard tool for reducing the state space when
model checking CTMCs [BHHKO03], DTMCs [LS91, BKHWO05] and MDPs [SL95]. Fur-
ther, due to their process algebraic background, it comes as no surprise that strong and
weak bisimulation are readily available for IMCs [HHKO0Z]. In this setting, lumping (i.e.
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bisimulation minimization) has been used to eliminate 7-transitions [MT06].

Such results do not exist for CTMDPs and a corresponding notion of strong bisimula-
tion has not been defined yet. This chapter is meant to close this theoretical gap:

We define strong bisimulation on CTMDDPs as a conservative extension of the existing
notion of strong bisimulation on CTMCs [Buc94] and investigate which kind of logical
properties it preserves. In particular, we show that bisimulation preserves the validity of
CSL [[ASSB00, BHHKO3]], which we already used in a slightly restricted version to reason
about IMCs (cf. Sec.[6.3).

Accordingly, in this chapter, we provide a semantics of CSL on CTMDPs which is
obtained in a similar way as the semantics of PCTL on MDPs [BK98, BdA95]. We show
the semantic soundness of our definition by using measure-theoretic arguments to prove
that bisimilar states preserve full CSL. Finally, we close the discussion by noting that
similar to MDPs, CSL equivalence does not coincide with bisimulation: This observation
corresponds to the discrete-time case [Bai98], where reasoning about the maximal and
minimal achievable probabilities (as done by logics like PCTL) is not enough to fully
characterize the model, either.

Organization of this chapter. In Sec.[Z] we define strong bisimulation for CTMDPs
and investigate its properties. In Sec. [ZZ we adapt CSL to reason about CTMDPs; in this
context, we answer the question whether CSL path formulas induce measurable sets in
the affirmative. Section [Z3lfinally proves that CSL-formulas are preserved under strong
bisimulation.

7.1 Strong bisimilarity

By definition, CSL is a state based logic which reasons about the labeling of the states
of a CTMDP. As this chapter aims at establishing the relation between CSL and strong
bisimulation, we extend the definition of CTMDDPs (cf. Def. BIllon page[/5) with a state
labeling function L : & — 24P that assigns each state of the CTMDP the set of atomic
propositions from the set AP, that hold in that state.

Strong bisimilarity [BKHWO05,[LS91]] is an equivalence on the set of states of a CTMDP
which relates two states if they are equally labeled and exhibit the same stepwise behavior.
As we will prove in Thm. [Z4] strong bisimilarity allows us to aggregate the state space
while preserving transient and long run measures.

As usual, we denote the equivalence class of s under an equivalence relation R € S xS
by [s] and define [s], = {s' €S| (s,s") e R}. If R is clear from the context, we also
write [s] instead of [s]. Further, Sg = {[s] | s € S} is the quotient space of S under R.
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Definition 7.1 (Strong bisimulation relation). Let C = (S, Act,R, AP, L,v) be a state
labeled CTMDP. An equivalence relation R € S x S is a strong bisimulation relation iff
for all (u,v) € R it holds that L(u) = L(v) and R(u,«,C) = R(v, a, C) for all « € Act
and all C € Sp.

Two states u and v are strongly bisimilar (denoted u ~ v) iff there exists a strong bisim-
ulation relation R such that (u,v) € R. Strong bisimilarity is the union of all strong
bisimulation relations.

Theorem 7.1 (Strong bisimilarity). Strong bisimilarity is
(a) an equivalence,
(b) a strong bisimulation relation, and

(c) the largest strong bisimulation relation.

Proof. As usual, we use ~ = U{R | R is a strong bisimulation relation on S } to denote
strong bisimilarity. We prove each claim separately:

(a) ~ is an equivalence: Reflexivity and symmetry follow directly from the definition.
For reflexivity, note that the identity relation is a strong bisimulation relation. For
symmetry, it suffices to note that if u ~ v, then (u,v) € R for some strong bisimula-
tion relation R. Hence L(u) = L(v) and R(u, a, C) = R(v, a, C) for all a € Act and
all C € Sg. Then R = {(v,u) | (u,v) € R} is a strong bisimulation relation that
proves v ~ .

We need to show transitivity, that is (u,v) € ~ and (v,w) € ~ = (u,w) € ~.

(u,v) € ~= ex. strong bisimulation relation R; € ~ such that (u,v) € R;.

(v,w) e ~== ex. strong bisimulation relation R, € ~ such that (v,w) € R,.

Let R denote the transitive closure of R; UR,. Then (u, w) € R. Therefore it suffices
to show that R is a strong bisimulation relation. As R obviously is an equivalence, it
remains to show that for all (u,v) € R, a € Act and C € Sy it holds L(u) = L(v) and

R(u,a,C) =R(v,a, C). (7.1)

The first condition, L(u) = L(v) follows directly from the transitivity of the identity
relation on 24P, For Cond. (Z1)), let C = {sy,...,s,} € Sg. Then it holds for k = 1,2
that C = UL, [si],; to see this, we prove both directions:

C: Letse C. Thens € [s; for some i€ {l,...,n}. Hence s e U, [si]» -
R 1 Ry
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2: Letie{l,...,n}. Then it holds:

s€[silp, ==(5,5:) € Ry (* by definition *)
=(s,5,) €R *RrcR*)
s e€[si]p (* R is an equivalence relation *)
«—seC *[silr=C™

Hence we can decompose C into equivalence classes with respect to R, and R, (see
Fig.[ZI). As R, is an equivalence relation, it induces a partitioning of C:

C=J{lsilr,»[s0)r,>---» [Sinlr,} Wherem <n. (7.2)

Note that the same applies to R, for a different set of indices i, ..., i/ ,. Now we are
able to prove Property (Z1]) by induction on the structure of R. Therefore we provide
an inductive definition of R as follows:

R°=R,UR, and
R ={(u,w) | IveS. (u,v) eR A (v,w) e R'} for i > 0.
By construction, the subset-ordering on R' is bounded from above by S x S. Further,
S is finite, so that R € R! C ---isan increasing sequence, that is, the transitive closure

is reached after a finite number z of iterations such that R**! = R%. Obviously, we
then have R = R=.

By induction on i, we prove that if (u,v) € R/, then R(u, «, C) = R(v, a, C) for all
a € Act and C € Si:

i. For the induction base (i = 0), we distinguish two cases:

o Let (u,v) € Ry:

(u,v) e Ry =>VC' € Sg,.Va € Act. R(u,a,C') =R(v, a,C")
==Vje{l,...,m}. Va € Act.

R(u, a, [Si]-]Rl) =R(v, a, [5";']721)

—VacAct. Y R(u,a, [si].]Rl) =Y R(v,a, [s,-j]Rl)
j=1

=1
—Va e Act. R(u, a, LmJ [Sij]Rl) =R(v,a, CIJ [Sij]Rl)
j=1 J=1

22 vac Act. R(u,a,C) =R(v,a,C).

o Let (u,v) € R,: The argument is completely analogue to the first case.
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(a) according to Ry (b) according to R,

Figure 71: Example partitioning of an equivalence class C € Sx.

ii. In the induction step (i ~ i+ 1), assume (u,w) € R*l. By construction, we
have (u,v) € R and (v,w) € R'. Applying the induction hypothesis we have
R(u,a,C) = R(v,a,C) and R(v,a,C) = R(w, a,C) for all actions o € Act
and all C € Sk. Therefore R(u, a,C) = R(w, a, C) directly follows from the
transitivity of = on Ry,.

Now we can conclude that ~ is indeed transitive: Given (u,v) € R; and (v, w) € R,,
there exists a strong bisimulation relation R such that (u,w) € R. By definition,
R € ~ and therefore u ~ w.

(b) ~ isa strong bisimulation relation:
It remains to show for any u ~ v, that L(u) = L(v) and R(u, &, C) = R(v, &, C) holds
for all @ € Act and C € S... Since u ~ v implies the existence of a strong bisimulation
relation R € ~ with (u,v) € R it holds that L(u) = L(v) and we may follow the idea
in Eq. (Z2) and express C as finite union of equivalence classes of Sg. Since R is
a strong bisimulation relation, the rates from u and v into those equivalence classes
are equal and maintained by summation.

(c) ~isthe largest (i.e. the coarsest) strong bisimulation relation:
Clear from the fact that ~ is the union of all strong bisimulation relations. o

For the purpose of reducing the state space, the quotient CTMDP is essential: Instead
of considering all states in S, the quotient only retains their equivalence classes under
strong bisimilarity:

Definition 7.2 (Quotient). LetC = (S, Act, R, AP, L, v) be a state labeled CTMDP. The
CTMDPC = (S, Act,R,AP, L) where § = S.., R([s],a, C) = R(s,a, C) and L([s]) =
L(s) foralls €S, a € Act and C € S is the quotient of C under strong bisimilarity.

For states [s], [t] € S of the quotient C, let E([s], a) = X [s7es R([s],a, [ ]) be the exit
rate of [s] under action a. Further, if E([s],«) > 0, then P([s], a, [¢]) = 2LbeltD) g the
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discrete branching probability from state [s] to state [ ¢] under action a. For E([s], ) = 0,
we set P([s], &, [t]) = 0.

Example 7.1. Consider the CTMDP over the set AP = {a} of atomic propositions depicted
in Fig. Its quotient under strong bisimilarity is outlined in Fig. In this example,
the states s, and s; are strongly bisimilar. The corresponding strong bisimulation relation is

R ={(s0,50) > (s1,51) (52,52)5 (52,83), (83, 53), (53, 52) }- ¢

In the quotient, exit rates and branching probabilities are preserved with respect to the
underlying CTMDP as shown by the following two lemmas:

Lemma 7.1 (Preservation of exit rates). Let C = (S, Act,R, AP, L, v) be a state labeled
CTMDP and let C be its quotient under strong bisimilarity. Then E(s,a) = E([s], &) for
alls € S and o € Act.

Proof. Let S = Uzzo[sik] such that [s,-j] N [s,-k] = @ forall j # k. For all states s € S it
holds:

E(s,a) = ) R(s,a,s") = Zn: > R(s,a,s") = I{Z”(:)R(s,oc, [si.])

s'eS k=0s'e[s;, |
PLES R([s], v, [s3, ZR< s'1) = E([s], ).
k=0

With Lemma [Z]] it directly follows that also the dlscrete transition probabilities are pre-
served under strong bisimulation:

Lemma 7.2 (Preservation of transition probabilities). Let C = (S, Act,R,AP,L,v)
be a state labeled CTMDP and let C be its quotient under strong bisimilarity. For all
states s, t € S and all actions « € Act it holds

P([s],a,[t]) = Z[:] P(s,a,t").

Proof.

P c R > Xy t
P([S],a,[t]) = M szw
E([s], @) E([s], )
— Zt,e t] R(S, «, t') LemmalZ] Zt’e[t] R(S, a, t/)
E([S]’“) E(s,a)
With these remarks, we conclude our definition of strong bisimulation for CTMDPs. To

set its definition in a context, we adapt the continuous stochastic logic that we already
used in Chapter @ to reason about IMCs, to reason about CTMDPs.

= > P(s,a,t'). O
t'e[t]
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7] ’ {a}

(a) CTMDP C (b) Bisimulation quotient

Figure 7.2: Quotient under strong bisimilarity.

7.2 Continuous Stochastic Logic

Continuous stochastic logic [ASSB00, BHHKO3] is a state-based logic which was origi-
nally designed to reason about continuous-time Markov chains. In this context, its formu-
las characterize strong bisimilarity [DP03]] as defined in [BHHKO3]J; moreover, strongly
bisimilar states satisfy the same CSL formulas [BHHKO3].

In this section, we extend CSL to CTMDPs along the lines of [BHHKO04]. As steady
states do not exist in CTMDPs, we further introduce a long-run average operator [dA97],
which serves as a replacement of the steady state operator known from classical CSL. The
semantics that we propose for CSL on CTMDPs is based on ideas from [BK98, BAA95]
where variants of PCTL are extended to (discrete time) MDPs.

Definition 7.3 (CSL syntax). For a € AP, p € [0,1], I € Ry a nonempty interval and
de€{<,<,>,>}, CSL state and CSL path formulas are defined according to the following

grammar rules:

D= a|-O|OAD| VPP LPD  and  ¢u= XO|OU' D.

The Boolean connectives v and — are defined as usual; further we extend the syntax by
deriving the timed modal operators “eventually” and “always” using the equalities O/ =
ttU! @ and O'® = - O @ where tt := a v —a for some a € AP. Similarly, the equality
39Pp = ~V"P ¢ defines an existentially quantified transient state operator, where > denotes

the negation of the comparison operator <: For example, if 4 = <, then > = >. The
intuition for the probabilistic and the long-run average operators is given by an example:

Example 7.2. Reconsider the CTMDP depicted in Fig.[7.2(a)} The transient state formula
V201 (01 q) states that the probability to reach an a-labeled state within at most one time
unit exceeds 0.1, no matter how the nondeterministic choices in the current state are resolved.
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Further, the long-run average formula L<0-2° (~a) states that for all scheduling decisions,
the system spends less than 25% of its execution time in non-a states, on average. &

Formally, the long-run average is derived as follows: For B ¢ S, let I; denote an indicator
with I3(s) = Lifs € Band 0 otherwise. Following the ideas of [dA97,[CHKOI], we compute
the fraction of time spent in states from the set B on an infinite path 7 up to time bound
t € R, and define

1 t
avgy () = ;/0 Iz(n@t")dt'.

As avg, , is arandom variable, its expectation can be derived given an initial distribution
v € Distr(S) and a measurable scheduler D € GM. In this way, we obtain

E(avg&t) = '/thsw avgB)t(n) Pryp(dm).

Having defined the expectation for a fixed time bound ¢ € R;y, we now take the limit
t — oo and obtain the long-run average as lim,. ., E(avgy,). This idea is made precise in
the semantics of CSL:

Definition 7.4 (CSL semantics). LetC = (S, Act,R, AP, L, v) be a state labeled CTMDE,
s,t€8S,a€AP, <€ {<,<,>,>} and i € Paths®. Further let vi(t) := 1 if s = t and 0 other-
wise. The semantics of state formulas is defined as follows:

sEa <~ acl(s)

sE-O <~ notsE®

SEOAY <— seEOQandseVY

sEV¥9 <<= VDeGM. Pry {mePaths’ | mE¢}dp

sELPD = VDeGM. limic [0 WVEsu(a), (M) Pri p(dm) 9 p.
The semantics of path formulas is defined such that

e XO — n[l]EDPAS(m,0)el
TEOU'Y < 3Ftel (n@tE¥YA(Vt'e[0,t). n@t' £ D)),

where Sat(®) = {s €S| s = D}.

In Def.[Z4] the transient-state operator V<’¢ is based on the measure of the set of paths
that satisfy ¢. However, in order to associate a probability to the set {7 € Paths” | m & ¢},
we must prove that the set is measurable with respect to the o-field §p,y,. This is the
result of the next theorem:

Theorem 7.2 (Measurability of path formulas). The set {m € Paths” | n & ¢} is mea-
surable for all CSL path formula ¢.
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Proof. For next formulas, the proof is straightforward. For until formulas, let 7 = s, 2oh,

apty

s; —> -+ € Paths” and assume 7 = © UY' V. By Def. [Z4 it holds that 7 £ ® U V¥ iff
Jt e L (n@t E YAV e[0,t). n@t E CD). As we may exclude Zeno behavior by
Thm. B3 (see page B4), there exists n € N with 7@t = n[n] = s, such that I and the
period of time [Z?;(} ti, Yo t,-) spent in state s, overlap; further s, £ ¥ ands; £ ©
for i = 0,...,n — 1. Note however, that s, must also satisfy @ except for the case of
instantaneous arrival where ¥/} t; € I. Accordingly, the set {r € Paths | m = ® U ¥}
can be represented by the union

) n-1
U{nePaths‘” Ytielan[n] =¥ AVm<n. n[m] |=CD} (7.3)
n=0 i=0
) n-1 n
U U{T[ € Paths’ | (D tu > ti)nI#¢@rn[n]e Y AVm <n. n[m] = CD}. (7.4)
n=0 i=0 i=0

It suffices to show that the subsets in the unions of Eq. (Z3]) and Eq. (Z4) are measurable
cylinders for all n € N. In the following, we give the proof for Eq. (Z4]) and closed intervals
I = [a, b] and only note that the other cases are similar. For fixed n > 0, we show that the
corresponding cylinder base is measurable using a discretization argument:

|
—

n

{n € Paths"*! ( ti, zn: t,-) N [a, b] tonnn) eV AVm<n n[m]E CD}
iz0  i=0
0 n-1 ¢; d,‘ ,
- kUIdCO+”%nzulh(k ll:([)[Sat(d)) x Act x (?’ E)] x Sat(® A W) xAct x (?, oo) xS (7.5)
0*"';<§i—1£

where ¢;, d; € N. To shorten notation, let c = ¥,/ t;and d = ¥/ t;.

We prove Eq. (Z3) in both directions separately:
Let 7 = s, i 5 2l L Gl sn+1 be in the set on the left-hand side of Eq. (Z.3).
The intervals (¢, d) and [a, b] overlap, hence ¢ < b and d > a (see top of Fig. [Z3).
Further n[i] £ ® fori =0,...,nand n[n] = V. To show that 7 is in the set on the
right-hand side, let ¢; = [t; -k~ 1] and d; = |t; -k + 1| for k > 0. Then % < t; < &
approximates the sojourn times ¢; as depicted in Fig.[Z3 Furtherlete =Y}  t;—a
and choose k, such that ”k—;l < & to obtain

N

- 1 Ko+l 1 Ko
a=Zt,~—8§Zt,’—nkz SZCII:_ —nk—: :Z&

n
i=0 i=0

Thus ak < 37, ¢; for all k > ko. Similarly, we obtain k) € N's.t. ¥/ d; < bk for all
k > k{. Hence for large k, 7 is in the set on the right-hand side.
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c——""—d
[} (] [} [} OAY
= I to | 51 | [5) | 3 | Iy |
= T T T T ! !
PR e s st s
<0 ul—‘—|: b .

Figure 7.3: Discretization of intervals with n =4 and I = (a, b).

Let 7 be in the set on the right-hand side of Eq. (Z5) with corresponding values for
¢;»d;and k. Then t; € (%, %) Hencea < Yl % <Yioti=dand b > Y % >
"o t; = ¢ so that the time-interval (c, d) of state s, and the time interval I = [a, b]
of the formula overlap. Further, 7[m] £ @ for m < n and n[n] £ ¥; thus 7 is in

the set on the left-hand side of Eq. (Z3).

The right-hand side of Eq. (Z5) is measurable, hence also the cylinder base. This ex-
tends to its cylinder and the countable union in Eq. (Z4). O

I

7.3 Strong bisimilarity preserves CSL

We now come to the main contribution in this chapter. To prove that strong bisimilarity
preserves CSL formulas, we establish a correspondence between certain sets of paths of
a CTMDP and its quotient which is measure-preserving:

Definition 7.5 (Simple bisimulation closed). Let C = (S, Act,R,AP,L,v) be a state
labeled CTMDP. A measurable rectangle IT = So x Ag x Ty x---x A,y x T,y X S, is simple
bisimulation closed iff S; € (S U {@}) fori = 0,...,n. Further, let T1 = {Sp} x Ag x Ty
o x Ay x T,y x {S,} be the corresponding rectangle in the quotient C.

An essential step in our proof strategy is to obtain a scheduler on the quotient. The
following example illustrates the intuition for such a scheduler.
Example 7.3. Let C be the CTMDP in Fig.[4(a) where v(so) = 1, v(s1) = % and v(s;) =
L. Moreover, let D be the GM-scheduler such that D(so,{a}) = %, D(s0,{B}) = 3,

12°

D(si,{a}) = ; and D(s,{B}) = 3. Intuitively, a scheduler DY that mimics D’s behavior
on the quotient C (see Fig. can be defined by




7.3 Strong bisimilarity preserves CSL 213

(a) CTMDP C and initial distribution. (b) Bisimulation quotient C.

Figure 7.4: Derivation of the quotient scheduler.

DY ([s0],{B}) = Zse[so]g(s[)]-f(is), B) ! :

Even though s, and s, are bisimilar, the scheduler D decides differently for the histories
My = So and m; = s1. As 1y and m collapse into 7t = [so] on the quotient, D can no longer
distinguish between 1y and m,. Therefore D’s decision for any history m € 7 is weighted with
respect to the total probability of 7. &

In order to formally derive the quotient scheduler, Def. [Z6l generalizes the ideas from Ex.
to histories of arbitrary (finite) length:

Definition 7.6 (Quotient scheduler). Let C = (S, Act,R,AP,L,v) be a CTMDP and
D e GM. First, define the history weight of finite paths of length n inductively as follows:

hwo(v, D, so) = v(so) and
hWn+1(V, D) /4 “"_’t") Sn+1) = ]’an(V, D) ﬂ) : D(”) {(xn}) . P(ﬂlw LD Sn+1)-
Let 7t = [sy] =2 .. 2227 [, be a timed history of C and TI = [so] x {ao} x {to} x
o x {ay} x {ta1} % [s4] be the corresponding set of paths in C. The quotient scheduler
DY on C is then defined as follows:

_ Znert hwu(v, D, 71) - D(70, {@n})
) Ynert vy (v, D, 70)

Dﬁ(ﬁ, (xn)

Further, let v ([s]) = Yy v(s') be the initial distribution on C.

A history 77 of C corresponds to a set of paths IT in C; given 7, the quotient scheduler
decides by multiplying D’s decision on each path in IT with its corresponding weight and
normalizing with the weight of IT afterwards. In this way, we obtain the first intermedi-
ate result: For CTMDP C, if IT is a simple bisimulation closed set of paths, v an initial
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distribution and D € GM, the measure of IT in C coincides with the measure of IT in C
which is induced by v and D?:

Theorem 7.3. Let C = (S, Act,R,AP,L,v) be a CTMDP and D € GM(C) a scheduler.
For all simple bisimulation closed sets of paths I1 it holds that

Pre,(I1) = Pre . (11).

Proof. By induction on the length 7 of cylinder bases. The induction base holds for all
v € Distr(S) since Prd ,([s]) = Ly v(s) = #([s]) = Pry 5, ({[s]}). With the induction
hypothesis that Pr? ,(I1) = Pr% ., (IT) for all v € Distr(S), D € GM and bisimulation
closed IT < Paths" we obtain the induction step:

pyn! ATH:f pr" ) u,p(ds, da, dt
ri([so] x Ag x Ty x IT) aletonts  p(sa (e ( ) tp(ds,da,dt)
- [ was) [ D(sday [ P <n) Mete) (A1)
s€fso0] acdy To  P(s,a-),D(s—>")

= ¥ %) ¥ D(s {a)) [ P

s€[so] acAo P(s,a,-),D(s—>

ih. Z Z a_J).)(ﬁ)'V(S)'D(S’{‘x}) ﬂﬁ([so],tx)(dt)

se[s0] ®€Ao To P([SO],%'),DZ([So]

Lt (H) Mi(sole) (dE)  (* LemmalZD¥)

> o (I Y (v(s) DG {a})) Mg (d1)

acdy Y To P([So],a,-),DZ([So]—)') s€[so]
) ) Ysefso] V(5) - D(s, {a})
-y [ e BOROWIO)

i I B([soa) D ([s0] > o Pselso] V(5)

[
= | Pr gﬁ) V([so]) - DZ([s0] s {&}) 7i((so0) (d1)

acho I T B(so]a )b ([s0] >

) f{[sO]}&(d[s])-[Ao Dx(ls].da) | Pr “—%-)(H) ME([s)) (A1)

E([so].a) (1)

To  P([s],a).D%([s]

Pr ., (1T 1500 (d [s],da, dt)
'/;[SOJ}XAOXTO P([S],“,'),Di([ﬂ—’")( ) Hop:

= Pr:gv({[SO]} X AO X TO X ﬁ)

where fi; pv is the extension of y,, p (Def.BI8) to sets of initial triples in C:

taﬁ,DZ :%SxActhm [0 1

Ir—>/v(d / D’([s],da) /RZOII([S],OC, t) Ni(sp.(dE). O
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According to Thm.[Z3} the quotient scheduler preserves the measure for simple bisimula-
tion closed sets of paths, i.e. for paths, whose state components are equivalence classes
under strong bisimilarity. To generalize this to sets of paths that satisfy a CSL path for-
mula, we introduce general bisimulation closed sets of paths:

Definition 7.7 (Bisimulation closed). Let C = (S, Act,R,AP,L,v) be a CTMDP and
C its quotient under strong bisimilarity. A measurable rectangle IT = Sq x Ag x Ty x -+ x
A, x T,y x S, is bisimulation closed iff S; = U;‘;O [si,j] fork; eNand 0 <i<n. Let

. ko kn
£ = ({1} % Ao x Toxoox A x T ]}
0 0

denote the corresponding rectangle in the quotient C.

Lemma 7.3. Any bisimulation closed set of paths I1 can be represented as a finite disjoint
union of simple bisimulation closed sets of paths.

Proof. Direct consequence of Def.[ZZ o

Corollary 7.1. LetC = (S, Act,R,AP,L,v) be a CTMDP. Then
Pry 5 (I1) = Pryp, (1)

for all D € GM and all bisimulation closed sets of paths I1.

Proof. Follows directly from Lemma[Z3land Thm. o

Using these extensions, we are ready to prove the main result of this chapter:

Theorem 7.4 (Preservation theorem). Let C = (S, Act,R,AP,L,v) be a CTMDP. For
all CSL state formulas @ and for all states u,v € S with u ~ v it holds that

ued® — yvEO.

Proof. By structural induction on ®.

1. If ® = g and a € AP, the induction base follows as L(u) = L(v).
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2. Intheinduction step, conjunction and negation are obvious. Thus we only consider
the transient state operator V<¢ and the long-run average operator:

o Let ® = V=Pg and IT = {7 € Paths” | m = ¢}. To show u £ V=@ implies
v £ V=Pg it suffices to show that for any V € GM there exists Y € GM
with Pry ,(IT) = Pry ,,(IT). By Thm. [ZZ the set IT is measurable, hence
IT = WS, I, for disjoint IT; € Fpupse. By induction hypothesis for path for-
mulas X!® and ® U ¥ the sets Sat(®) and Sat(¥) are disjoint unions of ~-
equivalence classes. The same holds for any Boolean combination of @ and
V. Hence IT = |J;Z, I1; where the I, are bisimulation closed. For all V € GM
and 77 = sy —2% o 220 ¢ et U(m) = V2 ([s0] foh, L. S [s4])-
Thus & mimics on 7 the decision of V?» on 7. In fact U’ = V'* since

ZTTGH hwn(vu)u, 7T) . VZV(ﬁ, (Xn)
ZTIEH hwn(vu) Z/{, 7-[)

UNV” (7:[> an) =

and VZV(fT, an) is independent of 7. With v, = ¥, and by Corollary [Z1 we

obtain Pry ,,(I1;) = Pr{ , v, (11,) = Pry vzv(fli) = Pry ,,(I1;) which carries
over to II for IT is a countable union of disjoint sets IT;.

o Let ® = L=PVY. Since u ~ v, it suffices to show that for all s € § it holds
s E L=PWiff [s] = L=P¥. The expectation of avg,y,, for t € Ry can be

expressed as follows:

1 t
f (- f Ismm(n@t')dt') Pro (dn)
Paths® \ 't Jo
1 t
- / Pr¢ ,{m € Paths" | n@t' & ¥ }dt'.
0

Further, the sets {r € Paths” | n@t' = ¥} and {n € Paths” | m & Ol"1¥}
have the same measure and the induction hypothesis applies to V. Applying
the previous reasoning for the until case to the formula tt U["-*1 ¥ once, we
obtain

Pr‘V"S)D{n € Paths*(C) | m = O[t/’t']‘l’} =Pry o {ﬁ € Paths’(C) | 7t = O[t/’t']‘l’}

forall t" € Ryo. Thus the expectations of avg,,y, on C and C are equal for all
t € Ry and the same holds for their limits if + — oco. This completes the proof
as for u ~ v we obtain u = L=PY iff [u] = L=PY iff [v] £ L=V iff v £ L=PW. O

This theorem shows that bisimilar states satisfy the same CSL formulas.

The reverse direction, however, does not hold in general. One reason is obvious: The
logic that we use throughout this thesis is purely state-based. However, the definition of
strong bisimulation also accounts for action names. Therefore it comes as no surprise
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that CSL cannot characterize strong bisimulation. However, there is another more pro-
found reason which is analogous to the discrete-time setting where extensions of PCTL
to Markov decision processes [SL95} [Bai98] also cannot express strong bisimilarity: CSL
and PCTL only allow to specify infima and suprema as probability bounds under a denu-
merable class of randomized schedulers; therefore intuitively, CSL cannot characterize
exponential distributions which neither contribute to the supremum nor to the infimum
of the probability measures of a given set of paths. Thus the counterexample from [Bai98,
Fig. 9.5] interpreted as a CTMDP applies verbatim to our case.

7.4 Conclusion

In this chapter we define strong bisimulation on CTMDPs and adapt the continuous
stochastic logic (CSL) to CTMDP such that it permits to reason about the maximum
and minimum achievable performance and dependability measures in CTMDPs.

Using measure-theoretic arguments, we further prove that CSL path formulas induce
measurable sets of paths. As this proof is done in the more general setting of CTMDPs,
it applies to CSL-path formulas for CTMCs, as well. In this way, we close a gap in the
theory of CSL, where the measurability of path formulas has not been discussed.

The main contribution of this chapter is the proof that strong bisimilarity preserves the
validity of CSL formulas. In this way, we justify the definition of bisimulation that we use
and embed it into the context of CSL. However, our logic is not capable of characterizing
strong bisimilarity. This is not surprising, as similar limitations are also known for logics
like PCTL in the discrete-time setting.

A promising approach to obtain a logic that is expressive enough to characterize CT-
MDPs are action based variants of CSL. To investigate such logics and their relation to
scheduler classes remains for future research.






8 Model checking generalized stochastic
Petri nets

Perfection is achieved, not
when there is nothing more to
add, but when there is
nothing left to take away.

(Antoine de Saint-Exupéryi)

In a stochastic Petri net [Nat80, IMol82], all transitions are delayed according to an
exponential distribution. Their associated token game induces a CTMC which represents
the SPN’s semantics.

This chapter considers generalized stochastic Petri nets [MCB84] (GSPNs) which ex-
tend SPNs with immediate transitions. Similar to the internal transitions in the closed
IMCs of Chapter[@, immediate transitions in a GSPN fire instantaneously. Accordingly, a
GSPN distinguishes exponentially delayed timed transitions from immediate transitions.
Conflicts between immediate transitions lead to so-called “confused” GSPNs, where con-
fusion arises if multiple immediate transitions are enabled at the same time. In principle,
the choice which of them executes next is not specified and hence, nondeterministic.

However, at the time GSPNs were developed, no analysis techniques were available
for nondeterministic and stochastically timed systems. Therefore, much work has been
spent in order to rule out confused GSPNs [MCB84, [CMBC93]. The solution that was
chosen already in [MCB84] is to assign weights to immediate transitions. If multiple im-
mediate transitions compete for execution, the proportion of their weights gives rise to
a discrete probability distribution which resolves the nondeterminism probabilistically.
Hence, all nondeterministic choices are replaced by probability distributions that are im-
plicitly encoded in the syntax of the GSPN.

In this approach, the modeler has to assign weights “at the netlevel” [CDFILICMBC93]],
that is, without knowing which immediate transitions actually get into conflict during the
token game. As observed already in [MCB84], finding reasonable weight-assignments is
difficult; for larger systems, it might even be practically impossible.

To mitigate against this shortcoming, the GSPN community tries to identify sets of im-
mediate transitions that might get into conflict during the evolution of the GSPN. These
extended conflict sets [CMBC93] rely on necessary conditions for a conflict and partition
the set of immediate transitions accordingly. In this way, weights become local to each
block of the ECS equivalence which facilitates the weight specification for the modeler.
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The quest to find suitable necessary conditions for the occurrence of conflicts between
immediate transitions led to extremely complex and technical definitions of extended
conflict sets. Among others, this is testified by the research papers [MBCCS87, (CMBC93,
MBCT91]] and their further refinements in [CDE91, IMBC*95, Bal00, Bal07]. However,
despite all this work, the authors of [TEP99] and [TE03]] still managed to disprove the
correctness claim (i.e. the claim that immediate transitions in different extended conflict
sets can never be in conflict) of the extended conflict set approach.

A further, more general shortcoming of weight-assignments is that weights only per-
mit to formalize positional strategies to resolve the nondeterministic choices that occur
in markings with competing immediate transitions. As we have seen in the previous chap-
ters, depending on the measure of interest, positional schedulers are far from optimal.

Therefore, we do not follow this approach, but strive for a general semantics of GSPNs
which accepts that nondeterminism occurs between competing immediate transitions.
In this way, we obtain a new definition of GSPNs which avoids the use of weights while
conservatively extending stochastic Petri nets [Mol82]. In this way, it resembles an ear-
lier approach in [HHMRO97] where compositional extensions of GSPN are discussed; in
this context, immediate transitions are equipped with action names for synchronization
purposes. This approach does not use the weight specification of the classical GSPN
definition either, but relies on the fact that the precedence of competing immediate tran-
sitions is often resolved by synchronization with the environment. However, as men-
tioned already in [HHMR97, Sec. 4], nondeterminism cannot be ruled out completely.
Instead, it generally occurs in the composed GSPNs due to competing immediate internal
T-transitions.

The same problem is also observed by the authors of [MHO06b] and [MHO06a]. In their
work, they propose a framework for CSL model checking of deterministic stochastic Petri
nets. The results in [MHO6D] are closely related to the approach taken in this chapter.
However, the technique that is proposed in [MHO06b] is again restricted to deterministic
stochastic Petri nets which induce a CTMC [MHO06b, Sec. 3].

The results of this chapter overcome these limitations and enable an analysis of nonde-
terministic GSPNs that may occur in the frameworks [MHO06b] and [HHMR97].

Opposed to earlier approaches, we describe the semantics of a GSPN by its marking
graph, which is isomorphic to a closed IMC. Hence, our nondeterministic GSPNs can be
analyzed by the approximation algorithm from Chapter

Organization of this chapter. Section Bl introduces some basic notation. In Sec.
we define the syntax of GSPNs without weight-assignments. Section B3] introduces their
semantics by interpreting their marking graph as an IMC. Finally, Sec. B4 provides a case
study where we apply our GSPN semantics to analyze the dependability characteristics
of a workstation cluster which is modeled by a nondeterministic GSPN.
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8.1 Preliminaries

Our definition of GSPNs differs from that in [MCB84]], as we do not support the specifica-
tion of weights for immediate transitions. Specifically, we propose to completely abandon
the idea of resolving the nondeterministic choices by weight-specifications.

To obtain a simple and semantically precise definition of our GSPNs, we only distin-
guish between timed and immediate transitions and do not allow for further priority
specifications within the class of immediate transitions. Moreover, we do not care about
marking dependent rates. Note however, that this is no severe restriction, as it is straight-
forward to adapt our approach to the aforementioned generalizations by extending the
transformation from GSPNs to IMCs such that it reflects the priority levels and marking
dependent rates in the induced marking graph.

As in Petri nets, a GSPN consists of finitely many places and transitions; each place can
contain an unbounded finite number of tokens. Informally, the state of a GSPN — called
a marking — is completely determined by the number of tokens in each place:

Definition 8.1 (Marking). Let P be a nonempty, finite set of places. A marking m is a
mapping m : P - N. Let M = {m : P — N} denote the set of all markings.

8.2 The syntax of GSPNs

A GSPN consists of a finite, nonempty set of places and finitely many transitions that con-
nect those places; transitions are further partitioned into the set of immediate transitions
which execute instantaneously and the set of timed transitions, which are delayed by an
exponentially distributed amount of time.

Example 8.1. Consider the GSPN G in Fig. It consists of the set of places (denoted by
circular nodes) {po, . . ., p3 }; moreover, { t,, t, t,, tg } is its set of timed transitions (depicted
as rectangles) and {t3, t, ts, ts, t7} is the set of immediate transitions (solid bars).

Each transition has a number of input, output and inhibition placeﬂ depicted as arcs
in Fig. Informally, a transition has concession if enough tokens are available in all its
input places, while the corresponding inhibition places are empty. The effect of executing a
transition is a new marking, which is obtained by removing a token from each input place
and adding tokens to the transitions output places. Immediate transitions execute imme-
diately upon becoming enabled, whereas timed transitions are delayed by an exponentially
distributed duration, specified by the transition rate. &

To define a GSPN formally, we encode its input, output and inhibition places as func-
tion T — (P — N) which assign to each transition a mapping P — N, specifying the
cardinality of the input, output or inhibition places.

'Inhibition places may disable an otherwise enabled transition depending on the current marking.
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Definition 8.2 (Generalized stochastic Petri net). A generalized stochastic Petri net
(GSPN) is a tuple G = (P, T, A, I, O, H, my) where

o P is a nonempty, finite set of places,

o T =T,u T, is a finite set of transitions partitioned into the sets T; and T; of timed
and immediate transitions,

o A:T; - R,y is a rate assignment,

o I: T — (P — N) defines the transitions” input places,

e O:T — (P — N) the transitions’ output places and

o« H:T — (P — N) defines the transitions inhibition places.

Finally, m, € M is the initial marking.

For a given transition ¢t € T, we use I; to denote t’s input places, that is, we define
I;(p) = I(t)(p). Similarly, we use O, and H, to denote the output and inhibition places
of t. Moreover, for any GSPN § and transition t € T, we use

pre(t) ={peP|I,(p) >0} and
post(t) = {p ¢ P[ O.(p) > 0}

to define the sets of input and output places of transition t.

Example 8.2. The input places of the transitions ts and tg in Fig. are represented as
follows:

Its(p):{l ifp e {2 p3) Ifg(p):{; ifp=ps

0 otherwise otherwise.

Similarly, the formal description of the output places yields

Ot(,(p)={1 Jp=po Ots(p)={2 Ip=p

0 otherwise 0 otherwise.

In the graphical notation, we do not label arcs that specify input or output places with car-
dinality 1. In Fig. the initial marking my = (1,0,0,0) is depicted by the number of
tokens in each place. For notational convenience, we specify markings as vectors. &
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(a) The example GSPN G. (b) Marking graph G(G).

Figure 8.1: A confused GSPN and its induced marking graph.

8.3 A new semantics for GSPNs

The semantics of a GSPN is defined by its marking graph, which is informally obtained
by playing the “token game”. To define this concept formally, we state the conditions that
must be satisfied for a transition to execute:

Definition 8.3 (Concession and enabled transitions). Let G = (P, T,A, 1,0, H, my)
be a GSPN and m € M. The set of transitions with concession in marking m is

Conc(m) ={teT|VpeP.m(p)>1(p) nm(p) < Hy(p)}

The set of enabled transitions in marking m is

en(m) = Conc(m)nT; ifConc(m)nT, +2
| Conc(m) otherwise.

We distinguish transitions that have concession from those that are enabled: If a transi-
tion has concession in a marking, the number of tokens in its input and inhibition places
is such that the transition could execute; however, GSPNs adopt the maximal progress as-
sumption which states that immediate transitions take precedence over timed transitions.
Therefore, if timed and immediate transitions have concession in a marking m, only the
immediate transitions become enabled.

We classify markings according to their enabled transitions: If an immediate transition
is enabled in a marking m e M, the marking changes immediately; we refer to such
markings as vanishing. Otherwise, if only timed transitions are enabled, we call m a
tangible marking.
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Definition 8.4 (Tangible and vanishing markings). Let G = (P, T,A,1,0,H, my) be
a GSPN. A marking m € M is vanishing ifen(m) n T; # &; otherwise, the marking m is
tangible.

In a tangible marking m, only timed transitions are enabled. The residence time in m
is then determined by a negative exponential distribution with rate ¥ cen(m) A(). If m
is vanishing instead, one of the immediate transitions executes directly, i.e. the sojourn
time in m is deterministically zero. In this case, none of the timed transitions which have
concession can execute. The effect of executing a transition is formally described by the
transition execution relation:

Definition 8.5 (Transition execution). Let G = (P, T,A, I, O, H,m,) be a GSPN. We
define the transition execution relation [-) € M x T x M such that for all markings
m, m' € M and transitions t € T it holds:

m[t)ym' < teen(m)AVpeP.m'(p)=m(p)-L(p)+ O:«p).

Two markings m and m’ are in the one-step successor relation ~gspy (denoted m ~gspy
m') iff a transition ¢ € en(m) exists such that m [ ¢) m’ holds. Accordingly, the reachability
set for marking m € M is defined as

Reach(m) = {m' e M | m ~Egpy m'},

where ~ ¢, denotes the reflexive and transitive closure of the relation ~gspy.

With Def. B5land the reachability set, we are now ready to define the semantics of a
GSPN. It is obtained by successively applying the transition execution relation to generate
the (finite or infinite) marking graph of the GSPN:

Definition 8.6 (Marking graph). Let G = (P, T, A, 1, O, H, my) be a GSPN with imme-
diate transitions in T; and timed transitions in T,. Then G induces the marking graph
M(G) = (M, T;, —, -, my), where

o M = Reach(my) is the set of reachable markings in G,
o ——~C M xR,yx M is the timed transition relation where
mm = u=>S{Mt) [ teT,Anm[t)m'|} >0
forallm,m’ € M and p € R,. Further

o «--C M x Act x M is the immediate transition relation where for all m,m’ ¢ M
and t € T; it holds m > m' <= m [t) m'.
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Here we use the multiset {|A(t) | t € T; A m[t) m’|} to sum up the rates of all Marko-
vian transitions that lead from marking m to marking m’. As for classical Petri nets, we
define the notion of k-boundedness: A GSPN G with initial marking m, is k-bounded
iff the number of tokens in each place of all reachable markings is at most k. As a direct
consequence, a k-bounded GSPN induces a finite marking graph. We do not discuss the
details of determining whether a GSPN is bounded or not, but simply assume that all
GSPNss that are intended for our analysis induce a finite marking graph.

Under this assumption, it is straightforward to define the induced IMC of a GSPN by
simply interpreting its finite marking graph as an IMC. Informally, the GSPN’s imme-
diate transitions correspond to interactive transitions in a closed IMC. Similarly, timed
transitions in the GSPN are turned into Markovian transitions in the induced IMC:

Definition 8.7 (Induced IMC). Let G = (P, T,A,1,0,H, my) be a k-bounded GSPN
with marking graph M(G) = (M, T;, —, <, mq). Then G induces the closed IMC
Z(G) = (S, Act, IT, MT, v) where

o S = M is the finite set of states,
o Act = Act; U Act, is the set of actions, where Act, = @ and Act; = T},
« ITCS x Act x S with (m,t,m") € IT <> m "~ m’ form,m’ e M and t € T},

« MT € SxRyo xS with (m, u,m') e MT <= m “~ m’ for m,m’ € M and u € R,
and

o v={my~1}.

Stochastic Petri nets (SPNs) form a strict subclass of GSPNs which have a precisely
defined semantics [Nat80, IMol81, IMol82]: Each marking in an SPN corresponds to a
state of a CTMC; the set of enabled transitions in each marking determine the transition
in the CTMC, where the rates of those SPN transitions that lead to the same successor
marking are cumulated.

Corollary 8.1. The semantics of GSPN given in Def.[87 conservatively extends SPN.

Proof. Follows immediately by the definition of the SPN semantics in [Mol82]. o

Hence, our definition of GSPNs is a conservative extension of stochastic Petri nets.
However, our proposed semantics is different to that of [MCB84, (CMBC93|], as we do
not permit to augment immediate transitions with weights but interpret the race between
immediate transitions nondeterministically.
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This allows us to define a semantics for all GSPNs. In particular, we do not have to
restrict to well-defined GSPNss:

Example 8.3. Consider the GSPN G depicted in Fig.[8.1(a) and its marking graph G(G) in
Fig. According to [[TF03, Sec. 2.4], G is not well-defined: In marking (0,0,1,1), the
set of reachable tangible markings is {(1,0,0,0), (0,0,0,1)}.

If t5 is chosen, the tangible marking (0,0,0,1) is reached with probability 1; however,
if t is chosen, we enter the tangible marking (1,0,0,0) with probability 1. Hence, the dis-
tribution over next stable markings depends on the way, the nondeterminism in (0,0,1,1)
is resolved. &

In the next section, we model a dependable workstation cluster as a GSPN. As we
will see, this GSPN model contains nondeterministic choices which correspond to the
different strategies to repair failed components within the cluster.

8.4 Dependability analysis of a workstation cluster

In this section, we present our results for the analysis of a dependable workstation cluster
which is modeled by a GSPN [HHKO0]]. The setting is depicted in Fig. We consider
two identical subclusters, each of which consists of N € N, workstations that are inter-
connected by a switch. Moreover, via their switches and a central backbone, the work-
stations in the two subclusters can communicate with each other. For the dependability
analysis, we use the failure rates of the components which are given in [HHK00] and
restated in Table

For our verification, we model the workstation cluster as the GSPN depicted in Fig.
The first two rows represent the N workstations in the left and right subcluster, respec-
tively. Each single workstation fails after 500k of operation, on average. Hence, we
associate a failure rate of = to each workstation. Accordingly, the timed transitions
LeftWorkstationFail and Right WorkstationFail are marking dependent: If n tokens are in

1

place Left WorkstationUp, each of them fails with rate ;. Therefore, the timed transition

LeftWorkstationFail has rate z;. The same reasoning applies for Right WorkstationFail.

Once a component has failed, a single repair unit is available that can repair one failed
component at a time. Depending on the type of component, the repair operation takes

event duration event duration
LeftWorkstationFail 500h | LeftWorkstationRepair 0.5h
Right WorkstationFail 500h | RightWorkstationRepair 0.5h
LeftSwitchFail 4000h | LeftSwitchRepair 4h
RightSwitchFail 4000h | RightSwitchRepair 4h
BackboneFail 5000h | BackboneRepair 8h

Table 8.1: Average durations for component failures and repairs.
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Backbone

RightSwitch

LeftSubcluster RightSubcluster

Figure 8.2: A dependable workstation cluster with 2N workstations [HHKOO].

different average times, cf. Tab.

Note that the GSPN model in Fig.B3lis confused: Whenever the repair unit is available
and different components have failed, the choice which component to repair next is non-
deterministic. In the GSPN model, this nondeterminism is represented by the immediate
transitions Left WorkstationInspect, Right WorkstationInspect, LeftSwitchInspect, etc.

By applying Def. 87, the GSPN model induces an IMC. As reported in [HHKOO], the
resulting state space of the IMC consists of 820 states if N = 4 and 2772 states for N = 8.
In our prototypical implementation, we use bisimulation minimization on the obtained
IMC to reduce the size of the state space. As can be seen in Table[82), the symmetry in the
GSPN model yields enormous state space reductions in the bisimulation quotient. They
are further amplified by the fact that for a time-bounded reachability analysis, we can
make all goal states absorbing before computing the bisimulation quotient.

In the following, we analyze two of the dependability measures that are mentioned
in [HHKOQ]. Therefore, we describe the minimum quality of service (QoS) criterion of
a workstation cluster with 2N workstations by the number k € {2,3,...,2N} of worksta-
tions that are required to be operational and mutually connected.

For example, if N = 4 and k = 5, at least 5 of the 8 workstations must be up. Moreover,
they must be able to communicate with each other; hence, satisfying the QoS criterion k =
5 implies that both switches and the backbone are operational.

For a marking m € M (which corresponds to a state s € S of the IMC), let

left, (m
right, (m

= m (LeftSwitchUp) > 0 A m (Left WorkstationUp) > k

= m (RightSwitchUp) > 0 A m (Right WorkstationUp) > k

= m (LeftSwitchUp) > 0 A m (RightSwitchUp) > 0 A m (BackboneUp) > 0
= m (LeftWorkstationUp) + m (Right WorkstationUp) > k A conn(m).

conn(m

~— ' N N

sharedy(m

With these definitions, we can assign an atomic propositions min, to all states s € S which
correspond to a marking that meets the QoS requirement in the underlying GSPN:

miny € L(s) <= left, (s) v right (s) v shared(s).
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LeftWorkstationFail Left WorkstationInspect LeftWorkstationRepair

LeftWorkstationUp LeftWorkstationDow, Left WorkstationInRepair

RightWorkstationFail RightWorkstationInspect RightWorkstationRepair

RightWorkstationInRepair

Right WorkstationUp RightWorkstationDo

LeftSwitchFail LeftSwitchInspect LeftSwitchRepair

LeftSwitchUp LeftSwitchDown LeftSwitchInRepair

RightSwitchFail RightSwitchInspect RightSwitchRepair

RightSwitchInRepair

RightSwitchUp RightSwitchDown

Backbonelnspect BackboneRepair

BackboneFail

BackboneUp BackboneDown BackbonelnRepair

RepairUnitAvailable

Figure 8.3: GSPN model of the fault tolerant workstation cluster [HHKOO].

We analyze the following dependability measures for different parameters N and k:

“The chance that the QoS constraint k is violated within the next z time units is less
than p™:

This measure corresponds to the maximum time-bounded reachability probability
for the set of goal states Sj,q = {s € S | s # miny } that violate the QoS constraint k.
It is formalized by the CSL state formula @, taken from [HHKOO]:

CD4 = PSP(OSZ (ﬁmlnk)).
To model check s = @4, it suffices to compute

pa(s) = sup Pry |, (<>[0’Z] Sbud)
DeGM
and to decide whether p,(s) < p holds. In this section, we aim at computing the
actual least upper bound on the achievable probability. Therefore, Table B2 lists
the values p,(s) instead of the truth values for s = @,.

We compute the probability p, for two different markings: The state s, denotes the
marking where all components of the cluster are operational. On the other hand,
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N |k | states | T | measure results fime
states IMC | PRISM | IMC | PRISM
4| 3 820 129 | 1000 0.0009 | 0.0009 | 104h 73s
41 5 820 8 | 1000 0.5034 | 0.5034 | 3.1k 10s
8| 8| 2772 703 | 200 Pa(Sopt) 0.0076 | 0.0076 | 2.7h 18s
8110 | 2772 14 | 100 0.0676 | 0.0676 | 196s 3s
8110 | 2772 14 | 1000 0.5034 | 0.5034 | 5.3h 33s
4| 3 820 130 | 1000 0.0834 | 0.0437 | 91k 75s
8| 8| 2772 142 200 |  pa(se) 0.2275 | 0.1876 | 3.2h 18s
8110 | 2772 15| 200 0.1393 | 0.1393 | 2.2h 7s
4| 3 820 424 20 0.3797 | 0.3038 | 304s 4s
4| 5 820 164 20 0.4219 | 0.3717 | 90s 4s
4| 8 820 164 20 max.s, .ps(s) 0.4278 | 0.4250 | 15m 4s
8| 3| 2772 | 1412 10 $€%bad 0.9319 | 0.7457 | 277s 6s
8110 | 2772 316 10 0.9805 | 0.9178 | 45s 78
8|16 | 2772 316 20 0.6147 | 0.6089 | 36m 123s

Table 8.2: Results of the dependability analysis.

et 18 @ marking with the minimum number of working components to satisfy
the QoS constraint k. For example, if N = 4 and k = 3, s, is the state where k
workstations and the switch of the left (or right) subcluster are working, whereas
all other components have failed. Hence s,;; barely fulfills the QoS requirements.

2. “If the QoS constraint k is violated, the probability to face the same problem after z
time units is less than p”:

This measure corresponds to a time-interval bounded reachability probability. For
a single state s € S, it is specified in [HHKOO]] by the CSL state formula ®s:

D5 = ~ming —> PSP(O[Z’Z] (~ming)).

Obviously, all states s € (S \ Sy,q) satisfy @s. Therefore, we aim at deciding whether
Spad = s, where A £ @5 holds iff all states in A ¢ S satisfy @s. Let ps(s) =
SUp ey Pre p (O1F7184,4) be the maximal probability of the event &[271S,,, start-
ing from initial state s. Then max;cs, , ps(s) is the desired dependability measure.

Note that in theory (cf. Sec. 6.3.2), we cannot compute the probability in the in-
duced IMC for a point-interval [z, z]. Therefore, we approximate the event by us-
ing a short time-interval [z, z+¢], where € = 107°.

In the following, we compare the results that we obtain by our prototypical imple-
mentation of the GSPN semantics from Sec. 83 and the IMC approximation algorithm
(Chapter [6)) to the probabilities that are obtained by the PRISM model checker [KNP02,
HKNPO6] on the classical GSPN model with weight specifications as given in [HHKO00].
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As pointed out earlier, nondeterminism occurs in the workstation cluster whenever
different components have failed and the repair unit has to choose which one to repair
next. However, PRISM is not capable of analyzing nondeterministic and randomly timed
models such as CTMDPs and IMCs. Instead, the nondeterminism in the PRISM modell
is resolved by assigning high rates to the immediate transitions. In this way, the GSPN is
transformed into a CTMC, which is then analyzed. The outcomes are shown in Table 82

Some remarks concerning this comparison are in order:

In the first block of Table the probabilities p,(sqy) that are computed by our im-
plementation of the IMC-based semantics are very close to those obtained by analyzing
the weighted GSPN model.

This is no longer true if we consider the initial state s,,;;: Here, the worst case probabil-
ities in the nondeterministic GSPN semantics are approximately 4% higher than those
obtained by the weighted GSPN, which resolves the nondeterminism by equi-probability.
This is explained as follows:

Only k workstations and the left switch remain operational in state s.;. In this sit-
uation, the scheduling strategy for the RepairUnit matters: In the worst case, all faulty
workstations in the right subcluster are repaired first; however, as long as the right switch
and the backbone are defective, this does not improve the dependability probability. The
uniform probability distribution used in classical GSPN model does not reflect this worst
case scenario, effectively producing false positives.

This phenomenon is not observed for initial state s, as the probability to reach a
state such as s, that is badly degraded, is extremely low. As the repair time is short com-
pared to the failure rate, only states with few failed components occur with considerable
probability. Therefore, the degree of nondeterminism is low for initial state s,.

If k > N, the QoS constraint is violated as soon as one switch or the backbone fail.
Hence, in this case, the strategy of the repair unit does not matter. Accordingly, the results
agree for the case N = 8, k = 10 and initial state s.,;.

For ®@s, the dependability measures differ considerably: In the worst case, the depend-
ability is 18% worse than predicted by the classical GSPN model. This difference is ex-
plained as follows:

Assume that sg,,, is the state where both switches, the backbone and all N worksta-
tions in the right subcluster have failed, whereas in the left subcluster, all workstations
are operational. To compute ps(szo.,), We have to select the worst schedule possible.
Therefore, note that if k < N, repairing the left switch establishes QoS. Thus, the desired
worst case probability is obtained if all workstations in the right subcluster are repaired
— which does not establish QoS — before the left switch.

However, in the classical GSPN model, each immediate transition has weight 1; there-
fore, the probability to repair the switch in the otherwise intact left subcluster is . Ob-
viously, this implicit strategy does not reflect the worst case scenario, which is needed to

2The source code of the PRISM model is available online on the PRISM website:
http://www.prismmodelchecker.org/casestudies/cluster.php


http://www.prismmodelchecker.org/casestudies/cluster.php

8.4 Dependability analysis of a workstation cluster 231

decide @s.

Again, no difference occurs if k = 2N: In this case, all components must be operational
in order to satisfy QoS. Hence, the scheduler is irrelevant and the resulting probabilities
coincide (up to rounding errors).

Further, note that our prototypical implementation is not optimized yet; for example,
it relies on an arbitrary precision floating point library (the MPFR library) that does not
make use of the underlying floating point hardware. Therefore, it is realistic to expect
improvements in the performance of our model checking tool. All measurements were
carried out on a 2.2GHz Xeon CPU with 16GB RAM.

In [Joh07], the dependable workstation cluster [HHKO00] has been modeled as an IMC,
directly. More precisely, the IMC model is obtained by composing (untimed) labeled tran-
sition systems that model the cluster’s components with corresponding time constraints
that are specified as IMCs (see [Joh07, Fig. 10.3]). The approach taken in [Joh07] is to
transform the composed IMC model into a globally uniform CTMDP which is then sub-
ject to a time-bounded reachability probability analysis. In order to obtain a globally uni-
form CTMDBP, the approach relies on the assumption that the underlying IMC is globally
uniform, as well. From a modeling point of view, this is not the case in the workstation
cluster. Hence, to still achieve global uniformity, the time-constraints that are weaved
into the IMC model in [Joh07] are uniformized before the composition. In this way, the
resulting IMC is globally uniform; however, it contains self-loops that are introduced
artificially by the uniformization of the time-constraints [Joh07, Fig. 10.4].

In contrast to our results, [Joh07)] computes time-bounded reachability probabilities
for time-abstract scheduler classes. However, as shown before in [BHKHO5] and in
Sec. B3 the implicit uniformization that is used in [Joh07] is not measure preserving for
the class of time-abstract schedulers: Intuitively, a history dependent but time-abstract
scheduler can estimate the amount of time that has passed by observing which states have
been visited. Introducing artificial self loops as done in [Joh07] exposes additional infor-
mation to such schedulers: By counting the number of times such a selfloop is taken, the
otherwise time-abstract scheduler can improve (as proved in [BHKHO05] and in Sec. E3)
its decisions considerably. Thus it may exploit the structural changes in the CTMDP that
are induced by uniformization. Due to these differences, the results of [Joh07] are not
directly comparable to ours.

As expected from a theoretical point of view, all probabilities that are computed in our
IMC model are larger or equal to those that are obtained by the PRISM model. This stands
in contrast to the surprising result in [Joh07, p. 187], where the probabilities that are
obtained by analyzing the CTMC model are larger than those of the IMC model [Joh07,
Sec.10.1.3]. The reason for this phenomenon remains unclear; however, our results do not
support the claim in [Joh07] that imprecisions in the PRISM model lead to probabilities
that are too large.
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8.5 Conclusion

Motivated by the development of our approximation algorithm for the analysis of IMCs
(cf. Chapter[d), we propose a nondeterministic semantics for generalized stochastic Petri
nets and omit the weight-specification that has been used in the classical GSPN defini-
tions. In this way, all static (qualitative) analyses such as k-boundedness, reachability and
coverability are also applicable to our modified definition of GSPNE.

It remains an interesting question for future research to apply the results in this chapter
to analyse the compositional extensions of GSPN models that are proposed in [HHMR97]].
When [HHMR97]] was published, the analysis of compositional GSPNs was restricted to
deterministic instances. We expect that applying the results of this chapter to the com-
positional modeling framework permits the analysis of a much broader class of compo-
sitional GSPNs.

If a GSPN is k-bounded, it induces a closed IMC with a finite state space on which
important performance and dependability measures can be computed.

We apply our definition to a case study from the literature and compare the results
of our technique to those that are obtained by the classical weighted GSPN semantics.
Thereby it turns out, that the reliability estimates that are obtained by analyzing the clas-
sical GSPN model are up to 18% higher than those that might actually occur.

These false positives clearly prove that nondeterministic modeling is essential in the
area of dependability analysis.



9 Conclusion

When my supervisor Joost-Pieter introduced me to CTMDDPs, I hardly had a background
in stochastic modeling. However, with his guidance and our joint research on bisimula-
tion minimization for CTMDPs, I slowly got more confident in my understanding of
stochastic processes and probability & measure theory. The results of this early work are
the definition of bisimulation for CTMDPs in Chapter []and the proof that it preserves
not only CSL, but all quantitative measures.

In the sequel, I gave a talk on this topic at the University of Twente, when Mariélle
asked an elementary question: “Wouldn'’t it be better for the scheduler if it was allowed to
decide later, when the state is actually left?”

The subsequent research of Mariélle, Joost-Pieter and myselfled to the results in Chap-
ter @l where we study a hierarchy of scheduler classes and characterize their relationships.
Our motivation was to delay the scheduling decisions in CTMDPs. Therefore, we inves-
tigated local uniformity and defined late schedulers. In retrospect, the latter turned out
to be the most influential idea for the achievements in this thesis.

When I visited his group in Saarbriicken, Holger asked me to give a talk about local
uniformity and late schedulers. The following discussion with Lijun was the most reveal-
ing of my entire PhD time. When we were finished, we had sketched the discretization
for locally uniform CTMDPs which is the basis of the time-bounded reachability analysis
in Chapter @ In the following months, we proved that our approximation is quantifiably
correct, that is, it determines the maximal or minimal reachability probability in a locally
uniform CTMDP up to an error which can be made arbitrarily small.

This result encouraged further research: We adapted the idea behind our discretization
technique to IMCs and extended it to also account for lower time-interval bounds. The
result is the first model checking algorithm for CSL on IMC:s. It is presented in Chapter[dl

At roughly the same time, Holger, Lijun, Sven and I discussed about a new seman-
tics for GSPNs. However, at that time, no model checking algorithms were available
that would have made our proposal attractive to a broader audience. Luckily, this has
changed by now: With the achievements in ChaptersBland @ we are able to model check
nondeterministic GSPNs. This is the topic of Chapter [8 that proposes a new semantics
for GSPNs that overcomes the shortcomings in modeling nondeterminism of the former
approaches. By means of a case study which considers dependability characteristics of a
workstation cluster, we show that nondeterministic modeling indeed makes a difference:
As it turns out, earlier reliability predictions that were obtained in the classical GSPN
semantics are up to 18% too optimistic. These false positives clearly prove the necessity
of analyzing nondeterministic and randomly timed systems.
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To conclude the thesis, we summarize our achievements and propose directions for
future research:

» We define a hierarchy of time-dependent scheduler classes and investigate their ex-

pressive power. Moreover, we propose local uniformization and identify the sched-
uler classes for which it is measure preserving. This culminates in the discovery
of late schedulers that are more expressive than the scheduler classes considered
previously and in the literature.
Future research: The definition of late schedulers is limited to locally uniform CT-
MDPs. To bridge this gap and to define corresponding schedulers for arbitrary
CTMDPs is an important further step. In the same context, the question whether
local uniformization is measure preserving w.r.t. such a new scheduler definition
is another interesting starting point for future research.

o We develop an efficient and quantifiably precise algorithm that computes time

bounded reachability probabilities in locally uniform CTMDPs with respect to
time- and history-dependent late schedulers. To the best of our knowledge, this
is the first time that such an analysis becomes feasible.
Future research: The definition of late schedulers on arbitrary CTMDPs is an open
problem. We believe that in combination with the results on local uniformization
from ChapterH] such a definition will allow us to model check non-locally uniform
CTMDPs with respect to late schedulers.

o Along similar lines, we derive a model checking algorithm that verifies a broad
class of CSL formulas on IMCs. It is the first algorithm that is not restricted to
specific subclasses but enables the analysis of arbitrary IMCs.

Future research: Model checking long run average properties and specific instances
of until formulas remain unsolved problems which must be tackled.

« We introduce strong bisimulation minimization for CTMDPs and prove that it pre-

serves all quantitative measures. Moreover, we define CSL on CTMDPs and prove
its measure theoretic soundness.
Future research: Chapter[Jis based on time- and history dependent schedulers. It
is an open question whether its results also apply to less powerful schedulers. Con-
sidering action-based variants of CSL is another promising approach to obtain a
logical characterization for strong bisimilarity.

» We define a new semantics for GSPNs that allows nondeterminism to occur in the
model. Via a transformation which turns a GSPN into an equivalent IMC, we can
model check CSL formulas on GSPNs. Finally, we show the applicability of this
approach by means of a larger case study.
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