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Abstract. Hermanns has introduced interactive Markov chains (IMCs) which
arise as an orthogonal extension of labelled transition systems and continuous-
time Markov chains (CTMCs). IMCs enjoy nice compositional aggregation prop-
erties which help to minimize the state space incrementally. However, the model
checking problem for IMCs remains unsolved apart from thoseinstances, where
the IMC can be converted into a CTMC. This paper tackles this problem: We in-
terpret the continuous stochastic logic (CSL) over IMCs anddefine the semantics
of probabilistic CSL formulas with respect to the class of fully time and history
dependent schedulers. Our main contribution is an efficientmodel checking algo-
rithm for verifying CSL formulas on IMCs. Moreover, we show the applicability
of our approach and provide some experimental results.

1 Introduction

The success of Markovian models for quantitative performance and dependability eval-
uation is based on the availability of efficient and quantifiably precise solution methods
for continuous-time Markov chains (CTMCs) [3]. On the specification side, the contin-
uous stochastic logic (CSL) [2, 3] allows to specify a wide variety of performance and
dependability measures of interest. A CTMC can be conceivedas a labelled transition
system (LTS) whose transitions are delayed according to an exponential distribution.
Opposed to classical concurrency theory, CTMCs neither support compositional mod-
elling [19] nor do they allow nondeterminism in the model. Several efforts have been
undertaken to overcome this limitation, including formalism like the stochastic Petri
box calculus [22], statecharts [7] and process algebras [20, 17].

Interactive Markov chains (IMCs) [18] conservatively extend process algebras with
exponentially distributed delays and comprise most of the other approaches’ benefits [10]:
As they strictly separateinteractivefromMarkoviantransitions, IMCs extend LTSs with
exponential delays in a fully orthogonal way. This enables compositional modelling
with intermittent weak bisimulation minimization [17] andallows to augment existing
untimed process algebra specifications with random timing [7]. Moreover, the IMC for-
malism is not restricted to exponential delays but allows toencode arbitrary phase-type
distributions such as hyper- and hypoexponentials [26].

Since IMCs smoothly extend classical LTSs, the model has received attention in
academic as well as in industrial settings [8, 14, 15]. In practice however, the theoretical
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benefits have partly been foiled by the fact that the analysisof IMCs is restricted to
those instances, where the composed IMC could be transformed into a CTMC. However,
IMCs support nondeterminism which arises both implicitly from parallel composition
and explicitly by the deliberate use of underspecification in the model [18]. Therefore
IMCs are strictly more expressive than CTMCs. As a result, model checking IMCs is
an unexplored topic thus far.

In this paper, we overcome this limitation and propose an efficient model checking
algorithm to verify CSL formulas on arbitrary IMCs. In our analysis, we use fully time
and history dependent schedulers to resolve all of the IMC’snondeterministic choices.

The crucial point in model checking CSL is to compute the maximum (and mini-
mum) probability to visit a set of goal states in some time intervalI. We characterize
this probability as the least fixed point of a higher-order operator which involves inte-
gration over the time domain. Then we useinteractive probabilistic chains(IPCs) [15]
to define a discretization which reduces the time interval bounded reachability problem
in IMCs to the problem of computing step-interval bounded reachability probabilities
in IPCs. More precisely, we approximate the quantitative behaviour of the IMC up to
an a priori specified error boundε > 0 by its induced IPC and prove that its maxi-
mum step-interval bounded reachability coincides (up toε) with the achievable time-
interval bounded reachability probability in the underlying IMC. The resulting IPC is
then subject to a modified value iteration algorithm [5], which maximizes the step-
interval bounded reachability probability. The time complexity of our approach is in
O

(

|Φ| ·
(

n2.376 +
(

m + n2
)

· (λb)2/ε
))

, where|Φ| is the size of the formula, andn, m
are the number of states and transitions of the IMC, respectively. Further,b = sup I is
the upper time interval bound andλ is the maximal exit rate in the IMC.

Although we present all results only for maximum time-bounded reachability prob-
abilities, all proofs can easily be adapted to the dual problem of determining the mini-
mum time-bounded reachability probability.

Most of the technical details have been omitted from the paper. However, all proofs
and the technicalities that are necessary to establish the error bounds that are stated
within the paper can be found in [23, Chapter 6].
Organisation of the paper.The paper proceeds by first giving necessary definitions and
background in Section 2. Section 3 presents algorithms for computing the time-interval
bounded reachability for IMCs. Section 4 focuses on model checking algorithms for
CSL, followed by experimental results in Sec. 5. Section 6 discusses related work and
concludes the paper.

2 Preliminaries

LetX be a finite set. Probability distributions overX are functionsµ : X → [0, 1] with
∑

x∈X µ(x) = 1. If µ(x) = 1 for somex ∈ X , µ is degenerate, denotedµ = {x 7→ 1};
in this case, we identifyµ and x. The set of all probability distributions overX is
denotedDistr(X ). Accordingly,µ(X) =

∑

x∈X µ(x) for all X ⊆ X .

2.1 Interactive Markov chains

We recall the definition of interactive Markov chains (IMCs)given in [17]:



Definition 1 (Interactive Markov chain). An interactive Markov chainis a tupleM =
(S,Act , IT ,MT , ν) whereS andAct are nonempty sets of states and actions,IT ⊆
S × Act × S is a set of interactive transitions andMT ⊆ S × R>0 × S is a set of
Markovian transitions. Further,ν ∈ Distr(S) is theinitial distribution.

We distinguishexternalactions inActe from internal actions inAct i and setAct =
Acte ∪ Act i. Several IMCs may be composed via synchronisation over the set Acte

of external actions, yielding again an IMC. For details, we refer to [17]. In this paper,
we considerclosedIMCs [21], that is, we focus on the IMCM that is obtained after
composition. Accordingly,M is not subject to any further synchronisation and all re-
maining external actions can safely be hidden. Therefore, we assume thatActe = ∅ and
identify the setsAct andAct i.
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Fig. 1.Example IMC.

For Markovian transitions,λ, µ ∈ R>0 denote rates of
exponential distributions.IT (s) = {(s, α, s′) ∈ IT} is the
set of interactive transitions that leave states; similarly, for
Markovian transitions we setMT (s) = {(s, λ, s′) ∈ MT}.
A states ∈ S is Markovianiff MT (s) 6= ∅ andIT (s) = ∅;
it is interactiveiff MT (s) = ∅ andIT (s) 6= ∅. Further,s
is ahybrid stateiff MT (s) 6= ∅ andIT (s) 6= ∅; finally, s
is adeadlock stateiff MT (s) = IT (s) = ∅. MS ⊆ S andIS ⊆ S denote the sets of
Markovian and interactive states inM. We definepostM (s) = {s ∈ S | R(s, s′) > 0}.

Example 1.Let M be the IMC depicted in Fig. 1. Thens0 is a Markovian state with a
transition(s0, 0.3, s2) ∈ MT (s) (depicted by a solid line) to states2 with rateλ = 0.3.
The transition’s delay is exponentially distributed with rateλ; hence, it executes in the
next z ∈ R≥0 time units with probability

∫ z

0
λe−λtdt =

(

1 − e−0.3z
)

. As states0

has two Markovian transitions, they compete for execution and the IMC moves along
the transition whose delay expires first. Clearly, in such arace, thesojourn timein s0

is determined by the first transition that executes. As the minimum of exponential dis-
tributions is exponentially distributed with the sum of their rates, the sojourn time in
a states is determined by theexit rate E(s) =

∑

s′∈S R(s, s′) of states, where
R(s, s′) =

∑

{λ | (s, λ, s′) ∈ MT (s)}. In general, the probability to move from a
states ∈ MS to a successor states′ ∈ S equals the probability that (one of) the Marko-
vian transitions that lead froms to s′ wins the race. Therefore, thediscrete branching
probability to move tos′ is given byP(s, s′) = R(s,s′)

E(s) . Accordingly, for states0 of our

example, we haveR(s0, s2) = 0.3, E(s0) = 0.3 + 0.6 = 0.9 andP(s0, s2) = 1
3 .

For interactive transitions, we adopt themaximal progress assumption[17, p. 71]
which states that internal transitions (i.e. interactive transitions labelled with internal
actions) trigger instantaneously. This implies that they take precedence over all Marko-
vian transitions whose probability to execute immediatelyis 0. Therefore all Markovian
transitions that emanate a hybrid state can be removed without altering the IMC’s se-
mantics. We do so and assume thatMT (s) ∩ IT (s) = ∅ for all s ∈ S.

To ease the development of the theory, we assume w.l.o.g. that each internal action
α ∈ Act i has a unique successor state, denotedsucc(α); note that this is no restriction,
for if (s, α, u) , (s, α, v) ∈ IT (s) are internal transitions withu 6= v, we may replace
them by new transitions(s, αu, u) and(s, αv, v) with fresh internal actionsαu andαv.



We assume that entering a deadlock state results in a time lock. Therefore, we equip
deadlock statess ∈ S with internal self-loop(s, α, s). However, our approach also al-
lows for a different deadlock state semantics, where time continues; in this case, we
would add a Markovian instead of an internal self-loop. Theinternal successor relation
;i ⊆ S × S is given bys ;i s′ iff (s, α, s′) ∈ IT ; further, theinternal reachabil-
ity relation ;

∗
i is the reflexive and transitive closure of;i. Accordingly, we define

post i(s) = {s′ ∈ S | s ;i s′} andReachi(s) = {s′ ∈ S | s ;
∗
i s′}.

2.2 Paths and events in IMCs

We use a special action⊥ /∈ Act and letσ range overAct⊥ = Act ∪ {⊥}. A finite

path is a sequenceπ = s0
t0,σ0

−−−→ s1
t1,σ1

−−−→ · · ·
tn−1,σn−1

−−−−−−−→ sn wheresi ∈ S, ti ∈ R≥0

and σi ∈ Act⊥ for i ≤ n; n is the length ofπ, denoted|π|. We useπ[k] = sk

andδ(π, k) = tk to refer to the(k+1)-th state onπ and its associated sojourn time.
Accordingly,∆(π, i) =

∑i

k=0 tk is the total time spent onπ until (including) stateπ[i].
If π is finite with |π| = n, then∆(π) = ∆(π, n − 1) is the total time spent onπ;
similarly,π↓ = sn is the last state onπ.

Internal transitions occur immediately. Thus an IMC can traverse several states at
one point in time. We useπ@t ∈ (S∗ ∪ Sω) for the sequence of states traversed onπ at
time t ∈ R≥0: Formally, leti be the smallest index s.t.t ≤ ∆(π, i); if no suchi exists,
we setπ@t = 〈〉. Otherwise, ift < ∆(π, i) we defineπ@t = 〈si〉; if t = ∆(π, i),
let j be the largest index (or+∞, if no such finite index exists) such thatt = ∆(π, j).
Thenπ@t = 〈si . . . sj〉. We writes ∈ 〈si . . . sj〉 if s ∈ {si, . . . , sj}; further, if s ∈
〈si . . . sj〉 we definePref (〈si . . . sj〉, s) = 〈si, . . . sk〉, wheres = sk andk minimal. If
s /∈ 〈si . . . sj〉, we setPref (〈si . . . sj〉, s) = 〈〉. The definitions fortime-abstractpaths
are similar.

A path π (time-abstract pathπ′) is a concatenation of a state and a sequence of
combined transitions(time-abstract combined transitions) from the setΩ = R≥0 ×
Act⊥ × S (Ωabs = Act⊥ × S); hence,π = s0 ◦ m0 ◦ m1 ◦ . . . ◦ mn−1 with mi =
(ti, σi, si+1) ∈ Ω (mi = (σi, si+1) ∈ Ωabs ). ThusPathsn(M) = S × Ωn is the set
of paths of lengthn in M; further,Paths⋆(M), Pathsω(M) andPaths(M) are the
sets of finite, infinite and all paths inM. To refer to time-abstract paths, we add the
subscriptabs ; further the reference toM is omitted wherever possible.

The measure-theoretic concepts are mentioned only briefly;we refer to [21] for an
in-depth discussion. Events inM are measurable sets of paths; as paths are Cartesian
products of combined transitions, we define theσ-field F=σ (B(R≥0)×FAct⊥×FS)
on subsets ofΩ whereFS=2S andFAct⊥=2Act⊥ . Then we derive the productσ-field
FPathsn=σ ({S0×M0× · · · ×Mn−1 | S0 ∈ FS , Mi ∈ F}) of measurable subsets of
Pathsn. The cylinder-set construction [1] extends this to infinitepaths in the usual way.

2.3 Resolving nondeterminism by schedulers

An IMC M is nondeterministiciff there exists(s, α, u) , (s, β, v) ∈ IT (s) with u 6= v:
If both internal transitions (to statess1 ands4) in states2 of Fig. 1 execute instanta-
neously, the successor state is not uniquely determined. Toresolve this nondeterminism,



we useschedulers: If M reaches states2 along ahistoryπ ∈ Paths⋆, a scheduler yields
a probability distribution over the setAct i(π↓) = {α, β} of enabled actionsin s2.

Definition 2 (Generic measurable scheduler).A generic scheduleron an IMCM =
(S,Act , IT ,MT , ν) is a partialmappingD : Paths⋆ × FActi

→ [0, 1] with D(π, ·) ∈
Distr

(

Act i(π↓)
)

for all π ∈ Paths⋆ with π↓ ∈ IS . A generic schedulerD is measur-
able(GM scheduler) iff for allA ∈ FAct , D−1(A) : Paths⋆ → [0, 1] is measurable.

Measurability states that{π | D(π, A) ∈ B} ∈ FPaths⋆ holds for allA ∈ FAct and
B ∈ B([0, 1]); intuitively, it excludes schedulers which resolve the nondeterminism
in a way that induces non-measurable sets. Recall that no nondeterminism occurs if
π↓ ∈ MS . However, we slightly abuse notation and assume thatD(π, ·) = {⊥ 7→ 1} if
π↓ ∈ MS so thatD yields a distribution overAct⊥. A GM schedulerD isdeterministic
iff D(π, ·) is degenerate for allπ ∈ Paths⋆. We useGM (andGMD ) to denote the
class of generic measurable (deterministic) schedulers. Further, aGM schedulerDabs

is time-abstract(GM abs) iff abs(π) = abs(π′) impliesDabs(π, ·) = Dabs(π
′, ·).

Example 2.If states2 in Fig. 1 is reached along pathπ = s0
0.4,⊥
−−−→ s2, thenD(π)

might yield the distribution
{

α 7→ 1
2 , β 7→ 1

2

}

, whereas for historyπ′ = s0
1.5,⊥
−−−→ s2,

it might return a different distribution, sayD(π) = {α 7→ 1}.

2.4 Probability measures for IMCs

In this section, we define the probability measure [21] induced byD on the measurable
space(Pathsω, FPathsω ). We first derive the probability of measurable sets of com-
bined transitions, i.e. of subsets ofΩ:

Definition 3. Let M = (S,Act , IT ,MT , ν) be an IMC andD ∈ GM . For all π ∈
Paths⋆, we define the probability measureµD(π, ·) : F → [0, 1] by:

µD(π, M) =

{

∑

α∈Acti(π↓)
1M (α, 0, succ(α)) · D (π, {α}) if s ∈ IS

∫

R≥0

E(s)e−E(s)t ·
∑

s′∈S 1M

(

⊥, t, s′
)

· P(s, s′) dt if s ∈ MS .

(1)

Here,1M denotes an indicator, i.e.1M (σ, t, s′) = 1 if (σ, t, s′) ∈ M and0, otherwise.
Intuitively, µD(π, M) is the probability to continue along one of the combined tran-
sition in the setM . For an interactive states ∈ IS , it is the probability of choosing
α ∈ Act i(π↓) such that(α, 0, succ(α)) is a transition inM ; if s ∈ MS , µD(π, M) is
given by the density for the Markovian transition to triggerat timet and the probability
that a successor state is chosen respectingM . As paths are inductively defined using
combined transitions, we can lift the probability measureµD(π, ·) to FPathsn :

Definition 4 (Probability measure). Let M = (S,Act , IT ,MT , ν) be an IMC and
D ∈ GM . For n ≥ 0, we define the probability measuresPrn

ν,D inductively on the
measurable space(Pathsn, FPathsn):

Pr0
ν,D : FPaths0 → [0, 1] : Π 7→

∑

s∈Π

ν (s) and forn > 0

Prn
ν,D : FPathsn → [0, 1] : Π 7→

∫

Pathsn−1

Prn−1
ν,D (dπ)

∫

Ω

1Π(π ◦ m) µD(π, dm).



Observe thatPrn
ν,D measures a set of pathsΠ of lengthn by multiplying the probabil-

itiesPrn−1
ν,D (dπ) of path prefixesπ (of lengthn−1) with the probabilityµD(π, dm) of

a combined transitionm ∈ M which extendsπ to a path inΠ . Together, the measures
Prn

ν,D extend to a unique measure onFPathsω : if B ∈ FPathsn is a measurable base
andC = Cyl(B), we definePrω

ν,D(C) = Prn
ν,D(B). Due to the inductive definition

of Prn
ν,D, the Ionescu–Tulcea extension theorem [1] applies, which yields a unique ex-

tension ofPrω
ν,D to arbitrary sets inFPathsω .

2.5 Interactive probabilistic chains

Interactive probabilistic chains(IPCs) [15] are the discrete-time analogon of IMCs:

Definition 5 (Interactive probabilistic chain). An interactive probabilistic chain(IPC)
is a tupleP = (S,Act , IT ,PT , ν), whereS,Act , IT and ν are as in Def. 1 and
PT : S×S → [0, 1] is a transition probability function s.t.∀s ∈ S. PT (s,S) ∈ {0, 1}.

A states in an IPCP is probabilistic iff
∑

s′∈S PT (s, s′) = 1 andIT (s) = ∅; PS

denotes the set of all probabilistic states. The sets of interactive, hybrid and deadlock
states are defined as for IMCs, with the same assumption imposed on deadlock states.
Further, we assume any IPC to be closed, that is(s, α, s′) ∈ IT implies α ∈ Act i.
As for IMCs, we adopt themaximal progress assumption[17, p. 71]; hence, internal
transitions take precedence over probabilistic transitions.

Definition 6 (IPC scheduler). Let P = (S,Act , IT ,PT , ν) be an IPC. A function
D : Paths⋆

abs → Distr(Act i) with D(π) ∈ Distr(Act i(π↓)) is a time abstract history
dependent randomized(GM abs) scheduler.

Note that in the discrete-time setting, measurability issues do not arise. To define a prob-
ability measure on sets of paths inP , we define the probability of a single transition:

Definition 7 (Combined transitions in IPCs). Let P = (S,Act , IT ,PT , ν) be an
IPC, s ∈ S, σ ∈ Act⊥, π ∈ Paths⋆

abs and (σ, s) ∈ Ωabs a time abstract combined
transition. For schedulerD ∈ GM abs , we define

µabs
D

(

π, {(σ, s)}
)

=











P(π↓, s) if π↓ ∈ PS ∧ σ = ⊥

D(π, {σ}) if π↓ ∈ IS ∧ succ(σ) = s

0 otherwise.

is the probability of the combined transition(σ, s). For a set of combined transitions
M ⊆ Ωabs , we setµabs

D

(

π, M
)

=
∑

(σ,s)∈M µabs
D

(

s, {(σ, s)}
)

.

The measuresµabs
D extend to a unique measure on sets of paths inP in the same way as

it was shown for the IMC case in Sec. 2.4.

3 Interval bounded reachability probability

We discuss how to compute the maximum probability to visit a given set ofgoal states
during a given time interval. Therefore, letI be the set of nonempty intervals over the



nonnegative reals and letQ be the set of nonempty intervals with nonnegative rational
bounds. Fort ∈ R≥0 and I ∈ I, we defineI ⊖ t = {x − t | x ∈ I ∧ x ≥ t} and
I ⊕ t = {x + t | x ∈ I}. Obviously, ifI ∈ Q andt ∈ Q≥0, this impliesI ⊖ t ∈ Q and
I ⊕ t ∈ Q.

3.1 A fixed point characterization for IMCs

Let M be an IMC. For a time intervalI ∈ I and a set of goal statesG ⊆ S, we define
the event3IG = {π ∈ Pathsω | ∃t ∈ I. ∃s′ ∈ π@t. s′ ∈ G} as the set of all paths that
are in a state inG during time intervalI. The maximum probability induced by3IG
in M is denotedpMmax (s, I). Formally, it is obtained by the supremum under allGM

schedulers:

pMmax (s, I) = sup
D∈GM

Prω
νs,D

(

3
IG

)

.

Theorem 1 (Fixed point characterization for IMCs). Let M be an IMC as before,
G ⊆ S a set of goal states andI ∈ I such thatinf I = a and sup I = b. The
functionpMmax : S × I → [0, 1] is the least fixed point of the higher-order operator
Ω : (S × I → [0, 1]) → (S × I → [0, 1]) which is defined as follows:

1. For Markovian statess ∈ MS : Ω(F )(s, I) equals

{

∫ b

0 E(s)e−E(s)t ·
∑

s′∈S P(s, s′) · F (s′, I ⊖ t) dt if s /∈ G

e−E(s)a +
∫ a

0
E(s)e−E(s)t ·

∑

s′∈S P(s, s′) · F (s′, I ⊖ t) dt if s ∈ G.

2. For interactive statess ∈ IS : Ω(F )(s, I) equals1 if s ∈ G and 0 ∈ I, and
otherwise,Ω(F )(s, I) = max

{

F (s′, I) | s′ ∈ post(s)
}

.

Example 3.The fixed point characterization suggests to computepMmax (s, I) analyti-
cally: Consider the IMCM depicted in Fig. 1 and assume thatG = {s3}. ForI = [0, b],
b > 0 we havepMmax (s3, I) = 1, pMmax (s4, I) = 1 − e−0.1b and pMmax (s1, I) =
∫ b

0
e−t

(

2
5 · pMmax (s2, I ⊖ t) + 1

5 · pMmax (s3, I ⊖ t) + 2
5 · pMmax (s4, I ⊖ t)

)

dt. For inter-
active states2, we derivepMmax (s2, I) = max

{

pMmax (s4, I), pMmax (s1, I)
}

, which yields

pMmax (s0, I) =
∫ b

0
0.9e−0.9t ·

(

2
3 · pMmax (s1, I ⊖ t) + 1

3 · pMmax (s2, I ⊖ t)
)

dt. Hence, an
IMC generally induces an integral equation system over the maximum over functions,
which is not tractable. Moreover, the iterated integrationis numerically unstable [3].

Therefore, we resort to a discretization approach: Informally, we divide the time
horizon into small time slices. Then we consider a discrete-time model whose steps
correspond to the IMC’s behaviour during a single time slice. First, we develop a fixed-
point characterization for step bounded reachability on interactive probabilistic chains
(IPCs); then we reduce the maximum time interval bounded reachability problem in
IMCs to the step interval bounded reachability problem in the discretized IPC. Finally,
we show how to solve the latter by a modified value iteration algorithm.



3.2 A fixed point characterization for IPCs

Similar to the timed paths in IMCs, we defineπ@n ∈ S∗ ∪ Sω for the time abstract
paths in IPCs: Let#PS (π, k) =

∣

∣{i ∈ N | 0 ≤ i ≤ k ∧ π[i] ∈ MS}
∣

∣; then#PS (π, k)
is the number of probabilistic transitions that occur up to the(k+1)-th state onπ. For
fixed n ∈ N, let i be the smallest index such thatn = #PS (π, i). If no suchi exists,
we setπ@n = 〈〉; otherwisei is the index of then-th probabilistic state that is hit on
pathπ. Similarly, letj ∈ N be the largest index (or+∞ if no such finite index exists)
such thatn = #PS (π, j). Thenj denotes the position onπ directly before its(n+1)-th
probabilistic state. With these preliminaries, we defineπ@n = 〈si, si+1, . . . , sj−1, sj〉
to denote the state sequence between then-th and the(n+1)-th probabilistic state ofπ.
To define step-interval bounded reachability for IPCs, letk, k′ ∈ N andk ≤ k′: Then

3
[k,k′]G = {π ∈ Pathsω

abs | ∃n ∈ {k, k + 1, . . . , k′} . ∃s′ ∈ π@n. s′ ∈ G}

is the set of paths that visitG between discrete time-stepk andk′ in an IPCP .

Accordingly, we define the maximum probability for the event3
[k,k′]G:

pPmax (s, [k, k′]) = sup
D∈GMabs

Prω
νs,D

(

3
[k,k′]G

)

.

Theorem 2 (Fixed point characterisation for IPCs).Let P = (S,Act , IT ,PT , ν)
be an IPC,G ⊆ S a set of goal states andI = [k, k′] a step interval. The function
pPmax is the least fixed point of the higher-order operatorΩ : (S × N × N → [0, 1]) →
(S × N × N → [0, 1]) where

1. for probabilistic statess ∈ PS :

Ω(F )
(

s, [k, k′]
)

=











1 if s ∈ G ∧ k = 0

0 if s /∈ G ∧ k = k′ = 0
∑

s′∈S PT (s, s′) · F (s′, [k, k′] ⊖ 1) otherwise;

2. for interactive statess ∈ IS : Ω(F )
(

s, [k, k′]
)

= 1 if s ∈ G andk = 0. Otherwise,
Ω(F )

(

s, [k, k′]
)

= max s′∈post(s)F (s′, [k, k′]).

Observe that for IMCs, the recursive expression of the probabilistic reachability does
not decrease the time intervalI for interactive states, whereas for IPCs, the recursive
expression does not decrease the corresponding step interval [k, k′].

3.3 A discretization that reduces IMCs to IPCs

For an IMCM and astep durationτ > 0, we define the discretized IPCMτ of M:

Definition 8 (Discretization). An IMC M = (S,Act , IT ,MT , ν) and a step dura-
tion τ > 0 induce thediscretized IPCMτ = (S,Act , IT ,PT , ν), where

PT (s, s′) =

{

(

1 − e−E(s)τ
)

· P(s, s′) if s 6= s′
(

1 − e−E(s)τ
)

· P(s, s′) + e−E(s)τ if s = s′.
(2)



s0 s1 s2 s3
λ a b c

(a) The example IMCM.

s0 s1 s2 s3
1 − e−λτ a b

e−λτ

c

(b) The induced discretized IPCMτ .
Fig. 2. Interval bounded reachability in IMCs with lower interval bounds.

In Mτ , each probabilistic transitionPT (s, s′) > 0 corresponds to onetime stepof
lengthτ in the underlying IMCM: More precisely,PT (s, s′) is the probability that a
transition to states′ occurs withinτ time units. In case thats′ = s, the first summand
in PT (s, s′) is the probability to take a self-loop back tos, i.e. a transition that leads
from s back tos executes; the second summand denotes the probability that no transi-
tion occurs within the nextτ time units and thus, the systems stays in states = s′.

Now we state the correctness of the discretization: To compute the probability
pMmax

(

s, [a, b]
)

, we analyze step-interval bounded reachability in the discretized IPC
Mτ , where each stepapproximatelycorresponds toτ time units. First we show that
pMτ

max

(

s,
[

0, ⌈ b
τ
⌉
])

converges from below topMmax

(

s, [0, b]
)

if τ → 0:

Theorem 3. Let M = (S,Act , IT ,MT , ν) be an IMC,G ⊆ S a set of goal states,
I = [0, b] ∈ Q a time interval withb > 0 andλ = max s∈MSE(s). Further, letτ > 0
be such thatb = kbτ for somekb ∈ N>0. For all s ∈ S it holds:

pMτ

max

(

s, [0, kb]
)

≤ pMmax (s, I) ≤ pMτ

max

(

s, [0, kb]
)

+ kb ·
(λτ)2

2
.

Example 4.Consider the IMCM and its discretized IPCMτ in Fig. 2(a) and Fig. 2(b),
resp. Assume thatG = {s2} and fix someτ > 0, k ∈ N>0. Further, letI = [0, kτ ]. In
the IMCM, it holds thatpMmax (s0, I) =

∫ kτ

0
λe−λt ·pMmax (s1, I⊖ t)dt = 1−e−λkτ . In

Mτ , we obtainpMmax (s0, [0, k]) =
∑k

i=1(e
−λτ )i−1

(

1 − e−λτ
)

= 1− e−λkτ , which is
the geometric distribution function for parameterp = 1 − e−λτ .

So far, we only considered intervals of the formI = [0, b], b > 0. In what follows, we
extend our results to arbitrary intervals. However, this isslightly involved:

If s ∈ MS is a Markovian state andb > 0, thenpMmax

(

s, (0, b]
)

= pMmax

(

s, [0, b]
)

.
However this is not true for interactive states: Ifs1 (instead ofs0) is made the only
initial state inM andMτ of Fig. 2, the probability to reachs2 within interval [0, b]
is 1 whereas it is0 for the right-semiclosed interval(0, b]. Further, the discretization is
imprecise for point intervals: To see this, note that ifI = [τ, τ ], thenpMmax (s0, I) = 0,
whereaspMτ

max (s0, [1, 1]) = 1 − e−λτ .
Now, let I = [kaτ, kbτ ] be aclosedinterval withka, kb ∈ N and0 < ka < kb. In

the IMCM in Fig. 2(a), we obtainpMmax (s0, I) =
∫ kbτ

kaτ
λe−λt · pMmax (s1, I ⊖ t) dt =

e−λkaτ − e−λkbτ , whereas for its discretized IPCMτ (see Fig. 2(b)), we derive

pMτ

max (s0, [ka, kb]) =

kb
∑

i=ka

(

e−λτ
)i−1

·
(

1 − e−λτ
)

= e−λ(ka−1)τ − e−λkbτ .
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Fig. 3.Discretization steps.

Clearly, the two probabilities differ in the first term
by a factor ofeλτ . To see the reason, letka = 2
andkb = 3: We havepMmax (s, [2τ, 3τ ]) = e−2λτ −
e−3λτ ; however, inMτ it holdspMτ

max (s, [2, 3]) =
e−λτ ·

(

1 − e−λτ
)

+e−2λτ ·
(

1 − e−λτ
)

= e−λτ −
e−3λτ . As each step inMτ corresponds to a
time interval of lengthτ (cf. Fig. 3), the inter-
val bounds2τ and 3τ fall in different discretiza-
tion steps. Hence in the discretization, we add two
steps which leads to an error. If instead we computepMmax (s, (2τ, 3τ ]), we obtain
pMτ

max (s, (2, 3]) = pMτ

max (s, [3, 3]) = e−2λτ − e−3λτ , as desired.
Based on these observations, we extend Thm. 3 to intervals with positive lower

bounds. To avoid some technicalities, we first restrict to right-semiclosed intervals:

Theorem 4. Let M = (S,Act , IT ,MT , ν) be an IMC,G ⊆ S a set of goal states,
I = (a, b] ∈ Q a time interval witha < b andλ = max s∈MSE(s). If τ > 0 is such
thata = kaτ andb = kbτ for someka, kb ∈ N, then it holds for alls ∈ S:

pMτ

max

(

s, (ka, kb]
)

− ka ·
(λτ)2

2
≤ pMmax (s, I) ≤ pMτ

max

(

s, (ka, kb]
)

+ kb ·
(λτ)2

2
+ λτ.

The error bounds for the case of lower interval bounds that are stated in Thm. 4 are
derived using double induction overka andkb, respectively.

Theorem 5. If M, G andτ are as in Thm. 4 andI ∈ Q is a time interval withinf I = a
andsup I = b such thata < b anda = kaτ , b = kbτ for ka, kb ∈ N and0 /∈ I, then

pMτ

max

(

s, (ka, kb]
)

− ka ·
(λτ)2

2
≤ pMmax (s, I) ≤ pMτ

max

(

s, (ka, kb]
)

+ kb ·
(λτ)2

2
+ λτ.

For the remaining cases, note that for all statess ∈ S and intervalsI = ∅ or I = [a, a]
with a > 0 it holds thatpMmax (s, I) = 0. Finally, for the case thatI = [0, 0], an
interactive reachability analysis suffices to computepMmax (s, I), which is either1 or 0.

3.4 Solving the problem on the reduced IPC

Let P = (S,Act , IT ,PT , ν) be an IPC,G ⊆ S a set of goal states and[ka, kb] a step
interval. In this section, we discuss how to computepPmax

(

s, [ka, kb]
)

via a modifica-
tion of the well knownvalue iterationalgorithm [5]. The adaptation is non-trivial, as
we consider step intervals that correspond to the number ofprobabilistic stepsthat are
taken. This is reflected in our algorithm which only decreases the step counter for prob-
abilistic, but not for internal transitions. We discuss step bounded reachability first:

Step bounded reachability: We aim at computingpPmax

(

s, [0, k]
)

for 0 ≤ k. This
works as follows: In each stepi = 0, 1, . . . , k of the iteration, we use two vectors
~vi ∈ [0, 1]

S and~ui ∈ [0, 1]
S , where~vi is the probability vector obtained from~ui−1 by

one step in the classical value iteration algorithm and~ui is obtained by computing the
backwards closure along interactive transitions w.r.t.~vi−1.



Each of thek value iteration steps consists of two phases: First,~vi is computed: If
s ∈ PS ∩ G, then~vi(s) = 1. If s ∈ PS \ G, then~vi(s) is the weighted sum of the
probabilistic successor statess′ of s, multiplied by the result~ui−1(s

′) of the previous
step. In the second phase,~ui is obtained by the backward closure of~vi along internal
transitions. Initially, we set~v0(s) = 1 if s ∈ G, and~v0(s) = 0, otherwise. Then:
∀i ∈ {0, . . . , k} . ~ui(s) = max {~vi(s

′) | s ;
∗
i s′} and for~vi:

∀i ∈ {1, . . . , k} . ~vi(s) =











∑

s′∈S PT (s, s′) · ~ui−1(s
′) if s ∈ PS \ G

1 if s ∈ PS ∩ G

~ui−1(s) if s ∈ IS .

For efficiency reasons the set{s′ ∈ S | s ;
∗
i s′} can be precomputed by a backwards

search in the interactive reachability graph ofP .
After k value iteration stepspPmax (s, [0, k]) is obtained as the probability in~uk(s).

Step-interval bounded reachability: In this part, we computepPmax

(

s, [ka, kb]
)

, for
interval bounds0 < ka < kb. Again, we compute a sequence~v0, ~u0, . . . , ~vkb

, ~ukb
. As

ka > 0, we split the value iteration in two parts: In the firstkb−ka value iteration steps,
we proceed as before and compute the probability vectors~v0, ~u0, . . . , ~vkb−ka

, ~ukb−ka
.

Thus, we compute the probabilitiespPmax (s, [0, kb−ka]) for all s ∈ S.
The vector~vkb−ka

provides the initial probabilities of the second part: In the re-
mainingi ∈ {kb−ka+1, . . . , kb} value iteration steps, we set~vi(s) = 0 if s ∈ IS and
~vi(s) =

∑

s′∈S PT (s, s′) · ~ui−1(s
′) if s ∈ PS . The vectors~ui are as before. To see

why, note that the value iteration algorithm proceeds in a backward manner, starting
from the goal states. We do not set~vi(s) = 1 if s ∈ G in the lastka iteration steps, as in
the firstka transitions, reaching a goal state does not satisfy our reachability objective.
To avoid that the probabilities of interactive statess ∈ IS erroneously propagate in the
vectors~ui(s) from the first to the second part, in the second part we define~vi(s) = 0
for all s ∈ IS (instead of~vi(s) = ~ui−1(s) as in the first part). Let us illustrate this:

Example 5.We computepPmax (s, [1, 2]) in the IPCP in Fig. 4 for initial states0

and goal states3: In the first part, apply the value iteration to compute~u1: ~v0(s) =
1 if s = s3 and 0, otherwise. By the backwards closure,~u0 = (1, 0, 0, 1). Thus
pPmax (s0, [0, 0]) = 1, ass0 can reachG by the interactiveα-transition. For~v1, we
have~v1(s0) = ~u0(s0) = 1 and~v1(s1) = 1

2~u0(s3) + 1
2~u0(s2) = 1

2 . In this way,
we obtain~v1 =

(

1, 1
2 , 1

4 , 1
)

and ~u1 =
(

1, 1
2 , 1

4 , 1
)

. With the probabilities~u1, the
first part ends afterkb − ka = 1 value iteration steps. Aska = 1, one iteration for
the lower step bound follows. Here~v2(s0) = ~v2(s3) = 0 as s0, s3 ∈ IS ; further
~v2(s1) = 1

2~u1(s3) + 1
2~u1(s2) = 5

8 and~v2(s2) = 1
2~u1(s2) + 1

4~u1(s3) + 1
4~u1(s1) = 1

2 .
Finally,~u2 =

(

5
8 , 5

8 , 1
2 , 1

2

)

. Therefore, we obtain thatpPmax (s0, [1, 2]) = ~u2(s0) = 5
8 .

3.5 Algorithm and complexity

LetM, G, ε andI as before, withb = sup I. Forε > 0, choosekb such thatkb ·
(λτ)2

2 +

λτ ≤ ε. With τ = b
kb

, the smallest suchkb iskb = ⌈λ2b2+2λb
2ε

⌉. Then the step durationτ



induces the discretized IPCMτ . By Thm. 5,pMmax (s0, I) can be approximated (up toε)
by pMτ

max (s0, (ka, kb]). Let n = |S| andm = |IT | + |MT | be the number of states and

s2

s1

s3

s0

α

β

γ

1
2

1
4

1
2

1
4

1
2

Fig. 4.Example IPC.

transitions ofM, respectively. In the worst case,Mτ hasn
states, andm + n transitions. In each value iteration step, the
update of the vector~vi takes at most timem + n; for ~ui, the
setsReachi(s) are precomputed. In the general case, the best
theoretical complexity for computing the reflexive transitive
closure is inO

(

n2.376
)

, as given by [13]. Asm∗ ⊆ S ×
S, the number of transitions in the closurem∗ is bounded
byn2. Hence, with an appropriate precomputation ofm∗, updating~ui takes timeO(n2).
Therefore, withkb value iteration steps, the worst case time complexity of ourapproach
is in n2.376 +(m+n+n2) · (λb) · (λb + 2) /(2ε) ∈ O

(

n2.376 +(m+n2) · (λb)
2
/ε

)

.

4 Model checking the continuous stochastic logic

For model checking, we consider a finite setAP = {a, b, c, . . .} of atomic propositions
andstate labelledIMCs: A state labelling functionL : S → 2AP assigns to each state
the set of atomic propositions that hold in that state. To specify quantitative properties,
we extend the continuous stochastic logic (CSL) [3, 12], which reasons about qualitative
and quantitative properties of CTMCs to the nondeterministic setting:

Definition 9 (CSL syntax). For a ∈ AP , p ∈ [0, 1], I ⊆ Q an interval andE ∈
{<,≤,≥, >}, CSL stateandCSL path formulasare defined by

Φ ::= a | ¬Φ | Φ ∧ Φ | PEp(ϕ) and ϕ ::= X IΦ | Φ UI Φ.

Intuitively, a pathπ ∈ Pathsω satisfies the formulaX IΦ (π |= X IΦ) if the first transi-
tion onπ occurs in time-intervalI and leads to a successor state inSat(Φ). Similarly,
π satisfies the until formulaΦ UI Ψ if a state inSat(Ψ) is reached at some time point
t ∈ I and before that, all states satisfy state formulaΦ.

Definition 10 (CSL semantics).LetM = (S,Act , IT ,MT ,AP ,L, ν) be a state la-
belled IMC, s ∈ S, a ∈ AP , I ∈ Q, E ∈ {<,≤,≥, >} and π ∈ Pathsω. For
state formulas, we defines |= a iff a ∈ L(s), s |= ¬Φ iff s 6|= Φ and s |= Φ ∧ Ψ
iff s |= Φ and s |= Ψ . Further, s |= PEp(ϕ) iff for all D ∈ GM it holds that
Prω

νs,D {π ∈ Pathsω | π |= ϕ} E p. For path formulas, we define

π |= X IΦ ⇐⇒ π[1] |= Φ ∧ δ(π, 0) ∈ I

π |= Φ UI Ψ ⇐⇒ ∃t ∈ I. ∃s ∈ π@t. s |= Ψ ∧ ∀s′ ∈ Pref (π@t, s). s′ |= Φ

∧ ∀t′ ∈ [0, t) . ∀s′′ ∈ π@t′. s′′ |= Φ.

To model check an IMC w.r.t. a CSL state formulaΦ, we successively consider the
state subformulasΨ of Φ and calculate the setsSat(Ψ) = {s ∈ S | s |= Ψ}. For atomic
propositions, conjunction and negation, this is easy asSat(a) = {s ∈ S | a ∈ L(s)},
Sat(¬Ψ) = S \ Sat(Ψ) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2). Therefore we
only discuss the probabilistic operatorPEp(ϕ) for next and bounded until formulas.



To decideSat (PEp(ϕ)), it suffices to maximize (or minimize, which can be done
similarly) Prω

νs,D ({π ∈ Pathsω | π |= ϕ}) w.r.t. all schedulersD ∈ GM . We define
pMmax (s, ϕ) = supD∈GM Prω

νs,D ({π ∈ Pathsω | π |= ϕ}) and consider both types of
path formulas:

The next formula ComputingpMmax (s,X IΦ) is easy: We proceed inductively on the
structure of the formula and assume thatSat(Φ) is already computed. Leta = inf I, b =

sup I ands ∈ MS . ThenpMmax

(

s,X IΦ
)

=
∫ b

a
E(s)e−E(s)t ·

∑

s′∈Sat(Φ) P(s, s′) dt =

P (s,Sat(Φ)) ·
(

e−E(s)a − e−E(s)b
)

, whereP (s,Sat(Φ)) =
∑

s′∈Sat(Φ) P(s, s′) is
the probability to move to a successor states′ ∈ Sat(Φ). If s ∈ IS , 0 ∈ I andpost(s)∩
Sat(Φ) 6= ∅, thenpMmax

(

s,X IΦ
)

= 1; otherwisepMmax

(

s,X IΦ
)

= 0.

The until formula Let ϕ = Φ UI Ψ with I ∈ Q and assume thatSat(Φ) andSat(Ψ)
are already computed. We reduce the problem to computepMmax (s, ϕ) to the maximum
interval-bounded reachability problem: Therefore, defineSϕ

=0 = {s ∈ S | s |= ¬Φ}. In
the next step, we turn all statess ∈ Sϕ

=0 into absorbing states by replacing all its out-
going transitions by a single interactive self loop. This issimilar to the approach taken
in [3, 6] for model checking CTMCs and MDPs. Formally, a states ∈ IS is absorbing
iff post i(s) = {s}. Hence, as soon as a path enters an absorbing state, it cannotreach a
different state anymore. Moreover, due to the maximal progress assumption, time does
not progress any further in absorbing states. Intuitively,makingSϕ

=0-states absorbing is
justified as follows. If a pathπ enters a states ∈ Sϕ

=0, it can be decided immediately
whetherπ |= Φ UI Ψ , or not: If s |= Ψ holds and if states is entered at some time in
the intervalI, thenπ |= Φ UI Ψ . Otherwiseπ 6|= Φ UI Ψ holds.

Theorem 6 (Time-bounded until).LetM = (S,Act , IT ,MT ,AP ,L, ν) be a state
labelled IMC,ϕ = Φ UI Ψ a CSL path formula withI ∈ Q andG = Sat(Ψ) the set of
goal states. Further, assume that all statess ∈ Sϕ

=0 are made absorbing. Then

pMmax

(

s, Φ UI Ψ
)

= pMmax (s, I) for all s ∈ S.

Theorem 6 reduces the problem to computepMmax (s, ΦUI Ψ) of the until formula to the
problem of computing the interval bounded reachability probability pMmax (s, I) with
respect to the set of goal statesG = Sat(Ψ). The latter can be computed efficiently by
the discretization approach introduced in Sec. 3.3.

For CSL state-formulaΦ, let |Φ| be the number of state subformulas ofΦ. In the
worst case, the interval bounded reachability probabilityis computed|Φ| times. Hence
the model checking problem has time complexityO

(

|Φ|·
(

n2.376 +
(

m + n2
)

· (λb)2/ε
))

.

5 Experimental results

We consider the IMC in Fig. 6, whereErl(30 , 10 ) denotes a transition with an Erlang
(k, λ) distributed delay: This corresponds tok = 30 consecutive Markovian transitions
each of which has rateλ. The mean time to move froms2 to the goals4 is k

λ
= 3

with a variance ofk
λ2 = 3

10 . Hence, with very high probability we move froms2 to s4
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problem states ε λ b prob. time
Erl(30, 10) 35 10−3 10 4 0.672 50s
Erl(30, 10) 35 10−3 10 7 0.983 70s
Erl(30, 10) 35 10−4 10 4 0.6718 268s
ws-cl,N=4 820 10−6 2 101 3.3 ·10−5 2d
ws-cl,N=4 820 10−4 2 102 4 ·10−4 15h
ws-cl,N=4 820 10−3 2 103 5 ·10−3 6d

(b) Computation time for different parameters.

Fig. 5. Experimental results forErl(30, 10) and the workstation cluster from [16].
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Fig. 6.TheErl (30, 10) modelM.

after approximately3 time units. The decision
that maximizes the probability to reachs4 in
time interval[0, b] in states1 depends on the so-
journ in states0. Fig. 5(a) depicts the computed
maxima for time dependent schedulers and the
upper part of Tab. 5(b) lists some performance
measurements.

If AP = {g} ands4 is the only state labelled withg, we can verify the CSL formula
Φ = P≥0.5

(

3
[3,4]g

)

by computingpMmax (s0, [3, 4]) with the modified value iteration.
The resultpMmax (s0, [3, 4]) = 0.6057 meets the bound≥ 0.5 in Φ, implying thats0 |=
Φ.

Finally, the lower part of Tab. 5(b) lists the performance ofour approach for a large
scale example [16], where we conduct a dependability analysis of a cluster of2N work-
stations to estimate its failure probability over a finite time horizon. This rather stiff
model has a high computational complexity in our prototypical implementation, as the
failure events are very rare which leads to a large time horizon.

All measurements were carried out on a2.2GHz Xeon CPU with16GB RAM.

6 Related work and conclusions

In the setting of stochastic games, the time-bounded reachability problem has been
studied extensively in [11], with extensions to timed automata in [9]. Closely related to
ours is the work in [7], where globally uniform IMCs — which require the sojourn times
in all Markovian states to be equally distributed — are transformed into continuous-time
Markov decision processes (CTMDPs). Subsequently, the algorithm in [4] is used to
compute the maximum time-bounded reachability probability in the resulting globally
uniform CTMDP. However, the applicability of this approachis severely restricted, as
global uniformity is hard (and often impossible) to achieve.

Further, the above approaches rely on time-abstract schedulers which are proved to
be strictly less powerful than the time-dependent ones thatwe consider here [4, 24].

In [25], we relax the restriction to global uniformity and consider locally uniform
CTMDPs for which we propose a discretization that computes maximum time-bounded
reachability probabilities underlate schedulers: In locally uniform CTMDPs, late sched-



ulers outperformearly schedulers[24], which are the largest class of history and time
dependent schedulers definable on general CTMDPs [21].

The discretization approach in this paper resembles that of[25]. However, the re-
sults are complementary: In general, transforming IMCs to CTMDPs as done in [21]
does not yield locally uniform CTMDPs. Hence, the approach in [25] is inapplicable
for the analysis of IMCs. However, we expect to solve the problem of computing time-
interval bounded reachability in CTMDPs by analysing the CTMDP’s induced IMC.

By providing an efficient and quantifiably precise approximation algorithm to com-
pute interval bounded reachability probabilities, this paper solves a long standing open
problem in the area of performance and dependability evaluation. Moreover, we solve
the CSL model checking problem on arbitrary IMCs.

Acknowledgement.We thank Holger Hermanns and Joost-Pieter Katoen for their com-
ments and for many fruitful discussions about earlier versions of this work.

References
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