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Abstract. Hermanns has introduced interactive Markov chains (IMChictv
arise as an orthogonal extension of labelled transitiotegys and continuous-
time Markov chains (CTMCs). IMCs enjoy nice compositiongdjeegation prop-
erties which help to minimize the state space incrementdiyvever, the model
checking problem for IMCs remains unsolved apart from thinstnces, where
the IMC can be converted into a CTMC. This paper tackles ttoblpm: We in-
terpret the continuous stochastic logic (CSL) over IMCs deifihe the semantics
of probabilistic CSL formulas with respect to the class diyftime and history
dependent schedulers. Our main contribution is an efficrettel checking algo-
rithm for verifying CSL formulas on IMCs. Moreover, we sholetapplicability
of our approach and provide some experimental results.

1 Introduction

The success of Markovian models for quantitative perforreaand dependability eval-
uation is based on the availability of efficient and quarttifigrecise solution methods
for continuous-time Markov chains (CTMCs) [3]. On the sfiieation side, the contin-
uous stochastic logic (CSL) [2, 3] allows to specify a wideiety of performance and
dependability measures of interest. A CTMC can be conceagedl labelled transition
system (LTS) whose transitions are delayed according taxporential distribution.
Opposed to classical concurrency theory, CTMCs neithepatgompositional mod-
elling [19] nor do they allow nondeterminism in the modelv&al efforts have been
undertaken to overcome this limitation, including forrsaii like the stochastic Petri
box calculus [22], statecharts [7] and process algebrad[40

Interactive Markov chains (IMCs) [18] conservatively extigorocess algebras with
exponentially distributed delays and comprise most of therapproaches’ benefits [10]:
As they strictly separatateractivefrom Markoviantransitions, IMCs extend LTSs with
exponential delays in a fully orthogonal way. This enablempositional modelling
with intermittent weak bisimulation minimization [17] adlows to augment existing
untimed process algebra specifications with random tinmithg\Jloreover, the IMC for-
malism is not restricted to exponential delays but allowsrtoode arbitrary phase-type
distributions such as hyper- and hypoexponentials [26].

Since IMCs smoothly extend classical LTSs, the model hasived attention in
academic as well as in industrial settings [8, 14, 15]. Ircpca however, the theoretical
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benefits have partly been foiled by the fact that the analysI8ICs is restricted to
those instances, where the composed IMC could be transttinteea CTMC. However,
IMCs support nondeterminism which arises both implicitgrh parallel composition
and explicitly by the deliberate use of underspecificatiothe model [18]. Therefore
IMCs are strictly more expressive than CTMCs. As a resultdehahecking IMCs is
an unexplored topic thus far.

In this paper, we overcome this limitation and propose agiefit model checking
algorithm to verify CSL formulas on arbitrary IMCs. In ouraysis, we use fully time
and history dependent schedulers to resolve all of the IMGredeterministic choices.

The crucial point in model checking CSL is to compute the mmaxin (and mini-
mum) probability to visit a set of goal states in some timeriwal /. We characterize
this probability as the least fixed point of a higher-ordeermgpor which involves inte-
gration over the time domain. Then we usteractive probabilistic chainfPCs) [15]
to define a discretization which reduces the time intervahigied reachability problem
in IMCs to the problem of computing step-interval boundeatirebility probabilities
in IPCs. More precisely, we approximate the quantitatiiedveur of the IMC up to
an a priori specified error bound > 0 by its induced IPC and prove that its maxi-
mum step-interval bounded reachability coincides (up)taith the achievable time-
interval bounded reachability probability in the undemlyilMC. The resulting IPC is
then subject to a modified value iteration algorithm [5], ethimaximizes the step-
interval bounded reachability probability. The time coexily of our approach is in
O(|®]- (n?370 + (m +n?) - (Ab)?/¢)), where|@| is the size of the formula, and m
are the number of states and transitions of the IMC, respdgtiFurtherp = sup [ is
the upper time interval bound ands the maximal exit rate in the IMC.

Although we present all results only for maximum time-boeddeachability prob-
abilities, all proofs can easily be adapted to the dual gnobdf determining the mini-
mum time-bounded reachability probability.

Most of the technical details have been omitted from the p&pmvever, all proofs
and the technicalities that are necessary to establishrtbe lBounds that are stated
within the paper can be found in [23, Chapter 6].

Organisation of the papeThe paper proceeds by first giving necessary definitions and
background in Section 2. Section 3 presents algorithmsdiompuiting the time-interval
bounded reachability for IMCs. Section 4 focuses on modetkimg algorithms for
CSL, followed by experimental results in Sec. 5. Sectionsgases related work and
concludes the paper.

2 Preliminaries

Let X be a finite set. Probability distributions ov&rare functiong: : X — [0, 1] with
Y owex M(w) = 1.1f u(z) = 1 for somer € X, pis degeneratedenotedy = {x — 1};
in this case, we identify, and z. The set of all probability distributions ovet is
denotedDistr(X). Accordingly,u(X) = > .y u(z) forall X C X.

2.1 Interactive Markov chains

We recall the definition of interactive Markov chains (IM@syen in [17]:



Definition 1 (Interactive Markov chain). Aninteractive Markov chaiis a tupleM =
(S, Act, IT, MT,v) whereS and Act are nonempty sets of states and actiafis,C
S x Act x S is a set of interactive transitions and7 C S x Ry x S is a set of
Markovian transitions. Furthely € Distr(S) is theinitial distribution

We distinguishexternalactions inAct. from internal actions inAct; and setAdct =
Act. U Act;. Several IMCs may be composed via synchronisation overghd &,

of external actions, yielding again an IMC. For details, weer to [17]. In this paper,
we considerclosedIMCs [21], that is, we focus on the IM@ that is obtained after
composition. AccordinglyM is not subject to any further synchronisation and all re-
maining external actions can safely be hidden. Therefoeggsgsume thaict. = § and
identify the setsAct and Act;.

For Markovian transitions), u € R~ denote rates of
exponential distributiond T (s) = {(s,a, ') € IT} is the
set of interactive transitions that leave statsimilarly, for
Markovian transitions we seét/T'(s) = {(s, A, s’) € MT}.
A states € S is Markovianiff MT(s) # 0 andIT(s) = 0;
it is interactiveiff MT(s) = 0 andIT(s) # 0. Further,s _
is ahybrid stateiff MT(s) # 0 andIT(s) # 0; finally, s  T19-1.Example IMC.
is adeadlock statéff MT(s) = IT(s) = 0. MS C S andIS C S denote the sets of
Markovian and interactive states.v. We defingpost™ (s) = {s € S | R(s, s’) > 0}.

Example 1.Let M be the IMC depicted in Fig. 1. Theqn is a Markovian state with a
transition(so, 0.3, s2) € MT(s) (depicted by a solid line) to statg with rate\ = 0.3.
The transition’s delay is exponentially distributed wittte\; hence, it executes in the
nextz € Ry time units with probability [ Ae=*dt = (1 —e~3%). As statesy
has two Markovian transitions, they compete for executioth the IMC moves along
the transition whose delay expires first. Clearly, in suchag, the sojourn timein sq

is determined by the first transition that executes. As th@mim of exponential dis-
tributions is exponentially distributed with the sum of itheates, the sojourn time in
a states is determined by thexit rate E(s) = . .sR(s,s’) of states, where
R(s,s') = D {A]|(s,\, ') € MT(s)}. In general, the probability to move from a
states € MS to a successor staté € S equals the probability that (one of) the Marko-

vian transitions that lead fromto s’ wins the race. Therefore, thtiscrete branching
probabilityto move tos’ is given byP (s, s') = R]g?j) ), Accordingly, for statesy of our
example, we havR (sg, s2) = 0.3, E(sg) = 0.3+ 0.6 = 0.9 andP (s, s2) = 3.

For interactive transitions, we adopt threaximal progress assumpti¢h7, p. 71]
which states that internal transitions (i.e. interactiamsitions labelled with internal
actions) trigger instantaneously. This implies that treetprecedence over all Marko-
vian transitions whose probability to execute immediaigly Therefore all Markovian
transitions that emanate a hybrid state can be removed wtitlitering the IMC'’s se-
mantics. We do so and assume th&t'(s) N IT(s) = () forall s € S.

To ease the development of the theory, we assume w.l.oigedleh internal action
a € Act; has a unigue successor state, deneted(«); note that this is no restriction,
forif (s,a,u), (s,a,v) € IT(s) are internal transitions with # v, we may replace
them by new transition&, a.,,, u) and(s, a,, v) with fresh internal actions,, anda,,.



We assume that entering a deadlock state results in a tirkeTiberefore, we equip
deadlock states € S with internal self-loop(s, «, s). However, our approach also al-
lows for a different deadlock state semantics, where timdicoes; in this case, we
would add a Markovian instead of an internal self-loop. irtternal successor relation
~; € 8 x Sis given bys ~»; s iff (s,a,s") € IT; further, theinternal reachabil-
ity relation ~7 is the reflexive and transitive closure ©f;. Accordingly, we define
post'(s) = {s' €S| s ~; s’} andReach’(s) = {s' € S | s ~F 5'}.

2.2 Paths and events in IMCs

We use a special actioh ¢ Act and leto range overdct; = Act U {L}. A finite

to,00 t1,01 tn—1,0n—1

pathis a sequence = sg 81 e sn, Wheres; € S, t; € Rxg
ando; € Act, fori < n; nis the Iength ofr, denoted|r|. We user[k] = s
andd(rm, k) = t to refer to the(k+1)-th state onr and its associated sojourn time.
Accordingly, A(m, i) = >} _, tx is the total time spent om until (including) stater/[:].

If 7 is finite with |x| = n, thenA(7) = A(w,n — 1) is the total time spent on;
similarly, 7| = s, is the last state on.

Internal transitions occur immediately. Thus an IMC canédrae several states at
one pointin time. We use@t € (S* U §¥) for the sequence of states traversedrat
timet € R>q: Formally, leti be the smallest index si#t.< A(w,); if no suchi exists,
we setr@t = (). Otherwise, ift < A(n,i) we definer@t = (s;); if t = A(m, 1),
let j be the largest index (ofoo, if no such finite index exists) such that A(r, j).
ThenmQt = (s;...s;). We writes € (s;...s;) if s € {s;,...,s;}; further, if s €
(si...s;) we definePref ((s;...s;), ) (84, - - - sk), Wwheres = s, andk minimal. If
s ¢ (s;...s5), wesetPref((s;...s;),s) = (). The definitions fotime-abstracpaths
are similar

A path 7 (time-abstract path’) is a concatenation of a state and a sequence of
combined transitiongtime-abstract combined transitionffom the setf2? = Rx>q x
Act; X 8 (2445 = Acty x S); hencer = spomgomyo...om,_1 Withm; =
(ti,gi,5i+1) e (ml = (Ui,5i+1) € Qabs)- ThUSPathsn(./\/l) =8 x 2" is the set
of paths of lengthn in M; further, Paths* (M), Paths” (M) and Paths(M) are the
sets of finite, infinite and all paths in. To refer to time-abstract paths, we add the
subscriptabs; further the reference ta1 is omitted wherever possible.

The measure-theoretic concepts are mentioned only brieflyefer to [21] for an
in-depth discussion. Events i are measurable sets of paths; as paths are Cartesian
products of combined transitions, we define théield F=c (B(R>0)XF act, XTs)
on subsets of? wheregs=2° andSACM:2ACM. Then we derive the produetfield
S pathsn =0 ({SoxMox -+- xM,_1 | So € s, M; € F}) of measurable subsets of
Paths™. The cylinder-set construction [1] extends this to infimgths in the usual way.

2.3 Resolving nondeterminism by schedulers

An IMC M is nondeterministidff there exists(s, a, u) , (s, 8,v) € IT(s) with u # v:
If both internal transitions (to states ands,) in states, of Fig. 1 execute instanta-
neously, the successor state is not uniquely determinagstdve this nondeterminism,



we useschedulerslf M reaches state, along ahistoryr € Paths™, a scheduler yields
a probability distribution over the setct; (7)) = {«, 5} of enabled actionin s,.

Definition 2 (Generic measurable scheduler)A generic schedulesn an IMC M =
(S, Act, IT, MT,v) is apartialmappingD : Paths* x § act, — [0, 1] with D(x,-) €
Distr(Act;(r|)) for all = € Paths* with 7| € IS. A generic scheduleb is measur-
able(GM scheduler) iff for allA € Fact, D71 (A) : Paths™ — [0,1] is measurable.

Measurability states thétr | D(w, A) € B} € Fpawms+ holds for allA € F4.; and
B € 9B([0, 1]); intuitively, it excludes schedulers which resolve the determinism
in a way that induces non-measurable sets. Recall that ndet@mminism occurs if
m| € MS. However, we slightly abuse notation and assumefiat, -) = {L — 1} if
w] € MS sothatD yields a distribution ovedct . A GM scheduleD is deterministic
iff D(r,-) is degenerate for alt € Paths™. We useGM (and GMD) to denote the
class of generic measurable (deterministic) schedulersh&r, aGM scheduletD
is time-abstrac{ GM ) iff abs(w) = abs(7’) implies D gps (7, ) = D gps (', -).

Example 2.If state s, in Fig. 1 is reached along path = s o4, s2, then D(r)

might yield the distribution{c — 1,3 — 1}, whereas for history’ = s 5L,

it might return a different distribution, sa (7) = {a — 1}.

2.4  Probability measures for IMCs

In this section, we define the probability measure [21] iretlioy D on the measurable
space(Paths®, § pans~ ). We first derive the probability of measurable sets of com-
bined transitions, i.e. of subsets@f

Definition 3. Let M = (S, Act, IT, MT,v) be an IMC andD € GM. Forall 7w €
Paths™, we define the probability measuyig (7, ) : § — [0, 1] by:

D acActi(x)) 1 (e, 0, suce(a)) - D (m,{a}) if s e IS
fRzo E(s)e FO)t. Soeslu(Lt,s') - P(s,s) dt ifse MS.

1)
Here,1,, denotes an indicator, i.&,(o,t,s’) = 1if (0,t,s") € M and0, otherwise.
Intuitively, up(w, M) is the probability to continue along one of the combined-ran
sition in the set)M. For an interactive state € IS, it is the probability of choosing
a € Acti(m]) such thata, 0, succ(w)) is a transition indM; if s € MS, pp(r, M) is
given by the density for the Markovian transition to triggétimet and the probability
that a successor state is chosen respedtingis paths are inductively defined using
combined transitions, we can lift the probability measurgr, -) t0 § patpsn:

Definition 4 (Probability measure).Let M = (S, Act, IT, MT,v) be an IMC and
D € GM. Forn > 0, we define the probability measurés;; ,, inductively on the
measurable spadePaths™, § pathsn ):

:U’D(ﬂ-vM) = {

Pr) bt S pamso — [0,1] : 1T +— Z v(s) andforn >0

sell

PrﬁyD : S Pathsr — [0,1] : [T — PTZ}}(dW)/ 1 (mom) pp(mw,dm).
Paths™ 1 ’ (9]



Observe thaf’r;; , measures a set of pathsof lengthn by multiplying the probabil-
ities Prj}ﬂ(dw) of path prefixesr (of lengthn—1) with the probabilityup (7, dm) of

a combined transitiom € M which extendsr to a path in/7. Together, the measures
PTZ’D extend to a unigue measure @y s if B € Fpamsn IS @ measurable base
andC = Cyl(B), we definePr; ,(C) = Pr; ,(B). Due to the inductive definition
of Pr} j, the lonescu—Tulcea extension theorem [1] applies, whieldy a unique ex-
tension ofPri; ;, to arbitrary sets if§ patnse -

2.5 Interactive probabilistic chains
Interactive probabilistic chain@PCs) [15] are the discrete-time analogon of IMCs:

Definition 5 (Interactive probabilistic chain). Aninteractive probabilistic chaifiPC)
is atupleP = (S, Act,IT, PT,v), whereS, Act, IT andv are as in Def. 1 and
PT : S§xS — [0,1] is atransition probability functions.t/s € S. PT(s,S) € {0,1}.

A states in an IPCP is probabilisticiff >, s PT(s,s') = 1 andIT(s) = 0; PS
denotes the set of all probabilistic states. The sets ofant®e, hybrid and deadlock
states are defined as for IMCs, with the same assumption &dpms deadlock states.
Further, we assume any IPC to be closed, thdkjs, s’) € IT impliesa € Act;.
As for IMCs, we adopt thenaximal progress assumpti¢h7, p. 71]; hence, internal
transitions take precedence over probabilistic transitio

Definition 6 (IPC scheduler).Let P = (S, Act, IT, PT,v) be an IPC. A function
D : Paths},,, — Distr(Act;) with D(r) € Distr(Act;(w|)) is atime abstract history

abs

dependent randomiz€d: M ;) scheduler.

Note that in the discrete-time setting, measurabilityéssio not arise. To define a prob-
ability measure on sets of paths7 we define the probability of a single transition:

Definition 7 (Combined transitions in IPCs). Let P = (S, Act, IT, PT,v) be an
IPC,s € 8,0 € Act,, m € Paths},, and(c,s) € 24 a time abstract combined

abs

transition. For scheduleD € GM ,;,, we define

P(r],s) ifr]e PSANo=_1
upy” (777 {(‘775)}) =< D(m,{c}) ifr] €IS Asucc(o)=s
0 otherwise.

is the probability of the combined transitide, s). For a set of combined transitions
M g Qab51 we Setﬂ%bs (71', M) = Z(a7s)eM M%bs (Sa {(Ua S)})

The measureg?’® extend to a unique measure on sets of patiiinthe same way as
it was shown for the IMC case in Sec. 2.4.

3 Interval bounded reachability probability

We discuss how to compute the maximum probability to visiivey set ofgoal states
during a given time interval. Therefore, [Etbe the set of nonempty intervals over the



nonnegative reals and 1€} be the set of nonempty intervals with nonnegative rational
bounds. Fott € R>¢ andl € Z, we definel 6t = {v—t|z eI Az >t} and
Iot={x+t]|x eI} Obviously,ifl € Qandt € Qx, thisimpliesI &¢ € Q and
IoteQ.

3.1 Afixed point characterization for IMCs

Let M be an IMC. For a time intervdl € 7 and a set of goal stat€s C S, we define
the eventO!G = {7 € Paths” | 3t € I. s’ € 7Qt. s’ € G} asthe set of all paths that
are in a state ir; during time intervall. The maximum probability induced b/ G

in M is denotedp .. (s, I). Formally, it is obtained by the supremum under @i/
schedulers:

p~7/\n/laz(s7l): sup PTL;S-D(OIG)'
DeGM '

Theorem 1 (Fixed point characterization for IMCs). Let M be an IMC as before,
G C S a set of goal states anfl € 7 such thatinf / = a andsup = b. The
functionp’,, : S x T — [0,1] is the least fixed point of the higher-order operator
2:(8x7Z—-10,1]) — (S x I — [0,1]) which is defined as follows:

1. For Markovian states € MS: 2(F)(s, I) equals

JYE(s)e PO o P(s,8) - F(s', T o t) dt ifs¢G
e E@ay [P E(s)e PO sP(s,s) - F(s, 1ot)dt ifseq.

2. For interactive states € IS: Q2(F)(s,I) equalsl if s € G and0 € I, and
otherwise 2(F)(s,I) = maz{F(s',I) | s’ € post(s)}.

Example 3.The fixed point characterization suggests to complfe, (s, I) analyti-
cally: Consider the IMC\U depicted in Fig. 1 and assume tidat= {ss}. Forl = [0, ],
b > 0 we havep™ (s3,1) = 1, pM (s4,1) = 1 — e % andp (s1,I) =
fob et (2 pMa(sa, Tot)+ 1 phla(ss, T Ot)+ 2 pM (s4, I Ot))dt. For inter-
active state,, we derivep)!, (s2, 1) = maz {p) (s4,1), pt,(s1, 1)}, whichyields
pM (s0,1) = fé’ 0.9¢7 09 (2. pM (s1,161) + 1 - p)t . (s2,1 &1))dt. Hence, an
IMC generally induces an integral equation system over tagimum over functions,
which is not tractable. Moreover, the iterated integratsonumerically unstable [3].

Therefore, we resort to a discretization approach: Infdgmae divide the time
horizon into small time slices. Then we consider a disctiebe- model whose steps
correspond to the IMC's behaviour during a single time sliiest, we develop a fixed-
point characterization for step bounded reachability deractive probabilistic chains
(IPCs); then we reduce the maximum time interval boundedhaaility problem in
IMCs to the step interval bounded reachability problem mdiscretized IPC. Finally,
we show how to solve the latter by a modified value iteratigoathm.



3.2 Afixed point characterization for IPCs

Similar to the timed paths in IMCs, we defin@n ¢ S§* U S“ for the time abstract
paths in IPCs: Let™¥(m, k) = [{i e N| 0 <i < k Anli] € MS}|; then#"5 (7, k)
is the number of probabilistic transitions that occur uph®(+1)-th state onr. For
fixedn € N, leti be the smallest index such that= #7(x, ). If no suchi exists,
we setr@n = (); otherwisei is the index of then-th probabilistic state that is hit on
paths. Similarly, letj € N be the largest index (of oo if no such finite index exists)
such thath = #79(x, j). Then; denotes the position andirectly before itgn+1)-th
probabilistic state. With these preliminaries, we defiter = (s;, si+1,. .., Sj—1, S;)
to denote the state sequence betweemttieand the(n+1)-th probabilistic state of.
To define step-interval bounded reachability for IPCsklét’ € N andk < k’: Then

OFHF1G = {1 € Paths®,, | 3In € {k,k+1,...,k'}. 35 € x@n. s' € G}
is the set of paths that vigit between discrete time-stépandk’ in an IPCP.
Accordingly, we define the maximum probability for the evert-*'1G:

p;lv)uz:v (87 [k7 kl]) - sup PT’;:;D (O[kak/]G)
DeGM a5

Theorem 2 (Fixed point characterisation for IPCs).Let P = (S, Act, IT, PT,v)
be an IPC,G C S a set of goal states anfl = [k, k] a step interval. The function
ph .. is the least fixed point of the higher-order operafer (S x N x N — [0, 1]) —
(8§ x Nx N — [0,1]) where

1. for probabilistic states € PS:

1 ifseGAk=0
Q(F) (s, [k, K]) = 4 0 ifs¢GAk=k =0
Yoees PT(s,8") - F (s, [k, k'] o1) otherwise;
2. for interactive states € IS: 2(F)(s, [k, k']) = 1if s € G andk = 0. Otherwise,
QF) (s, [k, K']) = maz g cposi(s) F (5, [k, K]).

Observe that for IMCs, the recursive expression of the fibistic reachability does
not decrease the time intervalfor interactive states, whereas for IPCs, the recursive
expression does not decrease the corresponding stepairfery|].

3.3 A discretization that reduces IMCs to IPCs
For an IMC M and astep durationr > 0, we define the discretized IP&1.. of M:

Definition 8 (Discretization). An IMC M = (S, Act, IT, MT,v) and a step dura-
tion 7 > 0 induce thaliscretized IPCM., = (S, Act, IT, PT,v), where

PT(s,s

N = {El — e_E(S)T) -P(s,s) if s # s %)

(1= e POT) P(s, ) + e EO)T ifs =4
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(a) The example IMCM. (b) The induced discretized IP&1 .
Fig. 2. Interval bounded reachability in IMCs with lower intervalinds.

In M., each probabilistic transitio®®T(s,s’) > 0 corresponds to onéme stepof
lengthT in the underlying IMCM: More precisely,PT (s, s') is the probability that a
transition to state’ occurs withinr time units. In case that = s, the first summand
in PT(s,s’) is the probability to take a self-loop back #pi.e. a transition that leads
from s back tos executes; the second summand denotes the probability dtteamsi-
tion occurs within the next time units and thus, the systems stays in states’.

Now we state the correctness of the discretization: To caenthe probability
. (s,[a,b]), we analyze step-interval bounded reachability in therdiszed IPC
M, where each steppproximatelycorresponds to time units. First we show that
M (s, [0,[27]) converges from below tp,_ (s, [0,8]) if 7 — 0
Theorem 3. Let M = (S, Act, IT, MT,v) be an IMC,G C S a set of goal states,
I =[0,b] € Q atime interval withb > 0 and\ = mazc s E(s). Further, letr > 0
be such thab = k,7 for somek, € N~ (. For all s € S it holds:

()

p'v/v\l/ta} (Sa [07 kb]) < p{\n/laz(sa I) < p{\n/laTz (Sa [Oa kb]) + kp - 2

Example 4.Consider the IMCM and its discretized IPG@ - in Fig. 2(a) and Fig. 2(b),
resp. Assume tha’ = {s2} and fix somer > 0, k € Ny . Further, letl = [0, k7]. In

the IMC M, it holds thatp M, (so, I) = fo’” e MopM (s) Tot)dt =1—e 7. In

M., we obtainpM,. (so, [0,k]) = S5 (e77)i"! (1 — e™*7) = 1— =7, which is
the geometric distribution function for parameper 1 — e=*".

So far, we only considered intervals of the fofm= [0, b], b > 0. In what follows, we
extend our results to arbitrary intervals. However, thislightly involved:

If s € MS is a Markovian state ankl > 0, thenp/!,_ (s, (0,8]) = p.. (s,[0,0]).
However this is not true for interactive states:sif (instead ofsg) is made the only
initial state inM and M., of Fig. 2, the probability to reack, within interval [0, ]
is 1 whereas it i9) for the right-semiclosed intervgd, b]. Further, the discretization is
imprecise for point intervals: To see this, note that i [r, 7], thenp! (so,I) = 0,
whereaM- (so,[1,1]) =1 — e .

Now, let] = [k,T, ky7] be aclosedinterval withk,, k, € Nand0 < k, < k. In
the IMC M in Fig. 2(a), we obtaipM._(so, ) = kka”: Ae™ M pM (s, IOt) dt =
e~ Mam _ =AM whereas for its discretized IP®1 . (see Fig. 2(b)), we derive

ky )
PG (s, Thas k) = 3 (e77)7 - (1= e7) = e Be T _ g,

i=kq



Clearly, the two probabilities differ in the first terms? o2 ——
by a factor ofe’”. To see the reason, lét, = 2
andk, = 3: We havep™ (s, [27,37]) = e 2 —
e~327; however, inM., it holdsp- (s,[2,3]) = 4|
ef)\'r . (1 o 67/\7) +672)\7‘ . (1 _ ef)\'r) — ef)\'r o
e 3 . As each step inM, corresponds to aost
time interval of lengthr (cf. Fig. 3), the inter-
val bounds27 and 37 fall in different discretiza- %o+ 2 3 1 &
tion steps. Hence in the discretization, we add two Fig. 3. Discretization steps.
steps which leads to an error. If instead we compyi§, (s, (27,37]), we obtain
pite (s,(2,3]) = pM- (5,[3,3]) = e — 7327 as desired.

Based on these observations, we extend Thm. 3 to intervéhs poisitive lower
bounds. To avoid some technicalities, we first restrictgbtisemiclosed intervals:

Theorem 4. Let M = (S, Act, IT, MT,v) be an IMC,G C S a set of goal states,
I = (a,b] € Q atime interval witha < b and A = mazsepysE(s). If 7 > 0 is such
thata = k,7 andb = k7 for somek,, k, € N, then it holds for alls € S:

(An)* Or)*
2 2

The error bounds for the case of lower interval bounds thatstated in Thm. 4 are
derived using double induction ovkg andky, respectively.

1.5+
(7,27]
(27, 37]

t

pi\n/la;(&(kazkb]) _ka . Spﬁ\n/laa:(&l) Spi\n/la;(&(kavkb]) +kb . +)\T

Theorem 5. If M, G andr are asin Thm. 4 and € Qs atime interval withnf I = a
andsup I = b suchthat < b anda = k,7,b = k7 for k., ks € NandO ¢ I, then

AT)? AT)?
p~7/\n/laﬂ-1: (87 (ka7kb]) —ka ( 72-) < p';\n/taa:(&l) < p~7/\n/laﬂ-1: (87 (kavkb]) + ky - ( ;) + AT

For the remaining cases, note that for all statesS and intervald = () or I = [a, d]
with @ > 0 it holds thatp2!,.(s,I) = 0. Finally, for the case that = [0, 0], an
interactive reachability analysis suffices to compufig, (s, I), which is eitherl or 0.

3.4 Solving the problem on the reduced IPC

LetP = (S, Act, IT, PT,v) be an IPCG C S a set of goal states anil,, k] a step
interval. In this section, we discuss how to compplfg,, (s, [ka, k3]) via @ modifica-
tion of the well knownvalue iterationalgorithm [5]. The adaptation is non-trivial, as
we consider step intervals that correspond to the numbgrotfabilistic stepghat are
taken. This is reflected in our algorithm which only decrsabke step counter for prob-
abilistic, but not for internal transitions. We discusgdt®unded reachability first:

Step bounded reachability: We aim at computing?, ... (s, [0, k]) for 0 < k. This
works as follows: In each step= 0,1,...,k of the iteration, we use two vectors
¥; € [0, 1]3 andi; € [0, 1]3, wheret; is the probability vector obtained from_; by
one step in the classical value iteration algorithm &nis obtained by computing the
backwards closure along interactive transitions wiy.t; .



Each of thek value iteration steps consists of two phases: Fiisis computed: If
s € PSNG,theny;(s) = 1. If s € PS\ G, thent;(s) is the weighted sum of the
probabilistic successor state’sof s, multiplied by the result;_, (s’) of the previous
step. In the second phasg, is obtained by the backward closure®falong internal
transitions. Initially, we setiy(s) = 1if s € G, and#(s) = 0, otherwise. Then:
Vi€ {0,...,k}. @i(s) = maz {0;(s') | s~ s'} and forg;:

Yses PT(s,8") - tui—a(s") ifs€ PS\G
Vie{l,...,k}. 7i(s) =<1 it s PSAC
ti-1(s) if s € IS.

For efficiency reasons the sgt’ € S | s ~7 s’} can be precomputed by a backwards
search in the interactive reachability graphof
After k value iteration steps’, .. (s, [0, k]) is obtained as the probability i (s).

Step-interval bounded reachability: In this part, we compute? .. (s, [k, ks)), for
interval bound®) < k, < k. Again, we compute a sequengg iy, . . . , Uk, , Uk, - AS
k., > 0, we split the value iteration in two parts: In the fikgt— &, value iteration steps,
we proceed as before and compute the probability veeinrs, . . ., Uk, k., , Uk, —k, -
Thus, we compute the probabilitip§ . (s, [0, k,—k,]) forall s € S.

The vectorvy, —i, provides the initial probabilities of the second part: le tte-
maining: € {ky—kq+1,...,ky} value iteration steps, we s&f(s) = 0 if s € IS and
Ui(s) = Y goes PT(s,8") - u;—1(s") if s € PS. The vectorsi; are as before. To see
why, note that the value iteration algorithm proceeds in ekivard manner, starting
from the goal states. We do not sgts) = 1if s € G in the lastk,, iteration steps, as in
the firstk, transitions, reaching a goal state does not satisfy ouhgedality objective.
To avoid that the probabilities of interactive states IS erroneously propagate in the
vectorsu;(s) from the first to the second part, in the second part we defifig = 0
for all s € IS (instead ofv;(s) = u;—1(s) as in the first part). Let us illustrate this:

Example 5.We computep” . (s,[1,2]) in the IPCP in Fig. 4 for initial states
and goal states: In the first part, apply the value iteration to compute v(s) =
1if s = s3 and0, otherwise. By the backwards closur& = (1,0,0,1). Thus
pl . (s0,]0,0]) = 1, assp can reachG by the interactiven-transition. For;, we

haveﬁl(so) = ’L_[:O(SO) =1 andﬁl(sl) = %ﬁo(Sg) + %ﬁo(Sg) = % In this way,
we obtaint; = (1,4,1,1) andad; = (1,3,1,1). With the probabilitiesi;, the

first part ends aftek, — k, = 1 value iteration steps. Ak, = 1, one iteration for
the lower step bound follows. Her&(so) = v2(s3) = 0 assg,s3 € IS; further
’172(81) = %’1_1:1(83) + %ﬁl(SQ) = % andUQ(SQ) = %’ljl(Sg) + iﬁ1(83) + iﬂ'l(sl) = %
Finally, @, = (2, 2, 3, 3). Therefore, we obtain thaf] ., (s, [1,2]) = @2(s0) = 3.
3.5 Algorithm and complexity

Let M, G, e andI as before, witth = sup I. Fore > 0, chooseék;, such thatk;, - % +
At < e.Withr = kib the smallest such, is k; = [%‘g”ﬂ . Then the step duration



induces the discretized IP€L,. By Thm. 5,pM (sq, I) can be approximated (up ¢
by pM- (so, (ka, ks]). Letn = |S| andm = |IT| + |MT| be the number of states and
transitions of M, respectively. In the worst casg/ . hasn
states, anar + n transitions. In each value iteration step, the
update of the vectar; takes at most timex + n; for u;, the
setsReach’(s) are precomputed. In the general case, the best
theoretical complexity for computing the reflexive traivait
closure is inO (n?379), as given by [13]. Asn* C S x

S, the number of transitions in the closure* is bounded Fig. 4. Example IPC.
byn2. Hence, with an appropriate precomputationdf updatingi; takes timeD(n?).
Therefore, withk;, value iteration steps, the worst case time complexity o oach
isiNn2370 4+ (m+n+n?)- (Ab) - (Ab+2) /(26) € O(n?*370 + (m +n?) - (Ab)~ /e).

4 Model checking the continuous stochastic logic

For model checking, we consider a finite g® = {a, b, ¢, . . .} of atomic propositions
andstate labelledMCs: A state labelling functiorl, : S — 247 assigns to each state
the set of atomic propositions that hold in that state. Te¥pguantitative properties,
we extend the continuous stochastic logic (CSL) [3, 12] olvlieasons about qualitative
and quantitative properties of CTMCs to the nondeternimssitting:

Definition 9 (CSL syntax). Fora € AP, p € [0,1], I C Q an interval and<d €
{<, <, >, >}, CSL stateand CSL path formulasre defined by

Pu=a|-P|PAD|Paylp) and pu= X0 U .

Intuitively, a pathr € Paths® satisfies the formul&’’® (7 = X19) if the first transi-
tion on7 occurs in time-interval and leads to a successor stateitt($). Similarly,

7 satisfies the until formulé ¢! ¥ if a state inSat(¥) is reached at some time point
t € I and before that, all states satisfy state formbila

Definition 10 (CSL semantics)Let M = (S, Act, IT, MT, AP, L,v) be a state la-
belled IMC,s € S,a € AP, T € Q,< € {<,<,>,>}andw € Paths“. For

state formulaswe defines = a iff a € L(s), s = =@ iff s £ Pands E P AP

iff s = @ ands = ¥. Further,s = Pq,(yp) iff for all D € GM it holds that
Pry p{m € Paths” | 7 = p} < p. For path formulaswe define

TEXP — n[l]EdAST,0) el
TEOU' Y < Ftel IscnQt sEWAYsS € Pref(rQt,s). s’ = &
AV €10,t).Vs" e m@t'. s" | .

To model check an IMC w.r.t. a CSL state formuawe successively consider the
state subformulag of ¢ and calculate the set&t(¥) = {s € S | s = ¥}. For atomic
propositions, conjunction and negation, this is easy@$a) = {s € S| a € L(s)},
Sat(—¥) = S\ Sat(¥) and Sat(¥; A ¥3) = Sat(¥1) N Sat(P:). Therefore we
only discuss the probabilistic operatBx,, () for next and bounded until formulas.



To decideSat (P<p(yp)), it suffices to maximize (or minimize, which can be done
similarly) Pri; p ({7 € Paths” | m |= ¢}) w.rt. all schedulerd € GM. We define
it (s,0) = suppeay Pri. p ({m € Paths” | m = ¢}) and consider both types of
path formulas:

The next formula Computingp M, (s, X1®) is easy: We proceed inductively on the
structure of the formula and assume tHat(®) is already computed. Let= inf I, b =
sup I ands € MS. Thenp)! (s, X!®) = f: E(s)e F@)t Dyesar(@) P(s,8") dt =

P (s, Sat(®)) - (e~ P&)a — e=EGY) whereP (s, Sat(d)) = > sesar(e) P(s: ) is
the probability to move to a successor stédte Sat(P). If s € IS, 0 € I andpost(s) N
Sat(P) # 0, thenp, (s, X'®) = 1; otherwisep, (s, X1 P) = 0.

The until formula Letp = U ¥ with I € Q and assume thatat(®) and Sat(¥)
are already computed. We reduce the problem to comgldte (s, ¢) to the maximum
interval-bounded reachability problem: Therefore, defitig = {s € S | s = —®}.In
the next step, we turn all statesc S7, into absorbing states by replacing all its out-
going transitions by a single interactive self loop. Thisiisilar to the approach taken
in [3, 6] for model checking CTMCs and MDPs. Formally, a state IS is absorbing
iff post’(s) = {s}. Hence, as soon as a path enters an absorbing state, it caacot
different state anymore. Moreover, due to the maximal grsgiassumption, time does
not progress any further in absorbing states. IntuitivelgkingS?,-states absorbing is
justified as follows. If a pattr enters a state € S7,, it can be decided immediately
whetherr |= @ U ¥, or not: If s = ¥ holds and if state is entered at some time in
the intervall, thenw |= ® U w. Otherwiser [~ & U ¥ holds.

Theorem 6 (Time-bounded until).Let M = (S, Act, IT, MT, AP, L,v) be a state
labelled IMC,p = @ U! ¥ a CSL path formula witil € Q andG = Sat(¥) the set of
goal states. Further, assume that all states S¥, are made absorbing. Then

ot (s, U W) =pM (s, 1) forall s € S.

Theorem 6 reduces the problem to compy}, (s, U’ ¥) of the until formula to the
problem of computing the interval bounded reachabilitybataility p\!, (s, I) with
respect to the set of goal stat@s= Sat(¥). The latter can be computed efficiently by
the discretization approach introduced in Sec. 3.3.

For CSL state-formul@, let |?| be the number of state subformulasdfin the
worst case, the interval bounded reachability probahidityomputed®| times. Hence
the model checking problem has time complexit|®|- (n?376 + (m + n?) - (Ab)?/e)).

5 Experimental results

We consider the IMC in Fig. 6, wher®r{(50, 10) denotes a transition with an Erlang
(k, M) distributed delay: This correspondsite= 30 consecutive Markovian transitions
each of which has ratd. The mean time to move from, to the goals, is § =3
with a variance off—2 = 1%. Hence, with very high probability we move frosg to s,



fcﬁl —— problem statese A b prob. time
08 f Eri(30,10) 35[1073|10] 4 0.672| 50s
06 _;g;; Eri(30,10) 35(1073|10| 7 0.983| 70s
' 'S Eri(30,10) 35(1074|10| 4 0.6718|268s
0.4 S ws-cl, N=4| 820[10°| 2]10'(3.3-107°| 2d
02l j & oo = | ws-cl, N=4| 820[{10~*| 2|10%| 4-10~*| 15h
o & A ws-cl, N=4| 820{1073| 2[10°| 5-107%| 6d
0 1 2 3 4 5 6—b
(a) Time-bounded reachability ifv1. (b) Computation time for different parameters.

Fig. 5. Experimental results foEri(30, 10) and the workstation cluster from [16].

after approximately3 time units. The decision .7 R
that maximizes the probability to reach in
time intervall0, b] in states; depends on the so-
journ in statesg. Fig. 5(a) depicts the computed
maxima for time dependent schedulers and the
upper part of Tab. 5(b) lists some performancerig. 6. The Erl(30, 10) model M.
measurements.

If AP = {g} ands, is the only state labelled witl, we can verify the CSL formula
® = Pso.5 (OF4g) by computingp?t,, (so, [3,4]) with the modified value iteration.
The resulp;,. (so, [3,4]) = 0.6057 meets the bound 0.5 in @, implying thats, =
P.

Finally, the lower part of Tab. 5(b) lists the performanceuof approach for a large
scale example [16], where we conduct a dependability aisadys cluster oR NV work-
stations to estimate its failure probability over a finiteéi horizon. This rather stiff
model has a high computational complexity in our prototgpimplementation, as the
failure events are very rare which leads to a large time bariz

All measurements were carried out 08.2GHz Xeon CPU with16 GB RAM.

6 Related work and conclusions

In the setting of stochastic games, the time-bounded rédithigoroblem has been
studied extensively in [11], with extensions to timed audtarin [9]. Closely related to
oursis the work in [7], where globally uniform IMCs — whichoeire the sojourn times
in all Markovian states to be equally distributed — are tfarmsed into continuous-time
Markov decision processes (CTMDPs). Subsequently, theritthgn in [4] is used to
compute the maximum time-bounded reachability probafiitithe resulting globally
uniform CTMDP. However, the applicability of this approastseverely restricted, as
global uniformity is hard (and often impossible) to achieve

Further, the above approaches rely on time-abstract stéreduhich are proved to
be strictly less powerful than the time-dependent oneswieatonsider here [4, 24].

In [25], we relax the restriction to global uniformity andrgder locally uniform
CTMDPs for which we propose a discretization that computasimum time-bounded
reachability probabilities undéate schedulerdn locally uniform CTMDPSs, late sched-



ulers outperfornearly scheduler§24], which are the largest class of history and time
dependent schedulers definable on general CTMDPs [21].

The discretization approach in this paper resembles thgg5df However, the re-
sults are complementary: In general, transforming IMCs T¢OPs as done in [21]
does not yield locally uniform CTMDPs. Hence, the approac?b] is inapplicable
for the analysis of IMCs. However, we expect to solve the fgabof computing time-
interval bounded reachability in CTMDPs by analysing theMDIP’s induced IMC.

By providing an efficient and quantifiably precise approxiommalgorithm to com-

pute interval bounded reachability probabilities, thipgasolves a long standing open
problem in the area of performance and dependability etialuaVoreover, we solve
the CSL model checking problem on arbitrary IMCs.

AcknowledgementWe thank Holger Hermanns and Joost-Pieter Katoen for tloair-c
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