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Abstract. This paper reviews the model of interactive Markov chains
(IMCs, for short), an extension of labelled transition systems with expo-
nentially delayed transitions. We show that IMCs are closed under paral-
lel composition and hiding, and show how IMCs can be compositionally
aggregated prior to analysis by e.g., bisimulation minimisation or aggres-
sive abstraction based on simulation pre-congruences. We survey some
recent analysis techniques for IMCs, i.e., explaining how measures such
as reachability probabilities can be obtained. Finally, we demonstrate
that IMCs are a natural (and simple) semantic model for stochastic pro-
cess algebras and generalised stochastic Petri nets and can be used for
engineering formalisms such as AADL and dynamic fault trees.

1 Introduction

Designing correct and efficient distributed systems is a difficult task. As a chal-
lenging case take an offshore wireless sensor network that is designed to identify
tsunami situations and relay tsunami warnings [61]. Once fully operational, will
this network help to save human life? Can we guarantee its correct functioning,
or is there a risk of failure at the very moment when it is seriously needed?
To say it with Barendregt, correct systems for information processing are more
valuable than gold [4]. In the tsunami context, a correct system is one that
guarantees certain time bounds for the tasks it needs to perform, even in the
presence of message losses or component failures. Correctness, performance and
dependability are intertwined here, and so they are in many other contemporary
IT applications. These applications ask for quantitative correctness properties
such as: The frequency of system downtime is below one hour per year, and
packets arrive timely in at least 99.96% of all cases.
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Performance and dependability evaluation is a discipline that aims at analysing
these quantitative system aspects. Major strands of performance evaluation ap-
proaches are measurement-based and model-based techniques. In measurement-
based evaluation, experiments are performed on a concrete (often prototypical)
realisation of the system, and timing information is gathered, which is then
analysed to evaluate measure(s) of interest. These techniques are routinely prac-
ticed in the systems engineering world. They provide specific, precise and very
concrete insights into the functioning of a real system. The drawback of these
approaches is mainly the fact that they are not reproducible, are hard to scale,
and difficult to generalise beyond the concrete setup experimented with. In order
to increase reproducibility and reduce costs of larger experiments, distributed
systems researchers often resort to emulation studies, where the real system code
is executed on a virtualised hardware, instead of distributing it physically on the
target systems. This especially allows for better concurrency control and thus
improved reproducibility. However, it remains notoriously unclear to what extent
the imposed control mechanisms tamper the validity of the obtained measures.

In model-based performance evaluation, a more general, and thus more abstract
approach is taken. A model of the system is constructed that is deemed just
detailed enough to evaluate the measure(s) of interest with the required accu-
racy. In this context the modelling process is an additional step that needs to
be performed, and this is a non-trivial task. Process calculi [5] provide a formal
basis for designing models of complex systems, especially those involving com-
municating and concurrently executing components. The underlying basis is the
model of labelled transition systems, which represent system behaviour as tran-
sitions representing discrete system moves from state to state. The consideration
of stochastic phenomena has led to a plethora of stochastic process calculi, cf.
the survey in [36]. One of their semantical models is the topic of this paper: in-
teractive Markov chains (IMCs, for short) [35]. It stands out in the sense that it
extends classical labeled transition systems in a simple yet conservative fashion.
IMCs arise from classical concurrency models by incorporating a second type of
transitions, denoted s λ−−→ s′, that embodies a random delay governed by a nega-
tive exponential distribution with parameter λ ∈ R>0. This twists the model to
one that is running on a continuous timeline, and where the execution of actions
is supposed to take no time —unless they can be blocked by the environment.
(This is linked to the notion of maximal progress.) By dropping the new type
of transitions, labeled transition systems are regained in their entirety. By in-
stead dropping the old-fashioned action-labeled transitions, one arrives at one of
the simplest but also most widespread class of performance and dependability
models, continuous-time Markov chains (CTMCs). They can be considered as
labeled transition systems, where the transition labels —rates of negative expo-
nential distributions— indicate the speed of the system evolving from one state
to another. Their benefits for stochastic process calculi is summarised in [16].

While this simple combination of LTS and CTMCs was at first viewed as a
rather academic distinction, the last decade has shown and stressed its impor-
tance. First and foremost, IMCs have shown their practical relevance in applica-
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tions of various domains, ranging from dynamic fault trees [11,10,12], architec-
tural description languages such as AADL (Architectural Analysis and Design
Language) [9,15,13,14], generalised stochastic Petri nets [40] and Statemate [8] to
GALS (Globally Asynchronous Locally Synchronous) hardware design [22,19,23].
The availability of CTMC-based tool support [31] for IMCs has led to several
of these applications. On the other hand, a rich set of algorithmic advances for
the analysis and minimisation of IMCs have been recently developed that en-
able the analysis of large IMCs [49,66]. Whereas so far the analysis trajectory
was restricted to CTMC models obtained from IMCs whose weak bisimulation
quotient is free of nondeterminism, with the work of [66] this restriction has
become obsolete. In addition, recent developments in compositional abstraction
techniques for IMCs are promising means to analyse huge, and even infinite
IMCs. This paper provides a survey of IMCs, some of their recent applications
and algorithmic advancements.

Organization of this paper. Section 2 introduces IMCs, explains their seman-
tics, defines some basic composition operators and considers (bi)simulation. Sec-
tion 3 focuses on the analysis of measures-of-interest on IMCs, such as reduc-
tion to CTMCs and reachability probabilities of various kinds. Section 4 reports
on compositional minimisation techniques for IMCs, including recent progress
in aggressive abstraction. Section 5 describes the usage of IMCs as semantical
backbone for industrially relevent formalisms such as fault trees and AADL, as
well as of other modeling formalisms. Finally, section 6 concludes the paper and
gives some propects for future research directions.

2 Interactive Markov chains

What are IMCs? IMCs are basically labeled transition systems with a denu-
merable state space, action-labeled transitions, as well as Markovian transitions
that are labeled with rates of exponential distributions. In the remainder of this
paper, we assume the existence of a denumerable set of actions, ranged over by
α and β, and which includes a distinguished action, denoted τ . Actions τ models
internal, i.e., unobservable activity, whereas all other actions model observable
activities.

Definition 1 (Interactive Markov chain). An interactive Markov chain is
a tuple I = (S, Act, −→ , ⇒ , s0) where

– S is a nonempty set of states with initial state s0 ∈ S.
– Act is a set of actions,
– −→ ⊆ S × Act × S is a set of interactive transitions, and
– ⇒ ⊆ S × R>0 × S is a set of Markovian transitions.

We abbreviate (s, α, s′) ∈ −→ as s α−−→ s′ and similarly, (s, λ, s′) ∈ ⇒ by

s
λ⇒ s′. States are by the type of their outgoing transitions. Let:

– IT(s) =
{
s α−−→ s′

}
be the set of interactive transitions that leave s, and
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– MT(s) = {s λ⇒ s′} be the set of Markovian transitions that leave s.

A state s is Markovian iff MT(s) �= ∅ and IT(s) = ∅; it is interactive iff MT(s) =
∅ and IT(s) �= ∅. Further, s is a hybrid state iff MT(s) �= ∅ and IT(s) �= ∅; finally,
s is a deadlock state iff MT(s) = IT(s) = ∅. Let MS ⊆ S and IS ⊆ S denote the
sets of Markovian and interactive states in IMC I.

A labeled transition system (LTS) is an IMC with MT(s) = ∅ for any state
s. A continuous-time Markov chain (CTMC) is an IMC with IT(s) = ∅ for any
state s. (The case in which MT(s) = ∅ = IT(s) for any s is both an LTS and a
CTMC). IMCs are thus natural extensions of labeled transition systems, as well
as of continuous-time Markov chains.

The semantics of an IMC. Roughly speaking, the interpretation of Markovian

transition s
λ⇒ s′ is that the IMC can switch from state s to s′ within d time

units with probability 1−e−λ·d. The positive real value λ thus uniquely identifies
a negative exponential distribution. For a Markovian state s ∈ MS, let R(s, s′) =∑{λ | s

λ⇒ s′} be the rate to move from state s to state s′. If R(s, s′) > 0 for
more than one state s′, a competition between the transitions of s exists, known
as the race condition. The probability to move from such state s to a particular
state s′ within d time units, i.e., the Markovian transition s → s′ wins the race,
is given by:

R(s, s′)
E(s)

·
(
1 − e−E(s)·d

)
,

where E(s) =
∑

s′∈S R(s, s′) denotes the exit rate of state s. Intuitively, it
states that after a delay of at most d time units (second term), the IMC moves
probabilistically to a direct successor state s′ with discrete branching probability
P(s, s′) = R(s,s′)

E(s) .
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Fig. 1. Example of an IMC with Markovian and interactive states.

Example 1. Consider the IMC I of Fig. 1 where dotted arrows denote interactive
transitions and solid arrows Markovian transitions. We have MS = {s0, s1, s4}
and IS = {s2, s3}. Markovian states behave like CTMC states, e.g., the transition

s0
0.3⇒ s2 expires within z ∈ R≥0 time units with probability 1 − e−0.3·z. The
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two Markovian transitions of s0 compete for execution and the transition whose
delay expires first is taken. In such a race the sojourn time in s0 is determined by
the first transition that executes. As the minimum of exponential distributions
is exponentially distributed with the sum of their rates, the sojourn time of s
is determined by its exit rate E(s). In general, the probability to move from a
state s ∈ MS to a successor state s′ ∈ S equals the probability that (one of)
the Markovian transitions that lead from s to s′ wins the race. Accordingly,
R(s0, s2) = 0.3, E(s0) = 0.3 + 0.6 = 0.9 and P(s0, s2) = 1

3 . The probability to
move from state s0 to s2 within 3 time units is 1

3 ·
(
1 − e−2.7

)
.

Internal interactive transitions, i.e., τ -labeled interactive transitions, play a
special role in IMCs. As they are not subject to any interaction, they cannot
be delayed. Thus, internal interactive transitions can be assumed to take place
immediately. Now consider a state with both a Markovian transition with rate
λ, say, and a τ -transition. Which transition can now occur? As the τ -transition
takes no time, it can be taken immediately. The probability that the Markovian
transition executes immediately is, however, zero. This justifies that internal
interactive transitions take precedence over Markovian transitions. This is called
the maximal progress assumption.

Definition 2 (Maximal progress). In any IMC, internal interactive transi-
tions take precedence over Markovian transitions.

Composition and hiding. The main strength of IMCs is that they are composi-
tional.

Definition 3 (Parallel composition). Let I1 = (S1, Act1, −→1, ⇒1, s0,1)
and I2 = (S2, Act2, −→2, ⇒2, s0,2) be IMCs. The parallel composition of I1

and I2 wrt. set A of actions is defined by:

I1 ||A I2 = (S1 × S2, Act1 ∪ Act2, −→ , ⇒ , (s0,1, s0,2))

where −→ and ⇒ are defined as the smallest relations satisfying

1. s1
α−−→1 s′1 and s2

α−−→2 s′2 and α ∈ A, α �= τ implies (s1, s2) α−−→ (s′1, s
′
2)

2. s1
α−−→1 s′1 and α �∈ A implies (s1, s2) α−−→ (s′1, s2) for any s2 ∈ S2

3. s2
α−−→2 s′2 and α �∈ A implies (s1, s2) α−−→ (s1, s

′
2) for any s1 ∈ S1

4. s1
λ⇒1 s′1 implies (s1, s2)

λ⇒ (s′1, s2) for any s2 ∈ S2

5. s2
λ⇒2 s′2 implies (s1, s2)

λ⇒ (s1, s
′
2) for any s1 ∈ S1.

The first three constraints define a TCSP-like parallel composition [45]: actions
in A need to be performed by both IMCs simultaneously, except for internal
actions (first constraint), whereas actions not in A are performed autonomously
(second and third constraint). According to the last two constraints, IMCs can
delay independently. This differs from timed models such as timed automata,
in which individual processes typically need to synchronise on the advance of
time. The memoryless property of exponential distributions justifies independent
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delaying: if two Markovian transitions with rates λ and µ, say, are competing to
be executed, then the remaining delay of the µ-transition after the λ-transition
has been taken, is exponentially distributed with rate µ.

Definition 4 (Hiding). The hiding of IMC I = (S, Act, −→ , ⇒ , s0) wrt. the
set A of actions is the IMC I \ A = (S, Act \ A, −→′, ⇒ , s0) where −→′ is the
smallest relation defined by:

1. s α−−→ s′ and α �∈ A implies s α−−→′ s′, and
2. s α−−→ s′ and α ∈ A implies s τ−−→′ s′.

Hiding thus transforms α-transitions with α ∈ A into τ -transitions. All other
transition labels remain unaffected. This operation is of importance for the maxi-
mal progress assumption of IMCs. Turning an α-transition emanating from state
s, say, into a τ -transition may change the semantics of the IMC at hand, as after
hiding no Markovian transition will be ever taken in s.

Bisimulation. To compare IMCs, we introduce the notions of strong and weak
bisimulation. For set C ⊆ S of states and state s, let R(s, C) =

∑
s′∈C R(s, s′).

Intuitively, two states s and t are strongly bisimilar if any interactive transition
s α−−→ s′ can be mimicked by t, i.e., t α−−→ t′ such that s′ and t′ are bisimilar. In
addition, the cumulative rate of moving from s to some equivalence class C of
states, i.e., R(s, C) equals R(t, C). Since the probability of a Markovian transi-
tion to be executed immediately is zero, whereas internal interactive transitions
take always place immediately, there is no need to require equality of cumulative
rates if states have outgoing internal transitions. Let s

τ−−→/ denote a predicate
that is true if and only if s has no outgoing τ -transition. For state s, action α
and C ⊆ S, let T(s, α, C) = 1 if and only if {s′ ∈ C | s α−−→ s′} is non-empty.

Definition 5 (Strong bisimulation). Let I = (S, Act, −→ , ⇒ , s0) be an
IMC. An equivalence relation R ⊆ S × S is a strong bisimulation on I if for
any (s, t) ∈ R and equivalence class C ∈ S/R the following holds:

1. for any α ∈ Act, T(s, α, C) = T(t, α, C), and
2. s

τ−−→/ implies R(s, C) = R(t, C).

States s and s′ are strongly bisimilar, denoted s ∼ s′, if (s, s′) ∈ R for some
strong bisimulation R.

The rate equality is adopted from the notion of lumping equivalence [18]. Two
IMCs I1 and I2 on (disjoint) state spaces S1 and S2 respectively are bisimilar,
denoted I1 ∼ I2, if there exists a strong bisimulation R on S1 ∪ S2 such that
(s0,1, s0,2) ∈ R. The next property asserts that ∼ is substitutive with respect
to parallel composition and hiding, so, e.g., I ∼ I′ implies for any set A that
I \ A ∼ I′ \ A.

Theorem 1. [35] ∼ is a congruence wrt. parallel composition and hiding.
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As discussed before, τ -transitions play a special role in IMCs. Whereas strong
bisimulation treats all interactive transitions in the same way, regardless whether
they are internal (i.e., labelled by τ) or not, weak bisimulation takes an ob-
server’s point of view and cannot distinguish between executing several succes-
sive τ -transitions or a single one. This allows for collapsing sequences of internal
interactive transitions by a single such transition. This acts exactly the same as
for labeled transition systems. The treatment of Markovian transitions is a bit
more involved, however. First, let us remark that the probability distribution
of a sequence of exponential distributions is not an exponential distribution but
constitutes a phase-type distribution. Therefore, it is not possible to define a
weak version of the transition relation ⇒ as is done for weak bisimulation in
labeled transition systems. The solution is to demand that Markovian transitions
have to be mimicked in the strong sense, while they can be preceded and/or fol-
lowed by arbitrary sequences of internal interactive transitions. The treatment of
sequences of internal interactive transitions is similar to that of branching bisim-
ulation [62]. As for strong bisimulation, rate equality is only required if a state
has no outgoing internal transitions (maximal progress). Let s τ∗−−→ s′ denote
that s′ can be reached from s solely via zero or more τ -transitions; in particular
s τ∗−−→ s for any state s. For state s, action α and C ⊆ S, let W(s, α, C) = 1 if
and only if {s′ ∈ C | s τ∗−−→ α−−→ τ∗−−→ s′} is non-empty.

Definition 6 (Weak bisimulation). Let I = (S, Act, −→ , ⇒ , s0) be an IMC.
An equivalence relation R ⊆ S × S is a weak bisimulation on I if for any
(s, t) ∈ R and equivalence class C ∈ S/R, the following holds:

1. for any α ∈ Act, W(s, α, C) = W(t, α, C), and
2. s τ∗−−→ s′ and s′ τ−−→/ implies t τ∗−−→ t′ and t′ τ−−→/ and R(s′, C) = R(t′, C)

for some t′ ∈ S.

States s and s′ are weakly bisimilar, denoted s ≈ s′, if (s, s′) ∈ R for some weak
bisimulation R.

Theorem 2. [35] ≈ is a congruence wrt. parallel composition and hiding.

Bisimulation relations are equivalences requiring two bisimilar states to ex-
hibit identical stepwise behaviour. On the contrary, simulation relations [46] are
preorders on the state space requiring that whenever s 
 s′ (s′ simulates s) state
s′ can mimic all stepwise behaviour of s; the converse is not guaranteed, so state
s′ may perform steps that cannot be matched by s.

Definition 7 (Strong simulation). For IMC I = (S, Act, −→ , ⇒ , s0), R ⊆
S × S is a simulation relation, iff for any (s, t) ∈ R it holds:

1. for any α ∈ Act and s′ ∈ S, s α−−→ s′ implies t α−−→ t′ and (s′, t′) ∈ R for some
t′ ∈ S

2. s
τ−−→/ implies E(s) ≤ E(t)

3. s
τ−−→/ implies for distributions µ = P(s, ·) and µ′ = P(t, ·) there exists

∆ : S × S → [0, 1] such that for all u, u′ ∈ S:
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(a) ∆(u, u′) > 0 =⇒ (u, u′) ∈ R (b) ∆(u, S) = µ(u) (c) ∆(S, u′) = µ′(u′)

We write s 
 s′ if (s, s′) ∈ R for some simulation R and I 
 I′ for IMCs I
and I′ with initial states s0 and s′0, if s0 
 s′0 in the disjoint union of I and I ′.
The last constraint requires the existence of a weight function ∆ that basically
distributes µ of s to µ′ of s′ such that only related states obtain a positive weight
(3(a)), and the total probability mass of u that is assigned by ∆ coincides with
µ(u) and symmetrically for u′ (cf. 3(b), 3(c)).

Theorem 3. 
 is a precongruence wrt. parallel composition and hiding.

Constraint-oriented specification of performance aspects. Let us conclude this
section by describing how IMCs can be used to meet the challenges as put
forward in the well-known paradigm of separation of concerns. We do so by
showing that IMCs can be naturally used to specify performance aspects in the
so-called constraint-oriented specification style [64]. This style is a format par
excellence to support the separation of concerns principle when specifying the
characteristics of complex distributed systems. It has been originally developed
to support the early phases of the design trajectory. Put in a nutshell, constraints
are viewed as separate processes. Parallel composition is used to combine these
constraints much in the same vein as logical conjunction.

To illustrate how IMCs perfectly match the constraint-oriented specification
style consider a given system model P that does not contain random timing
constraints yet —i.e., P is a labeled transition system— and let α and β be two
successive actions in P . To insert a random delay between these two actions, it
now suffices to construct an IMC Dp with an initial state with outgoing transition
α and a final state, i.e. a state without outgoing transitions, that can can only
be reached by a β-transition. The state reached after performing α and the state
from which the β-transition is emanating are connected by a CTMC, i.e., an IMC
with only Markovian transitions. This CTMC models the random delay that we
want to impose on the delay between α and β. The resulting system is now
obtained as P ||{α,β} Dp. The “delay” process Dp is thus imposed as additional
constraint to process P . This procedure can now be repeated to impose delays
between other actions in P . As CTMCs can approximate general probability
distributions arbitarily closely, this is a powerful recipe. This is exemplified in
[39] where a complex telephone system specification in LOTOS has been enriched
with performance characteristics using a constraint-oriented specification style.

Now assume that we want to impose random delays on some of the observable
actions from P and Q. Following the procedure just described, this yields

(P ||A Q) ||Ap∪Aq (Dp ||∅ Dq)

where Ap are the synchronised actions with “delay” process Dp and Aq the
ones with Dq. Note that the timing constraints are added “on top” of the entire
specification. As it suffices to impose a single delay on each action, the processes
Dp and Dq are independent, and thus need not to synchronise. In case Dp delays
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only local actions from P , and Dq delays only local actions from Q, the above
specification can be rewritten into the weak bisimilar specification:(

P ||Ap Dp

)︸ ︷︷ ︸
local constraints of P

||A
(
Q ||Aq Dq

)︸ ︷︷ ︸
local constraints of Q

Note that in this system specification, the functional and performance aspects
of each individual component are separated, as well as the specifications of the
components themselves.

3 IMC analysis

Assume that the IMC under consideration is complete, i.e., it is not subject any
further to interaction with other components that are modeled as IMCs. This is
important, as this means that actions cannot be further delayed due to a delay
which is imposed by the environment. Formally, this means that we can safely
hide all actions in the IMC at hand, i.e., we consider I \ A where A contains
all actions occuring in I. Accordingly, all actions are labeled by τ . The typical
specification that is subject to analysis is thus of the form:

(I1 ||A1 I2 ||A2 . . . ||AN IN ) \ A

where A is the union of all actions in IMC Ii, i.e., A = ∪N
i=1Acti. Due to the

maximal progress assumption, the resulting IMC can be simplified: in any state
that has a τ -transition, all Markovian transitions can be removed. Subsequently,
sequences of τ -transitions can be collapsed by applying weak bisimulation. If
nondeterminism is absent in the resulting IMC, in fact a CTMC remains, and
all analysis techniques for CTMCs can be employed [34], such as transient or
steady-state analysis or CSL model checking [2].

Time-bounded reachability. An alternative analysis technique is to compute time-
bounded reachability probabilities. This does not require the IMC to be reducible
to a CTMC, and can thus be applied to any IMC. Let us explain the kind of
measure we are interested in. First, consider infinite paths in an IMC. An infinite
path π in an IMC is an infinite sequence of the form

π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ s2
σ2,t2−−−−→ . . .

with si ∈ S, σi is either an action in Act or equals ⊥, and ti ∈ R≥0. The oc-
currence of action α after a delay of t time units in state si in π is denoted by
si

α,t−−−→ si+1; in case of a Markovian transition after t time units delay, this is de-
noted by si

⊥,t−−−→ si+1. As internal interactive transitions take place immediately,
their occurrence is denoted si

τ,0−−−→ si+1. For time point t ∈ R≥0, let π@t denote
the sequence of states that π occupies at time t. Note that π@t is in general not
a single state, but rather a sequence of several states, as an IMC may exhibit
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immediate transitions and thus may occupy various states at the same time in-
stant. An example path in the IMC of Fig. 1 is s0

⊥,3.0−−−−→ s1
⊥,2.0−−−−→ s2

β,0−−−→ s4 . . .
which occupies the states s2 and s4 at time instant 5.0. Let Pathsω(s) denote the
set of infinite paths starting in state s. Using a standard cylinder construction,
a sigma-algebra can be defined over the set of infinite paths of an IMC, and can
be equipped with a probability measure [66], denoted Pr in the sequel.

Now, let I be an IMC with state space S, initial state s, and let G ⊆ S
be a set of goal states and I ⊆ R a time interval with rational bounds. The
time-bounded reachability event �IG is defined as:

�IG = {π ∈ Pathsω(s) | ∃t ∈ I. ∃s′ ∈ π@t. s′ ∈ G}
It thus contains all infinite paths starting in state s that hit a state in G at some
time point that lies in the interval I. We are basically interested in the probability
of the event �IG. The problem, however, is that —due to the presence of non-
determinism— this is not uniquely defined. To see this, consider the IMC of
Fig. 1 with G = {s4}. The probability of the event �[0,2]G for state s2, for
instance, now depends on how the non-deterministic choice between α and β
has been resolved in state s2. If β is chosen the probability equals one; otherwise
it depends on the choice in state s1. We therefore consider the probability of
�IG relative to a specific resolution of the non-determinism in the IMC. Such
resolution is defined by a total-time deterministic positional policy D, say. It
goes beyond the scope of this paper to fully define this class of policies. For the
sake of the remainder of this paper, it suffices to consider D as a function that
takes as argument the current state si, say, and the total time that has elapsed
along the path leading to si, including the time already spent in state si so
far. Based on this information, D will select one of the actions of an outgoing
transition of si.

Example 2. Consider again the IMC of Fig. 1. Assume the execution of the IMC
so far is s0

⊥,3.0−−−−→ s1
⊥,2.0−−−−→ s2. A choice between the actions α and β has to be

made in s2. An example policy D is D(s2, t) = α if t ≤ 10, and D(s2, t) = β
otherwise. Thus, if the residence time in the current state s2 is d time units, say,
then α will be chosen if d ≤ 5 (as 5 time units have passed until reaching s2),
whereas β will be chosen if d > 5.

We can now be more precise about the measure-of-interest: we are inter-
ested in maximizing the probability of �IG for all possible total-time dependent
policies, i.e., we want to determine

pmax(s, I) = sup
D

Pr
s,D

(
�IG

)
for timed policy D.

One may wonder whether we should not consider more powerful classes of poli-
cies, such as randomised ones, or policies that may base their decision on the
entire computation so far, but this does not lead to a larger value for pmax(s, I):

Theorem 4. [57] Total-time deterministic positional policies are optimal for
maximising Pr(�IG).
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Reachability probabilities. Before discussing how to compute pmax(s, I), let us
first discuss a simpler variant of the event �IG. This case occurs if sup I = ∞ and
inf I = 0. As the time interval does not impose any timing constraint anymore,
this amounts to a simple reachability event:

�G = {π ∈ Pathsω(s) | ∃i ∈ N. π[i] ∈ G}

where π[i] denotes the i-th state along π. Thus all paths are considered that hit G
at some position, no matter how much time has elapsed upon hitting G. For such
(unbounded) reachability events, positional policies suffice, i.e., there is no need
anymore to “know” the total time that has elapsed along the computation so far.
In fact, pmax(s, [0,∞)) can be determined by considering the discrete-probabi-
listic process that is embedded in the IMC at hand. The discretised counterpart
of an IMC is an interactive probabilistic chain.

Definition 8 (Interactive probabilistic chain [23]). An interactive proba-
bilistic chain (IPC) is a tuple P = (S, Act, −→ ,P, s0), where S, Act, IT and s0

are as in Def. 1 and P : S × S → [0, 1] is a transition probability function
sastifying ∀s ∈ S. P(s, S) ∈ {0, 1}.
A state s in an IPC P is probabilistic iff

∑
s′∈S P(s, s′) = 1 and IT(s) = ∅. As for

IMCs, we adopt the maximal progress assumption. Hence, interactive internal
transitions take precedence over probabilistic transitions and their execution
takes zero discrete time steps. The embedded IPC of an IMC is obtained by
considering the discrete-probabilistic interpretation of ⇒ , i.e., P(s, s′) = R(s,s′)

E(s)

if MT(s) �= ∅, and 0 otherwise. It then follows:

Theorem 5. For any IMC I with embedded IPC P: pI(s, [0,∞)) = pP(s, [0,∞)).

The values pP(s, [0,∞)) can be obtained by applying a slight variation of value
iteration algorithms for MDPs [7].

Discretisation. The computation of pmax(s, I) with inf I �= ∅ can be done using
discretisation, and as we will see, can also be reduced —though in a different
way as explained above— to value iteration on MDPs.

Definition 9 (Discretisation [66]). An IMC I = (S, Act, −→ , ⇒ , s0) and
a step duration δ ∈ R>0 induce the discretised IPC Pδ = (S, Act, −→ ,P′, s0),
where

P′(s, s′) =

{(
1 − e−E(s)·δ) ·P(s, s′) if s �= s′(
1 − e−E(s)·δ) ·P(s, s′) + e−E(s)·δ if s = s′.

(1)

Let pPmax (s, [ka, kb]) for an IPC P with state s and step-interval 0 ≤ ka ≤ kb be
the supremum of the probabilities to reach a set of goal states within step interval
[ka, kb], ka, kb ∈ N. The following result allows to approximate this probability
in the underlying IMC by a step-bounded reachability analysis in its discretised
IPC. This discretisation is indeed quantifiably correct :
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Theorem 6 (Approximation theorem [66]). Let I = (S, Act, −→ , ⇒ , s0)
be an IMC, G ⊆ S a set of goal states and δ > 0 a step duration. Further, let I
be a time interval with inf I = a and sup I = b such that a < b and a = kaδ and
b = kbδ for some ka ∈ N and kb ∈ N>0. Then:

pPδ
max

(
s, (ka, kb]

) − ka · (λδ)2

2
≤ pImax (s, I) ≤ pPδ

max

(
s, (ka, kb]

)
+ kb · (λδ)2

2
+ λδ.

Given an error bound ε, we can choose a sufficiently small step duration δ > 0
such that

∣∣pPδ
max

(
s, (ka, kb]

) − pImax (s, I)
∣∣ ≤ kb · (λδ)2

2 + λδ < ε holds. Note that
this can be done a priori. Hence, pPδ

max

(
s, (ka, kb]

)
approximates the probabilities

pImax (s, I) up to ε. Further, pPδ
max

(
s, (ka, kb]

)
can easily be computed by slightly

adapting the well-known value iteration algorithm for MDPs [7]. For an error-
bound ε > 0 and a time-interval I with sup I = b, this approach has a worst
case time complexity in O(

n2.376 + (m + n2) · (λb)2 /ε
)

where λ is the maximal
exit rate and m and n are the number of transitions and states of the IMC,
respectively.

Example 3. (Adopted from [58].) Consider the IMC depicted in Fig. 2(a). Let
G = {s4} as indicated by the double-circled state s4. The only state which
exhibits non-determinism is state s1 where a choice between α and β has to be
made. Selecting α rapidly leads to the goal state as with probability 1

2 , s4 is
reached with an exponential distribution of rate one. Selecting β almost surely
leads to the goal state, but, however, is subject to a delay that is governed by
an Erlang(30,10)-distribution, i.e., a sequence of 30 exponential distributions of
each rate 10. Note that this approximates a deterministic delay of 3 time units.
The time-bounded reachability probabilities are plotted in Fig 2(b). This plot
clearly shows that it is optimal to select α upto about time 3, and β afterwards.
The size of the IMC, its maximal exit rate (λ), accuracy (ε), time bound (b) and
the computation time are indicated in Fig. 2(c).
Time-bounded reachability-avoid probabilities. To conclude this section, we will
explain that determining pmax(s, I) can also be used for more advanced measures-
of-interest, such as “reach-avoid” probabilities. Let, as before, s be a state in an
IMC, I = [0, d] a time interval with rational d, G be a set of goal states, and
A a set of states that need to be avoided before reaching G. The measure-of-
interest now is to maximise the probability to reach G at some time point in
the interval I while avoiding any state in A prior to reaching G. Formally, the
event-of-interest is:

AU[0,d] G = {π ∈ Pathsω(s) | ∃t ≤ d. ∃s′ ∈ π@t. s′ ∈ G ∧ ∀s′′ ∈ pref(s′). s′′ �∈ A}
where pref(s′) is the set of states along π that are reached before reaching s′ and
A is the complement of A, i.e., A = S \A. The maximal probability of this event
can be computed in the following way. The IMC is first transformed by making
all states in G absorbing, i.e., for any state s ∈ G, the outgoing transitions are
removed. This is justified by the fact that it is not of importance what happens
once a state in G has been reached (via a A-path); in addition, if a G-state is
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Fig. 2. Time-bounded reachability probabilities in an example IMC

reached before the deadline d, this does not matter, as it will still be in G at
time d since it is made absorbing. In addition, all states in A ∩ G are made
absorbing as the probability of a path that reaches an A-state which is also a
G-state to satisfy the event-of-interest is zero. The resulting structure is thus an
IMC in which only the states in A \ G are unaffected; all other states are made
absorbing. It now follows in a similar way as in [2]:

Theorem 7. sup
D

Pr
s,D

(
AU[0,d] G

)
︸ ︷︷ ︸

in the IMC I

= sup
D

Pr
s,D

(
�[0,d] G

)
︸ ︷︷ ︸

in the IMC I’

.

Here, IMC I ′ is obtained from I by making all states outside A\G absorbing. As
a result of the above theorem, computing time-bounded reach-avoid probabilities
is reduced to determining time-bounded reachability probabilities, which can be
determined in the way described earlier. It goes without saying that a similar
strategy can be applied to (unbounded) reach-avoid probabilities.

4 Abstraction

As for any state-based technique, the curse of dimensionality is a major limitation
for IMCs. Although its approximate analysis algorithms as described above are
polynomial (with relatively low degree) in the state space size, state spaces of
realistic systems easily consist of millions or even billions of states. In order
to deal with such systems, aggressive abstraction techniques are required. In
the following, we consider abstraction techniques that are based on partitioning
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the state space into groups of states. A possibility to achieve this, is to apply
bisimulation minimisation.

Compositional bisimulation minimisation. An important property that provides
the basis for such abstraction is the fact that for bisimilar states time-bounded
(as well as unbounded) reachability probabilities are preserved:

Theorem 8. [56] For any finitely-branching IMC with state space S, states
s, s′ ∈ S, G ⊆ S and time interval I:

s ∼ s′ implies pmax(s, I) = pmax(s′, I).

The above result opens the way to generate —prior to any (time-consuming)
analysis— an IMC that is bisimilar to the IMC under consideration, but prefer-
ably much smaller. This is called the quotient IMC. For equivalence relation R
on state space S and s ∈ S, let [s]R denote the equivalence class of s under R,
and let S/R = {[s]R | s ∈ S} denote the quotient space of S under R.

Definition 10 (Quotient IMC). Let I = (S, Act, −→ , ⇒ , s0) be an IMC
and R a strong bisimulation on S. The quotient IMC I/R =

(
S/R, Act, −→′,

⇒′, [s0]R
)

where −→′ and ⇒′ are the smallest relations satisfying:

1. s α−−→ s′ implies [s]R α−−→′ [s′]R , and

2. s
λ⇒ s′ implies [s]R

R(s,[s′]R)⇒′ [s′]R.

It now follows that for any IMC I and strong bisimulation, it holds I ∼ I/R.
(A similar result holds for weak bisimulation, replacing ∼ by ≈).

The next question is how to obtain the bisimulation quotient of a given IMC,
and preferably even the quotient with respect to the coarsest bisimulation, as
this yields an IMC of minimal size which is strong bisimilar to the original one.
Using a variant of Paige-Tarjan’s partition-refinement algorithm for computing
strong bisimulation on labeled transition systems we obtain:

Theorem 9. [35] For any IMC I with state space S and strong bisimulation
R on S, the quotient IMC I/R can be computed in time complexity O(m log n)
where m and n are the number of transitions and states of the IMC I.

The results so far suggest to compute the quotient IMC prior to the analysis
of, e.g., time-bounded reachability probabilities. This leads to significant state-
space reductions and efficiency gains in computation times, as e.g., is shown
in [47] for CTMCs. But, as the bisimulation minimisation is not an on-the-fly
algorithm, it requires the entire state space of the original, i.e., non-minimised
IMC up front. For realistic systems, this requirement is a significant burden.
Fortunately, as IMCs are compositional —they can be put in parallel in a simple
manner— and as bisimulation is a congruence wrt. parallel composition, bisim-
ulation minimisation can be applied in a component-wise manner. This works as
follows. Suppose the system-to-be-analysed is of the form:

I = I1 ||A1 I2 ||A2 . . . ||AN IN ,

14



i.e., a parallel composition of N IMCs. For the sake of our argument, let us
assume that the size of I is too large to be handled, and therefore bisimulation
minimisation cannot be applied. However, each component is of a moderate
size that can be subject to minimisation. Let Îi be the quotient of IMC Ii, for
0 < i ≤ N . Each such quotient can be obtained by the aforementioned partition-
refinement algorithm. Thanks to the property that bisimulation is substitutive
wrt. parallel composition, it follows from the fact that Ii ∼ Îi, for 0 < i ≤ N ,
that:

I1 ||A1 I2 ||A2 . . . ||AN IN ∼ Î1 ||A1 Î2 ||A2 . . . ||AN ÎN .

The worst case time complexity to obtain this reduced system is determined
by the largest IMC Ii and equals O(maxi(mi log ni)) where mi and ni are the
number of transitions and states in IMC Ii. Similar reasoning applies to weak
bisimulation, with the exception that the time complexity for determining the
quotient under weak bisimulation requires the computation of a transitive clo-
sure which is in O(n2.376). As weak bisimulation also preserves maximal time-
bounded reachability probabilities, and is substitutive, an IMC can be minimised
compositionally before any analysis:

Theorem 10. For any finitely-branching IMC with state space S, states s, s′ ∈
S, G ⊆ S and time interval I:

s ≈ s′ implies pmax(s, I) = pmax(s′, I).

Finally, for simulation preorders we obtain a slightly other preservation result.
Intuitively speaking, whenever I 
 I′, then I ′ can mimic all behaviours of I,
but perhaps can do more (and faster). This yields:

Theorem 11. For any finitely-branching IMC with state space S, states s, s′ ∈
S, G ⊆ S and time interval I:

s 
 s′ implies pmax(s, I) ≤ pmax(s′, I).

One may now be tempted to first minimise an IMC wrt. simulation preorder or
its corresponding equivalence 
 ∩ 
−1, but it turns out that checking a sim-
ulation relation between probabilistic models such as IMCs is computationally
involved [1,67]. In the sequel, we will see that simulation preorders are nonethe-
less crucial to obtain more aggressive abstraction techniques for IMCs.

Interval abstraction. Compositional bisimulation minimisation has been applied
to several examples yielding substantial state-space reductions. It allowed the
analysis of IMCs (in fact, CTMCs) that could not be analysed without composi-
tional minimisation [39,30,32]. With the advent of increasingly complex systems,
more radical reduction techniques are needed. In the sequel, we present a recent
framework to perform aggressive abstraction of IMCs in a compositional man-
ner [49]. The key idea is to (again) partition the state space, but rather requiring
that each partition solely consists of equivalent (strong or weak bisimilar) states,
we are more liberal, and in fact allow for any state space partitioning. As a re-
sult, a state s is not bisimilar to its partition (as for bisimulation), but instead
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its partition simulates s. Intuitively speaking, this means that all behaviour of
s can be mimicked, but perhaps that the partition exhibits more behaviours
than s. As the partition is aimed to be coarser than in the case of bisimulation,
a central question is which measures are preserved, i.e., what does a maximal
(time-bounded) reachability probability computed on the minimised IMC imply
for the original IMC?

In the remainder of this section, we assume that IMCs are uniform.

Definition 11 (Uniform IMC). An IMC is uniform if for any state s we have
that MT(s) �= ∅ implies E(s) = λ for a given fixed λ ∈ R>0.

The residence time in any state with at least one Markovian transition is thus
governed by the same exponential distribution. Although this seems a rather
severe restriction, there is an important class of systems for which this applies,
viz. IMCs in which delays are imposed in a compositional manner using the
constraint-oriented specification style. The point is that any CTMC can be
transformed by a simple linear-time procedure into a weak bisimilar uniform
CTMC [3]. Consider the specification P ||A Dp where P is an IMC with only
interactive transitions, i.e., P is an LTS, and Dp is a CTMC, probably enhanced
with a start action α and end action β as explained before. The purpose of Dp

is to impose a random delay between the occurrence of α and β in P . This is
modeled as an arbitrary, finite-state CTMC. We can now transform D into its
uniform counterpart D̂p, say. As Dp ≈ D̂p and ≈ is substitutive wrt. parallel
composition, it follows that the non-uniform IMC P ||A Dp is weak bisimilar to
the uniform IMC P ||A D̂p. (Several operators are preserving uniformity, see [38].)

Let IMC I be uniform. Our abstraction technique for I is a natural mixture
of abstraction of labeled transition systems by modal transition systems [51,52]
and abstraction of probabilities by intervals [27,48]. This combination yields
abstract IMCs.

Definition 12 (Abstract IMC). An abstract IMC is a tuple I = (S, Act, L,Pl,
Pu, λ, s0) with S, s0 and Act as before, and

– L : S × Act × S → B3, a three-valued labeled transition function
– Pl,Pu : S × S → [0, 1], lower/upper transition probability bounds s.t.

Pl(s, S) ≤ 1 ≤ Pu(s, S) and

– λ ∈ R>0, an exit rate.

Here B3 = {⊥, ?,�} is the complete lattice with the ordering ⊥ < ? < � and
meet (�) and join (�) operations. The labeling L(s, α, s′) identifies the transition
“type”: � indicates a must-transition, ? a may-transition, and ⊥ the absence of
a transition. Pl(s, s′) is the minimal one-step probability to move from s to
s′, whereas Pu(s, s′) is the maximal one-step probability between these states.
Given these bounds, the IMC can move from s to s′ with any probability in
the interval [Pl(s, s′),Pu(s, s′)]. Any uniform IMC is an AIMC without may-
transitions and for which Pl(s, s′) = Pu(s, s′). The requirement Pl(s, S) ≤ 1 ≤

16



Pu(s, S) ensures that in any state s, a distribution µ over the direct successor
states of s can be chosen such that for any s′ we have: Pl(s, s′) ≤ µ(s′) ≤
Pu(s, s′).

Let us now describe how to perform abstraction of an (A)IMC. As stated
above, the principle is to partition the state space by grouping concrete states
to abstract states. For concrete state space S and abstract state space S′, let
α : S → S′ map states to their corresponding abstract ones, i.e., α(s) denotes
the abstract state of s and α−1(s′) = γ(s′) is the set of concrete states that are
mapped onto s′. α is called the abstraction function whereas γ = α−1 is known
as the concretization function.

Definition 13 (Abstraction). For an AIMC I = (S, Act, L,Pl,Pu, λ, s0), the
abstraction function α : S → S′ induces the AIMC α(I) = (S′, Act, L′,P′

l,P
′
u, λ,

α(s0)), where:

– L′(s′, β, u′) =


� if

⊔
u∈γ(u′) L(s, β, u) = � for all s ∈ γ(s′)

⊥ if
⊔

u∈γ(u′) L(s, β, u) = ⊥ for all s ∈ γ(s′)

? otherwise
– P′

l(s
′, u′) = mins∈γ(s′)

∑
u∈γ(u′) Pl(s, u)

– P′
u(s′, u′) = min(1, maxs∈γ(s′)

∑
u∈γ(u′) Pu(s, u))

There is a must-transition s′ α−−→u′ if any concrete version s ∈ γ(s′) exhibits
such transition to some state in γ(u). There is no transition between s′ and u′ if
there is no such transition from s ∈ γ(s′) to γ(u). In all other cases, we obtain
a may-transition s′ α−−→u′.

Example 4. Consider the uniform IMC depicted in the figure below on the left,
and ket S′ = {s, u} be the abstract state space. Assume the abstraction is
defined by α(u0) = α(u1) = u, and α(s0) = α(s1) = s. This yields the abstract
IMC depicted on the right. As s0

α−−→u0 and s1
α−−→u1, there is a must-transition

labeled by α from s to u. Although s0
β−−→u0, s1 has no β-transition to u0 or

u1. Accordingly, we obtain a may-transition labeled with β between s and u. As
P(u0, s1) = 1

2 and P(u1, s1) = 1
3 , we obtain that Pl(u, s) = 1

3 and Pu(u, s) = 1
2 .

The other probability intervals are justified in a similar way.

s0 u0

s1 u1

β

α

α

1
2

1
3

1
2

2
31

1

s u

may β

α

[13 , 1
2 ][1, 1] [12 , 2

3 ]

The formal relationship between an AIMC and its abstraction is given by a
simulation relation which is in fact a combination of probabilistic simulation on
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IMCs as defined before (with a slight adaptation to deal with intervals) and the
concept of refinement on modal transition systems [52]. Let T(s) denote the set
of probability distributions that exist in state s and that satisfy all bounds of
the probability intervals of the outgoing Markovian interval transitions of s.

Definition 14 (Strong simulation). For AIMC I = (S, Act, L,Pl,Pu, λ, s0),
R ⊆ S × S is a simulation relation, iff for any (s, s′) ∈ R it holds:

1a. for all α ∈ Act and u ∈ S with L(s, α, u) �= ⊥ there exists u′ ∈ S with
L(s′, α, u′) �= ⊥ and (u, u′) ∈ R,

1b. for all α ∈ Act and u′ ∈ S with L(s′, α, u′) = � there exists u ∈ S with
L(s, α, u) = � and (u, u′) ∈ R, and

2. L(s, τ, u) �= � for all u ∈ S, implies for all µ ∈ T(s) there exists µ′ ∈ T(s′)
and ∆ : S × S → [0, 1] such that for all u, u′ ∈ S:

(a) ∆(u, u′) > 0 =⇒ uRu′ (b) ∆(u, S) = µ(u) (c) ∆(S, u′) = µ′(u′)

We write s 
 s′ if (s, s′) ∈ R for some simulation R and I 
 I′ for AIMCs I
and I ′ with initial states s0 and s′0, if s0 
 s′0 in the disjoint union of I and I ′.

Let us briefly explain this definition. Item 1a requires that any may- or must-
transition of s must be reflected in s′. Item 1b requires that any must-transition
of s′ must match some must-transition of s, i.e., all required behavior of s′ stems
from s. Note that this allows a must-transition of s to be mimicked by a may-
transition of s′. Condition (2) is the same as in the defininition of simulation for
IMCs, except that the set of distributions in a state in an IMC is a singleton,
whereas for AIMCs this set can be infinite.

Theorem 12. [49] For any AIMC I and abstraction function α, I 
 α(I).

As this abstraction is coarser than bisimulation, a significantly larger state-
space reduction may be achieved and peak memory consumption is even further
reduced. The notion of parallel composition and hiding, as defined for IMCs can
now be lifted to AIMCs in a natural manner, and it can be shown that

Theorem 13. [49] 
 is a pre-congruence wrt. parallel composition and hiding.

This result provides us the means to carry out abstraction on (A)IMCs in a fully
compositional manner. Suppose the system-to-be-analysed is of the form

I = I1 ||A1 I2 ||A2 . . . ||AN IN ,

i.e., a parallel composition of N IMCs. Let α(Ii) be the abstraction of IMC Ii,
for 0 < i ≤ N . Thanks to the property that strong simulation is substitutive
wrt. parallel composition, it follows from the fact that Ii 
 α(Ii), for 0 < i ≤ N ,
that:

I1 ||A1 I2 ||A2 . . . ||AN IN 
 α(I1) ||A1 α(I2) ||A2 . . . ||AN α(IN ).
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5 IMCs as semantical model

Much of computer science is about specification formalisms. Domain specific
languages as well as universal notations are being promoted by various interest
groups and taken up by standardization bodies. Some of them appeal due to their
graphical notation convenience, such as the UML, others appeal because they
clarify the aspects of a certain domain. One example of the latter is AADL, the
Architectural Analysis and Design Language [28]. For many of these languages
the work is considered done once the syntax is fixed, and an intuitive explana-
tion of the semantics is provided. Formalizing these intuitions is sometimes a
task for legions of scientists: The conception of Statecharts for instance has lead
to several dozens of different semantics, and more are on the horizon. Still, one
of the lessons generally learnt from these experiences is that a good semantics
is compositional [29], a semantics that provides a meaning to an object based
on a composition of the semantics of its parts. If the composition adheres to
simple-to-grasp rules, this semantics can become consensus. Compositionality is
a fundamental and highly desirable property of a semantics: it enables compo-
sitional reasoning, i.e. analyzing complex systems by breaking them down into
their constituting parts. Examples par excellence of simple-to-grasp rules have
been given before: parallel composition and hiding.

A clean and well-understood semantics is a necessity for model-based evalu-
ation of such languages. It is as simple as that. Whenever performance figures or
correctness claims are presented for UML fragments or the like, they are specific
to the semantics chosen, and in case that semantics is neither commonly agreed
nor easy-to-grasp, doubts remain concerning the general validity of such claims.

Dynamic fault trees. Let us consider a classical domain specific language, known
as fault trees. Fault trees were first planted in the youth of civil nuclear energy,
as means to systematically quantify the risk of a catastrophic hazard [63] in a
plant. A fault tree is a diagrammatical variation of a boolean function, drawn
in a tree-structured manner where the leaves correspond to boolean variables.
These leaves represent basic operational units of the plant such as valves and
pipes. The failure of an operational components flips the corresponding boolean
value to true. If the entire function evaluates to true, a catastrophic event is
supposed to be unavoidable. Fault trees have been standardised, and their use is
prescribed in many engineering areas. A classical fault tree is static, the order of
failure occurences is assumed not important, and components cannot be replaced
dynamically by spare components. If considering such extensions, one arrives at
the diagrammatical notation of dynamic fault trees (DFT) [25].

The semantics of a dynamic fault tree can no longer be mapped directly on
a boolean function, but instead needs a state-transition graph representation to
reflect the system dynamics. If one assumes that failure occurences follow expo-
nential laws, which is a standard and sometimes justified assumption, it seems
natural to expect that the resulting model is a CTMC. Actually, the first com-
plete formalisation attempted [21] aimed at providing a CTMC semantics, but
revealed a number of ambiguities in the DFT framework. Most notably, in some
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instances of DFTs non-determinism arises. This is where IMC and its composi-
tionality property can play a pivotal role: The work of Crouzen et al. [12,11,10]
provides a clean and elegant compositional semantics, a semantics that maps on
IMC. More precisely, the semantics takes up ideas of I/O-automata [53], and
uses input/output interactive Markov chains (I/O-IMC). I/O-IMC are restricted
versions of IMC that allow for non-blocking communication. The semantics is
fully compositional: The semantics of each DFT element is an I/O-IMC. The se-
mantics of a DFT is then obtained by parallel composing the I/O-IMC semantics
of all its elements.

Example 5. As an example, we demonstrate this approach for a SPARE gate,
a functional unit that makes a redundant unit of functionality available (the
spare), in case the original unit (the primary) fails [12]. Figure 3 shows the I/O-
IMC semantics of a DFT consisting of a SPARE gate A having a primary B and
a spare C.

A

B C

�B�

aB?
λ fB !

�C�

aC?
µ

λ fC !

�A�fB?

fC?

aA?

aA?

fC?

fB?

aA?

fB?

fC?

fC?

aC,A!

fC?

fB?

fA!

AA(aA, ∅)
aA!

AA(aB, ∅)
aB !

AA(aC, {aC,A})
aC,A? aC !

Fig. 3. A DFT example and six I/O-IMCs that model its behavior [12].

The I/O-IMC of the DFT is obtained by parallel composing the six IMCs,
properly synchronised. The congruence property established before is inherited
by I/O-IMCs and enables compositional aggregation to combat the state-space
explosion problem existing in DFTs, see [10,12].

Archtectural Description Languages. Hardware/software (HW/SW) co-design of
safety-critical embedded systems such as on-board systems that appear in the
aerospace domain is a very complex and highly challenging task. Component-
based design is an important paradigm here to master this design complexity
while, in addition, allowing for reusability. As safety-critical systems are subject
to hardware and software faults, the adequate modeling of faults, their likeli-
hood of occurrence, and the way in which a system can recover from faults,
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are essential to a model-based approach for safety-critical systems. To overcome
these shortcomings one needs an enriched practical component-based modeling
approach with appropriate means for modeling probabilistic fault behavior.
To warrant acceptance by design engineers in, e.g., aerospace industry and the
automotive engineers, efforts have been spent to based on the Architecture Anal-
ysis and Design Language (AADL) [28], a design formalism that is standardised
by the Society of Automotive Engineers. Among these efforts, Arcade [9] has
adopted the DFT work mentioned above to the recent AADL Error Model An-
nex, and provides a map of each of the components on an I/O-IMC, again in a
fully compositional manner. This is in spirit similar to the work performed in the
ESA project COMPASS [13,14,15], where IMC are targetted to model nominal
and probabilistic fault behaviour, fault propagation and recovery, and degraded
modes of operation. The integration of nominal behavior and error models ba-
sically boils down to a parallel composition of a variable-decorated transition
system (which is a semantically an IMC) and an IMC.

Generalised stochastic Petri nets. Generalised Stochastic Petri Nets (GSPNs) are
a well-established modelling formalism for performance and dependability eval-
uation, supporting stochastic timed behavior and weighted immediate choices
[54,55]. To this end, timed transitions and immediate transitions are supported
in a GSPN. Performance evaluation of a GSPN proceeds at the level of the
reachability (or: marking) graph. That graph is transformed into a CTMC, for
which efficient steady-state and transient solvers are at hand. This evaluation
trajectory was pioneered by the tool GreatSPN [20], nowadays it is implemented
in a plethora of tools.

However, it is notoriously overlooked that the above evaluation trajectory is
incomplete. It is restricted to confusion-free GSPNs. Confusion arises if a firing
sequence admits the simultaneous enabling of multiple non-conflicting immediate
transitions. GSPNs equip immediate transitions with global priority levels and
globally assigned weights to diminish the occurrence of such nondeterministic
choices. But priorities and weights do not, and cannot, eliminate confusion in its
full entirety. The presence of nondeterminism, however, makes it impossible to
associate an unambiguous stochastic process to such nets.

Recently we managed to attack this principal problem [40]. We have taken
up earlier thoughts on nondeterministic GSPN semantics [37] to come up with
an IMC semantics for GSPNs. Actually, this semantics is not more than a re-
interpretation of the marking graph as an IMC. With the analysis results re-
ported in this paper, this means that also confused GSPNs can now be analysed.
This was not possible before.

Example 6. Consider the GSPN depicted in the figure below on the left where
solid bars depict immediate transitions and open bars represent delayed tran-
sitions. This GSPN is confused. In marking (0, 0, 1, 1), for instance, the set of
reachable tangible markings is {(1, 0, 0, 0), (0, 0, 0, 2)}. If the enabled transition
t5 is chosen, the tangible marking (0, 0, 0, 2) is reached almost surely. However, if
enabled transition t6 is chosen, we enter the tangible marking (1, 0, 0, 0) almost
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surely. Hence, the next tangible markings depends on the way the nondetermin-
ism in (0, 0, 1, 1) is resolved and cannot be quantified. The usual way to deal
with this situation is to equip transitions t5 and t6 with weigths. The marking
graph of the GSN is depicted in the figure on the right. Here, solid arrows depict
Markovian transitions, and dashed arrows correspond to the firing of immediate
transitions in the net, and are interpreted as τ -labeled IMC transitions.
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Statecharts. A modelling environment used by engineers in several avionic and
automotive companies like Airbus or Bmw is Statemate, a Statechart-based
tool-set. To enable performance and dependability evaluation of Statemate de-
signs, the German special research initiative AVACS has spent considerable en-
ergy to a connection between Statemate and IMC [8,38,65,42].
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CTRL ON
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[M ACTIVE
and S ACTIVE
and not SHUT-
DOWN]

e02
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e07
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EMERGENCY
SHUTDOWNe11

[S ACTIVE]
/M ACTIVE:=true

e08

FM

e12

[S FAILED]/M ACTIVE:=false;
SHUTDOWN:=true

Fig. 4. A Statechart [8]

One key feature of this approach is that the model construction steps rely
heavily on compositional properties of the IMC model, and employ precisely the
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constraint-oriented specification style advocated in Section 2. For this, the design
comprises distinguished delay transitions. In the figure, these are FM, failure of
monitor and FS, failure of sensor). These transitions have an effect or are affected
by the advance of time. Mostly, delay transitions indicate component failures,
but the concept is more flexible. Delay distributions, in the form of continuous
probability distributions affecting the occurrence of the delay transitions are
incorporated via the elapse-operator. Symbolic (i. e. BDD-based) representations
and compositional methods are exploited to keep the model sizes manageable.
The complexity challenges posed by this problem domain could only be addressed
by (1) performing a state space reduction on the non-deterministic part of the
model by means of a symbolic minimisation capable of handling huge state spaces
and (2) constraint-oriented specification of time-constraints after this reduction
into the model. The developed technology was applied to a non-trivial case
study from the train control domain with an explication of the improvements
contributed by each of the relevant translation steps. In Table 5 we quote a
fraction of the relevant information from [8], illustrating the effects and costs of
compositional minimisation.

Tracks – Compositional Construction Final Quotient IMC
Choices States Transitions Time (sec.) States Transitions
1 – 1 71 261 18.70 16 55
1 – 2 79 325 22.58 29 101
1 – 3 99 419 26.87 39 143
1 – 4 119 513 30.43 49 185

2 – 1 731 3888 31.72 187 1006
2 – 2 1755 11059 39.55 665 3442
2 – 3 3127 20737 47.71 1281 6991
2 – 4 4899 33495 57.83 2097 11780

3 – 1 10075 75377 50.01 2573 18260
3 – 2 53858 387501 293.53 16602 112011
3 – 3 134555 1061958 1114.82 44880 320504

4 – 1 143641 1343747 785.30 35637 313270
4 – 2 1350908 11619969 243687.33 416274 3452502

Fig. 5. Composition and minimisation statistics [8]

6 Concluding remarks

This paper has presented an overview of foundational, algorithmic and pragmatic
aspects of IMCs, a simple generalisation of both CTMCs and LTS with a fully
compositional semantics. There are other approaches that give a compositional
semantics in a continuous time Markov setting, among them popular formalisms
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such as PEPA [43], EMPA [6] or MTIPP [41], the latter being the semantic ba-
sis of the PRISM toolkit [44] in ’ctmc’ mode. None of these formalisms has the
properties that IMCs possess. In particular, they do not extend classical concur-
rency models in a conservative fashion. For each of these calculi the role of an
atomic action is particular. This affects the synchronisation of actions, and thus
the final performance results – in different ways for each of these calculi. It is
not easy to explain what is happening precisely, and this is not the topic of this
paper; the interested reader may consult [17]. In IMC, the separation of delays
and actions allows to treat action synchronisation as in standard concurrency
models. It is surprising that given the advantages of IMCs, recent approaches
for CTMC-variants of process calculi for mobility and service-oriented comput-
ing [59] and interesting new developments in structured operational semantics
for such calculi [50,24] do not adopt this approach.

An extension of IMC towards time-inhomogeneous continuous-time dynamics
is provided in [33]. In the discrete time setting, a model class with similarly dis-
tinguishing properties is provided by probabilistic automata [60]. Probabilistic
automata can be integrated into the IMC model, retaining full compositional-
ity [26].

We have reviewed the theoretical basis of IMC, and have discussed two
recent algorithmic achievements that foster the applicability of IMC: analysis
techniques in the presence of nondeterminism, and compositional abstraction
techniques. IMCs practical relevance has been highlighted by reviewing in ap-
plications of various domains, ranging from dynamic fault trees to generalized
stochastic Petri nets. While the first generation of tool support, CADP, has
found several academic and non academic uses, the recent algorithmic advances
described in this paper are not yet fully integrated in a tool. This is a major
topic of ongoing work.
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