Delayed Nondeterminism in Continuous-Time Markov Decision Processes

Martin R. Neuhäusser1,2, Mariëlle Stoelinga2, Joost-Pieter Katoen1,2

1RWTH Aachen University, Germany
2University of Twente, The Netherlands

FOSSACS 2009, York, United Kingdom
Imagine you have to come home by 6 pm.

- On your way, you stop at a red traffic light.
- When it turns green, you have two choices:
 - turn left: 1 min; traffic jam probability $\frac{1}{2}$.
 - turn right: 5 min; traffic jam probability $\frac{1}{9}$.
- Expected delay in a traffic jam: 30 min.

Best strategy to meet your family’s deadline?
Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

- On your way, you stop at a **red** traffic light.
- When it turns green, you have two choices:
 - turn left: 1 min; traffic jam probability $\frac{1}{2}$.
 - turn right: 5 min; traffic jam probability $\frac{1}{9}$.
- Expected delay in a traffic jam: 30 min.

Best strategy to meet your family’s deadline?
Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

- On your way, you stop at a **red** traffic light.
- When it turns green, you have **two choices**:
 - turn left: 1 min, traffic jam probability $\frac{1}{2}$.
 - turn right: 5 min, traffic jam probability $\frac{1}{9}$.
 - Expected delay in a traffic jam: 30 min.
- Best strategy to meet your family’s deadline?

Aim: Maximize the probability to come **home** in t time units.
CTMDPs are an important model in
- stochastic control theory
- stochastic scheduling

CTMDPs provide the semantic basis for
- non-well-specified stochastic activity networks
- generalised stochastic Petri nets with confusion
- Markovian process algebras

In this talk:
1. Introduction of CTMDPs.
2. Schedulers that resolve the nondeterminism.
3. Probability measures.
4. Delaying nondeterminism.
5. Results and future work.

Why Continuous-Time Markov Decision Processes?

1. CTMDPs are an important model in
 - stochastic control theory
 - stochastic scheduling
 [Qiu et al.]
 [Feinberg et al., Puterman]

2. CTMDPs provide the semantic basis for
 - non-well-specified stochastic activity networks
 - generalised stochastic Petri nets with confusion
 - Markovian process algebras
 [Sanders et al.]
 [Chiola et al.]
 [Hermanns et al., Hillston et al.]
Why Continuous-Time Markov Decision Processes?

1. CTMDPs are an important model in
 - stochastic control theory
 - stochastic scheduling

2. CTMDPs provide the semantic basis for
 - non-well-specified stochastic activity networks
 - generalised stochastic Petri nets with confusion
 - Markovian process algebras

In this talk:

1. **Introduction** of CTMDPs.
2. **Schedulers** that resolve the nondeterminism.
3. **Probability measures**.
4. **Delaying nondeterminism**.
5. **Results** and future work.
Continuous Time Markov Decision Process

A tuple \((S, \text{Act}, R, \nu)\) is a CTMDP if \(S\) is a finite set of states and

- \(\text{Act} = \{\alpha, \beta, \gamma, \ldots\}\) is a finite set of actions and
- \(R : S \times \text{Act} \times S \rightarrow \mathbb{R}_{\geq 0}\) is a transition rate matrix such that
 - \(R(s, \alpha, s') = \lambda\) is the rate of a negative exponential distribution
 \[
 f_X(t) = \begin{cases}
 \lambda \cdot e^{-\lambda \cdot t} & \text{if } t \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 and \(E[X] = \frac{1}{\lambda}\)
 - \(E(s, \alpha) = \sum_{s' \in S} R(s, \alpha, s')\) is the exit rate of \(s\) under \(\alpha\).

Example

1. Nondeterministically choose \(\beta \in \text{Act}(s_0)\).
2. Race between \(\delta\)-transitions in \(s_2\):
 - Mean delay: \(t_{\text{mean}} = 4\).
 - Probability to move to \(s_4\):
 \[
 R(s_2, \delta, s_4) = \frac{8}{9}.
 \]
Continuous Time Markov Decision Process

A tuple \((S, \text{Act}, \mathbf{R}, \nu)\) is a CTMDP if \(S\) is a finite set of states and

- \(\text{Act} = \{\alpha, \beta, \gamma, \ldots\}\) is a finite set of actions and
- \(\mathbf{R} : S \times \text{Act} \times S \to \mathbb{R}_{\geq 0}\) is a transition rate matrix such that
 - \(\mathbf{R}(s, \alpha, s') = \lambda\) is the rate of a negative exponential distribution
 - \(E(s, \alpha) = \sum_{s' \in S} \mathbf{R}(s, \alpha, s')\) is the exit rate of \(s\) under \(\alpha\).

\[
f_X(t) = \begin{cases}
\lambda \cdot e^{-\lambda \cdot t} & \text{if } t \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

such that \(\text{Act}(s) = \{\alpha \in \text{Act} \mid \exists s' \in S. \mathbf{R}(s, \alpha, s') > 0\} \neq \emptyset\) for all \(s \in S\).

Example

1. Nondeterministically choose \(\beta \in \text{Act}(s_0)\).
2. Race between \(\delta\)-transitions in \(s_2\):
 - Mean delay: \(\frac{1}{E(s_2, \delta)} = 4\).
 - Probability to move to \(s_4\): \(\frac{\mathbf{R}(s_2, \delta, s_4)}{E(s_4, \delta)} = \frac{8}{9}\).
Trajectories in CTMDPs

1. **Finite paths** of length $n \in \mathbb{N}$ are denoted $\pi = s_0 \xrightarrow{\alpha_0,t_0} \cdots \xrightarrow{\alpha_{n-1},t_{n-1}} s_n$.
 - $\pi \downarrow = s_n$ is the last state of π.
 - Paths^n is the set of paths of length n and

2. Paths^ω is the set of **infinite paths**.
Trajectories in CTMDPs

1. **Finite paths** of length \(n \in \mathbb{N} \) are denoted \(\pi = s_0 \xrightarrow{\alpha_0, t_0} \cdots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n \).
 - \(\pi \downarrow = s_n \) is the last state of \(\pi \).
 - \(Paths^n \) is the set of paths of length \(n \) and
2. \(Paths^\omega \) is the set of infinite paths.

A **combined transition** \(m = (\alpha_n, t_n, s_{n+1}) \):
- \(\alpha_n \) is the action in state \(\pi \downarrow \) (chosen externally),
- \(t_n \) is the transition’s **firing time** and
- \(s_{n+1} \) the transition’s **successor** state.

\[\Omega := Act \times \mathbb{R}_{\geq 0} \times S \] is the set of all combined transitions.
Constructing events in CTMDPs

Probability measures are defined on σ-fields:

\mathcal{F} of sets of combined transitions:

$$\Omega := \text{Act} \times \mathbb{R}_{\geq 0} \times \mathcal{S}$$

$$\mathcal{F} := \sigma(\mathcal{F}_{\text{Act}} \times \mathcal{B}(\mathbb{R}_{\geq 0}) \times \mathcal{F}_S)$$

$\mathcal{F}_{\text{Paths}}$ of sets of paths of length n:

$$\mathcal{F}_{\text{Paths}} := \sigma(\{S_0 \times M_1 \times \cdots \times M_n | S_0 \in \mathcal{F}_S, M_i \in \mathcal{F}\})$$

$\mathcal{F}_{\text{Paths}}^\omega$ of sets of infinite paths:

Cylinder set construction:
- Any $C^n \in \mathcal{F}_{\text{Paths}}$ defines a cylinder base (of finite length).
- $C^n := \{\pi \in \text{Paths}^\omega | \pi[0..n] \in C^n\}$ is a cylinder (extension to infinity).

The σ-field $\mathcal{F}_{\text{Paths}}^\omega$ is then

$$\mathcal{F}_{\text{Paths}}^\omega := \sigma(\bigcup_{n=0}^{\infty} \{C^n | C^n \in \mathcal{F}_{\text{Paths}}\})$$
Constructing events in CTMDPs

Probability measures are defined on σ-fields:

1. \mathcal{F} of sets of combined transitions:
 \[
 \Omega := \text{Act} \times \mathbb{R}_{\geq 0} \times \mathcal{S} \\
 \mathcal{F} := \sigma(\mathcal{F}_{\text{Act}} \times \mathcal{B}(\mathbb{R}_{\geq 0}) \times \mathcal{F}_{\mathcal{S}})
 \]

2. $\mathcal{F}_{\text{Paths}^n}$ of sets of paths of length n:
 \[
 \mathcal{F}_{\text{Paths}^n} := \sigma(\{S_0 \times M_1 \times \cdots \times M_n \mid S_0 \in \mathcal{F}_{\mathcal{S}}, M_i \in \mathcal{F}\})
 \]

3. $\mathcal{F}_{\text{Paths}^\infty}$ of sets of infinite paths:

 - Cylinder set construction:
 - Any $C^n \in \mathcal{F}_{\text{Paths}^n}$ defines a cylinder base (of finite length)
 - $C^n := \{s \in \text{Paths}^\infty \mid \pi[0..n] \in C^n\}$ is a cylinder (extension to infinity).

 The σ-field $\mathcal{F}_{\text{Paths}^\infty}$ is then
 \[
 \mathcal{F}_{\text{Paths}^\infty} := \sigma(\bigcup_{n=0}^{\infty} \{C^n \mid C^n \in \mathcal{F}_{\text{Paths}^n}\})
 \]
Constructing events in CTMDPs

Probability measures are defined on σ-fields:

1. \mathcal{F} of sets of combined transitions:
 \[\Omega := \text{Act} \times \mathbb{R}_{\geq 0} \times \mathcal{S} \]
 \[\mathcal{F} := \sigma(\mathcal{F}_{\text{Act}} \times \mathcal{B}(\mathbb{R}_{\geq 0}) \times \mathcal{F}_{\mathcal{S}}) \]

2. $\mathcal{F}_{\text{Paths}^n}$ of sets of paths of length n:
 \[\mathcal{F}_{\text{Paths}^n} := \sigma\left(\{S_0 \times M_1 \times \cdots \times M_n \mid S_0 \in \mathcal{F}_{\mathcal{S}}, M_i \in \mathcal{F}\}\right) \]

3. $\mathcal{F}_{\text{Paths}^\omega}$ of sets of infinite paths:
 Cylinder set construction:
 - Any $C^n \in \mathcal{F}_{\text{Paths}^n}$ defines a cylinder base (of finite length)
 - $C_n := \{\pi \in \text{Paths}^\omega \mid \pi[0..n] \in C^n\}$ is a cylinder (extension to infinity).

The σ-field $\mathcal{F}_{\text{Paths}^\omega}$ is then

\[\mathcal{F}_{\text{Paths}^\omega} := \sigma\left(\bigcup_{n=0}^{\infty} \{C_n \mid C^n \in \mathcal{F}_{\text{Paths}^n}\}\right) \]

$\mathcal{B}(\mathbb{R}_{\geq 0})$: Borel σ-field for $\mathbb{R}_{\geq 0}$
Resolving nondeterminism: Assume state s_n is hit after trajectory

$$\pi = s_0 \xrightarrow{\alpha_0, t_0} s_1 \xrightarrow{\alpha_1, t_1} s_2 \xrightarrow{\alpha_2, t_2} \ldots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n.$$

- Nondeterminism occurs in s_n if $|\text{Act}(s_n)| > 1$.
- A scheduler resolves it and uniquely induces a stochastic process.
The probability of events

Resolving nondeterminism: Assume state s_n is hit after trajectory

$$\pi = s_0 \xrightarrow{\alpha_0,t_0} s_1 \xrightarrow{\alpha_1,t_1} s_2 \xrightarrow{\alpha_2,t_2} \ldots \xrightarrow{\alpha_{n-1},t_{n-1}} s_n.$$

- Nondeterminism occurs in s_n if $|\text{Act}(s_n)| > 1$.
- A scheduler resolves it and uniquely induces a stochastic process.

A hierarchy of scheduler classes:

1. Generic measurable scheduler (GM):
 $$D : \text{Paths}^* \rightarrow \text{Distr}(\text{Act})$$

2. Total time positional scheduler (TTP):
 $$D : S \times \mathbb{R}_{\geq 0} \rightarrow \text{Distr}(\text{Act})$$

3. Time abstract hop counting scheduler (TAHOP):
 $$D : S \times \mathbb{N} \rightarrow \text{Distr}(\text{Act})$$

4. Time abstract positional scheduler (TAP):
 $$D : S \rightarrow \text{Distr}(\text{Act})$$
The probability of a single step $M \subseteq \mathcal{F}$

1. Enter state s_n along trajectory
 $\pi = s_0 \xrightarrow{\alpha_0,t_0} s_1 \xrightarrow{\alpha_1,t_1} \cdots \xrightarrow{\alpha_{n-1},t_{n-1}} s_n$.

2. Continue in s_n with a transition
 $(\alpha_n, t_n, s_{n+1}) \in M$

3. Measure probability of sets $M \subseteq \mathcal{F}$!
 Example: $M = \{\alpha_n\} \times [0, 1] \times \{s_{n+1}\}$.

Probability measure $\mu_D(\pi, \cdot) : \mathcal{F} \to [0, 1]$ on sets of combined transitions:

- Choose an action, wait and jump to successor state.

\[
\mu_D(\pi, M) := \int_{\text{Act}} D(\pi, d\alpha) \int_{\mathbb{R} \geq 0} \eta_E(\pi, \alpha)(dt) \int_{\mathcal{S}} I_M(\alpha, t, s') P(\pi, \alpha, ds')
\]

- Note: $\eta_E(\pi, \alpha)$ depends on scheduler D!
 Therefore: Scheduler cannot incorporate the sojourn time in state π.

Neuhausser, Stoelinga, Katoen (RWTH Aachen)

Delayed CTMDPs

FOSSACS 2009
A generic probability measure on sets of paths

1. **Initial distribution** ν: Probability to start in state s.

2. **$Pr^n_{\nu,D}$ on sets of finite paths**:
 Let $\nu \in \text{Distr}(S)$ and $D \in TTP$. Define inductively:

 $Pr^0_{\nu,D}(\Pi) := \sum_{s \in \Pi} \nu(s)$ \quad and for $n > 0$

 $Pr^n_{\nu,D}(\Pi) := \int_{\text{Paths}^{n-1}} Pr^{n-1}_{\nu,D}(d\pi) \int_{\Omega} 1_{\Pi}(\pi \circ m) \cdot \mu_D(\pi, dm)$

3. **$Pr^\omega_{\nu,D}$ on sets of infinite paths**:
 - A cylinder base is a measurable set $C^n \in \mathcal{F}_{\text{Paths}^n}$.
 - C^n defines cylinder $\mathcal{C}_n = \{ \pi \in \text{Paths}^\omega \mid \pi[0..n] \in C^n \}$.
 - The probability of cylinder \mathcal{C}_n is that of its base C^n:

 $Pr^\omega_{\nu,D}(\mathcal{C}_n) = Pr^n_{\nu,D}(C^n)$.

 This extends to $\mathcal{F}_{\text{Paths}^\omega}$ by Ionescu-Tulcea.
A generic probability measure on sets of paths

1. **Initial distribution** \(\nu \): Probability to start in state \(s \).

2. **\(\Pr_{\nu,D}^n \) on sets of finite paths:**
 Let \(\nu \in \text{Distr}(S) \) and \(D \in \text{TTP} \). Define inductively:
 \[
 \Pr_{\nu,D}^0(\Pi) := \sum_{s \in \Pi} \nu(s) \quad \text{and for } n > 0
 \]
 \[
 \Pr_{\nu,D}^n(\Pi) := \int_{\text{Paths}_{n-1}^\omega} \Pr_{\nu,D}^{n-1}(d\pi) \int_{\Omega} \mathbf{I}_\Pi(\pi \circ m) \mu_D(\pi, dm).
 \]

3. **\(\Pr_{\nu,D}^{\omega} \) on sets of infinite paths:**
 - A cylinder base is a measurable set \(C^n \in \mathcal{F}_{\text{Paths}} \).
 - \(C^n \) defines cylinder \(C_n = \{ \pi \in \text{Paths}^\omega | \pi[0..n] \in C^n \} \).
 - The probability of cylinder \(C_n \) is that of its base \(C^n \):
 \[
 \Pr_{\nu,D}^{\omega}(C_n) = \Pr_{\nu,D}^n(C^n).
 \]
 This extends to \(\mathcal{F}_{\text{Paths}}^\omega \) by Ionescu-Tulcea.
A generic probability measure on sets of paths

1. Initial distribution ν: Probability to start in state s.

2. $Pr^n_{\nu,D}$ on sets of finite paths:
 Let $\nu \in Distr(S)$ and $D \in \text{TTP}$. Define inductively:
 \[
 Pr^n_{\nu,D}(\Pi) := \sum_{s \in \Pi} \nu(s) \quad \text{and for } n > 0
 \]
 \[
 Pr^n_{\nu,D}(\Pi) := \int_{Paths^{n-1}} Pr^{n-1}_{\nu,D}(d\pi) \int_\Omega I_\Pi(\pi \circ m) \mu_D(\pi,dm).
 \]

3. $Pr^\omega_{\nu,D}$ on sets of infinite paths:
 - A **cylinder base** is a measurable set $C^m \in \mathcal{F}_{Paths^\omega}$
 - C^m defines cylinder $C_n = \{\pi \in Paths^\omega \mid \pi[0..n] \in C^m\}$
 - The probability of cylinder C_n is that of its base C^m:
 \[
 Pr^\omega_{\nu,D}(C_n) = Pr^n_{\nu,D}(C^m).
 \]

This extends to $\mathcal{F}_{Paths^\omega}$ by Ionescu-Tulcea.
Delaying the resolution of nondeterminism

- The semantics of a single step so far:

1. Scheduler decides upon entering s_n.
2. Sojourn time in s_n depends on choice!

$$\int_{\text{Act}} D(\pi, d\alpha) \int_{\mathbb{R} \geq 0} \eta_E(\pi_\downarrow, \alpha)(dt) \int_{\mathcal{S}} I_{M}(\alpha, t, s') \cdot P(\pi_\downarrow, \alpha, ds')$$
Delaying the resolution of nondeterminism

- The semantics of a single step so far:

\[\int_{\text{Act}} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_E(\pi_{\downarrow}, \alpha)(dt) \int_{S} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi_{\downarrow}, \alpha, ds') \]

1. Scheduler decides upon entering \(s_n \).
2. Sojourn time in \(s_n \) depends on choice!

- Idea to delay resolution of nondeterminism:
 Schedule only when the current state is left!
 Therefore: Dissolve dependency between
 - sojourn time in state \(s_n \) and
 - scheduler’s choice when entering \(s_n \).

\[\int_{\mathbb{R}_{\geq 0}} \eta_{\lambda}(s_n)(dt) \int_{\text{Act}} D(\pi, t, d\alpha) \int_{S} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi_{\downarrow}, \alpha, ds') \]
Delaying the resolution of nondeterminism

- The semantics of a single step so far:

 1. Scheduler decides upon entering s_n.
 2. Sojourn time in s_n depends on choice!

\[
\int_{\mathbb{R} \geq 0} D(\pi, d\alpha) \int_{\mathbb{R} \geq 0} \eta_E(\pi_{\downarrow}, \alpha)(dt) \int_{s} I_M(\alpha, t, s') \ P(\pi_{\downarrow}, \alpha, ds')
\]

- Idea to delay resolution of nondeterminism:
 Schedule only when the current state is left!
 Therefore: Dissolve dependency between
 - sojourn time in state s_n
 - scheduler’s choice when entering s_n.

\[
\int_{\mathbb{R} \geq 0} \eta_\lambda(s_n)(dt) \int_{\mathbb{R} \geq 0} D(\pi, t, d\alpha) \int_{s} I_M(\alpha, t, s') \ P(\pi_{\downarrow}, \alpha, ds')
\]
Local uniformity enables delayed scheduling

A CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbb{R}, \nu)$ is **locally uniform** iff there exists $\lambda : \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$\forall s \in \mathcal{S}. \forall \alpha \in \text{Act}(s). \lambda(s) = E(s, \alpha).$$

non-uniform CTMDP

![CTMDP Diagram]

Neuhäuser, Stoelinga, Katoen (RWTH Aachen)
Delayed CTMDPs
FOSSACS 2009
Local uniformity enables delayed scheduling

A CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbb{R}, \nu)$ is **locally uniform** iff there exists $\lambda : \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$\forall s \in \mathcal{S}. \forall \alpha \in \text{Act}(s). \lambda(s) = E(s, \alpha).$$
Local uniformity enables delayed scheduling

A CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \nu)$ is **locally uniform** iff there exists $\lambda : \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$\forall s \in \mathcal{S}. \forall \alpha \in \text{Act}(s). \quad \lambda(s) = E(s, \alpha).$$

Local uniformization yields $\text{unif}(\mathcal{C}) = (\overline{\mathcal{S}}, \text{Act}, \overline{\mathbf{R}}, \nu)$:

- $\overline{\mathcal{S}} = \mathcal{S} \cup \{s^\alpha \mid s \in \mathcal{S}, \alpha \in \text{Act} \text{ with } E(s, \alpha) < \lambda(s)\}$
- $\overline{\mathbf{R}}(s, \alpha, s') = \begin{cases} \mathbf{R}(s, \alpha, s') & \text{if } s, s' \in \mathcal{S} \\ \lambda(s) - E(s, \alpha) & \text{if } s \in \mathcal{S} \text{ and } s' = s^\alpha \\ 0 & \text{otherwise.} \end{cases}$
A hint towards correctness of local uniformization

non-uniform CTMDP

\[E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma \]
A hint towards correctness of local uniformization

non-uniform CTMDP

\[E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma \]

locally uniform CTMDP

\[E(s, \alpha) = E(s, \beta) = \mu + \gamma \]
A hint towards correctness of local uniformization

non-uniform CTMDP

\[E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma \]

Correctness: If \(\alpha \) is chosen in \(s \), reachability of state \(u_i \) within \([0, t]\) is preserved:

\[\frac{\mu_i}{\mu} \int_0^t \eta_{\mu}(dt) = \frac{\mu_i}{\mu + \gamma} \int_0^t \eta_{\mu+\gamma}(dt_1) + \frac{\mu}{\mu + \gamma} \int_0^t \eta_{\mu+\gamma}(dt_1) \frac{\mu_i}{\mu} \int_0^{t-t_1} \eta_{\mu}(dt_2) \]

where \(\eta_x = x \cdot e^{-x \cdot t} \) and \(\mu = \sum \mu_i \).

locally uniform CTMDP

\[E(s, \alpha) = E(s, \beta) = \mu + \gamma \]
A hint towards correctness of local uniformization

non-uniform CTMDP

\[E(s, \alpha) = \mu \] and \[E(s, \beta) = \mu + \gamma \]

Correctness: If \(\alpha \) is chosen in \(s \), reachability of state \(u_i \) within \([0, t]\) is preserved:

\[
\frac{\mu_i}{\mu} \int_0^t \eta_{\mu}(dt) = \frac{\mu_i}{\mu + \gamma} \int_0^t \eta_{\mu+\gamma}(dt_1) + \frac{\mu}{\mu + \gamma} \int_0^t \eta_{\mu+\gamma}(dt_1) \cdot \frac{\mu_i}{\mu} \int_0^{t-t_1} \eta_{\mu}(dt_2)
\]

where \(\eta_x = x \cdot e^{-x \cdot t} \) and \(\mu = \sum \mu_i \).

But: No nondeterminism considered yet!
A correspondence between paths in C and $\text{unif}(C)$

The function $\text{merge} : \text{Paths}(\overline{C}) \rightarrow \text{Paths}(C)$ collapses copy-states s^α:

$$\overline{\pi} = s_0 \xrightarrow{\beta,t_0} s'_0 \xrightarrow{\beta,t'_0} s_2 \xrightarrow{\delta,t_1} s_4$$

$$\text{merge}(\overline{\pi}) = s_0 \xrightarrow{\beta,t_0+t'_0} s_2 \xrightarrow{\delta,t_1} s_4.$$

The function $\text{extend} : \text{Paths}(C) \rightarrow \mathfrak{F}_{\text{Paths}(\overline{C})}$ is the inverse of merge.
Resolving nondeterminism in $\text{unif}(C)$

Any CTMDP C with GM scheduler D induces the measure $Pr_{\nu,D}^\omega$.

Question: How to mimic D’s behaviour on $\text{unif}(C)$ to obtain the same probability?
Resolving nondeterminism in \textit{unif} \((C)\)

Any CTMDP \(C\) with \(GM\) scheduler \(D\) induces the measure \(Pr^{\omega}_{\nu,D}\).

Question: How to mimic \(D\)'s behaviour on \textit{unif} \((C)\) to obtain the same probability?

Definition (stutter scheduler)

Let \(D\) be a \(GM\) scheduler on \(C\).

Define the stutter scheduler \(\overline{D}\) on \textit{unif} \((C)\):

\[
\overline{D}(\overline{\pi}) := \begin{cases}
D(\pi) & \text{if } \overline{\pi} \downarrow \in S \land \text{merge}(\overline{\pi}) = \pi, \\
\{\alpha \mapsto 1\} & \text{if } \overline{\pi} \downarrow = s^\alpha.
\end{cases}
\]
Resolving nondeterminism in \(\text{unif}(C) \)

Any CTMDP \(C \) with \(GM \) scheduler \(D \) induces the measure \(\Pr_{\nu,D}^\omega \).

Question: How to mimic \(D \)'s behaviour on \(\text{unif}(C) \) to obtain the same probability?

Definition (stutter scheduler)

Let \(D \) be a \(GM \) scheduler on \(C \). Define the stutter scheduler \(\overline{D} \) on \(\text{unif}(C) \):

\[
\overline{D}(\overline{\pi}) := \begin{cases}
D(\pi) & \text{if } \overline{\pi} \downarrow \in \mathcal{S} \land \text{merge}(\overline{\pi}) = \pi, \\
\{\alpha \mapsto 1\} & \text{if } \pi \downarrow = s^\alpha.
\end{cases}
\]

Note: No choice in copy-state \(s_0^\beta \)
Soundness: From \mathcal{C} to $\text{unif}(\mathcal{C})$

The construction of $\overline{\mathcal{D}}$ preserves all measures.

Proof sketch:

1. Uniformization is measure-preserving for measurable rectangles \mathcal{C}^n:

 $\Pr_{\mathcal{C},\mathcal{D}}^n(\mathcal{C}^n) = \Pr_{\mathcal{D}}^n(\text{extend}(\mathcal{C}^n))$

2. This extends to the field $\mathcal{G}_{Paths} = (\mathcal{F}_{S} \times \mathcal{F}_{Act} \times \mathcal{B}(\mathbb{R}_{\geq 0}))^n \times \mathcal{F}_{S}$.

3. Further we prove that

 $\mathcal{C} = \left\{ \Pi \in \mathcal{G}_{Paths} \mid \Pr_{\mathcal{C},\mathcal{D}}^n(\Pi) = \Pr_{\mathcal{D}}^n(\text{extend}(\Pi)) \right\}$

 is a monotone class.
Soundness: From \mathcal{C} to $\text{unif}(\mathcal{C})$

The construction of $\overline{\mathcal{D}}$ preserves all measures.

Proof sketch:

1. Uniformization is measure-preserving for measurable rectangles C^n:

 $$\Pr_{\nu,D}^n(C^n) = \overline{\Pr}_\nu^\omega(\text{extend}(C_n))$$

2. This extends to the field $\mathcal{G}_{\text{Paths}}^n = (\mathcal{F}_S \times \mathcal{F}_{\text{Act}} \times \mathcal{B}([\mathbb{R}_{\geq 0}])^n \times \mathcal{F}_S$.

3. Further we prove that

 $$\mathcal{C} = \left\{ \Pi \in \mathcal{F}_{\text{Paths}}^n(\mathcal{C}) \mid \Pr_{\nu,D}^n(\Pi) = \overline{\Pr}_\nu^\omega(\text{extend}(\Pi)) \right\}$$

 is a monotone class.
Soundness: From \mathcal{C} to $\text{unif}(\mathcal{C})$

The construction of $\overline{\mathcal{D}}$ preserves all measures.

Proof sketch:

1. Uniformization is measure-preserving for measurable rectangles C^n:
 \[
 \Pr^{\nu, \mathcal{D}}_n(C^n) = \overline{\Pr}^{\nu, \overline{\mathcal{D}}}(\text{extend}(C_n))
 \]

2. This extends to the field $\mathcal{G}_{\text{Paths}}^n = (\mathcal{F}_S \times \mathcal{F}_{\text{Act}} \times \mathcal{B}(\mathbb{R}_{\geq 0}))^n \times \mathcal{F}_S$.

3. Further we prove that
 \[
 \mathcal{C} = \left\{ \Pi \in \mathcal{G}_{\text{Paths}}^n(\mathcal{C}) \mid \Pr^{\nu, \mathcal{D}}_n(\Pi) = \overline{\Pr}^{\nu, \overline{\mathcal{D}}}(\text{extend}(\Pi)) \right\}
 \]
 is a monotone class.

The claim follows by applying the Monotone Class Theorem.
Completeness: From $\text{unif}(C)$ to C.

Main results:

1. For scheduler classes $\mathcal{G} \in \{TTP, TAP\}$:

$$\sup_{D \in \mathcal{G}(C)} Pr^{\omega}_{\nu,D}(\Pi) = \sup_{D' \in \mathcal{G}(C)} Pr^{\omega}_{\nu,D'}(\text{extend}(\Pi))$$

2. For the classes $\mathcal{G} \in \{TAHOP, TAH, TP\}$:

$$\sup_{D \in \mathcal{G}(C)} Pr^{\omega}_{\nu,D}(\Pi) \neq \sup_{D' \in \mathcal{G}(C)} Pr^{\omega}_{\nu,D'}(\text{extend}(\Pi))$$

3. Our main concern: Timed reachability analysis:
 - Previous results hold for arbitrary measures.
 - Reachability of states in G in time t:

$$\sup_{D \in \text{TTP}(C)} Pr^{\omega}_{\nu,D}(\mathbf{[0,t]}^C) = \sup_{D \in \text{GM}(C)} Pr^{\omega}_{\nu,D}(\mathbf{[0,t]}^C).$$

Neuhausser, Stoelinga, Katoen (RWTH Aachen) Delayed CTMDPs FOSSACS 2009 16 / 18
Completeness: From $\text{unif}(C)$ to C.

Main results:

1. For scheduler classes $\mathcal{G} \in \{TTP, TAP, TTH, GM\}$:

$$\sup_{D \in \mathcal{G}(C)} \Pr_{\nu,D}^\omega(\Pi) = \sup_{D' \in \mathcal{G}(C)} \Pr_{\nu,D'}^\omega(\text{extend}(\Pi))$$

Conjecture: GM and TTH are also complete.

2. For the classes $\mathcal{G} \in \{TAHOP, TAH, TP\}$:

$$\sup_{D \in \mathcal{G}(C)} \Pr_{\nu,D}^\omega(\Pi) \neq \sup_{D' \in \mathcal{G}(C)} \Pr_{\nu,D'}^\omega(\text{extend}(\Pi))$$

3. Our main concern: Timed reachability analysis:
 - Previous results hold for arbitrary measures
 - Reachability of states in G in time t:

$$\sup_{D \in \text{TTP}(C)} \Pr_{\nu,D}^\omega(\nu^{[0,t]}G) = \sup_{D \in \text{GM}(C)} \Pr_{\nu,D}^\omega(\nu^{[0,t]}G)$$

Neuhäuser, Stoelinga, Katoen (RWTH Aachen)
Completeness: From $\text{unif}(C)$ to C.

Main results:

1. For scheduler classes $\mathcal{G} \in \{TTP, TAP, TTH, GM\}$:

$$\sup_{D \in \mathcal{G}(C)} \Pr_{\nu, D}^\omega (\Pi) = \sup_{D' \in \mathcal{G}(C)} \Pr_{\nu, D'}^\omega (\text{extend}(\Pi))$$

Conjecture: GM and TTH are also complete.

2. For the classes $\mathcal{G} \in \{TAHOP, TAH, TP\}$:

$$\sup_{D \in \mathcal{G}(C)} \Pr_{\nu, D}^\omega (\Pi) \neq \sup_{D' \in \mathcal{G}(C)} \Pr_{\nu, D'}^\omega (\text{extend}(\Pi))$$

Our main concern: Timed reachability analysis:

- Previous results hold for arbitrary measures.
- Reachability of states in C in time t:

$$\sup_{D \in \text{TTP}(C)} \Pr_{\nu, D}^\omega (0^{\text{init}} C) = \sup_{D \in \text{GM}(C)} \Pr_{\nu, D}^\omega (0^{\text{init}} C)$$
Completeness: From $\text{unif}(\mathcal{C})$ to \mathcal{C}.

Main results:

1. For scheduler classes $\mathfrak{G} \in \{\text{TTP}, \text{TAP}, \text{TTH}, \text{GM}\}$:
 \[
 \sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu,D}^{\omega} (\Pi) = \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu,D'}^{\omega} (\text{extend}(\Pi))
 \]

 Conjecture: GM and TTH are also complete.

2. For the classes $\mathfrak{G} \in \{\text{TAHOP}, \text{TAH}, \text{TP}\}$:
 \[
 \sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu,D}^{\omega} (\Pi) \neq \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu,D'}^{\omega} (\text{extend}(\Pi))
 \]

3. Our main concern: **Timed reachability analysis**:
 - Previous results hold for arbitrary measures.
 - Reachability of states in \mathcal{G} in time t:
 \[
 \sup_{D \in \text{TTP}(\mathcal{C})} Pr_{\nu,D}^{\omega} (\Diamond^{[0,t]} G) = \sup_{D \in \text{GM}(\mathcal{C})} Pr_{\nu,D}^{\omega} (\Diamond^{[0,t]} G).
 \]
The benefit of delaying nondeterminism

- Instead of early scheduling:

\[\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_E(\pi \downarrow, \alpha) (dt) \int_S I_M(\alpha, t, s') P(\pi \downarrow, \alpha, d s'), \]

- local uniformity allows late scheduling:

\[\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} \eta_\lambda(s_n) (dt) \int_{\mathbb{R}_{\geq 0}} D(\pi, t, d\alpha) \int_S I_M(\alpha, t, s') P(\pi \downarrow, \alpha, d s'). \]

- What's the benefit?
The benefit of delaying nondeterminism

• Instead of **early scheduling**:

\[\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_E(\pi \downarrow, \alpha) (dt) \int_{S} I_M(\alpha, t, s') \ P(\pi \downarrow, \alpha, ds'), \]

• **local uniformity allows late scheduling**:

\[\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} \eta_\lambda(s_n) (dt) \int_{\mathbb{R}_{\geq 0}} D(\pi, t, d\alpha) \int_{S} I_M(\alpha, t, s') \ P(\pi \downarrow, \alpha, ds'). \]

• What’s the benefit?
The benefit of delaying nondeterminism

- Instead of **early scheduling**:
 \[
 \mu_D(\pi, M) = \int_{\mathbb{R} \geq 0} D(\pi, d\alpha) \int_{\eta_E(\pi, \alpha)}^\infty \int_{s_t} I_M(\alpha, t, s') P(\pi, \alpha, ds'),
 \]

- local uniformity allows **late scheduling**:
 \[
 \mu_D(\pi, M) = \int_{\mathbb{R} \geq 0} \eta_{\lambda}(s) (dt) \int_{\mathbb{R} \geq 0} D(\pi, t, d\alpha) \int_{s_t} I_M(\alpha, t, s') P(\pi, \alpha, ds').
 \]

- What’s the benefit?
What is achieved:

We consider **locally uniform CTMDPs** and **late schedulers**:

1. They allow to delay the resolution of nondeterminism.
2. Late schedulers are strictly better than any early scheduler.
What is achieved:

We consider **locally uniform CTMDPs** and **late schedulers**:

1. They allow to delay the resolution of nondeterminism.
2. Late schedulers are strictly better than any early scheduler.

We investigate a **transformation** which achieves local uniformity.

1. Local uniformization works for important scheduler classes.
2. The transform is viable to late scheduling.

Future work: **Timed reachability analysis.**

Late scheduling has proved to be **algorithmically manageable!**
What is achieved:

We consider **locally uniform CTMDPs** and **late schedulers**:

1. They allow to delay the resolution of nondeterminism.
2. Late schedulers are strictly better than any early scheduler.

We investigate a **transformation** which achieves local uniformity.

1. Local uniformization works for important scheduler classes.
2. The transform is viable to late scheduling.

Future work: Timed reachability analysis.

Late scheduling has proved to be **algorithmically manageable!**

Thank you for your attention!