Modeling Concurrent and Probabilistic Systems

Lecture 1: Introduction

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08
1 Preliminaries

2 Introduction

3 Syntax of CCS
<table>
<thead>
<tr>
<th>People</th>
<th>1st part: CCS</th>
<th>2nd part: Probabilistic Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Thomas Noll</td>
<td>Joost-Pieter Katoen</td>
</tr>
<tr>
<td></td>
<td><noll></td>
<td><katoen></td>
</tr>
<tr>
<td>Exercises</td>
<td>Martin Neuhäußer</td>
<td>Tingting Han</td>
</tr>
<tr>
<td></td>
<td><neuhaeusser></td>
<td><tingting.han></td>
</tr>
<tr>
<td>Assistant</td>
<td>Ulrich Schmidt-Goertz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ulrich.schmidt-goertz@gmx.de</td>
<td></td>
</tr>
</tbody>
</table>

(add “@cs.rwth-aachen.de” to e-mail addresses)
Target Audience

- Diploma programme (Informatik)
 - Theoretische Informatik
 - Vertiefungsfach Formale Methoden, Programmiersprachen und Softwarevalidierung

- Master programme (Software Systems Engineering)
 - Theoretical CS
 - Specialization Formal Methods, Programming Languages and Software Validation

In general:
- interest in formal models for software systems
- application of mathematical reasoning methods

Expected: basic knowledge in
- formal languages and automata theory
- mathematical logic
- probability theory
Target Audience

- Diploma programme (Informatik)
 - Theoretische Informatik
 - Vertiefungsfach Formale Methoden, Programmiersprachen und Softwarevalidierung

- Master programme (Software Systems Engineering)
 - Theoretical CS
 - Specialization Formal Methods, Programming Languages and Software Validation

In general:
 - interest in formal models for software systems
 - application of mathematical reasoning methods

Expected: basic knowledge in
 - formal languages and automata theory
 - mathematical logic
 - probability theory
Organization

- **Schedule:**
 - **Lecture** Tue 14:00–15:30 AH 2 (starting October 16)
 - **Lecture** Thu 13:30–15:00 AH 1 (starting November 8)
 - **Exercise class** Fri 10:00–11:30 AH 2 (starting October 26)

- see web page for single dates

- 1st assignment sheet: Fri Oct. 19 on web

- Work on assignments in groups of three

- **Examination** (8 ECTS credit points):
 - written or oral (depending on number of candidates);
 - date: February 2008

- Admission requires at least 50% of the points in the exercises

- Solutions to exercises and exam in English or German
Organization

Schedule:
- **Lecture** Tue 14:00–15:30 AH 2 (starting October 16)
- **Lecture** Thu 13:30–15:00 AH 1 (starting November 8)
- **Exercise class** Fri 10:00–11:30 AH 2 (starting October 26)

see web page for single dates

1st assignment sheet: Fri Oct. 19 on web

Work on assignments in *groups of three*

Examination (8 ECTS credit points):
- written or oral (depending on number of candidates);
- date: February 2008

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German
Organization

- **Schedule:**
 - Lecture Tue 14:00–15:30 AH 2 (starting October 16)
 - Lecture Thu 13:30–15:00 AH 1 (starting November 8)
 - Exercise class Fri 10:00–11:30 AH 2 (starting October 26)

- see web page for single dates

- 1st assignment sheet: Fri Oct. 19 on web

- Work on assignments in groups of three

- **Examination** (8 ECTS credit points):
 - written or oral (depending on number of candidates);
 - date: February 2008

- Admission requires **at least 50% of the points in the exercises**

- Solutions to exercises and exam in English or German
Organization

- **Schedule:**
 - **Lecture** Tue 14:00–15:30 AH 2 (starting October 16)
 - **Lecture** Thu 13:30–15:00 AH 1 (starting November 8)
 - **Exercise class** Fri 10:00–11:30 AH 2 (starting October 26)

 see web page for single dates

- 1st assignment sheet: Fri Oct. 19 on web

- Work on assignments in **groups of three**

- **Examination** (8 ECTS credit points):
 - written or oral (depending on number of candidates);
 - date: February 2008

- Admission requires **at least 50% of the points in the exercises**

- Solutions to exercises and exam in **English or German**
Outline

1. Preliminaries
2. Introduction
3. Syntax of CCS
Motivation

Goal:

- describing and analyzing the behavior of concurrent and/or probabilistic systems

Motivation:

- supporting the design phase
 - “Programming Concurrent Systems”
 - synchronization, scheduling, fairness, absence of deadlocks, ...
- applying formal analysis methods
 - “Performance Modelling”
 - queue throughput, response time in real-time systems, ...
- verifying correctness properties
 - “Model Checking”
 - validation of mutual exclusion, fairness, no deadlocks, ...
Motivation

Goal:

- describing and analyzing the behavior of concurrent and/or probabilistic systems

Motivation:

- supporting the design phase
 - “Programming Concurrent Systems”
 - synchronization, scheduling, fairness, absence of deadlocks, ...

- applying formal analysis methods
 - “Performance Modelling”
 - queue throughput, response time in real-time systems, ...

- verifying correctness properties
 - “Model Checking”
 - validation of mutual exclusion, fairness, no deadlocks, ...
Motivation

Goal:

describing and analyzing the behavior of concurrent and/or probabilistic systems

Motivation:

- supporting the design phase
 → “Programming Concurrent Systems”
 - synchronization, scheduling, fairness, absence of deadlocks, ...

- applying formal analysis methods
 → “Performance Modelling”
 - queue throughput, response time in real-time systems, ...

- verifying correctness properties
 → “Model Checking”
 - validation of mutual exclusion, fairness, no deadlocks, ...
Motivation

Goal:

describing and analyzing the behavior of concurrent and/or probabilistic systems

Motivation:

- supporting the design phase
 \[\Rightarrow\] “Programming Concurrent Systems”
 - synchronization, scheduling, fairness, absence of deadlocks, ...

- applying formal analysis methods
 \[\Rightarrow\] “Performance Modelling”
 - queue throughput, response time in real-time systems, ...

- verifying correctness properties
 \[\Rightarrow\] “Model Checking”
 - validation of mutual exclusion, fairness, no deadlocks, ...
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 3

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
- Thus: \(x\) is assigned 2,
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \[\implies\] only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0;
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 3

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
- Thus: \(x\) is assigned 2,
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \(\implies\) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 3

13 2

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
 - Thus: \(x\) is assigned 2,
 - If exclusive access to shared memory and atomic execution of assignments guaranteed

\[\implies\] only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 03
\]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2,
- If exclusive access to shared memory and atomic execution of assignments guaranteed
- \(\implies \) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[x := 0; \]
\[(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 03 \]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
 - Thus: \(x \) is assigned 2,
 - If exclusive access to shared memory and atomic execution of assignments guaranteed
 \[\implies \text{only possible outcome: 3} \]
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 0

1

3

2

At first glance: \(x\) is assigned 3

But: both parallel components could read \(x\) before it is written

Thus: \(x\) is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed

\(\implies\) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 13
\]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
 - Thus: \(x \) is assigned 2,
 - If exclusive access to shared memory and atomic execution of assignments guaranteed
 \[\implies \text{only possible outcome: } 3 \]
Observation: concurrency introduces new phenomena

Example 1.1

\[x := 0; \]
\[(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 23 \]
\[
\begin{array}{c}
13 \\
2
\end{array}
\]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed

\[\implies \text{only possible outcome: 3} \]
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 03

At first glance: \(x\) is assigned 3

But: both parallel components could read \(x\) before it is written

Thus: \(x\) is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed

\(\implies\) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: \ 03 \\
13 \ 2
\]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2,
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \(\implies \) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
\begin{align*}
&x := 0; \\
&(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 03 \\
&13 \quad 2
\end{align*}
\]

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
- Thus: \(x\) is assigned 2,

- If exclusive access to shared memory and atomic execution of assignments guaranteed

\[\implies\] only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0;
(x := x + 1 \parallel x := x + 2)
\]
value of \(x\): 23

13 2

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
- Thus: \(x\) is assigned 2,
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \(\implies\) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 13
\]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2, 1,
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \(\implies \) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 03

\[
13 2
\]

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
- Thus: \(x\) is assigned 2, 1,
- If exclusive access to shared memory and atomic execution of assignments guaranteed

\[
\implies \text{only possible outcome: 3}
\]
Observation: concurrency introduces new phenomena

Example 1.1

\[
\begin{align*}
 & x := 0; \\
 & (x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 03 \\
 & 13 \quad 2
\end{align*}
\]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2, 1,

- If exclusive access to shared memory and atomic execution of assignments guaranteed

\[\implies \text{only possible outcome: 3}\]
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0;
\]

\[
(x := x + 1 \parallel x := x + 2)
\]

value of \(x\): 2

13 2

- At first glance: \(x\) is assigned 3
- But: both parallel components could read \(x\) before it is written
- Thus: \(x\) is assigned 2, 1,

- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \(\implies\) only possible outcome: 3
Observation: concurrency introduces new phenomena

Example 1.1

\[x := 0; \]
\[(x := x + 1 \parallel x := x + 2) \]

13 2

value of \(x \): 23

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2, 1,
- If exclusive access to shared memory and atomic execution of assignments guaranteed

\[\implies \text{only possible outcome: 3} \]
Observation: concurrency introduces new phenomena

Example 1.1

\[x := 0; \]
\[(x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 3 \]

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2, 1, or 3
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \[\implies \text{only possible outcome: 3} \]
Observation: concurrency introduces new phenomena

Example 1.1

\[
x := 0; \\
(x := x + 1 \parallel x := x + 2)
\]

value of \(x \): 3

- At first glance: \(x \) is assigned 3
- But: both parallel components could read \(x \) before it is written
- Thus: \(x \) is assigned 2, 1, or 3
- If exclusive access to shared memory and atomic execution of assignments guaranteed
 \(\implies \) only possible outcome: 3
The problem arises due to the combination of
- concurrency and
- interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the mechanisms of both concurrency and interaction is crucially important.
The problem arises due to the combination of
- **concurrency** and
- **interaction** (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the mechanisms of both **concurrency** and **interaction** is crucially important.
Thus: “classical” model for sequential systems

$$\text{System : Input } \rightarrow \text{ Output}$$

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and among themselves

Main interest: not terminating computations but infinite behavior (system maintains ongoing interaction with environment)

Examples:

- operating systems
- embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
- power plants, production lines, ...
Thus: “classical” model for sequential systems

\[
\text{System : Input } \rightarrow \text{ Output}
\]

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and among themselves

Main interest: not terminating computations but infinite behavior (system maintains ongoing interaction with environment)

Examples:
- operating systems
- embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
- power plants, production lines, ...
Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and among themselves

Main interest: not terminating computations but infinite behavior (system maintains ongoing interaction with environment)

Examples:
- operating systems
- embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
- power plants, production lines, ...
Observation: reactive systems often safety critical
⇒ correct behavior has to be ensured

- Safety properties: “Nothing bad is going to happen.”
 E.g., “at most one process in the critical section”

- Liveness properties: “Eventually something good will happen.”
 E.g., “the server will finally answer”

- Fairness properties: “No component will starve to death.”
 E.g., “any process requiring entry to the critical section will eventually be admitted”
Our approach I

The formal verification of such properties requires a mathematical model of the underlying system. Here we use the following approach:

- **interaction** is interpreted by explicit, synchronous communication and
- **concurrency** is modelled by interleaving, i.e., the (communication) actions of concurrent processes are merged:

 \[(a; b) \parallel (x; y)\] corresponds to

 \[a \quad a \quad x\]
 \[b \quad x \quad a\]
 \[x \quad b \quad b\]
 \[y \quad y \quad y\]

 \[\Rightarrow\] reduction of concurrency to **nondeterminism**
 (cf. multitasking on sequential computers)

Possible alternatives:

- interaction via shared memory/asynchronous message passing/...
- concurrency via true parallelism (Petri Nets)
- later: probabilistic aspects [Katoen]
Our approach I

The formal verification of such properties requires a **mathematical model** of the underlying system. Here we use the following approach:

- **interaction** is interpreted by explicit, synchronous **communication** and
- **concurrency** is modelled by **interleaving**, i.e., the (communication) actions of concurrent processes are merged:

\[(a; b) \parallel (x; y) \text{ corresponds to } a \quad a \quad x \quad b \quad or \quad x \quad b \quad or \quad x \quad a \quad or \quad ...
\]

\[\implies \text{reduction of concurrency to nondeterminism}
\]

(cf. multitasking on sequential computers)

Possible alternatives:

- interaction via shared memory/asynchronous message passing/...
- concurrency via true parallelism (Petri Nets)
- later: **probabilistic** aspects [Katoen]
“Primary meaning” of a system: potential of communication
i.e., the set of possible communication sequences

In particular:

- I/O modelled as communication with environment
- storage access modelled as communication with a “storage process”
Overview of the Course

1st part of course (CCS):

2. Calculus of Communicating Systems (CCS)
 (syntax, labeled transition systems, transition rules)
3. Equivalence of CCS Processes
 (trace equivalence, strong/weak bisimulation, observation congruence, axiomatizability of equivalences)
4. Case Study: Alternating-Bit Protocol
 (modeling channels/sender/receiver, correctness, extensions)

2nd part of course (Probabilistic Models):

5. Stochastic processes
 (Markov chains and decision processes)
6. Probabilistic (bi)simulation
 (strong bisimulation/simulation, simulation equivalence)
7. Probabilistic process algebra
 (probabilistic transition systems, operators, axiomatizability of probabilistic bisimulation)
8. Further Issues
 (nondeterminism, continuous time, Markovian process algebra)
Overview of the Course

1st part of course (CCS):
2. Calculus of Communicating Systems (CCS)
 (syntax, labeled transition systems, transition rules)
3. Equivalence of CCS Processes
 (trace equivalence, strong/weak bisimulation, observation congruence, axiomatizability of equivalences)
4. Case Study: Alternating-Bit Protocol
 (modeling channels/sender/receiver, correctness, extensions)

2nd part of course (Probabilistic Models):
5. Stochastic processes
 (Markov chains and decision processes)
6. Probabilistic (bi)simulation
 (strong bisimulation/simulation, simulation equivalence)
7. Probabilistic process algebra
 (probabilistic transition systems, operators, axiomatizability of probabilistic bisimulation)
8. Further Issues
 (nondeterminism, continuous time, Markovian process algebra)
Literature

(also see the collection [“Handapparat Probabilistic Models for Concurrency / PMC”] at the CS Library)

- 1st part of course (CCS):
 - R. Milner: *Communication and Concurrency*
 Prentice-Hall, 1989
 - R. Milner: *Communicating and Mobile Systems: the π-calculus*
 Cambridge University Press, 1999
 - J.A. Bergstra, A. Ponse, S.A. Smolka: *Handbook of Process Algebra*
 Elsevier, 2001

- 2nd part of course (Probabilistic Models):
 - H.C. Tijms: *A first course in stochastic models*
 Wiley, 2003
 - J. Hillston: *A Compositional Approach to Performance Modelling*
 Cambridge University Press, 1996
 - H. Hermanns: *Interactive Markov Chains: The Quest for Quantified Quality*
 LNCS 2428, Springer, 2002
Outline

1 Preliminaries

2 Introduction

3 Syntax of CCS
History of CCS

- Robin Milner: *A Calculus of Communicating Systems*
 LNCS 92, Springer, 1980
- Robin Milner: *Communication and Concurrency*
 Prentice-Hall, 1989

Approach: describing concurrency on a simple and abstract level, using only a few basic primitives
- no explicit storage (variables)
- no explicit representation of values (numbers, Booleans, ...)

 → abstraction of communication potential of a concurrent system
History of CCS

- Robin Milner: *A Calculus of Communicating Systems*
 LNCS 92, Springer, 1980
- Robin Milner: *Communication and Concurrency*
 Prentice-Hall, 1989

Approach: describing concurrency on a simple and abstract level, using only a few basic primitives
 - no explicit storage (variables)
 - no explicit representation of values (numbers, Booleans, ...)

\Rightarrow abstraction of *communication potential* of a concurrent system
Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.
- $\overline{N} := \{\overline{a} \mid a \in N\}$ denotes the set of co-names.
- $Act := N \cup \overline{N} \cup \{\tau\}$ is the set of actions where τ denotes the silent (or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:

$$P ::= \text{nil} \quad \text{(inaction)}$$

$$| \alpha.P \quad \text{(prefixing)}$$

$$| P_1 + P_2 \quad \text{(choice)}$$

$$| P_1 \parallel P_2 \quad \text{(parallel composition)}$$

$$| \text{new } a \ P \quad \text{(restriction)}$$

$$| A(a_1, \ldots, a_n) \quad \text{(process call)}$$

where $\alpha \in Act$, $a, a_i \in N$, and $A \in Pid$.
Definition 1.2 (Syntax of CCS)

- Let N be a set of (action) names.
- $\overline{N} := \{\overline{a} \mid a \in N\}$ denotes the set of co-names.
- $Act := N \cup \overline{N} \cup \{\tau\}$ is the set of actions where τ denotes the silent (or: unobservable) action.
- Let Pid be a set of process identifiers.
- The set Prc of process expressions is defined by the following syntax:

 $P ::= nil$ \hspace{1cm} (inaction)

 $\mid \alpha.P$ \hspace{1cm} (prefixing)

 $\mid P_1 + P_2$ \hspace{1cm} (choice)

 $\mid P_1 \parallel P_2$ \hspace{1cm} (parallel composition)

 $\mid \text{new } a \ P$ \hspace{1cm} (restriction)

 $\mid A(a_1, \ldots, a_n)$ \hspace{1cm} (process call)

where $\alpha \in Act$, $a, a_i \in N$, and $A \in Pid$.
Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

$$\overline{N} := \{\overline{a} \mid a \in N\}$$ denotes the set of co-names.

$Act := N \cup \overline{N} \cup \{\tau\}$ is the set of actions where τ denotes the silent (or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:

- $P ::= \text{nil}$ (inaction)
- $\alpha.P$ (prefixing)
- $P_1 + P_2$ (choice)
- $P_1 \parallel P_2$ (parallel composition)
- $\text{new } a\ P$ (restriction)
- $A(a_1, \ldots, a_n)$ (process call)

where $\alpha \in Act$, $a, a_i \in N$, and $A \in Pid$.
Definition 1.2 (Syntax of CCS)

- Let N be a set of (action) names.
- $\overline{N} := \{a \mid a \in N\}$ denotes the set of co-names.
- $Act := N \cup \overline{N} \cup \{\tau\}$ is the set of actions where τ denotes the silent (or: unobservable) action.
- Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:

$$
P ::= \text{nil} \quad \text{(inaction)}
\quad | \quad \alpha.P \quad \text{(prefixing)}
\quad | \quad P_1 + P_2 \quad \text{(choice)}
\quad | \quad P_1 \parallel P_2 \quad \text{(parallel composition)}
\quad | \quad \text{new } a \ P \quad \text{(restriction)}
\quad | \quad A(a_1, \ldots, a_n) \quad \text{(process call)}
$$

where $\alpha \in Act$, $a, a_i \in N$, and $A \in Pid$.
Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

$\overline{N} := \{\overline{a} \mid a \in N\}$ denotes the set of co-names.

$Act := N \cup \overline{N} \cup \{\tau\}$ is the set of actions where τ denotes the silent (or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:

- $P ::= \text{nil}$ (inaction)
- $\alpha.P$ (prefixing)
- $P_1 + P_2$ (choice)
- $P_1 \parallel P_2$ (parallel composition)
- $\text{new } a \ P$ (restriction)
- $A(a_1, \ldots, a_n)$ (process call)

where $\alpha \in Act$, $a, a_i \in N$, and $A \in Pid$.
Definition 1.2 (continued)

A (recursive) process definition is an equation system of the form

\[(A_i(a_{i1}, \ldots, a_{in_i}) = P_i \mid 1 \leq i \leq k)\]

where \(k \geq 1\), \(A_i \in \text{Pid}\) (pairwise different), \(a_{ij} \in N\), and \(P_i \in \text{Prc}\) (with process identifiers from \(\{A_1, \ldots, A_k\}\)).
Meaning of CCS Constructs

- nil is an inactive process that can do nothing.
- $\alpha.P$ can execute α and then behaves as P.
- An action $a \in N$ ($\overline{a} \in \overline{N}$) is interpreted as an input (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in $P_1 \parallel P_2$), they are merged into a τ-action.
- $P_1 + P_2$ represents the non-deterministic choice between P_1 and P_2.
- $P_1 \parallel P_2$ denotes the concurrent execution of P_1 and P_2, involving interleaving or communication.
- The restriction $\text{new } a P$ declares a as a local name which is only known in P.
- The behavior of a process call $A(a_1, \ldots, a_n)$ is defined by the right-hand side of the corresponding equation where a_1, \ldots, a_n replace the formal name parameters.
Meaning of CCS Constructs

- nil is an **inactive process** that can do nothing.
- \(\alpha.P \) can execute \(\alpha \) and then behaves as \(P \).
- An action \(a \in N \) (\(\overline{a} \in \overline{N} \)) is interpreted as an **input** (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in \(P_1 \parallel P_2 \)), they are merged into a \(\tau \)-action.
- \(P_1 + P_2 \) represents the **non-deterministic choice** between \(P_1 \) and \(P_2 \).
- \(P_1 \parallel P_2 \) denotes the **concurrent execution** of \(P_1 \) and \(P_2 \), involving interleaving or communication.
- The **restriction** \(\text{new} \ a \ P \) declares \(a \) as a local name which is only known in \(P \).
- The behavior of a **process call** \(A(a_1, \ldots, a_n) \) is defined by the right-hand side of the corresponding equation where \(a_1, \ldots, a_n \) replace the formal name parameters.
Meaning of CCS Constructs

- **nil** is an **inactive process** that can do nothing.
- **α.P** can execute **α** and then behaves as **P**.
- An action **a ∈ N** (**ā ∈ N̅**) is interpreted as an **input** (**output**, resp.) operation. Both are complementary: if executed in parallel (i.e., in **P₁ || P₂**), they are merged into a **τ**-action.
- **P₁ + P₂** represents the **non-deterministic choice** between **P₁** and **P₂**.
- **P₁ || P₂** denotes the **concurrent execution** of **P₁** and **P₂**, involving **interleaving** or **communication**.
- The **restriction** **new a P** declares **a** as a local name which is only known in **P**.
- The behavior of a **process call** **A(a₁, . . . , aₙ)** is defined by the right-hand side of the corresponding equation where **a₁, . . . , aₙ** replace the formal name parameters.
nil is an inactive process that can do nothing.

\(\alpha.P \) can execute \(\alpha \) and then behaves as \(P \).

An action \(a \in N \) (\(\overline{a} \in \overline{N} \)) is interpreted as an input (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in \(P_1 \parallel P_2 \)), they are merged into a \(\tau \)-action.

\(P_1 + P_2 \) represents the non-deterministic choice between \(P_1 \) and \(P_2 \).

\(P_1 \parallel P_2 \) denotes the concurrent execution of \(P_1 \) and \(P_2 \), involving interleaving or communication.

The restriction new \(a \) \(P \) declares \(a \) as a local name which is only known in \(P \).

The behavior of a process call \(A(a_1, \ldots, a_n) \) is defined by the right-hand side of the corresponding equation where \(a_1, \ldots, a_n \) replace the formal name parameters.
nil is an inactive process that can do nothing.

\(\alpha.P \) can execute \(\alpha \) and then behaves as \(P \).

An action \(a \in N (\overline{a} \in \overline{N}) \) is interpreted as an input (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in \(P_1 \parallel P_2 \)), they are merged into a \(\tau \)-action.

\(P_1 + P_2 \) represents the non-deterministic choice between \(P_1 \) and \(P_2 \).

\(P_1 \parallel P_2 \) denotes the concurrent execution of \(P_1 \) and \(P_2 \), involving interleaving or communication.

The restriction new \(a \ P \) declares \(a \) as a local name which is only known in \(P \).

The behavior of a process call \(A(a_1, \ldots, a_n) \) is defined by the right-hand side of the corresponding equation where \(a_1, \ldots, a_n \) replace the formal name parameters.
Meaning of CCS Constructs

- nil is an inactive process that can do nothing.
- $\alpha.P$ can execute α and then behaves as P.
- An action $a \in N$ ($\overline{a} \in \overline{N}$) is interpreted as an input (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in $P_1 \parallel P_2$), they are merged into a τ-action.
- $P_1 + P_2$ represents the non-deterministic choice between P_1 and P_2.
- $P_1 \parallel P_2$ denotes the concurrent execution of P_1 and P_2, involving interleaving or communication.
- The restriction new $a.P$ declares a as a local name which is only known in P.
- The behavior of a process call $A(a_1, \ldots, a_n)$ is defined by the right-hand side of the corresponding equation where a_1, \ldots, a_n replace the formal name parameters.
nil is an inactive process that can do nothing.

$\alpha.P$ can execute α and then behaves as P.

An action $a \in N$ ($\overline{a} \in \overline{N}$) is interpreted as an input (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in $P_1 \parallel P_2$), they are merged into a τ-action.

$P_1 + P_2$ represents the non-deterministic choice between P_1 and P_2.

$P_1 \parallel P_2$ denotes the concurrent execution of P_1 and P_2, involving interleaving or communication.

The restriction $\text{new } a P$ declares a as a local name which is only known in P.

The behavior of a process call $A(a_1, \ldots, a_n)$ is defined by the right-hand side of the corresponding equation where a_1, \ldots, a_n replace the formal name parameters.
Example 1.3

1. One-place buffer
2. Two-place buffer
3. Parallel specification of two-place buffer

(on the board)
Notational Conventions

- \(\bar{a} \) means \(a \)

- \(P_1 + \ldots + P_n \) (\(n \in \mathbb{N} \)) sometimes written as \(\sum_{i=1}^{n} P_i \) where \(\sum_{i=1}^{0} P_i := \text{nil} \)

- “.nil” can be omitted: \(a.b \) means \(a.b.\text{nil} \)

- new \(a, b \ P \) means new \(a \) new \(b \ P \)

- \(A(a_1, \ldots, a_n) \) sometimes written as \(A(\bar{a}) \), \(A() \) as \(A \)

- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

\[
\text{new } a \ P + b.Q \parallel R \quad \text{means} \quad (\text{new } a \ P) + ((b.Q) \parallel R)
\]
Notational Conventions

- \overparen{a} means a
- $P_1 + \ldots + P_n$ ($n \in \mathbb{N}$) sometimes written as $\sum_{i=1}^{n} P_i$ where $\sum_{i=1}^{0} P_i \equiv \text{nil}$
- "nil" can be omitted: $a.b$ means $a.b.nil$
- new a, b P means new a new b P
- $A(a_1, \ldots, a_n)$ sometimes written as $A(\overparen{a})$, $A()$ as A
- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

\[
\text{new } a \ P + b.\ Q \parallel R \quad \text{means} \quad (\text{new } a \ P) + ((b.\ Q) \parallel R)
\]
Notational Conventions

- \overline{a} means a

- $P_1 + \ldots + P_n$ ($n \in \mathbb{N}$) sometimes written as $\sum_{i=1}^{n} P_i$ where $\sum_{i=1}^{0} P_i := \text{nil}$

- "nil" can be omitted: $a.b$ means $a.b.nil$

- new a, b P means new a new b P

- $A(a_1, \ldots, a_n)$ sometimes written as $A(\overline{a})$, $A()$ as A

- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

\[
\text{new } a \ P + b.Q \parallel R \quad \text{means} \quad (\text{new } a \ P) + ((b.Q) \parallel R)
\]
Notational Conventions

- \bar{a} means a
- $P_1 + \ldots + P_n$ ($n \in \mathbb{N}$) sometimes written as $\sum_{i=1}^{n} P_i$ where $\sum_{i=1}^{0} P_i := \text{nil}$
- “.nil” can be omitted: $a.b$ means $a.b.nil$
- new a, b P means new a new b P
- $A(a_1, \ldots, a_n)$ sometimes written as $A(\bar{a})$, $A()$ as A
- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

\[
\text{new } a \ P + b.Q \ || \ R \quad \text{means} \quad (\text{new } a \ P) + ((b.Q) \ || \ R)
\]
Notational Conventions

- \overline{a} means a

- $P_1 + \ldots + P_n \ (n \in \mathbb{N})$ sometimes written as $\sum_{i=1}^{n} P_i$ where $\sum_{i=1}^{0} P_i := \text{nil}$

- “.nil” can be omitted: $a.b$ means $a.b.\text{nil}$

- new $a, b \ P$ means new a new $b \ P$

- $A(a_1, \ldots, a_n)$ sometimes written as $A(\overline{a})$, $A()$ as A

- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

 new $a \ P + b.Q \parallel R$ means $(\text{new } a \ P) + ((b.Q) \parallel R)$
Notational Conventions

- \overline{a} means a

- $P_1 + \ldots + P_n$ ($n \in \mathbb{N}$) sometimes written as $\sum_{i=1}^{n} P_i$ where $\sum_{i=1}^{0} P_i := \text{nil}$

- “nil” can be omitted: $a.b$ means $a.b.nil$

- new $a, b P$ means new a new $b P$

- $A(a_1, \ldots, a_n)$ sometimes written as $A(\overline{a})$, $A()$ as A

- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

\[
\text{new } a \ P + b.\ Q \ || \ R \ \text{ means } \ (\text{new } a \ P) + ((b.\ Q) \ || \ R)
\]