Stutter Trace and Bisimulation Equivalence

Lecture #6 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 9, 2006
Motivation

• Bisimulation, simulation and trace equivalence are *strong*
 – each transition \(s \rightarrow s' \) must be matched by a *transition* of a related state
 – for comparing models at different abstraction levels, this is too fine
 – consider e.g., modeling an abstract action by a sequence of concrete actions

• Idea: allow for sequences of “invisible” actions
 – each transition \(s \rightarrow s' \) must be matched by a *path fragment* of a related state
 – matching means: ending in a state related to \(s' \), and all previous states invisible

• Abstraction of such internal computations yields coarser quotients
 – but: what kind of properties are preserved?
 – but: can such quotients still be obtained efficiently?
 – but: how to treat infinite internal computations?
Motivating example
Stuttering equivalence

- \(s \rightarrow s' \) in transition system \(TS \) is a **stutter step** if \(L(s) = L(s') \)
 - stutter steps do not affect the state labels of successor states

- Paths \(\pi_1 \) and \(\pi_2 \) are **stuttering equivalent**, denoted \(\pi_1 \equiv \pi_2 \):
 - if there exists an infinite sequence \(A_0 A_1 A_2 \ldots \) with \(A_i \subseteq AP \) and
 - natural numbers \(n_0, n_1, n_2, \ldots, m_0, m_1, m_2, \ldots \geq 1 \) such that:

\[
\begin{align*}
\text{trace}(\pi_1) &= A_0 \ldots A_0 \underbrace{A_1 \ldots A_1}_\text{n_1-times} \underbrace{A_2 \ldots A_2}_\text{n_2-times} \ldots \\
\text{trace}(\pi_2) &= A_0, \ldots, A_0 \underbrace{A_1 \ldots A_1}_\text{m_1-times} \underbrace{A_2 \ldots A_2}_\text{m_2-times} \ldots
\end{align*}
\]

\(\pi_1 \equiv \pi_2 \) if their traces only differ in their stutter steps

i.e., if both their traces are of the form \(A_0^+ A_1^+ A_2^+ \ldots \) for \(A_i \subseteq AP \)
Semaphore-based mutual exclusion
Stutter trace equivalence

Transition systems TS_i over AP, $i=1, 2$, are stutter-trace equivalent:

$$TS_1 \cong TS_2 \text{ if and only if } TS_1 \sqsubseteq TS_2 \text{ and } TS_2 \sqsubseteq TS_1$$

where \sqsubseteq is defined by:

$$TS_1 \sqsubseteq TS_2 \text{ iff } \forall \sigma_1 \in \text{Traces}(TS_1) \ (\exists \sigma_2 \in \text{Traces}(TS_2). \ \sigma_1 \cong \sigma_2)$$

clearly: $\text{Traces}(TS_1) = \text{Traces}(TS_2)$ implies $TS_1 \cong TS_2$, but not always the reverse
Example

\begin{itemize}
\item $s_1 \{a\}$
\item $s_0 \{a\}$
\item $s_2 \emptyset$
\item $t_0 \{a\}$
\item $t_1 \emptyset$
\item $u_0 \{a\}$
\item $u_1 \emptyset$
\item $u_2 \{a\}$
\end{itemize}
The \bigcirc operator

Stuttering equivalence does not preserve the validity of next-formulas:

$\sigma_1 = A B B B \ldots$ and $\sigma_2 = A A A B B B B \ldots$ for $A, B \subseteq AP$ and $A \neq B$

Then for $b \in B \setminus A$:

$\sigma_1 \cong \sigma_2$ but $\sigma_1 \models \bigcirc b$ and $\sigma_2 \not\models \bigcirc b$.

⇒ a logical characterization of \cong can only be obtained by omitting \bigcirc

in fact, it turns out that this is the only modal operator that is not preserved by \cong!
Stutter trace and LTL\O equivalence

For traces σ_1 and σ_2 over 2^{AP} it holds:

$$\sigma_1 \simeq \sigma_2 \Rightarrow (\sigma_1 \models \varphi \text{ if and only if } \sigma_2 \models \varphi)$$

for any LTL\O formula φ over AP

$LTL\O$ denotes the class of LTL formulas without the next step operator \bigcirc
Proof
Stutter trace and $\text{LTL} \setminus \circ$ equivalence

For transition systems TS_1, TS_2 (over AP) without terminal states:

(a) $TS_1 \cong TS_2$ implies $TS_1 \equiv_{\text{LTL} \setminus \circ} TS_2$

(b) if $TS_1 \subseteq TS_2$ then for any $\text{LTL} \setminus \circ$ formula φ: $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

A more general result can be established by considering stutter-insensitive LT properties
Stutter insensitivity

- LT property P is *stutter-insensitive* if $[\sigma] \preceq P$, for any $\sigma \in P$
 - P is stutter insensitive if it is closed under stutter equivalence

- For any stutter-insensitive LT property P:
 $$TS_1 \approx TS_2 \quad \text{implies} \quad TS_1 \models P \text{ iff } TS_2 \models P$$

- Moreover: $TS_1 \preceq TS_2$ and $TS_2 \models P$ implies $TS_1 \models P$

- For any LTL \bigcirc formula φ, LT property $\text{Words}(\varphi)$ is stutter insensitive
 - but: some stutter insensitive LT properties cannot be expressed in LTL \bigcirc
 - for LTL formula φ with $\text{Words}(\varphi)$ stutter insensitive:
 $$\text{there exists } \psi \in \text{LTL } \bigcirc \text{ such that } \psi \equiv_{\text{LTL}} \varphi$$
Advanced model checking

Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$

\mathcal{R} is a **stutter-bisimulation** for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$

2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \ldots u_n s'_2$ with $n \geq 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

3. if $s'_2 \in Post(s_2)$ with $(s_2, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \ldots v_n s'_1$ with $n \geq 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are **stutter-bisimulation equivalent**, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$
Stutter bisimulation

\[s_1 \approx s_2 \]
\[\downarrow \]
\[s'_1 \]

(with \(s_1 \not\approx s'_1 \))

can be completed to

\[s_1 \approx s_2 \]
\[\downarrow \]
\[s_1 \approx u_1 \]
\[\downarrow \]
\[s_1 \approx u_2 \]
\[\downarrow \]
\[\vdots \]
\[\downarrow \]
\[s_1 \approx u_n \]
\[\downarrow \]
\[s'_1 \approx s'_2 \]
Semaphore-based mutual exclusion
Stutter-bisimilar transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i = 1, 2$, be transition systems over AP

A **stutter bisimulation** for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. \mathcal{R} and \mathcal{R}^{-1} are stutter-bisimulations for $TS_1 \oplus TS_2$, and

2. $\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R})$ and $\forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$.

TS_1 and TS_2 are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation for (TS_1, TS_2)
Stutter bisimulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and stutter bisimulation $\approx \subseteq S \times S$ let

$$TS/\approx = (S', \{ \tau \}, \rightarrow', I', AP, L'),$$

the quotient of TS under \approx

where

- $S' = S/\approx = \{ [s]\approx | s \in S \}$
- \rightarrow' is defined by: $s \xrightarrow{\alpha} s'$ and $s \not\approx s'$
 $$\frac{s \xrightarrow{\alpha} s' \text{ and } s \not\approx s'}{[s]\approx \xrightarrow{\tau'} [s']\approx}$$
- $I' = \{ [s]\approx | s \in I \}$
- $L'([s]\approx) = L(s)$

note that (a) no self-loops occur in TS/\approx and (b) $TS \approx TS/\approx$ Why?
Semaphore-based mutual exclusion
Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP:

- Known fact: $TS_1 \sim TS_2$ implies $\text{Traces}(TS_1) = \text{Traces}(TS_2)$
- But not: $TS_1 \approx TS_2$ implies $TS_1 \not\sim TS_2$!

- So:
 - bisimilar transition systems are trace equivalent
 - but stutter-bisimilar transition systems are not always stutter trace-equivalent!

- Why? Stutter paths!
 - stutter bisimulation does not impose any constraint on such paths
 - but $\not\approx$ requires the existence of a stuttering equivalent trace
Advanced model checking

Stutter trace and stutter bisimulation are incomparable
Stutter bisimulation does not preserve LTL

\[TS_{left} \approx TS_{right} \quad \text{but} \quad TS_{left} \not\models \Diamond a \quad \text{and} \quad TS_{right} \models \Diamond a \]
Summary

stutter-trace inclusion:

\[TS_1 \sqsubseteq TS_2 \quad \text{iff} \quad \forall \sigma_1 \in \text{Traces}(TS_1) \exists \sigma_2 \in \text{Traces}(TS_2). \pi_1 \cong \pi_2 \]

stutter-trace equivalence:

\[TS_1 \cong TS_2 \quad \text{iff} \quad TS_1 \sqsubseteq TS_2 \quad \text{and} \quad TS_2 \sqsubseteq TS_1 \]

stutter-bisimulation equivalence:

\[TS_1 \approx TS_2 \quad \text{iff} \quad \text{there exists a stutter-bisimulation for } (TS_1, TS_2) \]

stutter-bisimulation equivalence with divergence:

\[TS_1 \approx^{\text{div}} TS_2 \quad \text{iff} \quad \text{there exists a divergence-sensitive} \]

stutter bisimulation for \((TS_1, TS_2)\)
Comparison

bisimulation equivalence \(TS_1 \sim TS_2 \)
don't know how to typeset this

trace equivalence \(\text{Traces}(T_1) = \text{Traces}(TS_2) \)
don't know how to typeset this

trace inclusion \(\text{Traces}(T_1) \subseteq \text{Traces}(TS_2) \)
don't know how to typeset this

divergence sensitive
stutter bisimulation equivalence \(TS_1 \approx^{div} TS_2 \)
don't know how to typeset this

stutter trace-equivalence \(TS_1 \cong TS_2 \)
don't know how to typeset this

stutter trace inclusion \(TS_1 \subseteq TS_2 \)
don't know how to typeset this

\(\approx^{div} \) will be the topic of the next lecture