Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic

Equivalences and Abstraction

bisimulation
CTL, CTL*-equivalence
computing the bisimulation quotient
abstraction stutter steps
simulation relations
Classification of implementation relations
Classification of implementation relations

- **linear vs. branching time**
 - linear time: trace relations
 - branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences:**
 - preorders: trace inclusion, simulation
 - equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 - strong: reasoning about all transitions
 - weak: abstraction from stutter steps
Classification of implementation relations

- **linear vs. branching time**
 - linear time: trace relations
 - branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences:**
 - preorders: trace inclusion, simulation
 - equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 - strong: reasoning about all transitions
 - weak: abstraction from stutter steps
Classification of implementation relations

- **linear vs. branching time**
 - linear time: trace relations
 - branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences:**
 - preorders: trace inclusion, simulation
 - equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 - strong: reasoning about all transitions
 - weak: abstraction from stutter steps
Design by stepwise refinement

specification

abstract model
TS T_1

refinement
TS T_2
Design by stepwise refinement

specification

abstract model TS \mathcal{T}_1

refinement TS \mathcal{T}_2

transition $s_1 \xrightarrow{\alpha} t_1$
Design by stepwise refinement

- Specification
- Abstract model TS \mathcal{I}_1
- Refinement TS \mathcal{I}_2
- Transition $s_1 \xrightarrow{\alpha} t_1$
- Execution fragment $s_2 \xrightarrow{} u_1 \xrightarrow{} \ldots \xrightarrow{} u_n \xrightarrow{\alpha} t_2$
Design by stepwise refinement

specification

abstract model
TS \mathcal{T}_1

refinement
TS \mathcal{T}_2

transition $s_1 \xrightarrow{\alpha} t_1$

execution fragment
$s_2 \rightarrow u_1 \rightarrow \ldots \rightarrow u_n \xrightarrow{\alpha} t_2$

internal computation prior to the execution of action α

- access on auxiliary variables of \mathcal{T}_2
- no access on variables of \mathcal{T}_1
Design by stepwise refinement

\[AP \subseteq AP_1 \subseteq AP_2 \]

specification

abstract model

\[TS \mathcal{T}_1 \]

transition \(s_1 \xrightarrow{\alpha} t_1 \)

refinement

\[TS \mathcal{T}_2 \]

execution fragment

\[s_2 \rightarrow u_1 \rightarrow \ldots \rightarrow u_n \xrightarrow{\alpha} t_2 \]

internal computation prior to the execution of action \(\alpha \)

- access on auxiliary variables of \(\mathcal{T}_2 \)
- no access on variables of \(\mathcal{T}_1 \)
Design by stepwise refinement

\(\text{AP} \)

\(\subseteq \)

\(\text{AP}_1 \)

\(\subseteq \)

\(\text{AP}_2 \)

specification

abstract model

TS \(\mathcal{T}_1 \)

transition \(s_1 \xrightarrow{\alpha} t_1 \)

eduction fragment

\(s_2 \rightarrow u_1 \rightarrow \ldots \rightarrow u_n \xrightarrow{\alpha} t_2 \)

internal computation prior to the execution of action \(\alpha \)

- access on auxiliary variables of \(\mathcal{T}_2 \)
- no access on variables of \(\mathcal{T}_1 \)

\(s_2 \rightarrow u_1 \rightarrow \ldots \rightarrow u_n \): stutter steps w.r.t. \(\text{AP}_1 \) (or \(\text{AP} \))
Mutual exclusion (with arbiter)

Abstract representation for process P_i
Mutual exclusion (with arbiter)

abstract representation for process P_i

refined representation for process P_i

$noncrit_i$

$crit_i$

n_0

n_1

n_2

n_3

n_4

$crit_{i,1}$

$crit_{i,2}$

$crit_{i,3}$

request

release

release

request

request
Example: abstraction from stutter steps

process P

```
LOOP FOREVER
  $x := y \bmod 3$
  $y := (x + y) \bmod 3$
  $z := (2y - x) \div 3$
END LOOP
```
Example: abstraction from stutter steps

process $P \rightsquigarrow$ transition system T_P

\begin{align*}
\ell_0 & \quad \text{LOOP FOREVER} \\
\ell_1 & \quad x := \text{y MOD 3} \\
\ell_2 & \quad y := (x + y) \text{ MOD 3} \\
\ell_3 & \quad z := (2y - x) \text{ DIV 3} \\
\ell_4 & \quad \text{END LOOP}
\end{align*}
Example: abstraction from stutter steps

process $P \rightsquigarrow$ transition system \mathcal{T}_P

\begin{align*}
\ell_0 & \quad \text{LOOP FOREVER} \\
\ell_1 & \quad x := y \mod 3 \\
\ell_2 & \quad y := (x + y) \mod 3 \\
\ell_3 & \quad z := (2y - x) \div 3 \\
\ell_4 & \quad \text{END LOOP}
\end{align*}

CTL^* property: does $\mathcal{T}_P \models \forall \square \Diamond (z = 1)$ hold?
Example: abstraction from stutter steps

process $P \leadsto$ transition system \mathcal{T}_P over $AP = \text{Eval}(z)$

\begin{align*}
\ell_0 & \quad \text{LOOP FOREVER} \\
\ell_1 & \quad x := y \mod 3 \\
\ell_2 & \quad y := (x + y) \mod 3 \\
\ell_3 & \quad z := (2y - x) \div 3 \\
\ell_4 & \quad \text{END LOOP}
\end{align*}

CTL^* property: does $\mathcal{T}_P \models \forall \Box \Diamond (z = 1)$ hold?
Example: abstraction from stutter steps

process $P \rightsquigarrow$ transition system \mathcal{T}_P over $AP = \text{Eval}(z)$

\begin{align*}
\ell_0 & \quad \text{LOOP FOREVER} \\
\ell_1 & \quad x := y \mod 3 \\
\ell_2 & \quad y := (x + y) \mod 3 \\
\ell_3 & \quad z := (2y - x) \div 3 \\
\ell_4 & \quad \text{END LOOP}
\end{align*}

\textbf{CTL* property:} does $\mathcal{T}_P \models \forall \Box \Diamond (z = 1)$ hold?
Transition system for process P

\[
\begin{align*}
&\ell_1 \ x=2 \ y=4 \ z=3 \\
&\ell_2 \ x=1 \ y=4 \ z=3 \\
&\ell_3 \ x=1 \ y=2 \ z=3 \\
&\ell_1 \ x=1 \ y=2 \ z=1 \\
&\ell_2 \ x=2 \ y=2 \ z=1 \\
&\ell_3 \ x=2 \ y=1 \ z=1 \\
&\ell_1 \ x=2 \ y=1 \ z=0 \\
\cdots
\end{align*}
\]
Analysis by abstraction from stutter steps

\[\ell_1 \ x=2 \ y=4 \ z=3 \]

\[\ell_2 \ x=1 \ y=4 \ z=3 \]

\[\ell_3 \ x=1 \ y=2 \ z=3 \]

\[\ell_1 \ x=1 \ y=2 \ z=1 \]

\[\ell_2 \ x=2 \ y=2 \ z=1 \]

\[\ell_3 \ x=2 \ y=1 \ z=1 \]

\[\ell_1 \ x=2 \ y=1 \ z=0 \]

\[\ldots \]
Analysis by abstraction from stutter steps

\[\ell_1 \ x=2 \ y=4 \ z=3 \]

\[\ell_2 \ x=1 \ y=4 \ z=3 \]

\[\ell_3 \ x=1 \ y=2 \ z=3 \]

\[\ell_1 \ x=1 \ y=2 \ z=1 \]

\[\ell_2 \ x=2 \ y=2 \ z=1 \]

\[\ell_3 \ x=2 \ y=1 \ z=1 \]

\[\ell_1 \ x=2 \ y=1 \ z=0 \]

simplified TS representation

\[z=3 \]

\[z=1 \]

\[z=0 \]

\[\ldots \]
Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic (CTL)

Equivalences and Abstraction

- bisimulation, CTL/CTL*-equivalence
- computing the bisimulation quotient
- abstraction stutter steps
 - stutter LT relations
 - stutter bisimulation
- simulation relations
Remind: trace relations
Remind: trace relations

trace equivalence for paths

\(\pi_1, \pi_2 \) are trace equivalent iff \(\text{trace}(\pi_1) = \text{trace}(\pi_2) \)
Remind: trace relations

trace equivalence for paths

\[\pi_1, \pi_2 \text{ are trace equivalent iff } \text{trace}(\pi_1) = \text{trace}(\pi_2) \]

trace inclusion for TS:

\[\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \]

\[\forall \pi_1 \in \text{Traces}(T_1) \exists \pi_2 \in \text{Traces}(T_2) \text{ s.t. } \pi_1, \pi_2 \text{ are trace equivalent} \]
Remind: trace relations

trace equivalence for paths
\[\pi_1, \pi_2 \text{ are trace equivalent } \iff \text{trace}(\pi_1) = \text{trace}(\pi_2) \]

trace inclusion for TS:
\[\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \]
\[\forall \pi_1 \in \text{Traces}(T_1) \exists \pi_2 \in \text{Traces}(T_2) \]
\[\text{s.t. } \pi_1, \pi_2 \text{ are trace equivalent} \]

trace equivalence for TS:
\[\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \land \text{Traces}(T_2) \subseteq \text{Traces}(T_1) \]
Remind: trace relations

trace equivalence for paths

\[\pi_1, \pi_2 \text{ are trace equivalent iff } \text{trace}(\pi_1) = \text{trace}(\pi_2) \]

trace inclusion for TS: \(\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2) \)

\[\forall \pi_1 \in \text{Traces}(\mathcal{T}_1) \exists \pi_2 \in \text{Traces}(\mathcal{T}_2) \]

s.t. \(\pi_1, \pi_2 \) are trace equivalent

trace equivalence for TS:

\[\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2) \land \text{Traces}(\mathcal{T}_2) \subseteq \text{Traces}(\mathcal{T}_1) \]

\[\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2) \text{ iff for each LT property } E : \]

\[\mathcal{T}_2 \models E \text{ implies } \mathcal{T}_1 \models E \]
Remind: trace relations

trace equivalence for paths

\(\pi_1, \pi_2 \) are trace equivalent \iff \(\text{trace}(\pi_1) = \text{trace}(\pi_2) \)

trace inclusion for TS: \(\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \)

\(\forall \pi_1 \in \text{Traces}(T_1) \exists \pi_2 \in \text{Traces}(T_2) \)

s.t. \(\pi_1, \pi_2 \) are trace equivalent

trace equivalence for TS:

\(\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \quad \land \quad \text{Traces}(T_2) \subseteq \text{Traces}(T_1) \)

\(\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \) iff for each LTL property \(E \):

\(T_2 \models E \) implies \(T_1 \models E \)

trace equivalent TS satisfy the same LTL formulas
Stutter equivalence for paths

stutter equivalence for infinite path fragments:
Stutter equivalence for paths

Stutter equivalence for infinite path fragments:

\[\pi_1 \triangleq \pi_2 \quad \text{iff} \quad \text{there exists an infinite word} \]

\[A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \quad \text{s.t. the} \]

traces of \(\pi_1 \) and \(\pi_2 \) are of the form

\[A_0 \ldots A_0 A_1 \ldots A_1 A_2 \ldots A_2 \ldots \]
Stutter equivalence for paths

stutter equivalence for infinite path fragments:

\[\pi_1 \triangleq \pi_2 \iff \text{there exists an infinite word} \]

\[A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \text{ s.t. the} \]

traces of \(\pi_1 \) and \(\pi_2 \) are of the form

\[A_0^{n_0} A_1^{n_1} A_2^{n_2} \ldots \]

where \(n_0, n_1, n_2, \ldots \) are natural numbers \(\geq 1 \)
Stutter equivalence for paths

stutter equivalence for infinite path fragments:

\[\pi_1 \triangleq \pi_2 \quad \text{iff} \quad \text{there exists an infinite word} \]

\[A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \quad \text{s.t. the} \]

traces of \(\pi_1 \) and \(\pi_2 \) are of the form

\[A_0^+ A_1^+ A_2^+ \ldots \]
Stutter equivalence for paths

stutter equivalence for infinite path fragments:

\[\pi_1 \cong \pi_2 \text{ iff there exists an infinite word } \]

\[A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \text{ s.t. the traces of } \pi_1 \text{ and } \pi_2 \text{ are of the form } \]

\[A_0^+ A_1^+ A_2^+ \ldots \]

stutter equivalence for finite path fragments:

\[\hat{\pi}_1 \cong \hat{\pi}_2 \text{ iff there exists a finite word } \]

\[A_0 A_1 A_2 \ldots A_n \in (2^{AP})^+ \text{ s.t. the traces of } \hat{\pi}_1 \text{ and } \hat{\pi}_2 \text{ are in } \]

\[A_0^+ A_1^+ A_2^+ \ldots A_n^+ \]
Stutter trace relations for TS

stutter equivalence for infinite path fragments:

\[\pi_1 \Delta \pi_2 \iff \text{there exists an infinite word} \]
\[A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \text{ s.t. the} \]
\[\text{traces of } \pi_1 \text{ and } \pi_2 \text{ are of the form} \]
\[A_0^+ A_1^+ A_2^+ \ldots \]
stutter trace relations for TS

stutter equivalence for infinite path fragments:

\[\pi_1 \triangleq \pi_2 \iff \text{there exists an infinite word} \]

\[A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \text{ s.t. the} \]

traces of \(\pi_1 \) and \(\pi_2 \) are of the form

\[A_0^+ A_1^+ A_2^+ \ldots \]

stutter trace inclusion for transition systems:

\[\mathcal{T}_1 \preceq \mathcal{T}_2 \iff \text{for all paths } \pi_1 \text{ of } \mathcal{T}_1 \]

there exists a path \(\pi_2 \) of \(\mathcal{T}_2 \)

s.t. \(\pi_1 \triangleq \pi_2 \)
Example: stutter trace inclusion ⊆

\[\mathcal{I}_1 \subseteq \mathcal{I}_2 \ \iff \ \forall \pi_1 \in \text{Paths}(\mathcal{I}_1) \ \exists \pi_2 \in \text{Paths}(\mathcal{I}_2) \ \text{s.t.} \ \pi_1 \Delta = \pi_2 \]

\[
\begin{align*}
\text{gray} & = \emptyset \\
\text{red} & = \{a\} \\
\text{green} & = \{b\}
\end{align*}
\]
Example: stutter trace inclusion \trianglerighteq

\[I_1 \trianglerighteq I_2 \text{ iff } \forall \pi_1 \in \text{Paths}(I_1) \exists \pi_2 \in \text{Paths}(I_2) \text{ s.t. } \pi_1 \Delta = \pi_2 \]
Example: stutter trace inclusion \preceq

$$\mathcal{I}_1 \preceq \mathcal{I}_2 \text{ iff } \forall \pi_1 \in \text{Paths}(\mathcal{I}_1) \exists \pi_2 \in \text{Paths}(\mathcal{I}_2)$$

$$\text{s.t. } \pi_1 \triangleright = \pi_2$$

all traces have the form $$(\emptyset^+\{b\}^++\{a\}^+)^\omega$$

or $$(\emptyset^+\{b\}^++\{a\}^+)^*\emptyset^\omega$$
Stutter trace inclusion and LTL

\[\mathcal{I}_1 \preceq \mathcal{I}_2 \text{ iff } \forall \pi_1 \in \text{Paths}(\mathcal{I}_1) \exists \pi_2 \in \text{Paths}(\mathcal{I}_2) \]

s.t. \(\pi_1 \triangleright= \pi_2 \)

Does stutter trace inclusion preserve LTL properties?
Stutter trace inclusion and LTL

\[\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \text{ iff } \forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \]
\[\text{s.t. } \pi_1 \Delta = \pi_2 \]

Does stutter trace inclusion preserve LTL properties?

i.e., for all LTL formulas \(\varphi \):

\[\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi \text{ implies } \mathcal{T}_1 \models \varphi \]
Stutter trace inclusion and LTL

\[\mathcal{I}_1 \preceq \mathcal{I}_2 \iff \forall \pi_1 \in \text{Paths}(\mathcal{I}_1) \exists \pi_2 \in \text{Paths}(\mathcal{I}_2) \]

s.t. \(\pi_1 \overset{\Delta}{=} \pi_2 \)

Does stutter trace inclusion preserve LTL properties?

i.e., for all LTL formulas \(\varphi \):

\[\mathcal{I}_1 \preceq \mathcal{I}_2 \land \mathcal{I}_2 \models \varphi \] implies \(\mathcal{I}_1 \models \varphi \)

answer: no
Stutter trace inclusion and LTL

\[\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \text{ iff } \forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \]

s.t. \(\pi_1 \uparrow \Delta \pi_2 \)

Does stutter trace inclusion preserve LTL properties?

i.e., for all LTL formulas \(\varphi \):

\[\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi \text{ implies } \mathcal{T}_1 \models \varphi \]

answer: no

Example: LTL formulas of the form \(\bigcirc a \)
Stutter trace inclusion and LTL

\[\mathcal{T}_1 \preceq \mathcal{T}_2 \text{ iff } \forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \]

s.t. \(\pi_1 \triangleq \pi_2 \)

Let \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) are TS without terminal states and \(\varphi \) an LTL formula. Then:

\[\mathcal{T}_1 \preceq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi \text{ implies } \mathcal{T}_1 \models \varphi \]
Stutter trace inclusion and LTL\$\bigcirc\$

\[\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \iff \forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \]

s.t. \(\pi_1 \triangleleft \pi_2 \)

Let \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) are TS without terminal states and \(\varphi \) an LTL\$\bigcirc\$ formula. Then:

\[\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi \text{ implies } \mathcal{T}_1 \models \varphi \]

where LTL\$\bigcirc\$ = LTL without the next operator \(\bigcirc \)
Stutter trace equivalence Δ for TS
Stutter trace equivalence \(\triangleq \) for TS

stutter trace inclusion \(\mathcal{T}_1 \triangleleft \mathcal{T}_2 \)

\[\forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \ \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \ \text{s.t.} \ \pi_1 \triangleq \pi_2 \]
Stutter trace equivalence \trianglerighteq for TS

stutter trace inclusion $\mathcal{T}_1 \triangleleft \mathcal{T}_2$

$$\forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \ \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \text{ s.t. } \pi_1 \trianglerighteq \pi_2$$

stutter trace equivalence

$$\mathcal{T}_1 \trianglerighteq \mathcal{T}_2 \ \text{iff} \ \mathcal{T}_1 \triangleleft \mathcal{T}_2 \ \text{and} \ \mathcal{T}_2 \triangleleft \mathcal{T}_1$$
Stutter trace equivalence Δ for TS

stutter trace inclusion $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$

$$\forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \text{ s.t. } \pi_1 \Delta \pi_2$$

stutter trace equivalence

$$\mathcal{T}_1 \Delta \mathcal{T}_2 \text{ iff } \mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \trianglelefteq \mathcal{T}_1$$

kernel of \trianglelefteq, i.e.,

coarsest equivalence that refines \trianglelefteq
Stutter trace equivalence \triangleq for TS

stutter trace inclusion $\mathcal{T}_1 \triangleleft \mathcal{T}_2$

$\forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \ \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \text{ s.t. } \pi_1 \triangleq \pi_2$

For all LTL \bigcirc formulas φ:

$\mathcal{T}_1 \triangleleft \mathcal{T}_2 \wedge \mathcal{T}_2 \models \varphi$ implies $\mathcal{T}_1 \models \varphi$

stutter trace equivalence

$\mathcal{T}_1 \triangleq \mathcal{T}_2$ iff $\mathcal{T}_1 \triangleleft \mathcal{T}_2$ and $\mathcal{T}_2 \triangleleft \mathcal{T}_1$

kernel of \triangleleft, i.e.,

coarsest equivalence that refines \triangleleft
Stutter trace equivalence Δ for TS

stutter trace inclusion $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$

$$\forall \pi_1 \in \text{Paths}(\mathcal{T}_1) \ \exists \pi_2 \in \text{Paths}(\mathcal{T}_2) \text{ s.t. } \pi_1 \overset{\Delta}{=} \pi_2$$

For all LTL\(\bigcirc\) formulas φ:

$$\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi \implies \mathcal{T}_1 \models \varphi$$

stutter trace equivalence

$$\mathcal{T}_1 \overset{\Delta}{=} \mathcal{T}_2 \text{ iff } \mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \trianglelefteq \mathcal{T}_1$$

If $\mathcal{T}_1 \overset{\Delta}{=} \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are LTL\(\bigcirc\) equivalent.
Correct or wrong?

\[
\Delta = \Delta = \Delta = \frac{52}{444}
\]
Correct or wrong?

\[\Delta \]

\begin{align*}
\text{correct} & \\
\end{align*}
Correct or wrong?

The traces of \mathcal{T}_1 and \mathcal{T}_2 have the form $\bullet^+ \bullet^+$ or \bullet^ω
Correct or wrong?

The traces of \mathcal{T}_1 and \mathcal{T}_2 have the form $\bullet + \bullet \ +$ or $\bullet \omega$
Correct or wrong?

The traces of T_1 and T_2 have the form \(\bullet^{++} \) or \(\bullet\omega \)

\[\Delta \]

\[\Delta \]

Correct

\[\Delta \]

Wrong

\[\Delta \]

Wrong
Correct or wrong?

The traces of \mathcal{T}_1 and \mathcal{T}_2 have the form $\bullet + \bullet +$ or $\bullet \omega$

\mathcal{T}_1 has a finite trace $\bullet + \bullet$, while \mathcal{T}_2 has not
Correct or wrong?

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$\mathcal{T}_1 \sim \mathcal{T}_2$ implies $\mathcal{T}_1 \equiv \mathcal{T}_2$
Correct or wrong?

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$\mathcal{T}_1 \sim \mathcal{T}_2$ implies $\mathcal{T}_1 \equiv \mathcal{T}_2$

bisimulation equivalence

stutter trace equivalence
Correct or wrong?

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$\mathcal{T}_1 \sim \mathcal{T}_2$ implies $\mathcal{T}_1 \triangleq \mathcal{T}_2$

bisimulation equivalence

stutter trace equivalence

correct
If \mathcal{I}_1 and \mathcal{I}_2 are TS over AP then:

$$\mathcal{I}_1 \sim \mathcal{I}_2 \quad \text{implies} \quad \mathcal{I}_1 \models \mathcal{I}_2$$

bisimulation equivalence

stutter trace equivalence

correct, as

- $\mathcal{I}_1 \sim \mathcal{I}_2$ implies $\text{Traces}(\mathcal{I}_1) = \text{Traces}(\mathcal{I}_2)$
- trace equivalent paths are stutter trace equivalent
Correct or wrong?

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$\mathcal{T}_1 \sim \mathcal{T}_2$ implies $\mathcal{T}_1 \equiv \mathcal{T}_2$

bisimulation equivalence

stutter trace equivalence

Correct, as

- $\mathcal{T}_1 \sim \mathcal{T}_2$ implies $\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2)$
- trace equivalent paths are stutter trace equivalent

obviously: $\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2)$ implies $\mathcal{T}_1 \preccurlyeq \mathcal{T}_2$
Stutter-insensitive LT properties
stutter equivalence for infinite words
stutter equivalence for infinite words $\sigma_1, \sigma_2 \in (2^{AP})^\omega$:
Stutter-insensitive LT properties

stutter equivalence for infinite words $\sigma_1, \sigma_2 \in (2^{AP})^\omega$:

$\sigma_1 \triangleq \sigma_2 \iff$ there exists an infinite word

$A_0 A_1 A_2 \ldots \in (2^{AP})^\omega$ s.t. σ_1 and σ_2

are in $A_0^+ A_1^+ A_2^+ \ldots$
Stutter-insensitive LT properties

Let $E \subseteq (2^{\mathcal{AP}})^\omega$ be an LT property. E is called stutter-insensitive iff for all $\sigma_1, \sigma_2 \in (2^{\mathcal{AP}})^\omega$:

if $\sigma_1 \in E$ and $\sigma_1 \triangleq \sigma_2$ then $\sigma_2 \in E$
Stutter-insensitive LT properties

Stutter equivalence for infinite words $\sigma_1, \sigma_2 \in (2^{AP})^\omega$:

$$\sigma_1 \triangleq \sigma_2 \text{ iff there exists an infinite word } A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \text{ s.t. } \sigma_1 \text{ and } \sigma_2 \text{ are in } A_0^+ A_1^+ A_2^+ \ldots$$

Let $E \subseteq (2^{AP})^\omega$ be an LT property. E is called stutter-insensitive iff for all $\sigma_1, \sigma_2 \in (2^{AP})^\omega$:

if $\sigma_1 \in E$ and $\sigma_1 \triangleq \sigma_2$ then $\sigma_2 \in E$

Example: if φ is an $\text{LTL} \setminus \bigcirc$ formula then

$$E = \text{Words}(\varphi)$$ is stutter-insensitive
Let T_1, T_2 be two TS and E a stutter-insensitive LT-property. Then:

$$T_1 \preceq T_2 \text{ and } T_2 \models E \text{ implies } T_1 \models E$$
Stutter-insensitive LT properties

Let \mathcal{T}_1, \mathcal{T}_2 be two TS and E a stutter-insensitive LT-property. Then:

$$\mathcal{T}_1 \preceq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$$

Let \mathcal{T}_1, \mathcal{T}_2 be two TS and φ an $\text{LTL} \setminus \Box$ formula.

$$\mathcal{T}_1 \preceq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \models \varphi \implies \mathcal{T}_1 \models \varphi$$
Stutter-insensitive LT properties

Let \mathcal{T}_1, \mathcal{T}_2 be two TS and E a stutter-insensitive LT-property. Then:

$$\mathcal{T}_1 \triangleq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$$

Let \mathcal{T}_1, \mathcal{T}_2 be two TS and φ an $\mathbf{LTL}\setminus\circ$ formula.

$$\mathcal{T}_1 \triangleq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \models \varphi \implies \mathcal{T}_1 \models \varphi$$

remind: if φ is an $\mathbf{LTL}\setminus\circ$ formula then

$$E = \text{Words}(\varphi) \text{ is stutter-insensitive}$$
Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic (CTL)

Equivalences and Abstraction

bisimulation, CTL/CTL*-equivalence
computing the bisimulation quotient
abstraction stutter steps
stutter LT relations
stutter bisimulation
simulation relations
Stutter bisimulation

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.
Stutter bisimulation

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for \mathcal{T} is
Stutter bisimulation

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A *stutter bisimulation* for \mathcal{T} is a binary relation R on S s.t.
Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A **stutter bisimulation** for T is a binary relation R on S s.t. for all $(s_1, s_2) \in R$:

1. labeling condition
2. simulation condition up to stuttering: "s_2 can mimick all transitions of of s_1"
3. simulation condition up to stuttering: "s_1 can mimick all transitions of of s_2"
Stutter bisimulation

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A *stutter bisimulation* for \mathcal{T} is a binary relation R on S s.t. for all $(s_1, s_2) \in R$:

1. **labeling condition:** $L(s_1) = L(s_2)$

2. **simulation condition up to stuttering**
 "s_2 can mimic all transitions of s_1"

3. **simulation condition up to stuttering**
 "s_1 can mimic all transitions of s_2"
Stutter bisimulation

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S s.t. for all $(s_1, s_2) \in \mathcal{R}$:

1. labeling condition: $L(s_1) = L(s_2)$

2. simulation condition up to stuttering
 “s_2 can mimick all transitions of s_1”

3. simulation condition up to stuttering
 “s_1 can mimick all transitions of s_2”
A stutter bisimulation for \(\mathcal{T} \) is a binary relation \(\mathcal{R} \) on \(S \) s.t. for all \((s_1, s_2) \in \mathcal{R} \):

\[
\vdash \vdash
\]

(2) simulation condition up to stuttering

\[
s_1 \mathcal{R} s_2
\]
A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on \mathcal{S} s.t. for all $(s_1, s_2) \in \mathcal{R}$:

\[
\vdash \vdash \vdash
\]

(2) simulation condition up to stuttering

\[s_1 \mathcal{R} s_2\]

with $(s_1', s_2) \not\in \mathcal{R}$
A stutter bisimulation for \mathcal{I} is a binary relation \mathcal{R} on S s.t. for all $(s_1, s_2) \in \mathcal{R}$:

\[
\vdots \quad \vdots
\]

(2) simulation condition up to stuttering

\[
s_1 \xrightarrow{\mathcal{R}} s_2
\]

\[
s_1' \xrightarrow{u_1} s_2
\]

\[
s_1' \xrightarrow{\mathcal{R}} s_2
\]

\[
s_1' \xrightarrow{u_n} s_2'
\]

with $(s_1', s_2) \notin \mathcal{R}$
A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on \mathcal{S} s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(2) simulation condition up to stuttering

with $(s'_1, s_2) \notin \mathcal{R}$
Stutter bisimulation for a TS

Let \mathcal{T} be a transition system with state space S. A **stutter bisimulation** for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. for each transition $s_1 \rightarrow s'_1$ with $(s'_1, s_2) \notin \mathcal{R}$ there exists a path fragment $s_2 u_1 u_2 \ldots u_n s'_2$ s.t. . . .
3. . . .
Stutter bisimulation for a TS

Let T be a transition system with state space S.

A *stutter bisimulation* for T is a binary relation R on S such that for all $(s_1, s_2) \in R$:

1. $L(s_1) = L(s_2)$

2. For each transition $s_1 \rightarrow s_1'$ with $(s_1', s_2) \notin R$ there exists a path fragment $s_2 u_1 u_2 \ldots u_n s_2'$ s.t. $n \geq 0$ and $(s_1, u_i) \in R$ for $1 \leq i \leq n$

3. ...
Let \mathcal{T} be a transition system with state space S.

A *stutter bisimulation* for \mathcal{T} is a binary relation R on S such that for all $(s_1, s_2) \in R$:

1. $L(s_1) = L(s_2)$
2. for each transition $s_1 \rightarrow s_1'$ with $(s_1', s_2) \notin R$ there exists a path fragment $s_2 u_1 u_2 \ldots u_n s_2'$ s.t. $n \geq 0$ and $(s_1, u_i) \in R$ for $1 \leq i \leq n$
3. symmetric condition
Stutter bisimulation for a TS

Let T be a transition system with state space S.

A \textit{stutter bisimulation} for T is a binary relation R on S such that for all $(s_1, s_2) \in R$:

(1) $L(s_1) = L(s_2)$

(2) for each transition $s_1 \rightarrow s_1'$ with $(s_1', s_2) \notin R$ there exists a path fragment $s_2 u_1 u_2 \ldots u_n s_2'$ s.t. $n \geq 0$ and $(s_1, u_i) \in R$ for $1 \leq i \leq n$

(3) for each transition $s_2 \rightarrow s_2'$ with $(s_1, s_2') \notin R$ there exists a path fragment $s_1 v_1 v_2 \ldots v_n s_1'$ s.t. $n \geq 0$ and $(v_i, s_2) \in R$ for $1 \leq i \leq n$
Stutter bisimulation equivalence \approx_T
Let \mathcal{T} be a transition system with state space S.

A *stutter bisimulation* for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

1. labeling condition
2. and (3) mutual simulation condition
Let \mathcal{T} be a transition system with state space S.

A \textit{stutter bisimulation} for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

1. labeling condition
2. and (3) mutual simulation condition

\textit{Stutter bisimulation equivalence} \cong_T:
Let \mathcal{T} be a transition system with state space S.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

(1) labeling condition

(2) and (3) mutual simulation condition

stutter bisimulation equivalence $\approx_{\mathcal{T}}$:

$s_1 \approx_{\mathcal{T}} s_2$ iff there exists a stutter bisimulation \mathcal{R} for \mathcal{T} such that $(s_1, s_2) \in \mathcal{R}$
\(\approx_T\) is an equivalence
≈_T is an equivalence

symmetry: \(s_1 \approx_T s_2 \) then \(s_2 \approx_T s_1 \)
\[\approx_T \] is an equivalence

symmetry: \(s_1 \approx_T s_2 \) then \(s_2 \approx_T s_1 \)

proof:

if \(\mathcal{R} \) is a stutter bisimulation with \((s_1, s_2) \in \mathcal{R}\) then

\[\mathcal{R}^{-1} = \{(t_2, t_1) : (t_1, t_2) \in \mathcal{R}\} \]

is a stutter bisimulation that contains \((s_2, s_1)\).
\(\approx_T \) is an equivalence

Symmetry: if \(s_1 \approx_T s_2 \) then \(s_2 \approx_T s_1 \)

Reflexivity: \(s \approx_T s \) for all states \(s \)
\(\approx_T \) is an equivalence

symmetry: if \(s_1 \approx_T s_2 \) then \(s_2 \approx_T s_1 \)

reflexivity: \(s \approx_T s \) for all states \(s \)

proof:

\[
\mathcal{R} = \{(s, s) : s \in S\} \text{ is a stutter bisimulation}
\]
\(\approx_T \) is an equivalence

Symmetry: if \(s_1 \approx_T s_2 \) then \(s_2 \approx_T s_1 \)

Reflexivity: \(s \approx_T s \) for all states \(s \)

Transitivity: \(s_1 \approx_T s_2 \) and \(s_2 \approx_T s_3 \) implies \(s_1 \approx_T s_3 \)
≈_T is an equivalence

symmetry: if s_1 ≈_T s_2 then s_2 ≈_T s_1

reflexivity: s ≈_T s for all states s

transitivity: s_1 ≈_T s_2 and s_2 ≈_T s_3 implies s_1 ≈_T s_3

Proof: Let R_{1,2} and R_{2,3} be stutter bisimulations s.t.

\((s_1, s_2) \in R_{1,2}, \ (s_2, s_3) \in R_{2,3}\)

Show that R = R_{1,2} \circ R_{2,3} is a stutter bisimulation.
$s_1 \xrightarrow{\mathcal{R}_{1,2}} s_2 \xrightarrow{\mathcal{R}_{2,3}} s_3$

s'_1
\[s_1 \xrightarrow{\mathcal{R}_{1,2}} s_2 \xrightarrow{\mathcal{R}_{2,3}} s_3 \]

\[s'_1 \xrightarrow{\mathcal{R}_{1,2}} s'_2 \]

\[u_{j-1} \]
\[u_j \]
\[u_{k-1} \]
\[u_k \]
\[u_m \]
Stutter bisimulation equivalence

\(\approx_T \) is an equivalence on state space \(S \) of \(T \) such that for all states \(s_1, s_2 \) with \(s_1 \approx_T s_2 \):

1. \(L(s_1) = L(s_2) \)
2. simulation condition up to stuttering

\[s_1 \approx_T s_2 \]

\[s'_1 \approx_T s_2 \]

with \(s'_1 \not\approx_T s_2 \)
Stutter bisimulation equivalence

≈_T is the coarsest equivalence on state space S of T such that for all states s_1, s_2 with s_1 ≈_T s_2:

1. \(L(s_1) = L(s_2) \)
2. simulation condition up to stuttering

\[s_1 \approx_T s_2 \]
\[s_1' \approx_T s_2 \]

with \(s_1' \not\approx_T s_2 \)
Example: mutual exclusion with semaphore

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
Example: mutual exclusion with semaphore

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
Example: mutual exclusion with semaphore

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]

stutter bisimulation with three equivalence classes
Peterson algorithm

protocol for P_1

```
LOOP FOREVER
  noncritical section
  $b_1 := \text{true}$; $x := 2$
  AWAIT ($x = 1$) $\lor \neg b_2$
  critical section
  $b_1 := \text{false}$
END LOOP
```
Peterson algorithm

protocol for P_1

\[
\text{LOOP FOREVER}
\]
\[
\text{noncritical section}
\]
\[
\begin{align*}
&b_1 := \text{true}; \ x := 2 \\
\text{AWAIT (}x=1\text{)} \lor \neg b_2
\end{align*}
\]
\[
\text{critical section}
\]
\[
\begin{align*}
&b_1 := \text{false} \\
\text{END LOOP}
\end{align*}
\]
Peterson algorithm

protocol for \(P_1 \)

\[
\text{LOOP FOREVER} \\
\text{noncritical section} \\
\quad b_1 := true; \ x := 2 \\
\quad \text{AWAIT } (x=1) \lor \neg b_2 \\
\text{critical section} \\
\quad b_1 := false \\
\text{END LOOP}
\]

protocol for \(P_2 \)

\[
\text{LOOP FOREVER} \\
\text{noncritical section} \\
\quad b_2 := true; \ x := 1 \\
\quad \text{AWAIT } (x=2) \lor \neg b_1 \\
\text{critical section} \\
\quad b_2 := false \\
\text{END LOOP}
\]
TS for the Peterson algorithm

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
TS for the Peterson algorithm

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
TS for the Peterson algorithm

\[\begin{align*}
\text{AP} &= \{ \text{crit}_1, \text{crit}_2 \} \\
\end{align*} \]
TS for the Peterson algorithm

\[\text{AP} = \{ \text{crit}_1, \text{crit}_2 \} \]
TS for the Peterson algorithm

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
TS for the Peterson algorithm

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
TS for the Peterson algorithm

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]

9 stutter bisimulation equivalence classes
Stutter bisimulation equivalence for two TS
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

state space S_1

transition system \mathcal{T}_2

state space S_2
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

state space S_1

transition system \mathcal{T}_2

state space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation \mathcal{R} for $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$ such that
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

transition system \mathcal{T}_2

state space S_1

state space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation R

for $\mathcal{T} = \mathcal{T}_1 \uplus \mathcal{T}_2$ such that

\forall initial states s_1 of $\mathcal{T}_1 \exists$ initial state s_2 of \mathcal{T}_2

s.t. $s_1 \approx_{\mathcal{T}} s_2$

\forall initial states s_2 of $\mathcal{T}_2 \exists$ initial state s_1 of \mathcal{T}_1

s.t. $s_1 \approx_{\mathcal{T}} s_2$
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

state space S_1

transition system \mathcal{T}_2

state space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation R for $(\mathcal{T}_1, \mathcal{T}_2)$
Stutter bisimulation equivalence for two TS

Transition system \mathcal{T}_1

Transition system \mathcal{T}_2

State space S_1

State space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation R for $(\mathcal{T}_1, \mathcal{T}_2)$, i.e., $R \subseteq S_1 \times S_2$ s.t.
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

transition system \mathcal{T}_2

state space S_1

state space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$, i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

(1) if $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

state space S_1

transition system \mathcal{T}_2

state space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$, i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

(1) if $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$

(2) and (3) ...
Stutter bisimulation equivalence for two TS

transition system \mathcal{T}_1

state space S_1

transition system \mathcal{T}_2

state space S_2

$\mathcal{T}_1 \approx \mathcal{T}_2$ iff there exists a stutter bisimulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$, i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

1. if $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$
2. and (3) ...
3. \forall initial state s_1 of \mathcal{T}_1 \exists initial state s_2 of \mathcal{T}_2 with $(s_1, s_2) \in \mathcal{R}$, and vice versa
Example: door opener

abstract model \mathcal{T}_1

$AP = \{\text{closed, open, alarm}\}$
Example: door opener with code no. 181

abstract model T_1

refinement T_2

$AP = \{\text{closed, open, alarm}\}$
Example: door opener with code no. 181

abstract model \mathcal{T}_1

refinement $\text{TS } \mathcal{T}_2$

$\mathcal{T}_1 \not\Rightarrow \mathcal{T}_2$

$AP = \{ \text{closed, open, alarm} \}$
Example: door opener with code no. 181

abstract model \mathcal{T}_1

wrong code

refinement $\text{TS } \mathcal{T}_2$

$\mathcal{T}_1 \not\approx \mathcal{T}_2$

abstraction from stutter steps:

$\mathcal{T}_1 \approx \mathcal{T}_2$

$AP = \{\text{closed, open, alarm}\}$
Correct or wrong?

$\mathcal{T}_1 \approx \mathcal{T}_2$
Correct or wrong?

\[T_1 \approx T_2 \]

Wrong
Correct or wrong?

\[T_1 \approx T_2 \]

\[T_2 \text{ does not contain an equivalent state to } s \text{ and } s' \]
Correct or wrong?

\[\mathcal{T}_1 \approx \mathcal{T}_2 \]

Wrong

\[\mathcal{T}_1 \approx \mathcal{T}_2 \]
Correct or wrong?

\[T_1 \approx T_2 \]

- [Diagram showing two graphs, one correct, one incorrect]

- [Diagram showing two graphs, one correct, one incorrect]
Correct or wrong?

\[T_1 \approx T_2 \]

\[\text{wrong} \]

\[\text{correct} \]

stutter bisimulation for \((T_1, T_2)\):
\[\{(s_1, s_2), (t_1, s_2), (u_1, s_2), (w_1, s_2), (v_1, v_2)\} \]
Correct or wrong?

If $s_1 \sim_T s_2$ then $s_1 \approx_T s_2$

remind: \sim_T bisimulation equivalence for T

\approx_T stutter bisimulation equivalence for T
Correct or wrong?

If $s_1 \sim_T s_2$ then $s_1 \approx_T s_2$

correct

remind: \sim_T bisimulation equivalence for T

\approx_T stutter bisimulation equivalence for T
Correct or wrong?

If $s_1 \sim_T s_2$ then $s_1 \cong_T s_2$

correct

as \sim_T is a stutter bisimulation for \mathcal{T}

remind: \sim_T bisimulation equivalence for \mathcal{T}

\cong_T stutter bisimulation equivalence for \mathcal{T}
Correct or wrong?

If $s_1 \sim_T s_2$ then $s_1 \approx_T s_2$

correct

as \sim_T is a stutter bisimulation for \mathcal{T}

If $s_1 \approx_T s_2$ then $s_1 \sim_T s_2$
Correct or wrong?

If $s_1 \sim T s_2$ then $s_1 \approx T s_2$

correct

as $\sim T$ is a stutter bisimulation for T

If $s_1 \approx T s_2$ then $s_1 \sim T s_2$

wrong
Correct or wrong?

If $s_1 \sim_T s_2$ then $s_1 \simeq_T s_2$

correct

as \sim_T is a stutter bisimulation for \mathcal{T}

If $s_1 \simeq_T s_2$ then $s_1 \sim_T s_2$

wrong, e.g.:
Correct or wrong?

If $s_1 \sim_T s_2$ then $s_1 \approx_T s_2$

correct

as \sim_T is a stutter bisimulation for T

If $s_1 \approx_T s_2$ then $s_1 \sim_T s_2$

wrong, e.g.:

$s_1 \approx_T s_2$

$s_1 \not\sim_T s_2$
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_T s_2$ implies $s_1 \sim_T s_2$.
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_T s_2$ implies $s_1 \sim_T s_2$

correct
Correct or wrong?

Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_T s_2$ implies $s_1 \sim_T s_2$.

correct, as \approx_T is a bisimulation for \mathcal{T}.
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_\mathcal{T} s_2$ implies $s_1 \sim_\mathcal{T} s_2$

correct, as $\approx_\mathcal{T}$ is a bisimulation for \mathcal{T}

(1) labeling condition: √
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_{\mathcal{T}} s_2$ implies $s_1 \sim_{\mathcal{T}} s_2$

correct, as $\approx_{\mathcal{T}}$ is a bisimulation for \mathcal{T}

1. labeling condition: \checkmark

2. Suppose $s_1 \rightarrow s'_1$.
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_\mathcal{T} s_2$ implies $s_1 \sim_\mathcal{T} s_2$

Correct, as $\approx_\mathcal{T}$ is a **bisimulation** for \mathcal{T}

(1) labeling condition: \checkmark

(2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx^\mathcal{T} s_2$ implies $s_1 \sim^\mathcal{T} s_2$

correct, as $\approx^\mathcal{T}$ is a bisimulation for \mathcal{T}

(1) labeling condition: \checkmark

(2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$

$$
\Rightarrow s_1 \not\approx^\mathcal{T} s'_1
$$
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_T s_2$ implies $s_1 \sim_T s_2$

correct, as \approx_T is a bisimulation for \mathcal{T}

(1) labeling condition: \checkmark

(2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$

$\implies s_1 \not\approx_T s'_1$

\implies there is a path fragment $s_2 u_1 \ldots u_m s'_2$

with $m \geq 0$ and $s_1 \approx_T u_i \land s'_1 \approx_T s'_2$
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_{\mathcal{T}} s_2$ implies $s_1 \sim_{\mathcal{T}} s_2$.

Correct, as $\approx_{\mathcal{T}}$ is a bisimulation for \mathcal{T}

1. **labeling condition:** √

2. **Suppose** $s_1 \to s'_1$. Then: $L(s_1) \neq L(s'_1)$

 $$\implies s_1 \not\approx_{\mathcal{T}} s'_1$$

 $$\implies$$ there is a path fragment $s_2 u_1 \ldots u_m s'_2$

 with $m \geq 0$ and $s_1 \approx_{\mathcal{T}} u_i$ and $s'_1 \approx_{\mathcal{T}} s'_2$

 $$\implies m = 0.$$
Let \mathcal{T} be a transition system without stutter steps. Then $s_1 \approx_{\mathcal{T}} s_2$ implies $s_1 \sim_{\mathcal{T}} s_2$

correct, as $\approx_{\mathcal{T}}$ is a bisimulation for \mathcal{T}

(1) labeling condition: \checkmark

(2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$

\Rightarrow $s_1 \not\approx_{\mathcal{T}} s'_1$

\Rightarrow there is a path fragment $s_2u_1\ldots u_ms'_2$

with $m \geq 0$ and $s_1 \approx_{\mathcal{T}} u_i \land s'_1 \approx_{\mathcal{T}} s'_2$

\Rightarrow $m=0$. Hence: $s_2 \rightarrow s'_2$ and $s'_1 \approx_{\mathcal{T}} s'_2$
Stutter bisimulation quotient
Stutter bisimulation quotient

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L)$ be a TS.
Stutter bisimulation quotient

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx_T, \text{Act}', \rightarrow\approx, S'_0, AP, L')$
Stutter bisimulation quotient

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx_T, \text{Act}', \rightarrow\approx, S'_0, AP, L')$

• state space: S/\approx_T ← set of stutter bisimulation equivalence classes
Stutter bisimulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx, Act', \rightarrow\approx, S'_0, AP, L')$

- state space: S/\approx
- initial states: $S'_0 = \{[s] : s \in S_0\}$

$$[s] = [s]_{\approx_T} = \{s' \in S : s \approx_T s'\}$$
equivalence class of state s
Stutter bisimulation quotient

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx_T, \text{Act}', \rightarrow\approx, S'_0, AP, L')$

- state space: S/\approx_T
- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: $L'([s]) = L(s)$

$[s] = [s]_{\approx_T} = \{s' \in S : s \approx_T s'\}$
equivalence class of state s
Stutter bisimulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow\approx, S'_0, AP, L')$

- state space: $S/\approx_{\mathcal{T}}$
- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: $L'([s]) = L(s)$
- transition relation:

$$s \rightarrow s' \land s \not\approx_{\mathcal{T}} s' \quad \Rightarrow \quad [s] \rightarrow_{\approx} [s']$$
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T} / \approx = (S / \approx_T, \text{Act}', \rightarrow \approx, S_0', \text{AP}, L')$

- state space: S / \approx_T
- initial states: $S_0' = \{ [s] : s \in S_0 \}$
- labeling: $L'([s]) = L(s)$
- transition relation: $s \rightarrow s' \land s \not\approx_T s' \Rightarrow [s] \rightarrow \approx [s']$
 \hspace{0.4cm} actions irrelevant
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, \text{Act}', \rightarrow\approx, S'_0, AP, L')$

where $S'_0 = \{[s] : s \in S_0\}$ and $L'([s]) = L(s)$

transition relation:

\[
\begin{array}{c}
s \rightarrow s' \land s \not\approx_{\mathcal{T}} s' \\
\hline
[s] \rightarrow_{\approx} [s']
\end{array}
\]
Equivalence of \mathcal{T} and its quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$\mathcal{T}/\approx = (S/\approx_T, Act', \rightarrow_\approx, S'_0, AP, L')$

where $S'_0 = \{[s] : s \in S_0\}$ and $L'([s]) = L(s)$

transition relation:

$s \rightarrow s' \land s \not\approx_T s' \\
\frac{[s] \rightarrow_\approx [s']}{\mathcal{T} \approx \mathcal{T}/\approx}$
Equivalence of \mathcal{T} and its quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

stutter bisimulation quotient of \mathcal{T}:

$$\mathcal{T}/\approx = (S/\approx_T, Act', \rightarrow_\approx, S'_0, AP, L')$$

where $S'_0 = \{[s] : s \in S_0\}$ and $L'(s) = L(s)$

transition relation:

$$s \rightarrow s' \land s \not\approx_T s' \implies [s] \rightarrow_\approx [s']$$

proof: $\mathcal{R} = \{(s, [s]) : s \in S\}$

is a stutter bisimulation for $(\mathcal{T}, \mathcal{T}/\approx)$
Example: mutual exclusion with semaphore

\[AP = \{\text{crit}_1, \text{crit}_2\} \]
Example: mutual exclusion with semaphore

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]

stutter bisimulation with three equivalence classes
Example: mutual exclusion with semaphore

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
Example: mutual exclusion with semaphore

\[AP = \{ \text{crit}_1, \text{crit}_2 \} \]
Alternating bit protocol

Sender

acknowledgement (bit)

message + bit

Receiver

Timer

Sender

Receiver

Timer
Alternating bit protocol

- formalization by a closed channel system

\[\text{[Sender \mid Timer \mid Receiver]} \]
Alternating bit protocol

- formalization by a closed channel system

$$[\text{Sender} \mid \text{Timer} \mid \text{Receiver}]$$

- TS with about $$2^{30}$$ states for channels of capacity 10
Alternating bit protocol

Sender

Receiver

Timer

acknowledgement (bit)

message + bit

program graph for sender

generate message(0)

generate message(1)

send(0)

send(1)

d?x

c!0

c!1

lost

lost

timeout!

timeout!

...
Alternating bit protocol

$SMode = 0$ $SMode = 1$ $RMode = 0$ $RMode = 1$
Alternating bit protocol

\[\Phi \Rightarrow \forall \square \diamond SMode = 0 \land \forall \square \diamond SMode = 1 \]

\[\text{AP} = \{ SMode = 0, SMode = 1, RMode = 0, RMode = 1 \} \]

SMode = 0 SMode = 1

RMode = 0 RMode = 1
Alternating bit protocol

\[AP = \{ SMode=0, SMode=1, RMode=0, RMode=1 \} \]

\[\phi = \forall \Box \Diamond SMode=0 \land \forall \Box \Diamond SMode=1 \]

\[\text{ABP} \not\models \phi \]
Alternating bit protocol

\[AP = \{ SMode=0, SMode=1, RMode=0, RMode=1 \} \]

\[\Phi = \forall \Box \Diamond SMode=0 \land \forall \Box \Diamond SMode=1 \]

\[ABP \not\models \Phi, \text{ but } ABP/\approx \models \Phi \]

stutter bisimulation quotient
Alternating bit protocol

stutter bisimulation quotient:
Correct or wrong?

If $\mathcal{I}_1 \approx \mathcal{I}_2$ then \mathcal{I}_1 and \mathcal{I}_2 are $\text{LTL} \setminus \mathcal{O}$-equivalent.
Correct or wrong?

If $\mathcal{T}_1 \approx \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are $\text{LTL}\backslash\text{O}$-equivalent.

Wrong.
Correct or wrong?

If $\mathcal{T}_1 \approx \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are LTL\setminusO-equivalent.

Wrong.

$AP = \{a\}$
If $T_1 \approx T_2$ then T_1 and T_2 are LTL_\emptyset-equivalent.

wrong.

$AP = \{a\}$
If $\mathcal{T}_1 \approx \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are $\text{LTL} \setminus \mathcal{O}$-equivalent.

Wrong.

$$AP = \{a\}$$

$\emptyset^\omega \in \text{Traces}(\mathcal{T}_1)$

$\emptyset^\omega \notin \text{Traces}(\mathcal{T}_2)$
stutter trace equivalence: $\mathcal{I}_1 \preceq \mathcal{I}_2$ iff

\[
\forall \pi_1 \in \text{Paths}(\mathcal{I}_1) \ \exists \pi_2 \in \text{Paths}(\mathcal{I}_2) \ \text{s.t.} \ \pi_1 \preceq \pi_2
\]

\[
\forall \pi_2 \in \text{Paths}(\mathcal{I}_2) \ \exists \pi_1 \in \text{Paths}(\mathcal{I}_1) \ \text{s.t.} \ \pi_1 \preceq \pi_2
\]

stutter bisimulation equivalence \approx
\[\Delta \equiv \text{stutter trace equivalence} \]

\[\approx \text{stutter bisimulation equivalence} \]
Stutter bisimulation/stutter trace equivalence

\[\Delta \equiv \text{stutter trace equivalence} \]

\[\approx \text{stutter bisimulation equivalence} \]
Stutter bisimulation/stutter trace equivalence

\[\triangleq \text{ stutter trace equivalence} \]

\[\approx \text{ stutter bisimulation equivalence} \]
Stutter bisimulation/stutter trace equivalence

\[\Delta \approx \Delta \approx \Delta \approx \not\approx \approx \approx \]

\[\Delta \approx \text{stutter trace equivalence} \]

\[\approx \text{stutter bisimulation equivalence} \]
Stutter bisimulation/stutter trace equivalence

\[\triangleq \]

\[\cong \]

\[\not\cong \]

\[\triangleq \textit{ stutter trace equivalence} \]

\[\cong \textit{ stutter bisimulation equivalence} \]
Stutter bisimulation/stutter trace equivalence

$\Delta \equiv$ stutter trace equivalence

\simeq stutter bisimulation equivalence
Stutter bisimulation/stutter trace equivalence

\[\triangleq \quad \text{stutter trace equivalence} \]

\[\approx \quad \text{stutter bisimulation equivalence} \]

\[\approx \text{ and } \triangleq \text{ are incomparable} \]