Stutter Trace and Bisimulation Equivalence
Lecture #5 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification
E-mail: katoen@cs.rwth-aachen.de

April 29, 2009
Motivation

- Bisimulation, simulation and trace equivalence are strong
 - each transition $s \rightarrow s'$ must be matched by a transition of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions

- Idea: allow for sequences of “invisible” actions
 - each transition $s \rightarrow s'$ must be matched by a path fragment of a related state
 - matching means: ending in a state related to s', and all previous states invisible

- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: can such quotients still be obtained efficiently?
 - but: how to treat infinite internal computations?
Motivating example

Let TS_{conc} model the concrete program fragment

\[
\begin{align*}
 i &:= y; z := 1; \\
 \textbf{while} \ i > 1 \ \textbf{do} & \\
 & \quad z := z \times i; i := i - 1; \\
 \textbf{od} & \\
 x &:= z;
\end{align*}
\]

that computes the factorial of y iteratively.

Let TS_{abs} be the transition system of the (abstract) program $x := y!$

Clearly, TS_{abs} and TS_{conc} are in some sense equivalent
Outlook of today’s lecture

<table>
<thead>
<tr>
<th>formal relation</th>
<th>trace equivalence</th>
<th>bisimulation</th>
<th>simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL</td>
<td>CTL*</td>
<td>∀CTL*</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
<td>strong match</td>
<td>weak match</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>formal relation</th>
<th>stutter trace equivalence</th>
<th>stutter bisimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
</tr>
<tr>
<td>logical fragment</td>
<td>LTL(\neg)</td>
<td>–</td>
</tr>
<tr>
<td>preservation</td>
<td>strong</td>
<td>–</td>
</tr>
</tbody>
</table>
Stuttering equivalence

- \(s \rightarrow s' \) in transition system \(TS \) is a **stutter step** if \(L(s) = L(s') \)
 - stutter steps do not affect the state labels of successive states

- Paths \(\pi_1 \) and \(\pi_2 \) are **stuttering equivalent**, denoted \(\pi_1 \triangleq \pi_2 \):
 - if there exists an infinite sequence \(A_0A_1A_2 \ldots \) with \(A_i \subseteq AP \) and
 - natural numbers \(n_0, n_1, n_2, \ldots, m_0, m_1, m_2, \ldots \geq 1 \) such that:

 \[
 \begin{align*}
 trace(\pi_1) &= A_0 \ldots A_0 \underbrace{A_1 \ldots A_1}_{n_1\text{-times}} \underbrace{A_2 \ldots A_2}_{n_2\text{-times}} \ldots \\
 trace(\pi_2) &= A_0 \ldots A_0 \underbrace{A_1 \ldots A_1}_{m_1\text{-times}} \underbrace{A_2 \ldots A_2}_{m_2\text{-times}} \ldots
 \end{align*}
 \]

 \(\Rightarrow \) \(\pi_1 \triangleq \pi_2 \) if their traces only differ in their stutter steps

 \(\Rightarrow \) i.e., if both their traces are of the form \(A_0^+A_1^+A_2^+ \ldots \) for \(A_i \subseteq AP \)
Semaphore-based mutual exclusion
Stutter equivalent traces

the following two infinite paths in TS_{Sem}:

$$\pi_1 = \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \langle n_1, w_2 \rangle \rightarrow$$
$$\langle n_1, c_2 \rangle \rightarrow \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \ldots$$

$$\pi_2 = \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle c_1, n_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \langle n_1, w_2 \rangle \rightarrow$$
$$\langle w_1, w_2 \rangle \rightarrow \langle w_1, c_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle c_1, n_2 \rangle \rightarrow \ldots$$

Hence, $\pi_1 \triangleq \pi_2$, since for $AP = \{ \text{crit}_1, \text{crit}_2 \}$:

$$\text{trace}(\pi_1) = \emptyset^3 \{ \text{crit}_1 \} \emptyset \{ \text{crit}_2 \} \emptyset^3 \{ \text{crit}_1 \} \ldots \text{ and}$$

$$\text{trace}(\pi_2) = \emptyset^2 (\{ \text{crit}_1 \})^2 \emptyset^2 \{ \text{crit}_2 \} \emptyset \{ \text{crit}_1 \} \ldots$$
Pictorially

\[
\begin{array}{cccccccc}
 n_1 & n_2 & w_1 & n_2 & w_1 & w_2 & c_1 & w_2 \\
 0 & 0 & 0 & \{c_1\} & 0 & \{c_2\} & 0 & 0 \\
 n_1 & n_2 & w_1 & n_2 & c_1 & n_2 & c_1 & w_2 \\
 0 & 0 & \{c_1\} & \{c_1\} & 0 & 0 & \{c_2\} & 0 \\
 \end{array}
\]
Stutter trace equivalence

Transition systems TS_i over AP, $i=1, 2$, are \textit{stutter-trace equivalent}:

$$TS_1 \triangleq TS_2 \iff TS_1 \subseteq TS_2 \text{ and } TS_2 \subseteq TS_1$$

where \subseteq, pronounced \textit{stutter trace inclusion}, is defined by:

$$TS_1 \subseteq TS_2 \iff \forall \sigma_1 \in \text{Traces}(TS_1) \left(\exists \sigma_2 \in \text{Traces}(TS_2). \sigma_1 \triangleq \sigma_2 \right)$$

$$\text{Traces}(TS_1) = \text{Traces}(TS_2) \text{ implies } TS_1 \triangleq TS_2, \text{ but not always the converse}$$
Example

\[TS_1 \triangleq TS_2, \quad TS_1 \not\leq TS_3 \text{ and } TS_2 \not\leq TS_3, \text{ but } TS_3 \leq TS_2 \text{ and } TS_3 \leq TS_1 \]
The \bigcirc operator

Stuttering equivalence does not preserve the validity of next-formulas:

\[\sigma_1 = ABBB \ldots \text{ and } \sigma_2 = AAABBBB \ldots \] for $A, B \subseteq AP$ and $A \neq B$

Then for $b \in B \setminus A$:

\[\sigma_1 \triangleq \sigma_2 \quad \text{but} \quad \sigma_1 \models \bigcirc b \quad \text{and} \quad \sigma_2 \not\models \bigcirc b. \]

\Rightarrow a logical characterization of \triangleq can only be obtained by omitting \bigcirc

in fact, it turns out that this is the only modal operator that is not preserved by \triangleq!
Stutter trace and LTL\(\Box\) equivalence

For traces \(\sigma_1\) and \(\sigma_2\) over \(2^{AP}\) it holds:
\[\sigma_1 \triangleq \sigma_2 \Rightarrow (\sigma_1 \models \varphi \text{ if and only if } \sigma_2 \models \varphi)\]
for any LTL\(\Box\) formula \(\varphi\) over \(AP\)

LTL\(\Box\) denotes the class of LTL formulas without the next step operator \(\bigcirc\)
Proof
Stutter trace and $\text{LTL}\setminus\text{O}$ equivalence

For transition systems TS_1, TS_2 (over AP) without terminal states:

(a) $TS_1 \triangleq TS_2$ implies $\left(TS_1 \equiv_{\text{LTL}\setminus\text{O}} TS_2 \right)$

(b) if $TS_1 \preceq TS_2$ then for any $\text{LTL}\setminus\text{O}$ formula φ: $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

A more general result can be established by considering stutter-insensitive LT properties
Stutter insensitivity

- LT property P is **stutter-insensitive** if $[\sigma] \triangleq \subseteq P$, for any $\sigma \in P$
 - P is stutter insensitive if it is closed under stutter equivalence

- For any stutter-insensitive LT property P:
 \[
 TS_1 \triangleq TS_2 \quad \text{implies} \quad (TS_1 \models P \text{ iff } TS_2 \models P)
 \]

- Moreover: $TS_1 \preceq TS_2$ implies $(TS_2 \models P \text{ implies } TS_1 \models P)$

- For any LTL \emptyset formula φ, LT property $Words(\varphi)$ is stutter insensitive
 - but: some stutter insensitive LT properties cannot be expressed in LTL \emptyset
 - for LTL formula φ with $Words(\varphi)$ stutter insensitive:
 - there exists $\psi \in LTL\emptyset$ such that $\psi \equiv_{LTL} \varphi$
Stutter bisimulation

Let $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$.

\mathcal{R} is a **stutter-bisimulation** for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$

2. if $s'_1 \in \text{Post}(s_1)$ with $(s_1, s'_1) \not\in \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \ldots u_n s'_2$ with $n \geq 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

3. if $s'_2 \in \text{Post}(s_2)$ with $(s_2, s'_2) \not\in \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \ldots v_n s'_1$ with $n \geq 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are **stutter-bisimulation equivalent**, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$.
Stutter bisimulation

\(s_1 \approx s_2 \)
\(\downarrow \)
\(s_1' \) (with \(s_1 \not\approx s_1' \))

\(s_1 \approx s_2 \)
\(\downarrow \)
\(s_1 \approx u_1 \)
\(\downarrow \)
\(s_1 \approx u_2 \)
\(\downarrow \)
\(s_1 \approx u_n \)
\(\downarrow \)
\(s_1' \approx s_2' \)
Advanced model checking

Semaphore-based mutual exclusion

stutter-bisimilar states for \(AP = \{ \text{crit}_1, \text{crit}_2 \} \)
Stutter-bisimilar transition systems

Let \(TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i) \), \(i = 1, 2 \), be transition systems \(TS_1 \) and \(TS_2 \) are stutter bisimilar, denoted \(TS_1 \approx TS_2 \), if there exists a stutter bisimulation \(R \) on \(TS_1 \oplus TS_2 \) such that:

\[
\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in R) \quad \text{and} \quad \forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in R)
\]
Stutter bisimulation quotient

Let $TS = (S, Act, \rightarrow, I, AP, L)$ and stutter bisimulation $\mathcal{R} \subseteq S \times S$ be an equivalence.

The quotient of TS under \mathcal{R} is defined by:

$$TS/\mathcal{R} = (S', \{ \tau \}, \rightarrow', I', AP, L')$$

where

- $S' = S/\mathcal{R} = \{ [s]_\mathcal{R} \mid s \in S \}$ with $[s]_\mathcal{R} = \{ s' \in S \mid (s, s') \in \mathcal{R} \}$
- $I' = \{ [s]_\mathcal{R} \mid s \in I \}$
- $L'([s]_\mathcal{R}) = L(s)$
- \rightarrow' is defined by:

$$s \xrightarrow{\alpha} s' \text{ and } (s, s') \notin \mathcal{R} \quad \Rightarrow \quad [s]_\mathcal{R} \xrightarrow{\tau'} [s']_\mathcal{R}$$

note that (a) no self-loops occur in TS/\approx_{TS} and (b) $TS \approx TS/\approx_{TS}$
Semaphore-based mutual exclusion

The stutter-bisimulation quotient:
Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP:

- Known fact: $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

- But not: $TS_1 \approx TS_2$ implies $TS_1 \triangleq TS_2$!

- So:
 - bisimilar transition systems are trace equivalent
 - but stutter-bisimilar transition systems are not always stutter trace-equivalent!

- Why? Stutter paths!
 - stutter bisimulation does not impose any constraint on such paths
 - but \triangleq requires the existence of a stuttering equivalent trace
Stutter trace and stutter bisimulation are incomparable

\[\varnothing \not\approx \sim \triangleleft \]

\[TS_1 \quad TS_2 \quad TS_3 \quad TS_4 \]
Stutter bisimulation does not preserve LTL

\[TS_{\text{left}} \approx TS_{\text{right}} \text{ but } TS_{\text{left}} \not\models \Diamond a \text{ and } TS_{\text{right}} \models \Diamond a \]

reason: presence of infinite stutter paths in \(TS_{\text{left}} \)
Divergence sensitivity

- **Stutter paths** are paths that only consist of stutter steps
 - no restrictions are imposed on such paths by a stutter bisimulation
 ⇒ stutter trace-equivalence (≜) and stutter bisimulation (∼) are incomparable
 ⇒ ∼ and LTL\(\bigcirc\) equivalence are incomparable

- Stutter paths **diverge**: they never leave an equivalence class

- Remedy: only relate **divergent** states or **non-divergent** states
 - divergent state = a state that has a stutter path
 ⇒ relate states only if they either both have stutter paths or none of them

- This yields **divergence-sensitive stutter bisimulation** (∼\text{div})
 ⇒ ∼\text{div} is strictly finer than Δ (and ∼)
Outlook

<table>
<thead>
<tr>
<th>Formal Relation</th>
<th>Trace Equivalence</th>
<th>Bisimulation</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>Logical Fragment</td>
<td>LTL</td>
<td>CTL*</td>
<td>∀CTL*</td>
</tr>
<tr>
<td>Preservation</td>
<td>Strong</td>
<td>Strong Match</td>
<td>Weak Match</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formal Relation</th>
<th>Stutter Trace Equivalence</th>
<th>Divergence-sensitive Stutter Bisimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>PSPACE-complete</td>
<td>PTIME</td>
</tr>
<tr>
<td>Logical Fragment</td>
<td>LTL(\bigcirc)</td>
<td>CTL*(\bigcirc)</td>
</tr>
<tr>
<td>Preservation</td>
<td>Strong</td>
<td>Strong Match</td>
</tr>
</tbody>
</table>
Divergence sensitivity

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- s is \mathcal{R}-divergent if there exists an infinite path fragment $s \ s_1 \ s_2 \ldots \in \text{Paths}(s)$ such that $(s, s_j) \in \mathcal{R}$ for all $j > 0$
 - s is \mathcal{R}-divergent if there is an infinite path starting in s that only visits $[s]_{\mathcal{R}}$

- \mathcal{R} is divergence sensitive if for any $(s_1, s_2) \in \mathcal{R}$:
 - s_1 is \mathcal{R}-divergent implies s_2 is \mathcal{R}-divergent
 - \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none states are \mathcal{R}-divergent
Divergent-sensitive stutter bisimulation

s_1, s_2 are \textit{divergent-sensitive stutter-bisimilar}, denoted $s_1 \approx_{\text{div}}^{TS} s_2$, if:

\[\exists \text{ divergent-sensitive stutter bisimulation } \mathcal{R} \text{ on } TS \text{ such that } (s_1, s_2) \in \mathcal{R} \]

\(\approx_{\text{div}}^{TS} \) is an equivalence, the coarsest divergence-sensitive stutter bisimulation for \(TS \)
and the union of all divergence-sensitive stutter bisimulations for \(TS \)
Example
Quotient transition system under \approx^{div}

$TS/\approx^{\text{div}} = (S', \{\tau\}, \to', I', AP, L')$, the quotient of TS under \approx^{div}

where

• S', I' and L' are defined as usual (for eq. classes $[s]_{\text{div}}$ under \approx^{div})

• \to' is defined by:

\[
\frac{s \xrightarrow{\alpha} s' \land s \not\approx^{\text{div}} s'}{[s]_{\text{div}} \xrightarrow{\tau}' [s']_{\text{div}}}
\quad \text{and} \quad
\frac{s \text{ is } \approx^{\text{div}}\text{-divergent}}{[s]_{\text{div}} \not\xrightarrow{\tau}' [s]_{\text{div}}}
\]

note that $TS \approx^{\text{div}} TS/\approx^{\text{div}}$
Example

transition system TS

transition system TS/\sim

transition system TS/\sim^{div}
A remark on purely divergent states

- \(s_{pd} \) is purely divergent if all paths of \(s \) are infinite and divergent.
- \(s_{term} \) is a terminal state if it has no outgoing transitions.
- If \(L(s_{pd}) = L(s_{term}) \) then \(s_{term} \simeq_{TS} s_{pd} \) and \(s_{term} \not\simeq_{TS}^{div} s_{pd} \).
- \(s_{term} \simeq_{TS}^{div} s \) implies
 - \(L(s) = L(s_{term}) \) and each path of \(s \) is finite and divergent.
Summary

stutter trace inclusion:
\[TS_1 \preceq TS_2 \iff \forall \sigma_1 \in \text{Traces}(TS_1) \exists \sigma_2 \in \text{Traces}(TS_2). \sigma_1 \triangleq \sigma_2 \]

stutter trace equivalence:
\[TS_1 \triangleq TS_2 \iff TS_1 \preceq TS_2 \text{ and } TS_2 \preceq TS_1 \]

stutter bisimulation equivalence:
\[TS_1 \approx TS_2 \iff \text{there exists a stutter bisimulation for } (TS_1, TS_2) \]

stutter bisimulation equivalence with divergence:
\[TS_1 \approx^{\text{div}} TS_2 \iff \text{there exists a divergence-sensitive stutter bisimulation for } (TS_1, TS_2) \]
Relationship between equivalences

bisimulation \(TS_1 \sim TS_2 \)

divergence sensitive
stutter bisimulation \(TS_1 \approx_{\text{div}} TS_2 \)

stutter bisimulation \(TS_1 \approx TS_2 \)

trace equivalence \(\text{Traces}(T_1) = \text{Traces}(TS_2) \)

stutter trace-equivalence \(TS_1 \triangleq TS_2 \)

trace inclusion \(\text{Traces}(T_1) \subseteq \text{Traces}(TS_2) \)

stutter trace inclusion \(TS_1 \trianglelefteq TS_2 \)