What's decidable about hybrid automata?

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen

SS09

Literature

Henzinger et al.: What's decidable about hybrid automata?

Journal of Computer and System Sciences, 57:94-124, 1998

Motivation

- The special class of *timed automata* with TCTL is *decidable*, thus model checking is possible.
- What about other classes of hybrid systems?

What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:

- Reachability: Check if the trajectories of the automaton meet a given safety requirement
- ullet ω -language emptiness problem: Check if the trajectories of the automaton meet a given *lifeness* requirement

Both problems are decidable in certain special cases, and undecidable in certain general cases.

What is decidable about hybrid automata?

A particularly interesting class:

- the set of trajectories are *piecewise-linear envelopes*
- e.g. flow condition $\dot{x} \in [1,3]$ called rectangular flow constraints
- automata with rectangular constraints are called rectangular-flow atomata
- this class lies at the boundary of decidability

What is decidable about hybrid automata?

The reachability problem for rectangular-flow automata is decidable under the following restrictions:

- values of variables with different flow constraints are not compared, and
- whenever the flow constraint of a variable changes, the value of the variable is re-initialized.

The ω -language emptiness problem is decidable for rectangular-flow automata under the restriction of bounded nondeterminism:

■ the successor of a bounded region is bounded.

The reachability problem becomes undecidable if one of the restrictions is relaxed.

Rectangular regions

Definition

- Given a positive integer n, a subset of \mathbb{R}^n is called a *region*.
- A region $\mathcal{R} \subset \mathbb{R}^n$ is *rectangular* if it is a cartesian product of (possibly unbounded) intervals, all of whose endpoints are rational.
- The set of rectangular regions in \mathbb{R}^n is denoted \mathcal{R}^n .

Reminder: Hybrid automaton

Definition

A hybrid automaton \mathcal{H} is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations *Loc*,
- finite set of real-valued variables *Var*,
- finite set of synchronization labels Lab, $\tau \in Lab$ (stutter label)
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions $(l, \tau, \mathrm{Id}, l)$ for each location $l \in Loc$),
- Act is a function assigning a set of activities $f: \mathbb{R}^+ \to V$ to each location; the activity sets are time-invariant, i.e., $f \in Act(l)$ implies $(f+t) \in Act(l)$, where (f+t)(t') = f(t+t') f.a. $t' \in \mathbb{R}^+$,
- **a** a function Inv assigning an invariant $Inv(l) \subseteq V$ to each location $l \in Loc$,
- initial states $Init \subseteq \Sigma$.

with

- lacktriangle valuations $\nu: Var \to \mathbb{R}, V$ is the set of valuations
- state: $(l, \nu) \in Loc \times V$, Σ is the set of states
- transitions: discrete and time

Rectangular automaton

Definition

An n-dimensional rectangular automaton A is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations *Loc*,
- finite set of real-valued variables $Var = \{v_1, \dots, v_n\}$,
- finite set of synchronization labels Lab,
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times \mathbb{R}^n \times \mathbb{R}^n \times 2^{\{1,...,n\}} \times Loc$,
- lacksquare a flow function $Act: Loc o \mathcal{R}^n$,
- lacksquare an invariant function $Inv:Loc o \mathcal{R}^n$,
- initial states $Init : Loc \rightarrow \mathbb{R}^n$.

n-dimensional rectangular automaton with ϵ -moves: Lab contains ϵ (also denoted by τ).

Rectangular automaton

- Flows: first time derivatives of the flow trajectories in location $l \in Loc$ are within Act(l)
- Jumps: $e = (l, a, pre, post, jump, l') \in Edge$ may move control from location l to location l' starting from a valuation in pre, changing the value of each variable $v_i \in jump$ to a nondeterministically chosen value from $post_i$ (the projection of post to the ith dimension), and leaving the values of the other variables unchanged.

Notes:

- If we replace rectangular regions with linear regions, we obtain *linear* hybrid automata, a super-class of rectangular automata.
- A timed automaton is a rectangular automaton with deterministic jumps (defined later) such that every variable is a clock.

- A timed word is a word from $(Lab \cup \mathbb{R}^{\geq 0})^*$.
- lacksquare A timed word is *divergent*, if the sum of the time letters of the word is ∞ .
- A *run* of a rectangular automaton A is a (finite or infinite) sequence $q_0 \xrightarrow{\tau_0} q_1 \xrightarrow{\tau_1} \dots$ with $q_0 \in Init$.
- The run $q_0 \stackrel{\tau_0}{\to} q_1 \stackrel{\tau_1}{\to} \dots$ accepts the word $\tau_0 \tau_1 \dots$
- The ω -language Lang(A) of A is the set of all divergent time words that are accepted by runs of A.
- The reachable zone Reach(A) of A is the set $Post^*(Init)$, where $Post^{\pi}(Z) = \{(l, \nu) \in \Sigma \mid \exists (l', \nu') \in Z. \ (l', \nu') \xrightarrow{\pi} (l, \nu)\}.$

Initialized rectangular automaton

Definition? Trajectories?

A subset of the state space $Loc \times \mathbb{R}^n$ is called a *zone*. Each zone Z is decomposable into a collection $\bigcup_{l \in Loc} \{l\} \times Z_l$ of zones. The zone Z is rectangular iff each Z_l is rectangular. A zone is multirectangular, if it is a finite union of rectangular zones.

Lemma

For every multirectangular zone Z of a rectangular automaton A, and every label $\pi \in Lab \cup \mathbb{R}^{\geq 0}$, the zones $Post^{\pi}(Z) = \{(l, \nu) \in \Sigma \mid \exists (l', \nu') \in Z. \ (l', \nu') \xrightarrow{\pi} (l, \nu)\}$ and

$$Pre^{\pi}(Z) = \{(l,\nu) \in \Sigma \mid \exists (l',\nu') \in Z. \ (l,\nu) \xrightarrow{\pi} (l',\nu') \} \text{ are multirectangular.}$$

Consequence: we could also allow disjunctions and conjunctions on edges. Note: The reachable zone of rectangular automaton A is an infinite union of rectangular zones, and may not be multirectangular.

Proof:

- It suffices to prove it for a single transition π , then the lemma follows for runs.
- It suffices to prove it for elementary regions of the form $Z=(\{l\},\mathcal{R})$ with \mathcal{R} rectangular.
- lacksquare π can represent a jump or a flow
- $\blacksquare \pi = (l, a, pre, post, jump, l')$: $Post^{\pi}(Z) = \{l'\} \times S$ with

$$S_{i} = \begin{cases} \mathcal{R}_{i} \cap pre_{i} \cap post_{i} \cap Inv(l')_{i} & if \ i \notin jump_{i} \\ post_{i} \cap Inv(l')_{i} & if \ i \in jump_{i} \ and \ \mathcal{R}_{i} \cap pre_{i} \neq 0 \\ \emptyset & if \ i \in jump_{i} \ and \ \mathcal{R}_{i} \cap pre_{i} = 0 \end{cases}$$

- $\pi = 0 \colon \operatorname{Post}^{\pi}(Z) = Z$
- \blacksquare $\pi = t$, $t \in \mathbb{R}^{\geq 0}$: $Post^{\pi}(Z) = \{l\} \times S$ with

$$S_{i} = Inv(l)_{i} \cap \left[\inf(\mathcal{R}_{i}) + \pi \cdot \inf(Act(l)_{i}), \infty\right]$$
$$\cap \left(-\infty, \sup(\mathcal{R}_{i}) + \pi \cdot \sup(Act(l)_{i})\right]$$

Initialization condition

Definition

A rectangular automaton A is *initialized*, if for every edge (l,a,pre,post,jump,l') in the edge set of A, and every variable index $i \in \{1,\ldots,n\}$ with $Act(l)_i \neq Act(l')_i$, we have that $i \in jump$.

I.e., whenever a variable changes its dynamics, its value gets nondeterministically re-initialized.

Definition

A rectangular automaton A has bounded nondeterminism, if

- all initial and flow regions are bounded, and
- for every edge e of A and every coordinate i in the jump set of e, the interval $post_i$ of e is bounded.

Initialized rectangular automaton

This rectangular automaton is initialized and has bounded nondeterminism.

Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.

Lemma

The ω -language emptiness problems for initialized rectangular automata with bounded nondeterminism is complete for PSPACE.

Timed automaton

†
Initialized stopwatch automaton

†
Initialized singular automaton

†
Initialized rectangular automaton

A timed automaton is a rectangular automaton with deterministic jumps such that every variable is a clock, i.e., Act(l)(x) = [1,1] for all locations l and variables x.

Lemma

The reachability and the ω -language emptiness problems for timed automata are complete for PSPACE.

Decidability results

 $\label{eq:top-poisson} \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}$

- A has deterministic jumps, if (1) Init(l) is empty or a sigleton for all l, and (2) the post-interval for each variable from the jump-set of each edge is a singleton.
- A *stopwatch* is a variable with derivatives 0 or 1 only.
- A *stopwatch automaton* is a rectangular automaton with deterministic jumps and stopwatch variables only.
- Initialized stopwatch automata can be polynomially encoded by timed automata.

Lemma

The reachability and the ω -language emptiness problems for initialized stopwatch automata are complete for PSPACE.

However, the reachability problem for non-initialized stopwatch automata is undecidable.

Proof idea:

Notice, that a timed automaton is a stopwatch automaton such that every variable is a clock.

Assume that C is an n-dimensional initialized stopwatch automaton with ϵ -moves. Let κ_C be the set of rational constants used in the definition of C, and let $\kappa_- = \kappa_C \cup \{-\}$.

We define an n-dimensional timed automaton D_C with locations $Loc_{D_C} = Loc_c \times \kappa_-^{1,\dots,n}$. Each location (l,f) of D_C consists of a location l of C and a function $f:\{1,\dots,n\}\to\kappa_-$. Each state $q=((l,f),\vec{x})$ of D_C represents the state $\alpha(q)=(l,\vec{y})$ of C, where $y_i=x_i$ if f(i)=-, and $y_i=f(i)$ if $f(i)\neq -$.

Intuitively, if the *i*th stopwatch of C is running (slope 1), then its value is tracked by the value of the *i*th clock of D_C ; if the *i*th stopwatch is halted (slope 0) at value $k \in \kappa_C$, then this value is remembered by the current location of D_C .

Decidability results

Timed automaton \uparrow Initialized stopwatch automaton \uparrow Initialized singular automaton

- A variable v_i is a finite-slope variable if $flow(l)_i$ is a singleton in all locations l.
- A singular automaton is a rectangular automaton with deterministic jumps such that every variable of the automaton is a finite-slope variable.
- Initialized singular automata can be rescaled to initialized stopwatch automata.

Lemma

The reachability and the ω -language emptiness problems for initialized singular automata are complete for PSPACE.

Proof idea: Let B be an n-dimensional initialized singular automaton with ϵ -moves. We define an n-dimensional initialized stopwatch automaton C_B with the same location set, edge set, and label set as B.

Each state $q=(l,\vec{x})$ of C_B corresponds to the state $\beta(q)=(l,\beta(\vec{x}))$ of B with $\beta:\mathbb{R}^n\to\mathbb{R}^n$ defined as follows:

For each location l of B, if $Act_B(l) = \prod_{i=1}^n [k_i, k_i]$, then $\beta(x_1, \ldots, x_n) = (l_1 \cdot x_1, \ldots, l_n \cdot x_n)$ with $l_i = k_i$ if $k_i \neq 0$, and $l_i = 1$ if $k_i = 0$:

 β can be viewed as a rescaling of the state space. All conditions in the automaton B occur accordingly rescaled in C_B .

We have:

- The reachable set of Reach(B) of B is $\beta(Reach(C_B))$.
- $\blacksquare Lang(B) = Lang(C_B)$

Decidability results

Timed automaton

↑
Initialized stopwatch automaton

↑
Initialized singular automaton

↑
Initialized rectangular automaton

Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.

Lemma

The ω -language emptiness problems for initialized rectangular automata with bounded nondeterminism is complete for PSPACE.

Proof idea: An n-dimensional initialized rectangular automaton A can be translated into a (2n+1)-dimensional initialized singular automaton B with ϵ -moves, such that B contains all reachability information about A. The translation is similar to the subset construction for determinizing finite automata.

The idea is to replace each variable c of A by two finite-slope variables c_l and c_u : c_l tracks the least possible value of c, and c_u tracks the greatest possible value of c.