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Approach/Exit

Lower/Raise

Reachability: Does something bad happen?
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In this thesis...

We revisit reachability and liveness problems for Alur-Dill
timed automata



4/43



4/43



Timed Automata

d, (x>1)

a, (y<1), {9}

Run: finite sequence of transitions

0.4,a @ 0.5,¢ @

x 0 09
y o] 0

» accepting if ends in state




Reachability problem

Given a TA, does it have an accepting run

a, (y<1), {9}

Theorem [ADY4]
This problem is PSPACE-complete

first solution based on Regions



Key idea: Maintain sets of valuations reachable along a path

L,LL,L
O—@

(x<5) (r27)

6] q q
° ! o\
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Key idea: Maintain sets of valuations reachable along a path

Easy to describe convex sets
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Zones and zone graph

[0] (x==y && y==0)

» Zone: set of valuations defined by
conjunctions of constraints:

T
(o) (R e
o= /j (1 o l o) eg (x—y2) A <2
> Representation: by DBM [Dil89]

Sound and complete [DT98]

Zone graph preserves state reachability
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Problem of non-termination
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Abstractions

potentially infinite...
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Abstractions
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Abstractions
a(Zo)
@), | =

’ 2 Zone graph \
e AT e
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2 Z
potentially infinite... a(W,)

Find a such that number of abstracted sets is finite



Abstractions
a(ZO)
@), | =

’ 2 Zone graph /jé \
il/ % a(W;)

Ol e
, Z ’ Z / \
> 3 ’ Wi (%)

Z, Z3

potentially infinite... a(W,)

Coarser the abstraction, smaller the abstracted graph



Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound = a(W) can contain
only valuations simulated by W
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Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound = a(W) can contain
only valuations simulated by W

Question: Why not add all the valuations simulated by W?
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Bounds and abstractions

Theorem [LS00]
Coarsest simulation relation is EXPTIME-hard
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Bounds and abstractions

Theorem [LS00]
Coarsest simulation relation is EXPTIME-hard

(r<3) (x<4)
(x<1)

(x>6)

r<1)

M-bounds [AD94] LU-bounds [BBLP04]
L(x)=6, L(y) = —o0
U(x) =4, U(y) =3

/ /
v, v VR,V

M(x)=6, M(y) =3




Abstractions in literature [BBLP04, Bou04]
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Abstractions in literature [BBLP04, Bou04]
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Abstractions in literature [BBLP04, Bou04]

aﬁLU EX’EI‘;}.Jr
Closure;, «— ExtraJr Extra 3
Non-convex \ /
Extra,,
Convex

Only convex abstractions used in implementations!
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Step 1: We can use abstractions without storing them
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Using non-convex abstractions

a(Z)
),
/

a(Wi) \
=41 N ’ a(Ws)
a(W3) € a(W))? (),
u(Wz)
a(Ws)

, Standard algorithm: covering tree
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Using non-convex abstractions

Cl(Zg)

u(W1)
43 =91 N a(Ws)
a(Ws) Ca(W))?
u(Wz)
' |

a(Ws)

Pick simulation based a
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Using non-convex abstractions
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Using non-convex abstractions

a(7o)

a(71)
4 =q1 N a(Zs)
a(Z;) Ca(Zy)?
a(ZZ)
@

a(Z3)

Pick simulation based a
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Using non-convex abstractions

B=q N
a(Zy) Ca(Z,)?
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Using non-convex abstractions

5 Z
/ \
4 =q1 N
Zy Ca(Zy)? / @ \ 7 %

, 7 Use Z C a(Z') for termination



Step 1: We can use abstractions without storing them

Step 2: We can do the inclusion test efficiently



Efficient inclusion testing

Main result

Z ¢ a,,(Z') if and only if there exist 2 clocks x,y s.t.

Proixy(z) Z Ay (Pr ojxy(z/))
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Efficient inclusion testing

Main result

Z ¢ a,,(Z') if and only if there exist 2 clocks x,y s.t.
Proixy(z) g adLU(Projxy(Z/))
Complexity: O(|X|?), where X is the set of clocks

Same complexity as Z C Z'!

Slightly modified comparison works!



Step 1: We can use abstractions without storing them

Step 2: We can do the inclusion test efficiently

= new algorithm for reachability



(4LU)

(=,) Closure,, «—

4

Non-convex
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(4LU)

(=,) Closure,, «—

/

Non-convex

Convex

Question: Can we do better than a_, 2
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Optimality

LU-automata: automata with guards determined by L and U

Theorem

The a_,, abstraction is the biggest abstraction that is sound
and complete for all LU-automata.
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Question: If a_, , is the best, can we do better?



Question: If a_, , is the best, can we do better?

Get better LU-bounds!



x=1

{x}

90

Global LU-bounds

x = 10°

{x,0} =10¢

Naive: L, =U, = 109, Ly = Uy =10°

Size of graph ~ 10°
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Static analysis: bounds for every ¢

[BBFLO3]
x=1
{x}
x=10°
{x,0} y=10°
1 10°

Size of graph < 10
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Static analysis: bounds for every ¢

[BBFLO3]
x=1
{x}
x = 10°
- {x.} D y=10°
6 i U 6
10 10
x>2 x<1

Size of graph ~ 10°

Need to look at semantics...
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LU bounds for every (g,Z) in zone graph

constants at node

depend on the subtree



Constant propagation

Contribution: A new on-the-fly algorithm to learn constants
during exploration

x=1
{x}
x = 10°

£, y=10°

<1

x>2 @ x <

Theorem (Correctness)

®

An accepting state is reachable in .o/ iff the constant propagation
algorithm reaches a node with accepting state and a non-empty zone.
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Benchmarks

Model Our algorithm || UPPAALs algorithm || UPPAAL 4.1.3 (n4 -C -o1)
nodes s. nodes s. nodes s.

CSMA/CD7 5046 0.39 5923 0.30 - T.O.
CSMA/CD8 16609 0.75 19017 1.16 - T.O.
CSMA/CD9 || 54467 9.40 60783 4.53 - T.O.
FDDI10 459 0.04 525 0.05 12049 243
FDDI20 1719 0.41 2045 0.82 - T.O.
FDDI30 3779 1.70 4565 3.90 - T.O.
Fischer7 7737 0.40 18353 0.48 18374 0.35
Fischer8 25080 1.50 85409 2.31 85438 1.53
Fischer9 81035 5.70 || 397989 12.05 398685 8.95
Fischer10 . T.O. . T.O. 1827009 53.44

» Extra/,; and static analysis bounds in UPPAAL

> ag,, and otf bounds in our algorithm
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Timed Biichi automata

b, (y=1) o(x<1)
¢ (x<1)
a, {9}

d, (x>1)

a, (y<1), {}

Run: infinite sequence of transitions

0.4,a 0.5,¢ 0.3,d 0.8,d
09
[o] o3

» accepting if infinitely often state

» non-Zeno if time diverges (3 ;5 ¢ 8; = o)



Biichi non-emptiness problem

Given a TBA, does it have a non-Zeno accepting run

a, (y<1), {9}

Theorem [AD94]
This problem is PSPACE-complete



2G () (9o Z0) = (q1:21) = (92,2,) —>
w U] U]

< (90,v0) = (g1,71) = (g2,7,) —>

All the above abstractions preserve repeated state reachability
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+
ExtraLU

N

Extra, Extra; g

A4

Extray,

ZGY () (0:20) = (91:21) = (92.2,) —>
w w w

o (90,v0) = (g1,71) = (g2,7,) —>

Sound and complete [Tri09, Li09]

All the above abstractions preserve repeated state reachability

What about non-Zenoness?



Adding a clock for non-Zenoness [TYBO05]

A’: strongly non-Zeno TBA
|X|+ 1 clocks and at most 2 - | Q) states

Theorem [TYBO05]

A has a non-Zeno accepting run iff ZG%(A’) has an accepting run



Adding a clock for non-Zenoness [TYBO05]

A’: strongly non-Zeno TBA
|X|+ 1 clocks and at most 2 - | Q) states

Theorem [TYBO05]

A has a non-Zeno accepting run iff ZG%(A’) has an accepting run

Question: Is this good enough?



Adding a clock for non-Zenoness [TYBO5]

A’: strongly non-Zeno TBA
|X|+ 1 clocks and at most 2 - | Q) states

Theorem [TYBO05]

A has a non-Zeno accepting run iff ZG%(A’) has an accepting run

Contribution: The construction can give exponential blowup
Theorem

There exists an automaton ./, with 7 clocks for which

| 2G*(.a))| = 0(2")- | 2G*(o,)|
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Coming next: A new construction for non-Zenoness
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New construction
When does a path in ZG®(.¢/) yield only Zeno runs?

\ 72G%(.d)
/\ Blocking clocks

/ (x<2)
x never reset but checked for upper bound

(x=5)

\ 7Go (o)
{x}
Zero-checks
(y=0)

x and y should be 0 all along the path

(x=0) {7}
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Zero-checks

(x=0)
------------ o — 0 ----

Can time elapse here?



Zero-checks

{x} (x=0)

—> 0---0—>0---0—> 0 ----

Time can elapse at a node if

every zero-check is preceded by a reset



Zero-checks

{x} (x=0)

—> 0---0—>0---0—> 0 ----

Time can elapse at a node if

every zero-check is preceded by a reset

Guessing Zone Graph (GZG*(./)) :
@2Y) 1L (¢.Z.YUf)
(4.2,Y) =%, enabled onlyifxeY

42Y) = (470



Algorithm

Theorem

A has a non-Zeno run iff there is an unblocked path in GZG®(A)
with infinitely many nodes that have Y =0.

Complexity: | GZG*(A)|- (|X|+ 1)



21 more nodes in GZG*(A) than in ZG*(A) due to Y sets?



21 more nodes in GZG*(A) than in ZG*(A) due to Y sets?

Theorem

» For each reachable node (g, Z), Z entails a total order on X.
> Extray, Extra; preserve the order.

» Y respects this order; only |X| + 1 sets needed.



21 more nodes in GZG*(A) than in ZG*(A) due to Y sets?

Theorem
» For each reachable node (¢, Z), Z entails a total order on X.
> Extra,, Extra;; preserve the order.

> Y respects this order; only |X|+ 1 sets needed.

Extra; g, Extra 7 do not preserve order

Theorem

Non-Zenoness from LU-abstract zone graphs is NP-complete

Theorem

A slight weakening of Extra;;;, Extra; ; preserves order
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Benchmarks

A ZG(A) 7ZG (A7) GZG*(A)
size size otf size otf opt

Train-Gate2 (mutex) 134 194 194 400 400 134
Train-Gate2 (bound. resp.) 988 227482 352 3840 1137 292
Train-Gate2 (liveness) 100 217 35 298 53 33
Fischer3 (mutex) 1837 3859 3859 7292 7292 1837
Fischer4 (mutex) 46129 96913 | 96913 229058 | 229058 | 46129
Fischer3 (liveness) 1315 4962 52 5222 64 40
Fischer4 (liveness) 33577 147167 223 166778 331 207
FDDI3 (liveness) 508 1305 44 3654 79 42
FDDI5 (liveness) 6006 15030 90 67819 169 88
FDDI3 (bound. resp.) 6252 41746 59 52242 114 60
CSMA /CD#4 (collision) 4253 7588 7588 20146 20146 4253
CSMA/CDS5 (collision) 45527 80776 | 80776 260026 | 260026 | 45527
CSMA /CD#4 (liveness) 3038 9576 1480 14388 3075 832
CSMA/CD5 (liveness) 32751 120166 8437 186744 21038 4841

» Combinatorial explosion may occur in practice

» Optimized use of GZG"(A) gives best results
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Perspectives

More than LU
Automata with diagonal constraints

Probabilistic timed automata, priced timed automata

Non-Zeno strategies for timed games
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