Abstractions for timed automata

work done with F. Herbreteau, I. Walukiewicz and D.Kini

B. Srivathsan
Ph.D. defence
> Jury
Ahmed Bouajjani
Patricia Bouyer
Bruno Courcelle
Frédéric Herbreteau Advisor
Joost-Pieter Katoen
Igor Walukiewicz Advisor
James Worrell

Reachability: Does something bad happen?

Liveness: Does something good happen repeatedly?

A THEORY OF TIMED AUTOMATA
R. Alur and D.L. Dill, TCS'94

Reachability: Does something bad happen?

UPPAAL, KRONOS, RED, IF, PAT, Rabbit ...

Liveness: Does something good happen repeatedly?

PROFOUNDER, CTAV ...

A THEORY OF TIMED AUTOMATA
R. Alur and D.L. Dill, TCS'94

In this thesis...

We revisit reachability and liveness problems for Alur-Dill timed automata

Reachability

Reachability

Liveness

Liveness

Reachability

Reachability

Liveness

Liveness

Timed Automata

Run: finite sequence of transitions

- accepting if ends in green state

Reachability problem

Given a TA, does it have an accepting run

Theorem [AD94]

This problem is PSPACE-complete
first solution based on Regions

Key idea: Maintain sets of valuations reachable along a path

Key idea: Maintain sets of valuations reachable along a path

Easy to describe convex sets

Zones and zone graph

- Zone: set of valuations defined by conjunctions of constraints:

$$
\text { e.g. }(x-y \geq 1) \wedge(y<2)
$$

- Representation: by DBM [Dil89]

Sound and complete [DT98]

Zone graph preserves state reachability

Problem of non-termination

Abstractions

potentially infinite...

Abstractions

potentially infinite...

Abstractions

potentially infinite...

Find \mathfrak{a} such that number of abstracted sets is finite

Abstractions

Coarser the abstraction, smaller the abstracted graph

Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound $\Rightarrow \mathfrak{a}(W)$ can contain only valuations simulated by W

Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound $\Rightarrow \mathfrak{a}(W)$ can contain only valuations simulated by W

Question: Why not add all the valuations simulated by W?

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

$$
(y \leq 3) \quad(x<1) \quad(x<4)
$$

$$
(x>6)
$$

$$
(y<1)
$$

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

$$
(y \leq 3) \quad(x<1) \quad(x<4)
$$

$$
(x>6)
$$

$$
(y<1)
$$

$$
\begin{gathered}
\text { M-bounds }[\mathrm{AD} 94] \\
M(x)=6, M(y)=3 \\
v \preccurlyeq_{M} v^{\prime}
\end{gathered}
$$

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

$$
(y \leq 3) \quad(x<1) \quad(x<4)
$$

$$
(x>6)
$$

$$
(y<1)
$$

$$
\begin{gathered}
\text { M-bounds }[\mathrm{AD} 94] \\
M(x)=6, M(y)=3 \\
v \preccurlyeq_{M} v^{\prime}
\end{gathered}
$$

$$
\begin{gathered}
\text { LU-bounds [BBLP04] } \\
\begin{array}{c}
L(x)=6, L(y)=-\infty \\
U(x)=4, U(y)=3 \\
v \preccurlyeq_{L U} v^{\prime}
\end{array}
\end{gathered}
$$

Abstractions in literature [BBLP04, Bou04]

Abstractions in literature [BBLP04, Bou04]

Abstractions in literature [BBLP04, Bou04]

Convex

Only convex abstractions used in implementations!

Non-convex abstr.

Reachability

Liveness

Liveness

Step 1: We can use abstractions without storing them

Using non-convex abstractions

Using non-convex abstractions

(7), 3

Need to store only concrete semantics

Using non-convex abstractions

(93) $\quad Z_{3}$

Use $Z \subseteq \mathfrak{a}\left(Z^{\prime}\right)$ for termination

Step 1: We can use abstractions without storing them

Step 2: We can do the inclusion test efficiently

Efficient inclusion testing

Main result

$Z \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\{L U}\left(\operatorname{Proj} \dot{j}_{x y}\left(Z^{\prime}\right)\right)
$$

Efficient inclusion testing

Main result

$Z \nsubseteq \mathfrak{a}_{\{L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\{L U}\left(\operatorname{Proj} \dot{j}_{x y}\left(Z^{\prime}\right)\right)
$$

Complexity: $\mathscr{O}\left(|X|^{2}\right)$, where X is the set of clocks

Efficient inclusion testing

Main result

$Z \nsubseteq \mathfrak{a}_{\{L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\{L U}\left(\operatorname{Proj} \dot{j}_{x y}\left(Z^{\prime}\right)\right)
$$

Complexity: $\mathscr{O}\left(|X|^{2}\right)$, where X is the set of clocks
Same complexity as $Z \subseteq Z^{\prime}$!

Efficient inclusion testing

Main result

$Z \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\{L U}\left(\operatorname{Proj} \dot{j}_{x y}\left(Z^{\prime}\right)\right)
$$

Complexity: $\mathscr{O}\left(|X|^{2}\right)$, where X is the set of clocks

Same complexity as $Z \subseteq Z^{\prime}$!

Slightly modified comparison works!

Step 1: We can use abstractions without storing them

Step 2: We can do the inclusion test efficiently
\Rightarrow new algorithm for reachability

Convex

Question: Can we do better than $\mathfrak{a}_{\preccurlyeq L U}$?

Optimality

LU-automata: automata with guards determined by L and U

Theorem

The $\mathfrak{a}_{\preccurlyeq L U}$ abstraction is the biggest abstraction that is sound and complete for all LU-automata.

Non-convex abstr.

Efficient use

Reachability

Optimality

Liveness

Non-convex abstr.

Efficient use

Reachability

Optimality

Liveness

Liveness

Question: If $\mathfrak{a}_{\S L U}$ is the best, can we do better?

Question: If $\mathfrak{a}_{\preccurlyeq L U}$ is the best, can we do better?

Get better LU-bounds!

Global LU-bounds

Naive: $L_{x}=U_{x}=10^{6}, L_{y}=U_{y}=10^{6}$
Size of graph $\sim 10^{6}$

Static analysis: bounds for every q

 [BBFLO3]

Size of graph <10

Static analysis: bounds for every q

 [BBFLO3]

Size of graph $\sim 10^{6}$

Need to look at semantics...

LU bounds for every (q, Z) in zone graph

Constant propagation

Contribution: A new on-the-fly algorithm to learn constants during exploration

Theorem (Correctness)

An accepting state is reachable in \mathscr{A} iff the constant propagation algorithm reaches a node with accepting state and a non-empty zone.

Non-convex abstr.

Efficient use
Optimality

Bounds

On-the-fly

Liveness

Liveness

Benchmarks

Model	Our algorithm		UPPAAL's algorithm		UPPAAL 4.1.3 (-n4 -C -o1)	
	nodes	s.	nodes	s.	nodes	s.
CSMA/CD7	5046	0.39	5923	0.30	-	T.O.
CSMA/CD8	16609	0.75	19017	1.16	-	T.O.
CSMA/CD9	54467	9.40	60783	4.53	-	T.O.
FDDI10	459	0.04	525	0.05	12049	2.43
FDDI20	1719	0.41	2045	0.82	-	T.O.
FDDI30	3779	1.70	4565	3.90	-	T.O.
Fischer7	7737	0.40	18353	0.48	18374	0.35
Fischer8	25080	1.50	85409	2.31	85438	1.53
Fischer9	81035	5.70	397989	12.05	398685	8.95
Fischer10	-	T.O.	-	T.O.	1827009	53.44

- Extra $_{L U}^{+}$and static analysis bounds in UPPAAL
- $\mathfrak{a}_{\preccurlyeq L U}$ and otf bounds in our algorithm

Non-convex abstr.

Efficient use
Optimality

Bounds

On-the-fly

Liveness

Liveness

Timed Büchi automata

Run: infinite sequence of transitions

- accepting if infinitely often green state
- non-Zeno if time diverges $\left(\sum_{i \geq 0} \delta_{i} \rightarrow \infty\right)$

Büchi non-emptiness problem

Given a TBA, does it have a non-Zeno accepting run

Theorem [AD94]

This problem is PSPACE-complete

$$
\begin{array}{ccc}
Z G^{\mathfrak{a}}(\mathscr{A}): & \left(q_{0}, Z_{0}\right) \rightarrow\left(q_{1}, Z_{1}\right) \rightarrow\left(q_{2}, Z_{2}\right) \rightarrow \cdots \\
ש & \cdots \\
\mathscr{A}: & \left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \rightarrow\left(q_{2}, v_{2}\right) \rightarrow \cdots
\end{array}
$$

Sound and complete [Tri09, Li09]

All the above abstractions preserve repeated state reachability

$$
\begin{array}{ccc}
Z G^{\mathfrak{a}}(\mathscr{A}): & \left(q_{0}, Z_{0}\right) \rightarrow\left(q_{1}, Z_{1}\right) \rightarrow\left(q_{2}, Z_{2}\right) \rightarrow \cdots \\
ש & \cdots & \cdots \\
\mathscr{A}: & \left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \rightarrow\left(q_{2}, v_{2}\right) \rightarrow \cdots
\end{array}
$$

Sound and complete [Tri09, Li09]

All the above abstractions preserve repeated state reachability

What about non-Zenoness?

Adding a clock for non-Zenoness [TYB05]

$\mathbf{A}^{\prime}: \quad$ strongly non-Zeno TBA
$\quad|X|+1$ clocks and at most $2 \cdot|Q|$ states

Theorem [TYB05]

A has a non-Zeno accepting run iff $\mathrm{ZG}^{\mathrm{a}}\left(\mathrm{A}^{\prime}\right)$ has an accepting run

Adding a clock for non-Zenoness [TYB05]

$$
\begin{aligned}
& \mathbf{A}^{\prime}: \quad \text { strongly non-Zeno TBA } \\
& \quad|X|+1 \text { clocks and at most } 2 \cdot|Q| \text { states }
\end{aligned}
$$

Theorem [TYB05]

A has a non-Zeno accepting run iff $\mathrm{ZG}^{\mathrm{a}}\left(\mathrm{A}^{\prime}\right)$ has an accepting run
Question: Is this good enough?

Adding a clock for non-Zenoness [TYB05]

A^{\prime} : strongly non-Zeno TBA
$|X|+1$ clocks and at most $2 \cdot|Q|$ states

Theorem [TYB05]

A has a non-Zeno accepting run iff $\mathrm{ZG}^{\mathrm{a}}\left(\mathbf{A}^{\prime}\right)$ has an accepting run

Contribution: The construction can give exponential blowup

Theorem

There exists an automaton \mathscr{A}_{n} with n clocks for which

$$
\left|\mathrm{ZG}^{\mathrm{a}}\left(\mathscr{A}_{n}^{\prime}\right)\right|=\mathscr{O}\left(2^{n}\right) \cdot\left|\mathrm{ZG}^{\mathrm{a}}\left(\mathscr{A}_{n}\right)\right|
$$

Non-convex abstr.

Efficient use
Optimality

Bounds

On-the-fly

Non-Zenoness
Adding 1 clock is costly
Liveness

Coming next: A new construction for non-Zenoness

New construction

When does a path in $\mathrm{ZG}^{\mathfrak{a}}(\mathscr{A})$ yield only Zeno runs?

Blocking clocks

x never reset but checked for upper bound

Zero-checks
x and y should be 0 all along the path

Zero-checks

Can time elapse here?

Zero-checks

Time can elapse at a node if every zero-check is preceded by a reset

Zero-checks

Time can elapse at a node if every zero-check is preceded by a reset

Guessing Zone Graph $\left(G Z G^{\mathfrak{a}}(\mathscr{A})\right)$:

$$
\begin{array}{ll}
(q, Z, Y) & \xrightarrow{\{x\}}\left(q^{\prime}, Z^{\prime}, Y \cup\{x\}\right) \\
(q, Z, Y) & \xrightarrow{(x=0)} \\
(q, Z, Y) & \text { enabled only if } x \in Y \\
(q, Z, \emptyset)
\end{array}
$$

Algorithm

Theorem

A has a non-Zeno run iff there is an unblocked path in $\mathrm{GZG}^{\mathfrak{a}}(A)$ with infinitely many nodes that have $Y=\emptyset$.

Complexity: $\left|\operatorname{GZG}^{\mathfrak{a}}(A)\right| \cdot(|X|+1)$
$2^{|X|}$ more nodes in $\mathrm{GZG}^{\mathfrak{a}}(A)$ than in $\mathrm{ZG}^{\mathfrak{a}}(A)$ due to Y sets?
$2^{|X|}$ more nodes in $\mathrm{GZG}^{\mathfrak{a}}(A)$ than in $\mathrm{ZG}^{\mathfrak{a}}(A)$ due to Y sets?

Theorem

- For each reachable node $(q, Z), Z$ entails a total order on X.
- Extra $_{M}$, Extra $_{M}^{+}$preserve the order.
- Y respects this order; only $|X|+1$ sets needed.
$2^{|X|}$ more nodes in $\mathrm{GZG}^{\mathfrak{a}}(A)$ than in $\mathrm{ZG}^{\mathfrak{a}}(A)$ due to Y sets?

Theorem

- For each reachable node $(q, Z), Z$ entails a total order on X.
- Extra $_{M}$, Extra $_{M}^{+}$preserve the order.
- Y respects this order; only $|X|+1$ sets needed.

$$
\operatorname{Extra}_{L U}, \operatorname{Extra}_{L U}^{+} \text {do not preserve order }
$$

Theorem

Non-Zenoness from LU-abstract zone graphs is NP-complete

Theorem

A slight weakening of Extra ${ }_{L U}$, Extra $_{L U}^{+}$preserves order

Non-convex abstr.

Efficient use
Optimality

Bounds

On-the-fly

Non-Zenoness
Adding 1 clock is costly
New construction
NP-complete for LU

Liveness

Benchmarks

A	$Z^{\mathfrak{a}}(A)$	$\mathrm{ZG}^{\mathfrak{a}}\left(A^{\prime}\right)$		$\mathrm{GZG}^{\mathfrak{a}}(A)$		
	size	size	otf	size	otf	opt
Train-Gate2 (mutex)	134	194	194	400	400	134
Train-Gate2 (bound. resp.)	988	227482	352	3840	1137	292
Train-Gate2 (liveness)	100	217	35	298	53	33
Fischer3 (mutex)	1837	3859	3859	7292	7292	1837
Fischer4 (mutex)	46129	96913	96913	229058	229058	46129
Fischer3 (liveness)	1315	4962	52	5222	64	40
Fischer4 (liveness)	33577	147167	223	166778	331	207
FDDI3 (liveness)	508	1305	44	3654	79	42
FDDI5 (liveness)	6006	15030	90	67819	169	88
FDDI3 (bound. resp.)	6252	41746	59	52242	114	60
CSMA/CD4 (collision)	4253	7588	7588	20146	20146	4253
CSMA/CD5 (collision)	45527	80776	80776	260026	260026	45527
CSMA/CD4 (liveness)	3038	9576	1480	14388	3075	832
CSMA/CD5 (liveness)	32751	120166	8437	186744	21038	4841

- Combinatorial explosion may occur in practice
- Optimized use of $\mathrm{GZG}^{\mathrm{a}}(A)$ gives best results

Non-convex abstr.

Efficient use
Optimality

Bounds

On-the-fly

Non-Zenoness

Adding 1 clock is costly
New construction
NP-complete for LU
CAV'10 + ATVA'10 (FMSD'12), CONCUR'11

Zenoness

First complete algorithm
NP-complete for LU

Perspectives

- More than LU
- Automata with diagonal constraints
- Probabilistic timed automata, priced timed automata
- Non-Zeno strategies for timed games

References I

R. Alur and D.L. Dill.

A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.
G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen.

Static guard analysis in timed automata verification.
In TACAS'03, volume 2619 of LNCS, pages 254-270. Springer, 2003.
G. Behrmann, P. Bouyer, K. Larsen, and R. Pelánek.

Lower and upper bounds in zone based abstractions of timed automata.
Tools and Algorithms for the Construction and Analysis of Systems, pages 312-326, 2004.
P. Bouyer.

Forward analysis of updatable timed automata.
Form. Methods in Syst. Des., 24(3):281-320, 2004.
D. Dill.

Timing assumptions and verification of finite-state concurrent systems.
In AVMFSS, volume 407 of $L N C S$, pages 197-212. Springer, 1989.
C. Daws and S. Tripakis.

Model checking of real-time reachability properties using abstractions.
In TACAS'98, volume 1384 of LNCS, pages 313-329. Springer, 1998.
Guangyuan Li.
Checking timed büchi automata emptiness using lu-abstractions.
In Joël Ouaknine, editor, Formal modeling and analysis of timed systems. 7th Int. Conf. (FORMATS), volume 5813 of Lecture Notes in Computer Science, pages 228-242. Springer, 2009.

References II

François Laroussinie and Ph. Schnoebelen.
The state explosion problem from trace to bisimulation equivalence.
In Proceedings of the Third International Conference on Foundations of Software Science and Computation Structures, FOSSACS '00, pages 192-207. Springer-Verlag, 2000.
S. Tripakis.

Checking timed büchi emptiness on simulation graphs.
ACM Transactions on Computational Logic, 10 (3):??-??, 2009.
S. Tripakis, S. Yovine, and A. Bouajjani.

Checking timed büchi automata emptiness efficiently.
Formal Methods in System Design, 26(3):267-292, 2005.

