Errata ”Principles of Model Checking” (July 2010)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen, The
Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Hermanns
(Saarland University), Dave Parker (Oxford University, UK), Stephen Siegel (University
of Delaware, USA), René Thiemann (U. Innsbruck, Austria), Martin Lange (LMU, Ger-
many), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-Ari (Weiz-
mann Institute, Israel), Verena Wolf (Saarland University), Erika Abrdham, Alexander
NyfBlen and Daniel Weber (RWTH Aachen University), Michael Ummels (ENS Cachan,
France) and the students at the RWTH Aachen University attending the “(Advanced)
Model Checking” lecture.

Comments are provided as:

(page number) (line number) (short quote of the wrong word(s)) > (correction)

Chapter 1: System Verification

pp- 1, 1. -5, Pentium II > Pentium
pp- 5, 1. 9, lines of code lines > lines of code

pp- 5, L. footnote, much higher > as the number of lines of code in the “golden” version
of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp- 6, 1. 4, Pentium II > Pentium

Chapter 2: Modeling Concurrent Systems

pp- 25, 1. 11, heading Example 2.8 > FExecution fragments of the Beverage Vending Ma-
chine

pp. 27, L. -15, function A, > The function A, has no impact on the transitions (as sug-
gested), but only affects the state labeling.

pp- 31, L. Fig. 2.3, beer, soda I> bget and sget, respectively
pp- 31, L. Fig. 2.3, state with 1 beer, 2 soda > the grey circle should be a white circle.
pp- 34, 1. 2, ((,v) > ({,m)

Effect;(c, n|ygyp,)(v) if v € Var;

pp. 40, 1. Def. 2.21, Effect(n, «) = Effect;(n, o)) > Effect(a,n)(v) = { otherwise
v rwis

pp- 42, 1. -10, interlock > interleave

pp. 46, 1. Fig. 2.9, locations in PGy > should be subscripted with 2 (rather than 1)
pp. 48, 1. -1, H = Act; N Acty > H = (Act; N Acte) \ {7}

pp. 51, 1. Fig. 2.12, T || T, > TSy || TSz (this occurs twice)

pp- 51, L. Fig. 2.12, > All downgoing transitions should be labeled with request, and all
upgoing ones with release

pp- 51, 1. -7, all trains > the train
pp. 52, 1. 3, (above) > (page 54)
pp- 93, L. -1, finite set of channels > set of channels

pp. 54, 1. Fig. 2.16, the transition labeled approach emanating from state (far,3, down) >
should be removed, and all the states that thus become unreachable

pp. 54, L. Fig. 2.16, the transition labeled exit emanating from state (in,1,up) > should
be removed, and all the states that thus become unreachable

pp. 55, 1. -10, (Cond(Var)x > Cond(Var)x

pp. 62, 1. -3, gen_msg(1) > snd-msg(1)

pp- 64, 1. 4, ack > message

pp- 65, 1. Fig. 2.21, second do > od

pp- 66, 1. 8, Staements build > Statements built

pp. 71, 1. 15, label in conclusion of inference rule cle > it is meant that the value of
expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, 1. 1, €[c:=wvgy...vp] > & =E&[ci=vq... 0]
pp. 74, 1. 1, {[c:=v1 ... op0] > & =E[ci=v1 ... v0)]
pp. 76, 1. Figure 2.23 (top), x > o’

pp. 79, 1. -6,-8, |[dom(c)|?(©) > |dom(c)|cP(®)

pp- 82, L. Exercise 2.2, line 2, Pyjis > P; is

Chapter 3: Linear-Time Properties

pp- 89, 1. 9, parallel systems 1> reactive systems

pp- 90, 1. 1, Fault Designed Traffic Lights > Faulty Traffic Lights

pp- 91, 1. 7, a deadlock occurs when all philosophers > a deadlock may occur when all
philosophers

pp- 92, 1. Fig. 3.2, request and release I> req and rel

pp. 92, L. 6, requesty [> reqy 4; similar to the other request actions

pp. 93, . -4,-5 and Fig. 3.3, Fig. 3.4, state available; > available; ;

pp. 93, 1. -4,-5 and Fig. 3.3, Fig. 3.4, state available;1 > available; ;11
pp- 93, 1. 10, The corresponding is > The corresponding condition is
pp- 94, L. Fig. 3.4, falls x; > x;

pp- 96, 1. 3, finite paths > finite path fragments

pp- 96, 1. 4, infinite path > infinite path fragment

pp. 100, 1. 9, (over AP) > (over 2AP)

pp- 101, 1. -3, redy greens > redy, greens

pp- 103, 1. 11, lwait; > wait;

pp- 103, 1. 11, 3k > j. wait; € A > 3k > j. crit; € A

pp. 111, 1. Theorem 3.21, M =" ¢ |Post(s)| > M = ZseReach(TS) | Post(s)]

pp. 111, 1. 22, The time needed to check s = ® is linear in the length of ® > Add: This
implicitly assumes that a € L(s) can be checked in O(1) time.

pp- 112, 1. -2, > A minimal bad prefix is one such that the first occurrence of ® is the
last symbol in the word.

yellow

pp. 113, L. Figure 3.9, so ~———s1 > sq —)’Msl

pp- 115, 1. Lemma 3.27, Proof > add the following sentence to the beginning of the proof:
First note that for P = (24F)¢ the claim trivially holds, since closure(P) = P and the fact
that P is a safety property since P is empty. In the remainder of the proof we consider
P+ (QAP)UJ.

pp. 118, 1. 10,11, 7og™ig™m2 _ of mOnln? ... such that> w0, 7™ 72 . . of 70 7wl 72, ...
such that

pp- 124, 1. -3, By definition > By Lemma 3.27
pp- 130, 1. 3, without being taken beyond > without being taken infinitely often beyond
pp- 131, 1. 17, assignment x = —1 > assignment z := —1

pp. 132, 1. 2, an execution fragment ... but not strongly A-fair. > an execution fragment
that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the
premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp- 134, 1. 10, any finite trace is fair by default > any finite trace is strongly or weakly
fair by default

pp. 136, 1. -5, strong fairness property t> fairness property

pp. 138, 1. 4, It forces synchronization actions to happen infinitely often. > It forces syn-
chronization actions to happen infinitely often provided they are enabled infinitely often.

pp- 138, 1. -14, This requires that ... is enabled. > This requires that infinitely often a
synchronization takes place when such synchronization is infinitely often enabled.

pp. 141, 1. 5, the set of properties that has > the property that has

pp. 145, 1. Exercise 3.5(g), between zero and two > between zero and non-zero

Chapter 4: Regular Properties

pp. 167, L -1, w=A;... A, €X> w=A4;... A, € ¥*

pp- 157, 1. -10, starts in Qo > starts in state Qg

pp. 157, 1. -4, QO > {QO}

pp. 158, 1. -14, NFAs can be much more efficient. > NFAs can be much smaller.

pp. 161, 1. -9, (2) ... forall1 <i<mnop> .. forall 0 <i<n. (Note: the invariant false
has minimal bad prefix ¢.)

pp.161,1.-8,1<i<n> 0<i<n

pp- 163, 1. Example 4.15, Minimal bad prefizes for this safety property constitute the lan-
guage { pay™drink™™ | n > 0} > Bad prefixes for this safety property constitute the
language {o € (2{p“y’dri"k})w | w(o, drink) > w(o, pay) } where w(o,a) denotes the num-
ber of occurrences of a in o.

pp- 164, 1. 5,6, two NFAs intersect. > the languages of two NFAs intersect.
pp- 164, 1. -8, path fragment w > initial path fragment m

pp- 164, 1. -6, TS® A which has an initial state > TS® A such that there exists an initial
state

pp. 167, 1. 7, 11, -4, P4y &> Pipy(a)

pp- 167, 1. -2, ¢1,...,q, € F' > Note: this condition is not necessary.
pp- 168, 1. 1, 0<i<n> 0<i<n

pp- 171, 1. 8, single word > a set contaning a single word

pp- 177, 1. -7, Example 4.13 on page 161 > Example 4.14 on page 162

pp- 183,1. -3, -1, Ly = ... > Ly = C*AB(B + BC*AB)*

pp- 196, 1. Example 4.57, page 193 > page 194

pp. 200, L -7, A e &> Ayer

pp- 202, 1. Fig. 4.22, > The two states should be labeled sy and s1, respectively
pp. 203, 1. 4, P = ”eventually forever — green > P = infinitely often green

pp. 206, . Proof:, TS = (S, Act,—,I, AP) > TS=(S,Act,—,I, AP, L)

pp- 207, 1. -4, We now DFS-based cycle checks ... checking > We now present a DFS-based
algorithm for persistence checking that searches backwards edges to check for cycles.

pp- 212, 1. 6, ignores T' > does not revisit the states in T’
pp- 218, 1. 10, Regula r > Regular

Chapter 5: Linear Temporal Logic

pp- 230, 1. 5, eventually in the future > now or eventually in the future
pp- 236, 1. Figure 5.2, > It is assumed that o = AgA1A4,...
pp- 240, 1. -10, (5,«2 = > 57’2 = Ty

pp- 241, 1. Fig. 5.6, > Note that the inputs of the r registers are on the right, and their
outputs on the left.

pp. 256, 1. -3, (dfi..] = @) A VE<iolk.]EvY > (oi.] Ee A VE<iok.]Ey
pp- 267, 1. 7, as soon as > before

pp- 270, 1. Fig. 5.15, > The bottom cell should be white and not gray.

pp. 276, 1. -11, ¢ € Bif and only if ... > 1 € B if and only if ...

pp. 278, 1. Proof of Theorem 5.37, > It is assumed that o = AgAi1As... is such that
A; C closure(yp), i.e., A; = B; N AP means A; N closure(p) = B; N AP

pp. 281, 1. 1-5, For ByB1B;y... a sequence ... we have for all ¢ € cl(p): p € By <
ApA1Ay ... = > For all ¥ € cl(p) and ByB1B;... a sequence ... we have: 1) € By <
AgA1Ay ... E Y

pp. 283, 1. 10, #OQv e Bifand...> = (O ¢y € Bifand ...

pp- 283, 1. 17, and o = Oa € B1,By > and ¢ =a € By, By

pp. 284, 1. -14, B3 B3 B1Bf > B3 B3 B1BY

pp. 287, L. -5, |=(fair —)| = |fair| + |o| &> |=(fair — ¢)| = [=(~fair V ¢)| =

fair| + o] +3

bp.
bp.
pbp.
pbp.
pbp.
pbp.
bp.

Chapter

pbp.
pbp.
pbp.
pbp.
pbp.
pbp.
pbp.
pbp.
pbp.
bp.
bp.

289, 1.
292, 1.
292, 1.
294, 1.
297, 1.
303, 1.
303, 1.

320, 1.
327, 1.
333, 1.
338, 1.
338, 1.
342, 1.
343, 1.
345, 1.
345, 1.
349, 1.

351, L.

11, a new vertex b to G > a new vertex b to TS

Figure 5.23, > the self-loop at state P(n) should be omitted
-1, O%Yq, A, i) — > begin A O % g, Ai) —

-6, Gyarphi > G,

7, Membership to > Membership in

Exercise 5.7(a), p1 A2 > @1 Ry

Exercise 5.7(b), W > Y (to avoid confusion with unless)

6: Computation Tree Logic

-4, state formula > State formula

-12, since (U VvV Op) > since V(e Uy v Oyp)

10, =30 =@ = =3(trueU®) > =30 =P = —I(true U - P)

5 TS, =(S,...> TS, =(S,,...

-5 and -6, > transitions to s,,_; are non-existing for n=0

Algorithm 13, and -8 and -4, mazimal genuine > maximal proper

4, subformula of ¥ > subformula of ¥’

-2, Sat(3(PUW¥) > Sat(I(PUW))

proof of (g)(ii), Let m = sps152 ... be a path starting in s=sg. > Delete.
9, (a=c)AN(a#b) > (a—c)A(asDb)

Algorithm 15, > comments in the first two lines of algorithm need to be

swapped while replacing E by T and T by E

bp.
bp.
bp.
bp.
bp.
bp.
bp.

354, 1.
354, 1.
358, 1.
371, 1.
372, 1.
374, 1.
378, 1.

Example 6.28, see the gray states > Delete.

Example 6.28, Figure 6.13(b), Figure 6.13(c) > Figure 6.13(c), Figure 6.13(d)
11, > Note that the length of ®, € O(n!)

-6, ifstatement > if statement

Algorithm 19, line 4, C' N Sat(b;) # @ > C N Sat(b;) # @

6, counterramples > counterexamples

-6, Faxmple > Example

pp. 380, 1. 12, (a A d') U (ma A —=d’ A ageir) > (a A=a')U (ma A —=d' A ageir)

pp. 381, 1.9, 00 (¢gAT) =00 =(gvr)> O0(anb) - OO —(aVb)
pp-381,1.9and 12, b=c> bsc

pp-383,1. 9and 10, ...z, > ..., zm,

pp. 386, 1. 13 and 15 (twice), s{y «— z} > s{Z «— 7}

pp. 386, l. 15-17, f{z — 3} > f{y «— Z}

pp. 387, 1. 18, t{z/z'} > {7’ — z}

pp. 388, 1. 7, 2’ >

pp. 388, L 7, A\jicn(@j < 25) > Nipiojn(@) & 7))

pp. 388, 1. 7-8, > add conjunct A (—|:c1 = TN Nicjcn(@) < x;))

pp. 388, 1. 14-17, > =z and 2’ should be swapped

pp. 388, 1. Example 6.58 (four times), {z «— 2/} > {2/ — z}

pp. 390, 1. 8, 3s’ € Ss.t.s’ € Post(s) > s’ € S.s' € Post(s)

pp. 390, 1. Algorithm 20, line 4, f;11(Z) = fj+1(Z) V... > fin(Z) = fi(Z)V
pp. 391, 1. Algorithm 21, line 4, f;11(Z) == fj+1(@) A ... > fipq(T) = fi;(Z)A ...
pp- 391, 1. Algorithm 21, line 4, return > return

Kl

pp- 391, 1. 19, 19 > can be rules as

can be ruled out as pp. 393, 1. Figure 6.21 (right), solid line between z3 and 0 > dashed
line between z3 and 0

pp- 396, 1. -15, The semantics > The semantics of
pp- 398, 1. 9, left subtree > right subtree
pp- 393, 1. Figure 6.21, right, solid line z3 between 0 1> dashed line z3 between 0

pp- 405, 1. 2, zp, = G, 2m = by -y 2i = 4,2 = b; > Zp = Gy Ym = by .o, 20 =
ai,y; = b

PPp. 4057 1. 3, zm:am’zm:bm7"'7z’i+1:ai+17zi+1:bi+17zi:ai|> Zm = Oy Ym =
by - Zigl = Qi 1, Yig1 = Qi1 % = G

pp. 405, 1. -4, As fb,c€ {0,1}™" > Asb,c€ {0,1}™

pp.- 409, 1. -12, info(v) = (var(v), succy(v), succo(v)) > info(v) = (var(v),succy(v), succo(v))
pp- 412, 1. 7, u > v

pp. 413, 1. 13, foz1 = b1, ..., 2 = bi > folo=by,.zi=b;

pp. 417, 1. heading Algorithm 24, (v,{Z <« 7'}) > (v,{Z' «— 7})

pp- 417, 1. Algorithm 24, line 4, ist > is a

pp- 417, 1. Algorithm 24, > replace z by x
pp. 418, 1. -6, f|,_3 > flo=p

Chapter 7: Equivalences and Abstraction

bp.
pbp.
pbp.
pbp.
pbp.
pbp.
bp.
bp.
bp.
bp.
bp.
bp.
pbp.
bp.

454, 1.
464, 1.
466, 1.
469, 1.
475, 1.
489, 1.
513, 1.
518, 1.
519, 1.
528, 1.
537, 1.
539, 1.
542, 1.
546, 1.

3, Sssume > Assume

Figure 7.9, arrows ny co to wiwe and cing to wiws > should be omitted
8, H= Act; NActy > H = (Act; N Acto) \ {7}

Remark 7.19, line 10, so = ¢, but s1 = ¢ > so = —p, but s1 = -
Corollary 72.7 (¢), =c1L > =07y

Algorithm 32, line 647, > these lines need to be swapped

9, {a}o ¢ Traces(TS1) > {a}@ ¢ Traces(TSz)

8, V& e VCTL* > V¥ € VCTL

-10, fragment of CTL* t> fragment of CTL

-9, s1 € Pre(sh) > s1 € Pre(s))

-5, (c2,n1) > (ng,c2)

2, R on (S1 x S2) U (S1 x S2) > Ron TS; & TS,

5, (ca,n1) > (n1,c2)

13, s9 is %%“—diveTgent whereas sg and s1 are not. > $9 is not z%“—divergent

whereas sg and sj are.

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.

546, 1.
554, 1.
556, 1.
556, 1.
557, 1.
562, 1.
563, 1.

566, 1.

after Example 7.110, where the state labelling is indicated by the grey scale >
8, amounts > amounts to

Figure 7.45, v1 and vy > t; and to

Figure 7.45 (rechts), s; > s

-8, since so and us are R-equivalent > since s; and uy are R-equivalent

1, and s13p > and s1 = Jp

4, opUPc is a CTL\o formula > 3(PpUPc)is a CTL,, formula

16, £y : (if (free > 0) then i := 0; free—— fi) > {5 : (if (free > 0) then i :=

0; free—— fi) ; goto £y

pp. 566, 1. -3, (¢, 45,2,0,0) — (€o, £;,2,0,0) > (€1,45,2,0,0) — (¢1,£;,2,0,0)

pp- 569, 1. 7, there are some states in B that cannot reach C' by only visiting states in B.
For such states, the only possibility is to reach C via some other block D # B,C. > C
can only be reached via paths that entirely go through B.

pp. 569, 1. -5, BN Pref;(C) > BN Pre(C)
pp. 572, 1. 11, ¢t € Exit(B) > t € Bottom(B)
pp. 577, 1. -2, quotient space S/= > quotient space S

pp. 578, . 4, E = {(s,t) € Sx S | L(s) = L(t)} > E = {(s,t) € Sx S| L(s) =
L(t) N s 2>t for some o € Act }

/gdiv

pp. 578, 1. item 3., self-loops [s] g;,, — [s] gjy > self-loops [s] — [s]

Chapter 8: Partial-Order Reduction

pp- 596, 1. 19, consists > consists of

pp- 597, 1. 11, of state space 1> of the state space

pp- 601, 1. -11, TS be action-deterministic > TS be an action-deterministic
pp- 602, 1. 5, independent on > independent of

pp- 610, 1. 3, all ample actions 1> all actions

pp- 610, 1. 6, any finite execution in TS > any finite execution in TS ending with an
ample action

pp- 610, 1. 14, 51L52ﬁ> D> sleﬁ

pp- 611, 1. 6, cycle sgsase B> cycle s959

pp. 612, 1. -7 and -9, Reach(TS) > Reach(TS)

pp. 613, 1. 8, constraints (A1) and (A2) > constraint (A2)

pp- 613, 1. below Notation 8.16, necessary > almost sufficient

pp. 623, 1. -10 and -4, Section 5.2 > Section 4.4.2

pp. 625, 1. Algorithm 39, line 3, TSEO® > TSEOO®

pp. 629, 1. -5, 0 = sg— ... =t-2strap> o = sg—' ... ="t trap

pp. 666, 1. Exercise 8.6, ample(sg) = { o, 8,7} > ample(sg) = {n, 3,7}

10

Chapter 9: Timed Automata

pp. 674, 1. -12, is more an intuitive than > is more intuitive than

pp. 683, 1. -9, ... ||TA, > ...||zTA,

pp. 685, 1. Figure 9.9, (far,0, up)) — (near, 1, up), reset(xz,y) > reset(z,y)
pp. 696, 1. 2, n (= g; or Inv({;) > n W~ gj or n = Invu({;)

pp. 696, 1. 12, n;_; > mnj_1 (this occurs twice!)

pp- 696, 1. proof of Lemma 9.24, > The variables ¢, j and depend on the cycle in 7.
For the sake of simplicity, this dependency is not treated here.

pp- 696, 1. -5, when going from location off to on > when going from location on to off
pp. 699, 1. -3, VO>2—on > VOS2—on

pp. 702, 1. -5, TCTLsemantics > TCTL semantics

pp. 709, L. -10, of the form x < c orx <cp> oftheformz <c,x <c,x >corz >c
pp. 710, 1. -12, Figure 9.18) > Figure 9.18

pp. 713, 1. Definition 9.42, line 3, if and only if either > if and only if either for all z € C'
(in the two bullets the universal quantification over x needs to be deleted)

pp. 716, 1. -3, consraint (C) > constraint (C)

pp. 717, 1., open intervals like |0,1] > (0,1)

pp- 730, 1. 4, VOa > aUb

pp- 730, 1. 19, Qa > aUb

pp- 730, 1. 21, time-convergent > time-divergent

pp. 731, 1. Example 9.63, with n(z) > 1 > with n(z) =2

Chapter 10: Probabilistic Systems

pp- 749, 1. Example 10.2, senf off > sent off
pp. 753, 1. Notation 10.6, 1. 1, Post™(s) > Post(s)
pp. 776, 1. -3, absorbing states > states

11

pp. 778, 1. 4, P'(s,t) = ... >

1 ifs=tand s€ BUS\ (CUB)
P'(s,t)=1¢ 0 if s#tand se BUS\ (CUB)
P(s,t) otherwise.

pp. 821, 1. 13, time complexity of the size I> time complexity in the size
pp. 851, 1. Theorem 10.100, > Add the following condition:) gz is minimal.

pp. 857, 1. 2, Z P(s,a,t) -z > — Z P(s,a,t) -z
s€572\{s} s€57\{s}

pp- 862, 1. Lemma 10.113 + succeeding paragraph, > should be after Theorem 10.109
pp- 870, 1. Lemma 10.119, any s € S > any s € T
pp- 876, 1. 11, UEI()P > UI:I()B

pp- 883, 1. Theorem 10.129 and just before, is in 2EXPTIME > is 2EXPTIME-complete
(twice)

pp- 903, 1. Exercise 10.14, p =00a > ¢ =0U0a

pp. 903/904, 1. Exercise 10.17, Markov chain M > Markov chain M where all states are
equally labeled

pp. 905, 1. Exercise 10.22, > Compute also the values y; = Pr™®(s = C'UB) with
C=S5\{s3}and B={s¢}

pp. 905, 1. Exercise 10.23, (a), 1. and (b) > (a), (b), (c)

Appendix

pp. 912, 1. footnote, 0 = A1AsA3... > o= AgA1As...
pp- 918, 1. 8, not to 1 > not ton

pp- 925, 1. 1, they are composed of simple paths > they are composed of paths, at least
one of which is simple.

