Errata "Principles of Model Checking" (July 2010)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen, The Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Hermanns (Saarland University), Dave Parker (Oxford University, UK), Stephen Siegel (University of Delaware, USA), René Thiemann (U. Innsbruck, Austria), Martin Lange (LMU, Germany), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-Ari (Weizmann Institute, Israel), Verena Wolf (Saarland University), Erika Abráhám, Alexander Nyßen and Daniel Weber (RWTH Aachen University), Michael Ummels (ENS Cachan, France) and the students at the RWTH Aachen University attending the "(Advanced) Model Checking" lecture.

Comments are provided as:

 $\langle \text{ page number} \rangle \langle \text{ line number} \rangle \langle \text{ short quote of the wrong word(s)} \rangle \triangleright \langle \text{ correction} \rangle$

Chapter 1: System Verification

pp. 1, l. -5, *Pentium II* \triangleright Pentium

pp. 5, l. 9, *lines of code lines* \triangleright lines of code

pp. 5, l. footnote, *much higher* \triangleright as the number of lines of code in the "golden" version of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp. 6, l. 4, *Pentium II* \triangleright Pentium

Chapter 2: Modeling Concurrent Systems

pp. 25, l. 11, heading Example 2.8 \triangleright Execution fragments of the Beverage Vending Machine

pp. 27, l. -15, function $\lambda_y \triangleright$ The function λ_y has no impact on the transitions (as suggested), but only affects the state labeling.

pp. 31, l. Fig. 2.3, beer, soda \triangleright bget and sget, respectively

pp. 31, l. Fig. 2.3, state with 1 beer, 2 soda \triangleright the grey circle should be a white circle. pp. 34, l. 2, $\langle \ell, v \rangle \triangleright \langle \ell, \eta \rangle$ $\mathbf{2}$

pp. 40, l. Def. 2.21, $Effect(\eta, \alpha) = Effect_i(\eta, \alpha) \triangleright Effect(\alpha, \eta)(v) = \begin{cases} Effect_i(\alpha, \eta|_{Var_i})(v) & \text{if } v \in Var_i \\ v & \text{otherwise} \end{cases}$

- pp. 42, l. -10, $interlock \triangleright$ interleave
- pp. 46, l. Fig. 2.9, *locations in* $PG_2 \triangleright$ should be subscripted with 2 (rather than 1)
- pp. 48, l. -1, $H = Act_1 \cap Act_2 \triangleright H = (Act_1 \cap Act_2) \setminus \{\tau\}$
- pp. 51, l. Fig. 2.12, $T_1 \parallel T_2 \triangleright TS_1 \parallel TS_2$ (this occurs twice)
- pp. 51, l. Fig. 2.12, \triangleright All downgoing transitions should be labeled with request, and all upgoing ones with release
- pp. 51, l. -7, all trains \triangleright the train
- pp. 52, l. 3, $(above) \triangleright (page 54)$
- pp. 53, l. -1, finite set of channels \triangleright set of channels

pp. 54, l. Fig. 2.16, the transition labeled approach emanating from state $\langle far, 3, down \rangle >$ should be removed, and all the states that thus become unreachable

pp. 54, l. Fig. 2.16, the transition labeled exit emanating from state $\langle in, 1, up \rangle \triangleright$ should be removed, and all the states that thus become unreachable

pp. 55, l. -10, $(Cond(Var) \times \triangleright Cond(Var) \times$

pp. 62, l. -3, $gen_msg(1) \triangleright snd_msg(1)$

pp. 64, l. 4, $ack \triangleright$ message

pp. 65, l. Fig. 2.21, second do \triangleright od

pp. 66, l. 8, Staements build \triangleright Statements built

pp. 71, l. 15, label in conclusion of inference rule $c!e \triangleright$ it is meant that the value of expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, l. 1, $\xi[c := v_2 \dots v_k] \triangleright \xi' = \xi[c := v_2 \dots v_k]$

pp. 74, l. 1, $\xi[c := v_1 \dots v_k v] \triangleright \xi' = \xi[c := v_1 \dots v_k v]$

pp. 76, l. Figure 2.23 (top), $x \triangleright x'$

pp. 79, l. -6,-8, $|dom(c)|^{cp(c)} > |dom(c)|^{cap(c)}$

pp. 82, l. Exercise 2.2, line 2, $P_i is \triangleright P_i$ is

Chapter 3: Linear-Time Properties

pp. 89, l. 9, *parallel systems* \triangleright reactive systems

pp. 90, l. 1, Fault Designed Traffic Lights \triangleright Faulty Traffic Lights

pp. 91, l. 7, a deadlock occurs when all philosophers \triangleright a deadlock may occur when all philosophers

- pp. 92, l. Fig. 3.2, request and release \triangleright req and rel
- pp. 92, l. 6, $request_4
 ightarrow req_{4,4}$; similar to the other request actions
- pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state $available_i \triangleright available_{i,i}$
- pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state $available_{i+1} \triangleright available_{i,i+1}$
- pp. 93, l. 10, The corresponding is \triangleright The corresponding condition is
- pp. 94, l. Fig. 3.4, falls $x_i \triangleright x_i$
- pp. 96, l. 3, *finite paths* \triangleright finite path fragments
- pp. 96, l. 4, *infinite path* \triangleright infinite path fragment
- pp. 100, l. 9, (over AP) \triangleright (over 2^{AP})
- pp. 101, l. -3, red_1 green₂ \triangleright red_1 , green₂
- pp. 103, l. 11, $lwait_i \triangleright wait_i$
- pp. 103, l. 11, $\exists k \ge j$. wait_i $\in A_k \vartriangleright \exists k > j$. crit_i $\in A_k$
- pp. 111, l. Theorem 3.21, $M = \sum_{s \in S} |Post(s)| \triangleright M = \sum_{s \in Reach(TS)} |Post(s)|$

pp. 111, l. 22, The time needed to check $s \models \Phi$ is linear in the length of $\Phi \triangleright$ Add: This implicitly assumes that $a \in L(s)$ can be checked in $\mathcal{O}(1)$ time.

pp. 112, l. -2, \triangleright A minimal bad prefix is one such that the first occurrence of Φ is the last symbol in the word.

pp. 113, l. Figure 3.9, $s_0 \xrightarrow{yellow} s_1 \vartriangleright s_0 \xrightarrow{yellow \land \neg red} s_1$

pp. 115, l. Lemma 3.27, $Proof \triangleright$ add the following sentence to the beginning of the proof: First note that for $P = (2^{AP})^{\omega}$ the claim trivially holds, since closure(P) = P and the fact that P is a safety property since \overline{P} is empty. In the remainder of the proof we consider $P \neq (2^{AP})^{\omega}$.

pp. 118, l. 10, 11, $\pi^{m_0}\pi^{m_1}\pi^{m_2}\dots of \pi^0\pi^1\pi^2\dots such that \triangleright \pi^{m_0}, \pi^{m_1}, \pi^{m_2}, \dots of \pi^0, \pi^1, \pi^2, \dots$ such that

pp. 124, l. -3, By definition \triangleright By Lemma 3.27

pp. 130, l. 3, without being taken beyond \triangleright without being taken infinitely often beyond

pp. 131, l. 17, assignment $x = -1 \triangleright$ assignment x := -1

pp. 132, l. 2, an execution fragment ... but not strongly A-fair. \triangleright an execution fragment that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp. 134, l. 10, any finite trace is fair by default \triangleright any finite trace is strongly or weakly fair by default

pp. 136, l. -5, strong fairness property \triangleright fairness property

pp. 138, l. 4, It forces synchronization actions to happen infinitely often. \triangleright It forces synchronization actions to happen infinitely often provided they are enabled infinitely often.

pp. 138, l. -14, *This requires that* ... *is enabled.* \triangleright This requires that infinitely often a synchronization takes place when such synchronization is infinitely often enabled.

pp. 141, l. 5, the set of properties that has \triangleright the property that has

pp. 145, l. Exercise 3.5(g), between zero and two \triangleright between zero and non-zero

Chapter 4: Regular Properties

pp. 157, l. -11, $w = A_1 \dots A_n \in \Sigma \triangleright \ w = A_1 \dots A_n \in \Sigma^*$

pp. 157, l. -10, starts in $Q_0 \triangleright$ starts in state Q_0

pp. 157, l. -4, $Q_0 \triangleright \{Q_0\}$

pp. 158, l. -14, NFAs can be much more efficient. ▷ NFAs can be much smaller.

pp. 161, l. -9, (2) ... for all $1 \le i < n > \dots$ for all $0 \le i < n$. (Note: the invariant false has minimal bad prefix ε .)

pp. 161, l. -8, $1 \leq i < n \triangleright 0 \leq i < n$

pp. 163, l. Example 4.15, Minimal bad prefixes for this safety property constitute the language { $pay^n drink^{n+1} | n \ge 0$ } \triangleright Bad prefixes for this safety property constitute the language { $\sigma \in (2^{\{pay, drink\}})^{\omega} | w(\sigma, drink) > w(\sigma, pay)$ } where $w(\sigma, a)$ denotes the number of occurrences of a in σ .

pp. 164, l. 5,6, two NFAs intersect. \triangleright the languages of two NFAs intersect.

pp. 164, l. -8, path fragment $\pi \triangleright$ initial path fragment π

pp. 164, l. -6, $TS \otimes A$ which has an initial state $\triangleright TS \otimes A$ such that there exists an initial state

pp. 167, l. 7, 11, -4, $P_{inv(A)} \triangleright P_{inv(A)}$

pp. 167, l. -2, $q_1, \ldots, q_n \notin F \triangleright$ Note: this condition is not necessary.

pp. 168, l. 1, $0 \leq i \leq n \triangleright 0 < i \leq n$

pp. 171, l. 8, single word \triangleright a set containing a single word

pp. 177, l. -7, *Example 4.13 on page 161* ▷ Example 4.14 on page 162

pp. 183, l. -3, -1, $\mathcal{L}_{q_1q_3} = \ldots \vartriangleright \mathcal{L}_{q_1q_3} = C^*AB(B + BC^*AB)^*$ pp. 196, l. Example 4.57, page 193 \triangleright page 194 pp. 200, l. -7, $\bigwedge_{q \in Q} \vartriangleright \bigwedge_{q \in F}$ pp. 202, l. Fig. 4.22, \triangleright The two states should be labeled s_0 and s_1 , respectively pp. 203, l. 4, $\overline{P} =$ "eventually forever \neg green \triangleright P = infinitely often green pp. 206, l. Proof:, $TS = (S, Act, \rightarrow, I, AP) \triangleright$ $TS = (S, Act, \rightarrow, I, AP, L)$ pp. 207, l. -4, We now DFS-based cycle checks ... checking \triangleright We now present a DFS-based algorithm for persistence checking that searches backwards edges to check for cycles. pp. 212, l. 6, ignores $T \triangleright$ does not revisit the states in Tpp. 218, l. 10, Regula $r \triangleright$ Regular

Chapter 5: Linear Temporal Logic

pp. 230, l. 5, eventually in the future \triangleright now or eventually in the future pp. 236, l. Figure 5.2, \triangleright It is assumed that $\sigma = A_0A_1A_2...$ pp. 240, l. -10, $\delta_{r_2} = \neg r_1 \triangleright \ \delta_{r_2} = \neg r_2$ pp. 241, l. Fig. 5.6, \triangleright Note that the inputs of the *r* registers are on the right, and their outputs on the left. pp. 256, l. -3, $(\sigma[i..] \models \varphi) \land \forall k \leq i.\sigma[k..] \models \psi \triangleright \ (\sigma[i..] \models \varphi \land \forall k \leq i.\sigma[k..] \models \psi$ pp. 267, l. 7, as soon as \triangleright before pp. 270, l. Fig. 5.15, \triangleright The bottom cell should be white and not gray. pp. 276, l. -11, $\psi \in Bif$ and only if $\ldots \triangleright \psi \in B$ if and only if \ldots pp. 278, l. Proof of Theorem 5.37, \triangleright It is assumed that $\sigma = A_0A_1A_2...$ is such that $A_i \subseteq closure(\varphi)$, i.e., $A_i = B_i \cap AP$ means $A_i \cap closure(\varphi) = B_i \cap AP$ pp. 281, l. 1-5, For $B_0B_1B_2...$ a sequence \ldots we have for all $\psi \in cl(\varphi)$: $\psi \in B_0 \Leftrightarrow$ $A_0A_1A_2... \models \psi \triangleright$ For all $\psi \in cl(\varphi)$ and $B_0B_1B_2...$ a sequence \ldots we have: $\psi \in B_0 \Leftrightarrow$

pp. 283, l. 10, $\neq \bigcirc \psi \in B$ if and $\ldots \rhd \neg \bigcirc \psi \in B$ if and \ldots

pp. 283, l. 17, and $\varphi = \bigcirc a \in B_1, B_2 \triangleright \text{ and } \varphi = a \in B_1, B_2$

pp. 284, l. -14, $B_3 B_3 B_1 B_4^{\omega} \vartriangleright B_3 B_3 B_1 B_5^{\omega}$

pp. 287, l. -5, $|\neg(fair \rightarrow \varphi)| = |fair| + |\varphi| \triangleright |\neg(fair \rightarrow \varphi)| = |\neg(\neg fair \lor \varphi)|$

- $|fair| + |\varphi| + 3$
- pp. 289, l. 11, a new vertex b to $G \triangleright$ a new vertex b to TS
- pp. 292, l. Figure 5.23, \triangleright the self-loop at state P(n) should be omitted
- pp. 292, l. -1, $\bigcirc^{2i-1}(q, A, i) \rightarrow \vartriangleright$ begin $\land \bigcirc^{2i-1}(q, A, i) \rightarrow$
- pp. 294, l. -6, $\mathcal{G}_varphi \triangleright \mathcal{G}_{\varphi}$
- pp. 297, l. 7, Membership to \triangleright Membership in
- pp. 303, l. Exercise 5.7(a), $\varphi_1 \wedge \varphi_2 \triangleright \varphi_1 \mathsf{R} \varphi_2$
- pp. 303, l. Exercise 5.7(b), $W \triangleright Y$ (to avoid confusion with unless)

Chapter 6: Computation Tree Logic

pp. 320, l. -4, state formula \triangleright State formula pp. 327, l. -12, since $\exists (\varphi \cup \psi \lor \Box \varphi) \triangleright$ since $\forall (\varphi \cup \psi \lor \Box \varphi)$ pp. 333, l. 10, $\neg \exists \Diamond \neg \Phi = \neg \exists (true \cup \Phi) \triangleright \neg \exists \Diamond \neg \Phi \equiv \neg \exists (true \cup \neg \Phi)$ pp. 338, l. 5, $TS_n = (S'_n, ... \triangleright TS'_n = (S'_n, ... \triangleright$ pp. 338, l. -5 and -6, \triangleright transitions to s'_{n-1} are non-existing for n=0pp. 342, l. Algorithm 13, and -8 and -4, maximal genuine \triangleright maximal proper pp. 343, l. 4, subformula of $\Psi \triangleright$ subformula of Ψ' pp. 345, l. -2, $Sat(\exists (\Phi \cup \Psi) \triangleright Sat(\exists (\Phi \cup \Psi)))$ pp. 345, l. proof of (g)(ii), Let $\pi = s_0 s_1 s_2 \dots$ be a path starting in $s = s_0$. \triangleright Delete. pp. 349, l. -9, $(a = c) \land (a \neq b) \triangleright (a \leftrightarrow c) \land (a \not\leftrightarrow b)$ pp. 351, l. Algorithm 15, \triangleright comments in the first two lines of algorithm need to be swapped while replacing E by T and T by Epp. 354, l. Example 6.28, see the gray states \triangleright Delete. pp. 354, l. Example 6.28, Figure 6.13(b), Figure 6.13(c) \triangleright Figure 6.13(c), Figure 6.13(d) pp. 358, l. 11, \triangleright Note that the length of $\Phi_n \in \mathcal{O}(n!)$ pp. 371, l. -6, *ifstatement* \triangleright if statement pp. 372, l. Algorithm 19, line 4, $C \cap Sat(b_i) \neq \emptyset \triangleright C \cap Sat(b_i) \neq \emptyset$ pp. 374, l. 6, *counterxamples* \triangleright counterexamples

pp. 378, l. -6, $Eaxmple \triangleright$ Example

pp. 380, l. 12, $(a \wedge a') \cup (\neg a \wedge \neg a' \wedge a_{fair}) \triangleright (a \wedge \neg a') \cup (\neg a \wedge \neg a' \wedge a_{fair})$ pp. 381, l. 9, $\Box \Diamond (q \land r) \rightarrow \Box \Diamond \neg (q \lor r) \triangleright \Box \Diamond (a \land b) \rightarrow \Box \Diamond \neg (a \lor b)$ pp. 381, l. 9 and 12, $b = c \vartriangleright b \Leftrightarrow c$ pp. 383, l. 9 and 10, ... $z_m \triangleright \dots, z_m$ pp. 386, l. 13 and 15 (twice), $s\{\overline{y} \leftarrow \overline{z}\} \triangleright s\{\overline{z} \leftarrow \overline{y}\}$ pp. 386, l. 15–17, $f\{\overline{z} \leftarrow \overline{y}\} \triangleright f\{\overline{y} \leftarrow \overline{z}\}$ pp. 387, l. 18, $t\{\bar{x}/\bar{x}'\} > t\{\bar{x}' \leftarrow \bar{x}\}$ pp. 388, l. 7, $x' \triangleright x'_1$ pp. 388, l. 7, $\bigwedge_{j < i \leq n} (x_j \leftrightarrow x'_j) \triangleright \bigwedge_{i+1 < j \leq n} (x_j \leftrightarrow x'_j)$ pp. 388, l. 7-8, \triangleright add conjunct $\land \left(\neg x_1 \rightarrow x'_1 \land \bigwedge_{1 < j \leq n} (x_j \leftrightarrow x'_j)\right)$ pp. 388, l. 14–17, $\triangleright x$ and x' should be swapped pp. 388, l. Example 6.58 (four times), $\{x \leftarrow x'\} \triangleright \{x' \leftarrow x\}$ pp. 390, l. 8, $\exists s' \in Ss.t.s' \in Post(s) \triangleright \exists s' \in S.s' \in Post(s)$ pp. 390, l. Algorithm 20, line 4, $f_{j+1}(\bar{x}) := f_{j+1}(\bar{x}) \lor \ldots \vartriangleright f_{j+1}(\bar{x}) := f_j(\bar{x}) \lor \ldots$ pp. 391, l. Algorithm 21, line 4, $f_{j+1}(\bar{x}) := f_{j+1}(\bar{x}) \land \ldots \triangleright f_{j+1}(\bar{x}) := f_j(\bar{x}) \land \ldots$ pp. 391, l. Algorithm 21, line 4, $return \triangleright$ return pp. 391, l. 19, $19 \triangleright$ can be rules as can be ruled out as pp. 393, l. Figure 6.21 (right), solid line between z_3 and $\theta \succ$ dashed line between z_3 and 0 pp. 396, l. -15, The semantics \triangleright The semantics of pp. 398, l. 9, *left subtree* \triangleright right subtree pp. 393, l. Figure 6.21, right, solid line z_3 between $0 \triangleright$ dashed line z_3 between 0pp. 405, l. 2, $z_m = a_m, z_m = b_m, \dots, z_i = a_i, z_i = b_i \triangleright z_m = a_m, y_m = b_m, \dots, z_i = a_m, y_m = b_m, \dots, y_i =$ $a_i, y_i = b_i$ pp. 405, l. 3, $z_m = a_m, z_m = b_m, \dots, z_{i+1} = a_{i+1}, z_{i+1} = b_{i+1}, z_i = a_i \triangleright z_m = a_m, y_m = a$ $b_m, \ldots, z_{i+1} = a_{i+1}, y_{i+1} = a_{i+1}, z_i = a_i$ pp. 405, l. -4, As $f \overline{b}, \overline{\mathfrak{c}} \in \{0,1\}^m \triangleright$ As $\overline{b}, \overline{\mathfrak{c}} \in \{0,1\}^m$ pp. 409, l. -12, $info(v) = \langle var(v), succ_0(v), succ_0(v) \rangle \triangleright info(v) = \langle var(v), succ_1(v), succ_0(v) \rangle$ pp. 412, l. 7, $u \triangleright v$ pp. 413, l. 13, $f_2 z_1 = b_1, \ldots, z_i = b_i \triangleright f_2|_{z_1 = b_1, \ldots, z_i = b_i}$ pp. 417, l. heading Algorithm 24, $(v, \{\overline{x} \leftarrow \overline{x}'\}) \triangleright (v, \{\overline{x}' \leftarrow \overline{x}\})$

pp. 417, l. Algorithm 24, line 4, $ist \triangleright$ is a pp. 417, l. Algorithm 24, \triangleright replace z by x pp. 418, l. -6, $f|_{x=\overline{b}} \triangleright f|_{x=b}$

Chapter 7: Equivalences and Abstraction

pp. 454, l. 3, $Sssume \triangleright$ Assume

pp. 464, l. Figure 7.9, arrows $n_1 c_2$ to $w_1 w_2$ and $c_1 n_2$ to $w_1 w_2 \triangleright$ should be omitted

- pp. 466, l. 8, $H = Act_1 \cap Act_2 \triangleright H = (Act_1 \cap Act_2) \setminus \{\tau\}$
- pp. 469, l. Remark 7.19, line 10, $s_2 \models \varphi$, but $s_1 \not\models \varphi \triangleright s_2 \not\models \neg \varphi$, but $s_1 \models \neg \varphi$

pp. 475, l. Corollary 72.7 (c), $\equiv_{CTL} \triangleright \equiv_{CTL}^*$

- pp. 489, l. Algorithm 32, line 6+7, \triangleright these lines need to be swapped
- pp. 513, l. 9, $\{a\} \varnothing \notin \operatorname{Traces}(TS_1) \rhd \{a\} \varnothing \notin \operatorname{Traces}(TS_2)$
- pp. 518, l. 8, $\forall \Phi \in \forall CTL^* \vartriangleright \forall \Phi \in \forall CTL$
- pp. 519, l. -10, fragment of $CTL^* \triangleright$ fragment of CTL
- pp. 528, l. -9, $s_1 \in Pre(s'_2) \vartriangleright s_1 \in Pre(s'_1)$
- pp. 537, l. -5, $\langle c_2, n_1 \rangle \triangleright \langle n_1, c_2 \rangle$
- pp. 539, l. 2, \mathcal{R} on $(S_1 \times S_2) \cup (S_1 \times S_2) \triangleright \mathcal{R}$ on $TS_1 \oplus TS_2$
- pp. 542, l. 5, $\langle c_2, n_1 \rangle \triangleright \langle n_1, c_2 \rangle$

pp. 546, l. 13, s_2 is \approx_{TS}^{div} -divergent whereas s_0 and s_1 are not. $\triangleright s_2$ is not \approx_{TS}^{div} -divergent whereas s_0 and s_1 are.

- pp. 546, l. after Example 7.110, where the state labelling is indicated by the grey scale \triangleright
- pp. 554, l. 8, *amounts* \triangleright amounts to
- pp. 556, l. Figure 7.45, v_1 and $v_2 \triangleright t_1$ and t_2
- pp. 556, l. Figure 7.45 (rechts), $s_1 \triangleright s_2$
- pp. 557, l. -8, since s_2 and u_2 are \mathcal{R} -equivalent \triangleright since s_1 and u_2 are \mathcal{R} -equivalent
- pp. 562, l. 1, and $s_1 \exists \varphi \triangleright$ and $s_1 \models \exists \varphi$
- pp. 563, l. 4, $\Phi_B \cup \Phi_C$ is a $CTL_{\setminus \bigcirc}$ formula $\triangleright \exists (\Phi_B \cup \Phi_C)$ is a $CTL_{\setminus \bigcirc}$ formula

pp. 566, l. 16, ℓ_2 : (if (free > 0) then i := 0; free $- \mathbf{fi}$) $\triangleright \ \ell_2$: (if (free > 0) then i := 0; free $- \mathbf{fi}$); goto ℓ_0

pp. 566, l. -3, $\langle \ell_0, \ell'_2, 2, 0, 0 \rangle \rightarrow \langle \ell_0, \ell'_0, 2, 0, 0 \rangle \triangleright \langle \ell_1, \ell'_2, 2, 0, 0 \rangle \rightarrow \langle \ell_1, \ell'_0, 2, 0, 0 \rangle$

pp. 569, l. 7, there are some states in B that cannot reach C by only visiting states in B. For such states, the only possibility is to reach C via some other block $D \neq B, C$. $\triangleright C$ can only be reached via paths that entirely go through B.

pp. 569, l. -5, $B \cap Pre^*_{\Pi}(C) \triangleright B \cap Pre(C)$

pp. 572, l. 11, $t \in Exit(B) \triangleright t \in Bottom(B)$

pp. 577, l. -2, quotient space $S/\cong \triangleright$ quotient space S/\cong^{div}

pp. 578, l. 4, $E = \{ (s,t) \in S \times S \mid L(s) = L(t) \} \triangleright E = \{ (s,t) \in S \times S \mid L(s) = L(t) \land s \xrightarrow{\alpha} t \text{ for some } \alpha \in Act \}$

pp. 578, l. item 3., self-loops $[s]_{div} \rightarrow [s]_{div} \triangleright$ self-loops $[s] \rightarrow [s]$

Chapter 8: Partial-Order Reduction

pp. 596, l. 19, $consists \triangleright consists$ of pp. 597, l. 11, of state space \triangleright of the state space pp. 601, l. -11, TS be action-deterministic \triangleright TS be an action-deterministic pp. 602, l. 5, *independent* on \triangleright independent of pp. 610, l. 3, all ample actions \triangleright all actions pp. 610, l. 6, any finite execution in $TS \triangleright$ any finite execution in TS ending with an ample action pp. 610, l. 14, $s_1 \xrightarrow{\beta_1} s_2 \xrightarrow{\beta_2} \ldots \geqslant s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \ldots$ pp. 611, l. 6, cycle $s_0s_2s_2 \triangleright$ cycle s_2s_2 pp. 612, l. -7 and -9, $Reach(TS) \triangleright Reach(TS)$ pp. 613, l. 8, constraints (A1) and (A2) \triangleright constraint (A2) pp. 613, l. below Notation 8.16, *necessary* \triangleright almost sufficient pp. 623, l. -10 and -4, Section $5.2 \triangleright$ Section 4.4.2pp. 625, l. Algorithm 39, line 3, $TS \models \Box \Phi \triangleright TS \models \Diamond \Box \Phi$ pp. 629, l. -5, $\varrho = s_0 \rightarrow \ldots \rightarrow t \xrightarrow{\alpha} trap \triangleright \varrho = s_0 \rightarrow' \ldots \rightarrow' t \xrightarrow{\alpha}' trap$ pp. 666, l. Exercise 8.6, $ample(s_9) = \{\alpha, \beta, \gamma\} \triangleright ample(s_9) = \{\eta, \beta, \gamma\}$

Chapter 9: Timed Automata

- pp. 674, l. -12, is more an intuitive than \triangleright is more intuitive than
- pp. 683, l. -9, ... $||TA_n > ... ||_H TA_n$
- pp. 685, l. Figure 9.9, $\langle far, 0, up \rangle \rightarrow \langle near, 1, up \rangle$, $reset(x, y) \triangleright reset(z, y)$
- pp. 696, l. 2, $\eta \not\models g_j$ or $Inv(\ell_j) \triangleright \eta \not\models g_j$ or $\eta \not\models Inv(\ell_j)$
- pp. 696, l. 12, $\eta_{i-1} \triangleright \eta_{j-1}$ (this occurs twice!)
- pp. 696, l. proof of Lemma 9.24, \triangleright The variables *i*, *j* and *x* depend on the cycle in π . For the sake of simplicity, this dependency is not treated here.
- pp. 696, l. -5, when going from location off to on \triangleright when going from location on to off
- pp. 699, l. -3, $\forall \Diamond^{>2} \neg on \triangleright \forall \Diamond^{\leq 2} \neg on$
- pp. 702, l. -5, $TCTLsemantics \triangleright$ TCTL semantics
- pp. 709, l. -10, of the form $x \leq c$ or $x < c \triangleright$ of the form $x \leq c, x < c, x \geq c$ or x > c
- pp. 710, l. -12, *Figure 9.18*) \triangleright Figure 9.18
- pp. 713, l. Definition 9.42, line 3, *if and only if either* \triangleright if and only if either for all $x \in C$ (in the two bullets the universal quantification over x needs to be deleted)
- pp. 716, l. -3, constraint $(C) \triangleright$ constraint (C)
- pp. 717, l., open intervals like $]0,1[\triangleright (0,1)]$
- pp. 730, l. 4, $\forall \Diamond a \triangleright a \cup b$
- pp. 730, l. 19, $\Diamond a \triangleright a \cup b$
- pp. 730, l. 21, *time-convergent* \triangleright time-divergent
- pp. 731, l. Example 9.63, with $\eta(x) > 1 \triangleright$ with $\eta(x) = 2$

Chapter 10: Probabilistic Systems

- pp. 749, l. Example 10.2, senf off \triangleright sent off
- pp. 753, l. Notation 10.6, l. 1, $Post^*(s) \triangleright Post(s)$
- pp. 776, l. -3, absorbing states \triangleright states

pp. 778, l. 4, $\mathbf{P}'(s,t) = ... \triangleright$

$$\mathbf{P}'(s,t) = \begin{cases} 1 & \text{if } s = t \text{ and } s \in B \cup S \setminus (C \cup B) \\ 0 & \text{if } s \neq t \text{ and } s \in B \cup S \setminus (C \cup B) \\ \mathbf{P}(s,t) & \text{otherwise.} \end{cases}$$

pp. 821, l. 13, time complexity of the size \triangleright time complexity in the size

pp. 851, l. Theorem 10.100, \triangleright Add the following condition: $\sum_{s \in S} x_s$ is minimal.

pp. 857, l. 2, $\sum_{s \in S_? \setminus \{s\}} \mathbf{P}(s, \alpha, t) \cdot x_t \rhd - \sum_{s \in S_? \setminus \{s\}} \mathbf{P}(s, \alpha, t) \cdot x_t$

pp. 862, l. Lemma 10.113 + succeeding paragraph, \triangleright should be after Theorem 10.109

pp. 870, l. Lemma 10.119, any $s \in S \vartriangleright \ \text{any} \ s \in T$

pp. 876, l. 11, $U_{\Box \Diamond P} \triangleright U_{\Box \Diamond B}$

pp. 883, l. Theorem 10.129 and just before, is in $2EXPTIME \triangleright$ is 2EXPTIME-complete (twice)

pp. 903, l. Exercise 10.14, $\varphi = \Box \diamondsuit a \vartriangleright \ \varphi = \diamondsuit \Box a$

pp. 903/904, l. Exercise 10.17, *Markov chain* $\mathcal{M} \triangleright$ Markov chain \mathcal{M} where all states are equally labeled

pp. 905, l. Exercise 10.22, \triangleright Compute also the values $y_s = Pr^{\max}(s \models C \cup B)$ with $C = S \setminus \{s_3\}$ and $B = \{s_6\}$

pp. 905, l. Exercise 10.23, (a), 1. and (b) \triangleright (a), (b), (c)

Appendix

pp. 912, l. footnote, $\sigma = A_1 A_2 A_3 \dots \triangleright \sigma = A_0 A_1 A_2 \dots$

pp. 918, l. 8, not to $1 \triangleright$ not to n

pp. 925, l. 1, they are composed of simple paths \triangleright they are composed of paths, at least one of which is simple.